mariadb/storage/innobase/row/row0ins.cc
Marko Mäkelä 8777458a6e MDEV-6076 Persistent AUTO_INCREMENT for InnoDB
This should be functionally equivalent to WL#6204 in MySQL 8.0.0, with
the notable difference that the file format changes are limited to
repurposing a previously unused data field in B-tree pages.

For persistent InnoDB tables, write the last used AUTO_INCREMENT
value to the root page of the clustered index, in the previously
unused (0) PAGE_MAX_TRX_ID field, now aliased as PAGE_ROOT_AUTO_INC.
Unlike some other previously unused InnoDB data fields, this one was
actually always zero-initialized, at least since MySQL 3.23.49.

The writes to PAGE_ROOT_AUTO_INC are protected by SX or X latch on the
root page. The SX latch will allow concurrent read access to the root
page. (The field PAGE_ROOT_AUTO_INC will only be read on the
first-time call to ha_innobase::open() from the SQL layer. The
PAGE_ROOT_AUTO_INC can only be updated when executing SQL, so
read/write races are not possible.)

During INSERT, the PAGE_ROOT_AUTO_INC is updated by the low-level
function btr_cur_search_to_nth_level(), adding no extra page
access. [Adaptive hash index lookup will be disabled during INSERT.]

If some rare UPDATE modifies an AUTO_INCREMENT column, the
PAGE_ROOT_AUTO_INC will be adjusted in a separate mini-transaction in
ha_innobase::update_row().

When a page is reorganized, we have to preserve the PAGE_ROOT_AUTO_INC
field.

During ALTER TABLE, the initial AUTO_INCREMENT value will be copied
from the table. ALGORITHM=COPY and online log apply in LOCK=NONE will
update PAGE_ROOT_AUTO_INC in real time.

innodb_col_no(): Determine the dict_table_t::cols[] element index
corresponding to a Field of a non-virtual column.
(The MySQL 5.7 implementation of virtual columns breaks the 1:1
relationship between Field::field_index and dict_table_t::cols[].
Virtual columns are omitted from dict_table_t::cols[]. Therefore,
we must translate the field_index of AUTO_INCREMENT columns into
an index of dict_table_t::cols[].)

Upgrade from old data files:

By default, the AUTO_INCREMENT sequence in old data files would appear
to be reset, because PAGE_MAX_TRX_ID or PAGE_ROOT_AUTO_INC would contain
the value 0 in each clustered index page. In new data files,
PAGE_ROOT_AUTO_INC can only be 0 if the table is empty or does not contain
any AUTO_INCREMENT column.

For backward compatibility, we use the old method of
SELECT MAX(auto_increment_column) for initializing the sequence.

btr_read_autoinc(): Read the AUTO_INCREMENT sequence from a new-format
data file.

btr_read_autoinc_with_fallback(): A variant of btr_read_autoinc()
that will resort to reading MAX(auto_increment_column) for data files
that did not use AUTO_INCREMENT yet. It was manually tested that during
the execution of innodb.autoinc_persist the compatibility logic is
not activated (for new files, PAGE_ROOT_AUTO_INC is never 0 in nonempty
clustered index root pages).

initialize_auto_increment(): Replaces
ha_innobase::innobase_initialize_autoinc(). This initializes
the AUTO_INCREMENT metadata. Only called from ha_innobase::open().

ha_innobase::info_low(): Do not try to lazily initialize
dict_table_t::autoinc. It must already have been initialized by
ha_innobase::open() or ha_innobase::create().

Note: The adjustments to class ha_innopart were not tested, because
the source code (native InnoDB partitioning) is not being compiled.
2016-12-16 09:19:19 +02:00

