mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 14:54:20 +01:00
d49cd8a22b
git-svn-id: file:///svn/tokudb@3918 c7de825b-a66e-492c-adef-691d508d4ae1
263 lines
11 KiB
C
263 lines
11 KiB
C
#if !defined(OMT_H)
|
|
#define OMT_H
|
|
|
|
#ident "Copyright (c) 2008 Tokutek Inc. All rights reserved."
|
|
|
|
// Order Maintenance Tree (OMT)
|
|
//
|
|
// Maintains a collection of totally ordered values, where each value has an integer weight.
|
|
// The OMT is a mutable datatype.
|
|
//
|
|
// The Abstraction:
|
|
//
|
|
// An OMT is a vector of values, $V$, where $|V|$ is the length of the vector.
|
|
// The vector is numbered from $0$ to $|V|-1$.
|
|
// Each value has a weight. The weight of the $i$th element is denoted $w(V_i)$.
|
|
//
|
|
// We can create a new OMT, which is the empty vector.
|
|
//
|
|
// We can insert a new element $x$ into slot $i$, changing $V$ into $V'$ where
|
|
// $|V'|=1+|V|$ and
|
|
//
|
|
// V'_j = V_j if $j<i$
|
|
// x if $j=i$
|
|
// V_{j-1} if $j>i$.
|
|
//
|
|
// We can specify $i$ using a kind of function instead of as an integer.
|
|
// Let $b$ be a function mapping from values to nonzero integers, such that
|
|
// the signum of $b$ is monotically increasing.
|
|
// We can specify $i$ as the minimum integer such that $b(V_i)>0$.
|
|
//
|
|
// We look up a value using its index, or using a Heaviside function.
|
|
// For lookups, we allow $b$ to be zero for some values, and again the signum of $b$ must be monotonically increasing.
|
|
// When lookup up values, we can look up
|
|
// $V_i$ where $i$ is the minimum integer such that $b(V_i)=0$. (With a special return code if no such value exists.)
|
|
// (Rationale: Ordinarily we want $i$ to be unique. But for various reasons we want to allow multiple zeros, and we want the smallest $i$ in that case.)
|
|
// $V_i$ where $i$ is the minimum integer such that $b(V_i)>0$. (Or an indication that no such value exists.)
|
|
// $V_i$ where $i$ is the maximum integer such that $b(V_i)<0$. (Or an indication that no such value exists.)
|
|
//
|
|
// When looking up a value using a Heaviside function, we get the value and its index.
|
|
//
|
|
// We can also split an OMT into two OMTs, splitting the weight of the values evenly.
|
|
// Find a value $j$ such that the values to the left of $j$ have about the same total weight as the values to the right of $j$.
|
|
// The resulting two OMTs contain the values to the left of $j$ and the values to the right of $j$ respectively.
|
|
// All of the values from the original OMT go into one of the new OMTs.
|
|
// If the weights of the values don't split exactly evenly, then the implementation has the freedom to choose whether
|
|
// the new left OMT or the new right OMT is larger.
|
|
//
|
|
// Performance:
|
|
// Insertion and deletion should run with $O(\log |V|)$ time and $O(\log |V|)$ calls to the Heaviside function.
|
|
// The memory required is O(|V|).
|
|
//
|
|
// The programming API:
|
|
|
|
//typedef struct value *OMTVALUE; // A slight improvement over using void*.
|
|
typedef struct omt *OMT;
|
|
|
|
int toku_omt_create (OMT *omtp);
|
|
// Effect: Create an empty OMT. Stores it in *omtp.
|
|
// Requires: omtp != NULL
|
|
// Returns:
|
|
// 0 success
|
|
// ENOMEM out of memory (and doesn't modify *omtp)
|
|
// Performance: constant time.
|
|
|
|
int toku_omt_create_from_sorted_array(OMT *omtp, OMTVALUE *values, u_int32_t numvalues);
|
|
// Effect: Create a OMT containing values. The number of values is in numvalues.
|
|
// Stores the new OMT in *omtp.
|
|
// Requires: omtp != NULL
|
|
// Requires: values != NULL
|
|
// Requires: values is sorted
|
|
// Returns:
|
|
// 0 success
|
|
// ENOMEM out of memory (and doesn't modify *omtp)
|
|
// Performance: time=O(numvalues)
|
|
// Rational: Normally to insert N values takes O(N lg N) amortized time.
