mariadb/newbrt/tests/test3884.c
Leif Walsh d3aaa32b20 [t:4882] change compression type to be set before create
this means you have to set the compression type before calling db->open
and you can't change it after that

we also log it now

this bumps the version layout to BRT_LAYOUT_VERSION_20


git-svn-id: file:///svn/toku/tokudb@43511 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-17 00:00:29 -04:00

534 lines
19 KiB
C

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "$Id$"
#ident "Copyright (c) 2007-2011 Tokutek Inc. All rights reserved."
// it used to be the case that we copied the left and right keys of a
// range to be prelocked but never freed them, this test checks that they
// are freed (as of this time, this happens in destroy_bfe_for_prefetch)
#include "test.h"
#include "includes.h"
#include <brt-cachetable-wrappers.h>
#include <brt-flusher.h>
// Some constants to be used in calculations below
static const int nodesize = 1024; // Target max node size
static const int eltsize = 64; // Element size (for most elements)
static const int bnsize = 256; // Target basement node size
static const int eltsperbn = 256 / 64; // bnsize / eltsize
static const int keylen = sizeof(long);
// vallen is eltsize - keylen and leafentry overhead
static const int vallen = 64 - sizeof(long) - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
#define dummy_msn_3884 ((MSN) { (u_int64_t) 3884 * MIN_MSN.msn })
static TOKUTXN const null_txn = 0;
static DB * const null_db = 0;
static const char fname[]= __FILE__ ".brt";
static int omt_long_cmp(OMTVALUE p, void *q)
{
LEAFENTRY a = p, b = q;
void *ak, *bk;
u_int32_t al, bl;
ak = le_key_and_len(a, &al);
bk = le_key_and_len(b, &bl);
assert(al == sizeof(long) && bl == sizeof(long));
long *ai = (long *) ak;
long *bi = (long *) bk;
return (*ai > *bi) - (*ai < *bi);
}
static size_t
calc_le_size(int key_size, int val_size) {
size_t rval;
LEAFENTRY le;
rval = sizeof(le->type) + sizeof(le->keylen) + sizeof(le->u.clean.vallen) + key_size + val_size;
return rval;
}
static LEAFENTRY
le_fastmalloc(struct mempool * mp, char *key, int key_size, char *val, int val_size)
{
LEAFENTRY le;
size_t le_size = calc_le_size(key_size, val_size);
le = toku_mempool_malloc(mp, le_size, 1);
resource_assert(le);
le->type = LE_CLEAN;
le->keylen = key_size;
le->u.clean.vallen = val_size;
memcpy(&le->u.clean.key_val[0], key, key_size);
memcpy(&le->u.clean.key_val[keylen], val, val_size);
return le;
}
static size_t
insert_dummy_value(BRTNODE node, int bn, long k)
{
char val[vallen];
memset(val, k, sizeof val);
struct mempool *mp = &BLB(node, bn)->buffer_mempool;
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, vallen);
int r = toku_omt_insert(BLB_BUFFER(node, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(node, bn) += leafentry_disksize(le);
return leafentry_disksize(le);
}
static void
setup_brtnode_header(struct brtnode *node)
{
node->nodesize = nodesize;
node->flags = 0x11223344;
node->thisnodename.b = 20;
node->layout_version = BRT_LAYOUT_VERSION;
node->layout_version_original = BRT_LAYOUT_VERSION;
node->height = 0;
node->dirty = 1;
node->totalchildkeylens = 0;
}
static void
setup_brtnode_partitions(struct brtnode *node, int n_children, const MSN msn, size_t maxbnsize)
{
node->n_children = n_children;
node->max_msn_applied_to_node_on_disk = msn;
MALLOC_N(node->n_children, node->bp);
MALLOC_N(node->n_children - 1, node->childkeys);
for (int bn = 0; bn < node->n_children; ++bn) {
BP_STATE(node, bn) = PT_AVAIL;
set_BLB(node, bn, toku_create_empty_bn());
BASEMENTNODE basement = BLB(node, bn);
struct mempool *mp = &basement->buffer_mempool;
toku_mempool_construct(mp, maxbnsize);
BLB_NBYTESINBUF(node, bn) = 0;
BLB_MAX_MSN_APPLIED(node, bn) = msn;
}
}
static void
destroy_brtnode_and_internals(struct brtnode *node)
{
for (int i = 0; i < node->n_children - 1; ++i) {
toku_free(node->childkeys[i].data);
}
for (int i = 0; i < node->n_children; ++i) {
BASEMENTNODE bn = BLB(node, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(node, i));
}
toku_free(node->bp);
toku_free(node->childkeys);
}
static void
verify_basement_node_msns(BRTNODE node, MSN expected)
{
for(int i = 0; i < node->n_children; ++i) {
assert(expected.msn == BLB_MAX_MSN_APPLIED(node, i).msn);
}
}
//
// Maximum node size according to the BRT: 1024 (expected node size after split)
// Maximum basement node size: 256
// Actual node size before split: 2048
// Actual basement node size before split: 256