3773 lines
101 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2016, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file row/row0ins.cc
Insert into a table
Created 4/20/1996 Heikki Tuuri
*******************************************************/
#include "ha_prototypes.h"
#include "row0ins.h"
#ifdef UNIV_NONINL
#include "row0ins.ic"
#endif
#include "dict0dict.h"
#include "dict0boot.h"
#include "trx0rec.h"
#include "trx0undo.h"
#include "btr0btr.h"
#include "btr0cur.h"
#include "mach0data.h"
#include "que0que.h"
#include "row0upd.h"
#include "row0sel.h"
#include "row0row.h"
#include "row0log.h"
#include "rem0cmp.h"
#include "lock0lock.h"
#include "log0log.h"
#include "eval0eval.h"
#include "data0data.h"
#include "usr0sess.h"
#include "buf0lru.h"
#include "fts0fts.h"
#include "fts0types.h"
#include "m_string.h"
#include "gis0geo.h"
/*************************************************************************
IMPORTANT NOTE: Any operation that generates redo MUST check that there
is enough space in the redo log before for that operation. This is
done by calling log_free_check(). The reason for checking the
availability of the redo log space before the start of the operation is
that we MUST not hold any synchonization objects when performing the
check.
If you make a change in this module make sure that no codepath is
introduced where a call to log_free_check() is bypassed. */
/*********************************************************************//**
Creates an insert node struct.
@return own: insert node struct */
ins_node_t*
ins_node_create(
/*============*/
ulint ins_type, /*!< in: INS_VALUES, ... */
dict_table_t* table, /*!< in: table where to insert */
mem_heap_t* heap) /*!< in: mem heap where created */
{
ins_node_t* node;
node = static_cast<ins_node_t*>(
mem_heap_alloc(heap, sizeof(ins_node_t)));
node->common.type = QUE_NODE_INSERT;
node->ins_type = ins_type;
node->state = INS_NODE_SET_IX_LOCK;
node->table = table;
node->index = NULL;
node->entry = NULL;
node->select = NULL;
node->trx_id = 0;
node->duplicate = NULL;
node->entry_sys_heap = mem_heap_create(128);
node->magic_n = INS_NODE_MAGIC_N;
return(node);
}
/***********************************************************//**
Creates an entry template for each index of a table. */
static
void
ins_node_create_entry_list(
/*=======================*/
ins_node_t* node) /*!< in: row insert node */
{
dict_index_t* index;
dtuple_t* entry;
ut_ad(node->entry_sys_heap);
UT_LIST_INIT(node->entry_list, &dtuple_t::tuple_list);
/* We will include all indexes (include those corrupted
secondary indexes) in the entry list. Filteration of
these corrupted index will be done in row_ins() */
for (index = dict_table_get_first_index(node->table);
index != 0;
index = dict_table_get_next_index(index)) {
entry = row_build_index_entry_low(
node->row, NULL, index, node->entry_sys_heap,
ROW_BUILD_FOR_INSERT);
UT_LIST_ADD_LAST(node->entry_list, entry);
}
}
/*****************************************************************//**
Adds system field buffers to a row. */
static
void
row_ins_alloc_sys_fields(
/*=====================*/
ins_node_t* node) /*!< in: insert node */
{
dtuple_t* row;
dict_table_t* table;
mem_heap_t* heap;
const dict_col_t* col;
dfield_t* dfield;
byte* ptr;
row = node->row;
table = node->table;
heap = node->entry_sys_heap;
ut_ad(row && table && heap);
ut_ad(dtuple_get_n_fields(row) == dict_table_get_n_cols(table));
/* allocate buffer to hold the needed system created hidden columns. */
const uint len = DATA_ROW_ID_LEN + DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN;
ptr = static_cast<byte*>(mem_heap_zalloc(heap, len));
/* 1. Populate row-id */
col = dict_table_get_sys_col(table, DATA_ROW_ID);
dfield = dtuple_get_nth_field(row, dict_col_get_no(col));
dfield_set_data(dfield, ptr, DATA_ROW_ID_LEN);
node->row_id_buf = ptr;
ptr += DATA_ROW_ID_LEN;
/* 2. Populate trx id */
col = dict_table_get_sys_col(table, DATA_TRX_ID);
dfield = dtuple_get_nth_field(row, dict_col_get_no(col));
dfield_set_data(dfield, ptr, DATA_TRX_ID_LEN);
node->trx_id_buf = ptr;
ptr += DATA_TRX_ID_LEN;
col = dict_table_get_sys_col(table, DATA_ROLL_PTR);
dfield = dtuple_get_nth_field(row, dict_col_get_no(col));
dfield_set_data(dfield, ptr, DATA_ROLL_PTR_LEN);
}
/*********************************************************************//**
Sets a new row to insert for an INS_DIRECT node. This function is only used
if we have constructed the row separately, which is a rare case; this
function is quite slow. */
void
ins_node_set_new_row(
/*=================*/