|
|
// If the N values are known in advance, are sorted, and
|
|
// the structure is empty, we can batch insert them much faster.
|
|
|
|
void toku_omt_destroy(OMT *omtp);
|
|
// Effect: Destroy an OMT, freeing all its memory.
|
|
// Does not free the OMTVALUEs stored in the OMT.
|
|
// Those values may be freed before or after calling toku_omt_destroy.
|
|
// Also sets *omtp=NULL.
|
|
// Requires: omtp != NULL
|
|
// Requires: *omtp != NULL
|
|
// Rationale: The usage is to do something like
|
|
// toku_omt_destroy(&s->omt);
|
|
// and now s->omt will have a NULL pointer instead of a dangling freed pointer.
|
|
// Rationale: Returns no values since free() cannot fail.
|
|
// Rationale: Does not free the OMTVALUEs to reduce complexity.
|
|
// Performance: time=O(toku_omt_size(*omtp))
|
|
|
|
u_int32_t toku_omt_size(OMT V);
|
|
// Effect: return |V|.
|
|
// Requires: V != NULL
|
|
// Performance: time=O(1)
|
|
|
|
int toku_omt_iterate(OMT omt, int (*f)(OMTVALUE, u_int32_t, void*), void*v);
|
|
// Effect: Iterate over the values of the omt, from left to right, calling f on each value.
|
|
// The second argument passed to f is the index of the value.
|
|
// The third argument passed to f is v.
|
|
// The indices run from 0 (inclusive) to toku_omt_size(omt) (exclusive).
|
|
// Requires: omt != NULL
|
|
// Requires: f != NULL
|
|
// Returns:
|
|
// If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_omt_iterate.
|
|
// If f always returns zero, then toku_omt_iterate returns 0.
|
|
// Requires: Don't modify omt while running. (E.g., f may not insert or delete values form omt.)
|
|
// Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in omt.
|
|
// Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read.
|
|
|
|
int toku_omt_insert_at(OMT omt, OMTVALUE value, u_int32_t index);
|
|
// Effect: Increases indexes of all items at slot >= index by 1.
|
|
// Insert value into the position at index.
|
|
//
|
|
// Returns:
|
|
// 0 success
|
|
// ERANGE if index>toku_omt_size(omt)
|
|
// ENOMEM
|
|
// On error, omt is unchanged.
|
|
// Performance: time=O(\log N) amortized time.
|
|
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
|
|
|
|
int toku_omt_set_at (OMT omt, OMTVALUE value, u_int32_t index);
|
|
// Effect: Replaces the item at index with value.
|
|
// Returns:
|
|
// 0 success
|
|
// ERANGE if index>=toku_omt_size(omt)
|
|
// On error, omt i sunchanged.
|
|
// Performance: time=O(\log N)
|
|
// Rationale: The BRT needs to be able to replace a value with another copy of the same value (allocated in a different location)
|
|
|
|
int toku_omt_insert(OMT omt, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, u_int32_t *index);
|
|
// Effect: Insert value into the OMT.
|
|
// If there is some i such that $h(V_i, v)=0$ then returns DB_KEYEXIST.
|
|
// Otherwise, let i be the minimum value such that $h(V_i, v)>0$.
|
|
// If no such i exists, then let i be |V|
|
|
// Then this has the same effect as
|
|
// omt_insert_at(tree, value, i);
|
|
// If index!=NULL then i is stored in *index
|
|
// Requires: The signum of h must be monotonically increasing.
|
|
// Returns:
|
|
// 0 success
|
|
// DB_KEYEXIST the key is present (h was equal to zero for some value)
|
|
// ENOMEM
|
|
// On nonzero return, omt is unchanged.
|
|
// On nonzero non-DB_KEYEXIST return, *index is unchanged.
|
|
// Performance: time=O(\log N) amortized.
|
|
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
|
|
|
|
int toku_omt_delete_at(OMT omt, u_int32_t index);
|
|
// Effect: Delete the item in slot index.
|
|
// Decreases indexes of all items at slot >= index by 1.
|
|
// Returns
|
|
// 0 success
|
|
// ERANGE if index>=toku_omt_size(omt)
|
|
// On error, omt is unchanged.
|
|
// Rationale: To delete an item, first find its index using toku_omt_find, then delete it.
|
|
// Performance: time=O(\log N) amortized.