// Start by creating 8 basements, then split node, expected result of two nodes with 4 basements each.
static void
test_split_on_boundary(void)
{
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
setup_brtnode_header(&sn);
const int nelts = 2 * nodesize / eltsize;
setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize);
for (int bn = 0; bn < sn.n_children; ++bn) {
long k;
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
insert_dummy_value(&sn, bn, k);
}
if (bn < sn.n_children - 1) {
toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k);
sn.totalchildkeylens += (sizeof k);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
verify_basement_node_msns(nodea, dummy_msn_3884);
verify_basement_node_msns(nodeb, dummy_msn_3884);
toku_unpin_brtnode(brt->h, nodeb);
r = toku_close_brt_nolsn(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
destroy_brtnode_and_internals(&sn);
}
//
// Maximum node size according to the BRT: 1024 (expected node size after split)
// Maximum basement node size: 256 (except the last)
// Actual node size before split: 4095
// Actual basement node size before split: 256 (except the last, of size 2K)
//
// Start by creating 9 basements, the first 8 being of 256 bytes each,
// and the last with one row of size 2047 bytes. Then split node,
// expected result is two nodes, one with 8 basement nodes and one
// with 1 basement node.
static void
test_split_with_everything_on_the_left(void)
{
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
setup_brtnode_header(&sn);
const int nelts = 2 * nodesize / eltsize;
setup_brtnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, 2 * nodesize);
size_t big_val_size = 0;
for (int bn = 0; bn < sn.n_children; ++bn) {
long k;
if (bn < sn.n_children - 1) {
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
big_val_size += insert_dummy_value(&sn, bn, k);
}
toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k);
sn.totalchildkeylens += (sizeof k);
} else {
k = bn * eltsperbn;
// we want this to be as big as the rest of our data and a
// little bigger, so the halfway mark will land inside this
// value and it will be split to the left
big_val_size += 100;
char * big_val = toku_xmalloc(big_val_size);
memset(big_val, k, big_val_size);
struct mempool *mp = &BLB(&sn, bn)->buffer_mempool;
LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size);
toku_free(big_val);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(big_element);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt->h, nodeb);
r = toku_close_brt_nolsn(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
destroy_brtnode_and_internals(&sn);
}
//
// Maximum node size according to the BRT: 1024 (expected node size after split)
// Maximum basement node size: 256 (except the last)
// Actual node size before split: 4095
// Actual basement node size before split: 256 (except the last, of size 2K)
//
// Start by creating 9 basements, the first 8 being of 256 bytes each,
// and the last with one row of size 2047 bytes. Then split node,
// expected result is two nodes, one with 8 basement nodes and one
// with 1 basement node.
static void
test_split_on_boundary_of_last_node(void)
{
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
setup_brtnode_header(&sn);
const int nelts = 2 * nodesize / eltsize;
const size_t maxbnsize = 2 * nodesize;
setup_brtnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, maxbnsize);
size_t big_val_size = 0;
for (int bn = 0; bn < sn.n_children; ++bn) {
long k;
if (bn < sn.n_children - 1) {
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
big_val_size += insert_dummy_value(&sn, bn, k);
}
toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k);
sn.totalchildkeylens += (sizeof k);
} else {
k = bn * eltsperbn;
// we want this to be slightly smaller than all the rest of
// the data combined, so the halfway mark will be just to its
// left and just this element will end up on the right of the split
big_val_size -= 1 + (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
invariant(big_val_size <= maxbnsize);
char * big_val = toku_xmalloc(big_val_size);
memset(big_val, k, big_val_size);
struct mempool *mp = &BLB(&sn, bn)->buffer_mempool;
LEAFENTRY big_element = le_fastmalloc(mp, (char *) &k, keylen, big_val, big_val_size);
toku_free(big_val);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(big_element);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt->h, nodeb);