ins_node_t* node, /*!< in: insert node */
dtuple_t* row) /*!< in: new row (or first row) for the node */
{
node->state = INS_NODE_SET_IX_LOCK;
node->index = NULL;
node->entry = NULL;
node->duplicate = NULL;
node->row = row;
mem_heap_empty(node->entry_sys_heap);
/* Create templates for index entries */
ins_node_create_entry_list(node);
/* Allocate from entry_sys_heap buffers for sys fields */
row_ins_alloc_sys_fields(node);
/* As we allocated a new trx id buf, the trx id should be written
there again: */
node->trx_id = 0;
}
/*******************************************************************//**
Does an insert operation by updating a delete-marked existing record
in the index. This situation can occur if the delete-marked record is
kept in the index for consistent reads.
@return DB_SUCCESS or error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_sec_index_entry_by_modify(
/*==============================*/
ulint flags, /*!< in: undo logging and locking flags */
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether mtr holds just a leaf
latch or also a tree latch */
btr_cur_t* cursor, /*!< in: B-tree cursor */
ulint** offsets,/*!< in/out: offsets on cursor->page_cur.rec */
mem_heap_t* offsets_heap,
/*!< in/out: memory heap that can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap */
const dtuple_t* entry, /*!< in: index entry to insert */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr; must be committed before
latching any further pages */
{
big_rec_t* dummy_big_rec;
upd_t* update;
rec_t* rec;
dberr_t err;
rec = btr_cur_get_rec(cursor);
ut_ad(!dict_index_is_clust(cursor->index));
ut_ad(rec_offs_validate(rec, cursor->index, *offsets));
ut_ad(!entry->info_bits);
/* We know that in the alphabetical ordering, entry and rec are
identified. But in their binary form there may be differences if
there are char fields in them. Therefore we have to calculate the
difference. */
update = row_upd_build_sec_rec_difference_binary(
rec, cursor->index, *offsets, entry, heap);
if (!rec_get_deleted_flag(rec, rec_offs_comp(*offsets))) {
/* We should never insert in place of a record that
has not been delete-marked. The only exception is when
online CREATE INDEX copied the changes that we already
made to the clustered index, and completed the
secondary index creation before we got here. In this
case, the change would already be there. The CREATE
INDEX should be waiting for a MySQL meta-data lock
upgrade at least until this INSERT or UPDATE
returns. After that point, set_committed(true)
would be invoked in commit_inplace_alter_table(). */
ut_a(update->n_fields == 0);
ut_a(!cursor->index->is_committed());
ut_ad(!dict_index_is_online_ddl(cursor->index));
return(DB_SUCCESS);
}
if (mode == BTR_MODIFY_LEAF) {
/* Try an optimistic updating of the record, keeping changes
within the page */
/* TODO: pass only *offsets */
err = btr_cur_optimistic_update(
flags | BTR_KEEP_SYS_FLAG, cursor,
offsets, &offsets_heap, update, 0, thr,
thr_get_trx(thr)->id, mtr);
switch (err) {
case DB_OVERFLOW:
case DB_UNDERFLOW:
case DB_ZIP_OVERFLOW:
err = DB_FAIL;
default:
break;
}
} else {
ut_a(mode == BTR_MODIFY_TREE);
if (buf_LRU_buf_pool_running_out()) {
return(DB_LOCK_TABLE_FULL);
}
err = btr_cur_pessimistic_update(
flags | BTR_KEEP_SYS_FLAG, cursor,
offsets, &offsets_heap,
heap, &dummy_big_rec, update, 0,
thr, thr_get_trx(thr)->id, mtr);
ut_ad(!dummy_big_rec);
}
return(err);
}
/*******************************************************************//**
Does an insert operation by delete unmarking and updating a delete marked
existing record in the index. This situation can occur if the delete marked
record is kept in the index for consistent reads.
@return DB_SUCCESS, DB_FAIL, or error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_clust_index_entry_by_modify(
/*================================*/
btr_pcur_t* pcur, /*!< in/out: a persistent cursor pointing
to the clust_rec that is being modified. */
ulint flags, /*!< in: undo logging and locking flags */
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether mtr holds just a leaf
latch or also a tree latch */
ulint** offsets,/*!< out: offsets on cursor->page_cur.rec */
mem_heap_t** offsets_heap,
/*!< in/out: pointer to memory heap that can
be emptied, or NULL */
mem_heap_t* heap, /*!< in/out: memory heap */
const dtuple_t* entry, /*!< in: index entry to insert */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr; must be committed before
latching any further pages */
{
const rec_t* rec;
upd_t* update;
dberr_t err;
btr_cur_t* cursor = btr_pcur_get_btr_cur(pcur);