|
|
|
|
|
|
int toku_omt_fetch (OMT V, u_int32_t i, OMTVALUE *v);
|
|
// Effect: Set *v=V_i
|
|
// Requires: v != NULL
|
|
// Returns
|
|
// 0 success
|
|
// ERANGE if index>=toku_omt_size(omt)
|
|
// On nonzero return, *v is unchanged.
|
|
// Performance: time=O(\log N)
|
|
|
|
int toku_omt_find_zero(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, u_int32_t *index);
|
|
// Effect: Find the smallest i such that h(V_i, extra)>=0
|
|
// If there is such an i and h(V_i,extra)==0 then set *index=i and return 0.
|
|
// If there is such an i and h(V_i,extra)>0 then set *index=i and return DB_NOTFOUND.
|
|
// If there is no such i then set *index=toku_omt_size(V) and return DB_NOTFOUND.
|
|
// Requires: index!=NULL
|
|
|
|
int toku_omt_find(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, int direction, OMTVALUE *value, u_int32_t *index);
|
|
/* Effect:
|
|
If direction >0 then find the smallest i such that h(V_i,extra)>0.
|
|
If direction <0 then find the largest i such that h(V_i,extra)<0.
|
|
(Direction may not be equal to zero.)
|
|
If value!=NULL then store V_i in *value
|
|
If index!=NULL then store i in *index.
|
|
Requires: The signum of h is monotically increasing.
|
|
Returns
|
|
0 success
|
|
DB_NOTFOUND no such value is found.
|
|
On nonzero return, *value and *index are unchanged.
|
|
Performance: time=O(\log N)
|
|
Rationale:
|
|
Here's how to use the find function to find various things
|
|
Cases for find:
|
|
find first value: ( h(v)=+1, direction=+1 )
|
|
find last value ( h(v)=-1, direction=-1 )
|
|
find first X ( h(v)=(v< x) ? -1 : 1 direction=+1 )
|
|
find last X ( h(v)=(v<=x) ? -1 : 1 direction=-1 )
|
|
find X or successor to X ( same as find first X. )
|
|
|
|
Rationale: To help understand heaviside functions and behavor of find:
|
|
There are 7 kinds of heaviside functions.
|
|
The signus of the h must be monotonically increasing.
|
|
Given a function of the following form, A is the element
|
|
returned for direction>0, B is the element returned
|
|
for direction<0, C is the element returned for
|
|
direction==0 (see find_zero) (with a return of 0), and D is the element
|
|
returned for direction==0 (see find_zero) with a return of DB_NOTFOUND.
|
|
If any of A, B, or C are not found, then asking for the
|
|
associated direction will return DB_NOTFOUND.
|
|
See find_zero for more information.
|
|
|
|
Let the following represent the signus of the heaviside function.
|
|
|
|
-...-
|
|
A
|
|
D
|
|
|
|
+...+
|
|
B
|
|
D
|
|
|
|
0...0
|
|
C
|
|
|
|
-...-0...0
|
|
AC
|
|
|
|
0...0+...+
|
|
C B
|
|
|
|
-...-+...+
|
|
AB
|
|
D
|
|
|
|
-...-0...0+...+
|
|
AC B
|
|
*/
|
|
|
|
|
|
int toku_omt_split_at(OMT omt, OMT *newomt, u_int32_t index);
|
|
// Effect: Create a new OMT, storing it in *newomt.
|
|
// The values to the right of index (starting at index) are moved to *newomt.
|
|
// Requires: omt != NULL
|
|
// Requires: newomt != NULL
|
|
// Returns
|
|
// 0 success,
|
|
// ERANGE if index > toku_omt_size(omt)
|
|
// ENOMEM
|
|
// On nonzero return, omt and *newomt are unmodified.
|
|
// Performance: time=O(n)
|
|
// Rationale: We don't need a split-evenly operation. We need to split items so that their total sizes
|
|
// are even, and other similar splitting criteria. It's easy to split evenly by calling toku_omt_size(), and dividing by two.
|
|
|
|
int toku_omt_merge(OMT leftomt, OMT rightomt, OMT *newomt);
|
|
// Effect: Appends leftomt and rightomt to produce a new omt.
|
|
// Sets *newomt to the new omt.
|
|
// On success, leftomt and rightomt destroyed,.
|
|
// Returns 0 on success
|
|
// ENOMEM on out of memory.
|
|
// On error, nothing is modified.
|
|
// Performance: time=O(n) is acceptable, but one can imagine implementations that are O(\log n) worst-case.
|
|
|
|
#endif /* #ifndef OMT_H */
|