r = toku_close_brt_nolsn(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
destroy_brtnode_and_internals(&sn);
}
static void
test_split_at_begin(void)
{
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
setup_brtnode_header(&sn);
const int nelts = 2 * nodesize / eltsize;
const size_t maxbnsize = 2 * nodesize;
setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize);
size_t totalbytes = 0;
for (int bn = 0; bn < sn.n_children; ++bn) {
long k;
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
if (bn == 0 && i == 0) {
// we'll add the first element later when we know how big
// to make it
continue;
}
totalbytes += insert_dummy_value(&sn, bn, k);
}
if (bn < sn.n_children - 1) {
toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k);
sn.totalchildkeylens += (sizeof k);
}
}
{ // now add the first element
int bn = 0; long k = 0;
BASEMENTNODE basement = BLB(&sn, bn);
struct mempool * mp = &basement->buffer_mempool;
// add a few bytes so the halfway mark is definitely inside this
// val, which will make it go to the left and everything else to
// the right
char val[totalbytes + 3];
invariant(totalbytes + 3 <= maxbnsize);
memset(val, k, sizeof val);
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, totalbytes + 3);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
totalbytes += leafentry_disksize(le);
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt->h, nodeb);
r = toku_close_brt_nolsn(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
destroy_brtnode_and_internals(&sn);
}
static void
test_split_at_end(void)
{
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
setup_brtnode_header(&sn);
const int nelts = 2 * nodesize / eltsize;
const size_t maxbnsize = 2 * nodesize;
setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize);
long totalbytes = 0;
int bn, i;
for (bn = 0; bn < sn.n_children; ++bn) {
long k;
for (i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
if (bn == sn.n_children - 1 && i == eltsperbn - 1) {
BASEMENTNODE basement = BLB(&sn, bn);
struct mempool * mp = &basement->buffer_mempool;
// add a few bytes so the halfway mark is definitely inside this
// val, which will make it go to the left and everything else to
// the right, which is nothing, so we actually split at the very end
char val[totalbytes + 3];
invariant(totalbytes + 3 <= (long) maxbnsize);
memset(val, k, sizeof val);
LEAFENTRY le = le_fastmalloc(mp, (char *) &k, keylen, val, totalbytes + 3);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), le, omt_long_cmp, le, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += leafentry_disksize(le);
totalbytes += leafentry_disksize(le);
} else {
totalbytes += insert_dummy_value(&sn, bn, k);
}
}
if (bn < sn.n_children - 1) {
toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k);
sn.totalchildkeylens += (sizeof k);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt->h, nodeb);
r = toku_close_brt_nolsn(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
destroy_brtnode_and_internals(&sn);
}
// Maximum node size according to the BRT: 1024 (expected node size after split)
// Maximum basement node size: 256
// Actual node size before split: 2048
// Actual basement node size before split: 256
// Start by creating 9 basements, then split node.
// Expected result of two nodes with 5 basements each.
static void
test_split_odd_nodes(void)
{
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO);
assert(fd >= 0);
int r;
setup_brtnode_header(&sn);
// This will give us 9 children.
const int nelts = 2 * (nodesize + 128) / eltsize;
setup_brtnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize);
for (int bn = 0; bn < sn.n_children; ++bn) {
long k;
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
insert_dummy_value(&sn, bn, k);
}
if (bn < sn.n_children - 1) {
toku_fill_dbt(&sn.childkeys[bn], toku_xmemdup(&k, sizeof k), sizeof k);
sn.totalchildkeylens += (sizeof k);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt->h, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
verify_basement_node_msns(nodea, dummy_msn_3884);
verify_basement_node_msns(nodeb, dummy_msn_3884);
toku_unpin_brtnode(brt->h, nodeb);
r = toku_close_brt_nolsn(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
destroy_brtnode_and_internals(&sn);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
test_split_on_boundary();
test_split_with_everything_on_the_left();
test_split_on_boundary_of_last_node();
test_split_at_begin();
test_split_at_end();
test_split_odd_nodes();
return 0;
}