TABLE* mysql_table = NULL;
ut_ad(dict_index_is_clust(cursor->index));
rec = btr_cur_get_rec(cursor);
ut_ad(rec_get_deleted_flag(rec,
dict_table_is_comp(cursor->index->table)));
/* Build an update vector containing all the fields to be modified;
NOTE that this vector may NOT contain system columns trx_id or
roll_ptr */
if (thr->prebuilt != NULL) {
mysql_table = thr->prebuilt->m_mysql_table;
ut_ad(thr->prebuilt->trx == thr_get_trx(thr));
}
update = row_upd_build_difference_binary(
cursor->index, entry, rec, NULL, true,
thr_get_trx(thr), heap, mysql_table);
if (mode != BTR_MODIFY_TREE) {
ut_ad((mode & ~BTR_ALREADY_S_LATCHED) == BTR_MODIFY_LEAF);
/* Try optimistic updating of the record, keeping changes
within the page */
err = btr_cur_optimistic_update(
flags, cursor, offsets, offsets_heap, update, 0, thr,
thr_get_trx(thr)->id, mtr);
switch (err) {
case DB_OVERFLOW:
case DB_UNDERFLOW:
case DB_ZIP_OVERFLOW:
err = DB_FAIL;
default:
break;
}
} else {
if (buf_LRU_buf_pool_running_out()) {
return(DB_LOCK_TABLE_FULL);
}
big_rec_t* big_rec = NULL;
err = btr_cur_pessimistic_update(
flags | BTR_KEEP_POS_FLAG,
cursor, offsets, offsets_heap, heap,
&big_rec, update, 0, thr, thr_get_trx(thr)->id, mtr);
if (big_rec) {
ut_a(err == DB_SUCCESS);
DEBUG_SYNC_C("before_row_ins_upd_extern");
err = btr_store_big_rec_extern_fields(
pcur, update, *offsets, big_rec, mtr,
BTR_STORE_INSERT_UPDATE);
DEBUG_SYNC_C("after_row_ins_upd_extern");
dtuple_big_rec_free(big_rec);
}
}
return(err);
}
/*********************************************************************//**
Returns TRUE if in a cascaded update/delete an ancestor node of node
updates (not DELETE, but UPDATE) table.
@return TRUE if an ancestor updates table */
static
ibool
row_ins_cascade_ancestor_updates_table(
/*===================================*/
que_node_t* node, /*!< in: node in a query graph */
dict_table_t* table) /*!< in: table */
{
que_node_t* parent;
for (parent = que_node_get_parent(node);
que_node_get_type(parent) == QUE_NODE_UPDATE;
parent = que_node_get_parent(parent)) {
upd_node_t* upd_node;
upd_node = static_cast<upd_node_t*>(parent);
if (upd_node->table == table && upd_node->is_delete == FALSE) {
return(TRUE);
}
}
return(FALSE);
}
/*********************************************************************//**
Returns the number of ancestor UPDATE or DELETE nodes of a
cascaded update/delete node.
@return number of ancestors */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
ulint
row_ins_cascade_n_ancestors(
/*========================*/
que_node_t* node) /*!< in: node in a query graph */
{
que_node_t* parent;
ulint n_ancestors = 0;
for (parent = que_node_get_parent(node);
que_node_get_type(parent) == QUE_NODE_UPDATE;
parent = que_node_get_parent(parent)) {
n_ancestors++;
}
return(n_ancestors);
}
/******************************************************************//**
Calculates the update vector node->cascade->update for a child table in
a cascaded update.
@return number of fields in the calculated update vector; the value
can also be 0 if no foreign key fields changed; the returned value is
ULINT_UNDEFINED if the column type in the child table is too short to
fit the new value in the parent table: that means the update fails */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
ulint
row_ins_cascade_calc_update_vec(
/*============================*/
upd_node_t* node, /*!< in: update node of the parent
table */
dict_foreign_t* foreign, /*!< in: foreign key constraint whose
type is != 0 */
mem_heap_t* heap, /*!< in: memory heap to use as
temporary storage */
trx_t* trx, /*!< in: update transaction */
ibool* fts_col_affected,
/*!< out: is FTS column affected */
upd_node_t* cascade) /*!< in: cascade update node */
{
dict_table_t* table = foreign->foreign_table;
dict_index_t* index = foreign->foreign_index;
upd_t* update;
dict_table_t* parent_table;
dict_index_t* parent_index;
upd_t* parent_update;
ulint n_fields_updated;
ulint parent_field_no;
ulint i;
ulint j;
ibool doc_id_updated = FALSE;
ulint doc_id_pos = 0;
doc_id_t new_doc_id = FTS_NULL_DOC_ID;
ulint prefix_col;
ut_a(node);
ut_a(foreign);
ut_a(cascade);
ut_a(table);
ut_a(index);
/* Calculate the appropriate update vector which will set the fields
in the child index record to the same value (possibly padded with
spaces if the column is a fixed length CHAR or FIXBINARY column) as
the referenced index record will get in the update. */
parent_table = node->table;
ut_a(parent_table == foreign->referenced_table);
parent_index = foreign->referenced_index;
parent_update = node->update;
update = cascade->update;
update->info_bits = 0;
n_fields_updated = 0;
*fts_col_affected = FALSE;
if (table->fts) {
doc_id_pos = dict_table_get_nth_col_pos(
table, table->fts->doc_col, &prefix_col);
}
for (i = 0; i < foreign->n_fields; i++) {
parent_field_no = dict_table_get_nth_col_pos(
parent_table,
dict_index_get_nth_col_no(parent_index, i),
&prefix_col);
for (j = 0; j < parent_update->n_fields; j++) {
const upd_field_t* parent_ufield
= &parent_update->fields[j];
if (parent_ufield->field_no == parent_field_no) {
ulint min_size;
const dict_col_t* col;
ulint ufield_len;
upd_field_t* ufield;
col = dict_index_get_nth_col(index, i);
/* A field in the parent index record is
updated. Let us make the update vector
field for the child table. */
ufield = update->fields + n_fields_updated;
ufield->field_no
= dict_table_get_nth_col_pos(
table, dict_col_get_no(col),
&prefix_col);
ufield->orig_len = 0;
ufield->exp = NULL;
ufield->new_val = parent_ufield->new_val;
ufield_len = dfield_get_len(&ufield->new_val);
/* Clear the "external storage" flag */
dfield_set_len(&ufield->new_val, ufield_len);
/* Do not allow a NOT NULL column to be
updated as NULL */
if (dfield_is_null(&ufield->new_val)
&& (col->prtype & DATA_NOT_NULL)) {
return(ULINT_UNDEFINED);
}
/* If the new value would not fit in the
column, do not allow the update */
if (!dfield_is_null(&ufield->new_val)
&& dtype_get_at_most_n_mbchars(
col->prtype, col->mbminmaxlen,
col->len,
ufield_len,
static_cast<char*>(
dfield_get_data(
&ufield->new_val)))
< ufield_len) {
return(ULINT_UNDEFINED);
}
/* If the parent column type has a different
length than the child column type, we may
need to pad with spaces the new value of the
child column */
min_size = dict_col_get_min_size(col);
/* Because UNIV_SQL_NULL (the marker
of SQL NULL values) exceeds all possible
values of min_size, the test below will
not hold for SQL NULL columns. */
if (min_size > ufield_len) {
byte* pad;
ulint pad_len;
byte* padded_data;
ulint mbminlen;
padded_data = static_cast<byte*>(
mem_heap_alloc(
heap, min_size));
pad = padded_data + ufield_len;
pad_len = min_size - ufield_len;
memcpy(padded_data,
dfield_get_data(&ufield
->new_val),
ufield_len);
mbminlen = dict_col_get_mbminlen(col);
ut_ad(!(ufield_len % mbminlen));
ut_ad(!(min_size % mbminlen));
if (mbminlen == 1
&& dtype_get_charset_coll(
col->prtype)
== DATA_MYSQL_BINARY_CHARSET_COLL) {
/* Do not pad BINARY columns */
return(ULINT_UNDEFINED);
}
row_mysql_pad_col(mbminlen,
pad, pad_len);
dfield_set_data(&ufield->new_val,
padded_data, min_size);
}
/* Check whether the current column has
FTS index on it */
if (table->fts
&& dict_table_is_fts_column(
table->fts->indexes,
dict_col_get_no(col),
dict_col_is_virtual(col))
!= ULINT_UNDEFINED) {
*fts_col_affected = TRUE;
}
/* If Doc ID is updated, check whether the
Doc ID is valid */
if (table->fts
&& ufield->field_no == doc_id_pos) {
doc_id_t n_doc_id;
n_doc_id =
table->fts->cache->next_doc_id;
new_doc_id = fts_read_doc_id(
static_cast<const byte*>(
dfield_get_data(
&ufield->new_val)));
if (new_doc_id <= 0) {
ib::error() << "FTS Doc ID"
" must be larger than"
" 0";
return(ULINT_UNDEFINED);
}
if (new_doc_id < n_doc_id) {
ib::error() << "FTS Doc ID"
" must be larger than "
<< n_doc_id - 1
<< " for table "
<< table->name;
return(ULINT_UNDEFINED);
}
*fts_col_affected = TRUE;
doc_id_updated = TRUE;
}
n_fields_updated++;
}
}
}
/* Generate a new Doc ID if FTS index columns get updated */
if (table->fts && *fts_col_affected) {
if (DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID)) {
doc_id_t doc_id;
doc_id_t* next_doc_id;
upd_field_t* ufield;
next_doc_id = static_cast<doc_id_t*>(mem_heap_alloc(
heap, sizeof(doc_id_t)));
ut_ad(!doc_id_updated);
ufield = update->fields + n_fields_updated;
fts_get_next_doc_id(table, next_doc_id);
doc_id = fts_update_doc_id(table, ufield, next_doc_id);
n_fields_updated++;
cascade->fts_next_doc_id = doc_id;
} else {
if (doc_id_updated) {
ut_ad(new_doc_id);
cascade->fts_next_doc_id = new_doc_id;
} else {
cascade->fts_next_doc_id = FTS_NULL_DOC_ID;
ib::error() << "FTS Doc ID must be updated"
" along with FTS indexed column for"
" table " << table->name;
return(ULINT_UNDEFINED);
}
}
}
update->n_fields = n_fields_updated;
return(n_fields_updated);
}
/*********************************************************************//**
Set detailed error message associated with foreign key errors for
the given transaction. */
static
void
row_ins_set_detailed(
/*=================*/
trx_t* trx, /*!< in: transaction */
dict_foreign_t* foreign) /*!< in: foreign key constraint */
{
ut_ad(!srv_read_only_mode);
mutex_enter(&srv_misc_tmpfile_mutex);
rewind(srv_misc_tmpfile);
if (os_file_set_eof(srv_misc_tmpfile)) {
ut_print_name(srv_misc_tmpfile, trx,
foreign->foreign_table_name);
std::string fk_str = dict_print_info_on_foreign_key_in_create_format(
trx, foreign, FALSE);
fputs(fk_str.c_str(), srv_misc_tmpfile);
trx_set_detailed_error_from_file(trx, srv_misc_tmpfile);
} else {
trx_set_detailed_error(trx, "temp file operation failed");
}
mutex_exit(&srv_misc_tmpfile_mutex);
}
/*********************************************************************//**
Acquires dict_foreign_err_mutex, rewinds dict_foreign_err_file
and displays information about the given transaction.
The caller must release dict_foreign_err_mutex. */
static
void
row_ins_foreign_trx_print(
/*======================*/
trx_t* trx) /*!< in: transaction */
{
ulint n_rec_locks;
ulint n_trx_locks;
ulint heap_size;
if (srv_read_only_mode) {
return;
}
lock_mutex_enter();
n_rec_locks = lock_number_of_rows_locked(&trx->lock);
n_trx_locks = UT_LIST_GET_LEN(trx->lock.trx_locks);
heap_size = mem_heap_get_size(trx->lock.lock_heap);
lock_mutex_exit();
trx_sys_mutex_enter();
mutex_enter(&dict_foreign_err_mutex);
rewind(dict_foreign_err_file);
ut_print_timestamp(dict_foreign_err_file);
fputs(" Transaction:\n", dict_foreign_err_file);
trx_print_low(dict_foreign_err_file, trx, 600,
n_rec_locks, n_trx_locks, heap_size);
trx_sys_mutex_exit();
ut_ad(mutex_own(&dict_foreign_err_mutex));
}
/*********************************************************************//**
Reports a foreign key error associated with an update or a delete of a
parent table index entry. */
static
void
row_ins_foreign_report_err(
/*=======================*/
const char* errstr, /*!< in: error string from the viewpoint
of the parent table */
que_thr_t* thr, /*!< in: query thread whose run_node
is an update node */
dict_foreign_t* foreign, /*!< in: foreign key constraint */
const rec_t* rec, /*!< in: a matching index record in the
child table */
const dtuple_t* entry) /*!< in: index entry in the parent
table */
{
std::string fk_str;
if (srv_read_only_mode) {
return;
}
FILE* ef = dict_foreign_err_file;
trx_t* trx = thr_get_trx(thr);
row_ins_set_detailed(trx, foreign);
row_ins_foreign_trx_print(trx);
fputs("Foreign key constraint fails for table ", ef);
ut_print_name(ef, trx, foreign->foreign_table_name);
fputs(":\n", ef);
fk_str = dict_print_info_on_foreign_key_in_create_format(trx, foreign,
TRUE);
fputs(fk_str.c_str(), ef);
putc('\n', ef);
fputs(errstr, ef);
fprintf(ef, " in parent table, in index %s",
foreign->referenced_index->name());
if (entry) {
fputs(" tuple:\n", ef);
dtuple_print(ef, entry);
}
fputs("\nBut in child table ", ef);
ut_print_name(ef, trx, foreign->foreign_table_name);
fprintf(ef, ", in index %s", foreign->foreign_index->name());
if (rec) {
fputs(", there is a record:\n", ef);
rec_print(ef, rec, foreign->foreign_index);
} else {
fputs(", the record is not available\n", ef);
}
putc('\n', ef);
mutex_exit(&dict_foreign_err_mutex);
}
/*********************************************************************//**
Reports a foreign key error to dict_foreign_err_file when we are trying
to add an index entry to a child table. Note that the adding may be the result
of an update, too. */
static
void
row_ins_foreign_report_add_err(
/*===========================*/
trx_t* trx, /*!< in: transaction */
dict_foreign_t* foreign, /*!< in: foreign key constraint */
const rec_t* rec, /*!< in: a record in the parent table:
it does not match entry because we
have an error! */
const dtuple_t* entry) /*!< in: index entry to insert in the
child table */
{
std::string fk_str;
if (srv_read_only_mode) {
return;
}
FILE* ef = dict_foreign_err_file;
row_ins_set_detailed(trx, foreign);
row_ins_foreign_trx_print(trx);
fputs("Foreign key constraint fails for table ", ef);
ut_print_name(ef, trx, foreign->foreign_table_name);
fputs(":\n", ef);
fk_str = dict_print_info_on_foreign_key_in_create_format(trx, foreign,
TRUE);
fputs(fk_str.c_str(), ef);
fprintf(ef, " in parent table, in index %s",
foreign->foreign_index->name());
if (entry) {
fputs(" tuple:\n", ef);
/* TODO: DB_TRX_ID and DB_ROLL_PTR may be uninitialized.
It would be better to only display the user columns. */
dtuple_print(ef, entry);
}
fputs("\nBut in parent table ", ef);
ut_print_name(ef, trx, foreign->referenced_table_name);
fprintf(ef, ", in index %s,\n"
"the closest match we can find is record:\n",
foreign->referenced_index->name());
if (rec && page_rec_is_supremum(rec)) {
/* If the cursor ended on a supremum record, it is better
to report the previous record in the error message, so that
the user gets a more descriptive error message. */
rec = page_rec_get_prev_const(rec);
}
if (rec) {
rec_print(ef, rec, foreign->referenced_index);
}
putc('\n', ef);
mutex_exit(&dict_foreign_err_mutex);
}
/*********************************************************************//**
Invalidate the query cache for the given table. */
static
void
row_ins_invalidate_query_cache(
/*===========================*/
que_thr_t* thr, /*!< in: query thread whose run_node
is an update node */
const char* name) /*!< in: table name prefixed with
database name and a '/' character */
{
ulint len = strlen(name) + 1;
innobase_invalidate_query_cache(thr_get_trx(thr), name, len);
}
/** Fill virtual column information in cascade node for the child table.
@param[out] cascade child update node
@param[in] rec clustered rec of child table
@param[in] index clustered index of child table
@param[in] node parent update node
@param[in] foreign foreign key information
@param[out] err error code. */
static
void
row_ins_foreign_fill_virtual(
upd_node_t* cascade,
const rec_t* rec,
dict_index_t* index,
upd_node_t* node,
dict_foreign_t* foreign,
dberr_t* err)
{
THD* thd = current_thd;
row_ext_t* ext;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
const ulint* offsets =
rec_get_offsets(rec, index, offsets_,
ULINT_UNDEFINED, &cascade->heap);
mem_heap_t* v_heap = NULL;
upd_t* update = cascade->update;
ulint n_v_fld = index->table->n_v_def;
ulint n_diff;
upd_field_t* upd_field;
dict_vcol_set* v_cols = foreign->v_cols;
update->old_vrow = row_build(
ROW_COPY_POINTERS, index, rec,
offsets, index->table, NULL, NULL,
&ext, cascade->heap);
n_diff = update->n_fields;
update->n_fields += n_v_fld;
if (index->table->vc_templ == NULL) {
/** This can occur when there is a cascading
delete or update after restart. */
innobase_init_vc_templ(index->table);
}
for (ulint i = 0; i < n_v_fld; i++) {
dict_v_col_t* col = dict_table_get_nth_v_col(
index->table, i);
dict_vcol_set::iterator it = v_cols->find(col);
if (it == v_cols->end()) {
continue;
}
dfield_t* vfield = innobase_get_computed_value(
update->old_vrow, col, index,
&v_heap, update->heap, NULL, thd, NULL,
NULL, NULL, NULL);
if (vfield == NULL) {
*err = DB_COMPUTE_VALUE_FAILED;
goto func_exit;
}
upd_field = upd_get_nth_field(update, n_diff);
upd_field->old_v_val = static_cast<dfield_t*>(
mem_heap_alloc(cascade->heap,
sizeof *upd_field->old_v_val));
dfield_copy(upd_field->old_v_val, vfield);
upd_field_set_v_field_no(upd_field, i, index);
if (node->is_delete
? (foreign->type & DICT_FOREIGN_ON_DELETE_SET_NULL)
: (foreign->type & DICT_FOREIGN_ON_UPDATE_SET_NULL)) {
dfield_set_null(&upd_field->new_val);
}
if (!node->is_delete
&& (foreign->type & DICT_FOREIGN_ON_UPDATE_CASCADE)) {
dfield_t* new_vfield = innobase_get_computed_value(
update->old_vrow, col, index,
&v_heap, update->heap, NULL, thd,
NULL, NULL, node->update, foreign);
if (new_vfield == NULL) {
*err = DB_COMPUTE_VALUE_FAILED;
goto func_exit;
}
dfield_copy(&(upd_field->new_val), new_vfield);
}
n_diff++;
}
update->n_fields = n_diff;
*err = DB_SUCCESS;
func_exit:
if (v_heap) {
mem_heap_free(v_heap);
}
}
#ifdef WITH_WSREP
dberr_t wsrep_append_foreign_key(trx_t *trx,
dict_foreign_t* foreign,
const rec_t* clust_rec,
dict_index_t* clust_index,
ibool referenced,
ibool shared);
#endif /* WITH_WSREP */
/*********************************************************************//**
Perform referential actions or checks when a parent row is deleted or updated
and the constraint had an ON DELETE or ON UPDATE condition which was not
RESTRICT.
@return DB_SUCCESS, DB_LOCK_WAIT, or error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_foreign_check_on_constraint(
/*================================*/
que_thr_t* thr, /*!< in: query thread whose run_node
is an update node */
dict_foreign_t* foreign, /*!< in: foreign key constraint whose
type is != 0 */
btr_pcur_t* pcur, /*!< in: cursor placed on a matching
index record in the child table */
dtuple_t* entry, /*!< in: index entry in the parent
table */
mtr_t* mtr) /*!< in: mtr holding the latch of pcur
page */
{
upd_node_t* node;
upd_node_t* cascade;
dict_table_t* table = foreign->foreign_table;
dict_index_t* index;
dict_index_t* clust_index;
dtuple_t* ref;
const rec_t* rec;
const rec_t* clust_rec;
const buf_block_t* clust_block;
upd_t* update;
ulint n_to_update;
dberr_t err;
ulint i;
trx_t* trx;
mem_heap_t* tmp_heap = NULL;
doc_id_t doc_id = FTS_NULL_DOC_ID;
ibool fts_col_affacted = FALSE;
DBUG_ENTER("row_ins_foreign_check_on_constraint");
ut_a(thr);
ut_a(foreign);
ut_a(pcur);
ut_a(mtr);
trx = thr_get_trx(thr);
/* Since we are going to delete or update a row, we have to invalidate
the MySQL query cache for table. A deadlock of threads is not possible
here because the caller of this function does not hold any latches with
the mutex rank above the lock_sys_t::mutex. The query cache mutex
has a rank just above the lock_sys_t::mutex. */
row_ins_invalidate_query_cache(thr, table->name.m_name);
node = static_cast<upd_node_t*>(thr->run_node);
if (node->is_delete && 0 == (foreign->type
& (DICT_FOREIGN_ON_DELETE_CASCADE
| DICT_FOREIGN_ON_DELETE_SET_NULL))) {
row_ins_foreign_report_err("Trying to delete",
thr, foreign,
btr_pcur_get_rec(pcur), entry);
DBUG_RETURN(DB_ROW_IS_REFERENCED);
}
if (!node->is_delete && 0 == (foreign->type
& (DICT_FOREIGN_ON_UPDATE_CASCADE
| DICT_FOREIGN_ON_UPDATE_SET_NULL))) {
/* This is an UPDATE */
row_ins_foreign_report_err("Trying to update",
thr, foreign,
btr_pcur_get_rec(pcur), entry);
DBUG_RETURN(DB_ROW_IS_REFERENCED);
}
cascade = row_create_update_node_for_mysql(table, node->cascade_heap);
que_node_set_parent(cascade, node);
/* For the cascaded operation, all the update nodes are allocated in
the same heap. All the update nodes will point to the same heap.
This heap is owned by the first update node. And it must be freed
only in the first update node */
cascade->cascade_heap = node->cascade_heap;
cascade->cascade_upd_nodes = node->cascade_upd_nodes;
cascade->new_upd_nodes = node->new_upd_nodes;
cascade->processed_cascades = node->processed_cascades;
cascade->table = table;
cascade->foreign = foreign;
if (node->is_delete
&& (foreign->type & DICT_FOREIGN_ON_DELETE_CASCADE)) {
cascade->is_delete = TRUE;
} else {
cascade->is_delete = FALSE;
if (foreign->n_fields > cascade->update_n_fields) {
/* We have to make the update vector longer */
cascade->update = upd_create(foreign->n_fields,
node->cascade_heap);
cascade->update_n_fields = foreign->n_fields;
}
}
/* We do not allow cyclic cascaded updating (DELETE is allowed,
but not UPDATE) of the same table, as this can lead to an infinite
cycle. Check that we are not updating the same table which is
already being modified in this cascade chain. We have to check
this also because the modification of the indexes of a 'parent'
table may still be incomplete, and we must avoid seeing the indexes
of the parent table in an inconsistent state! */
if (!cascade->is_delete
&& row_ins_cascade_ancestor_updates_table(cascade, table)) {
/* We do not know if this would break foreign key
constraints, but play safe and return an error */
err = DB_ROW_IS_REFERENCED;
row_ins_foreign_report_err(
"Trying an update, possibly causing a cyclic"
" cascaded update\n"
"in the child table,", thr, foreign,
btr_pcur_get_rec(pcur), entry);
goto nonstandard_exit_func;
}
if (row_ins_cascade_n_ancestors(cascade) >= FK_MAX_CASCADE_DEL) {
err = DB_FOREIGN_EXCEED_MAX_CASCADE;
row_ins_foreign_report_err(
"Trying a too deep cascaded delete or update\n",
thr, foreign, btr_pcur_get_rec(pcur), entry);
goto nonstandard_exit_func;
}
index = btr_pcur_get_btr_cur(pcur)->index;
ut_a(index == foreign->foreign_index);
rec = btr_pcur_get_rec(pcur);
tmp_heap = mem_heap_create(256);
if (dict_index_is_clust(index)) {
/* pcur is already positioned in the clustered index of
the child table */
clust_index = index;
clust_rec = rec;
clust_block = btr_pcur_get_block(pcur);
} else {
/* We have to look for the record in the clustered index
in the child table */
clust_index = dict_table_get_first_index(table);
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec,
tmp_heap);
btr_pcur_open_with_no_init(clust_index, ref,
PAGE_CUR_LE, BTR_SEARCH_LEAF,
cascade->pcur, 0, mtr);
clust_rec = btr_pcur_get_rec(cascade->pcur);
clust_block = btr_pcur_get_block(cascade->pcur);
if (!page_rec_is_user_rec(clust_rec)
|| btr_pcur_get_low_match(cascade->pcur)
< dict_index_get_n_unique(clust_index)) {
ib::error() << "In cascade of a foreign key op index "
<< index->name
<< " of table " << index->table->name;
fputs("InnoDB: record ", stderr);
rec_print(stderr, rec, index);
fputs("\n"
"InnoDB: clustered record ", stderr);
rec_print(stderr, clust_rec, clust_index);
fputs("\n"
"InnoDB: Submit a detailed bug report to"
" http://bugs.mysql.com\n", stderr);
ut_ad(0);
err = DB_SUCCESS;
goto nonstandard_exit_func;
}
}
/* Set an X-lock on the row to delete or update in the child table */
err = lock_table(0, table, LOCK_IX, thr);
if (err == DB_SUCCESS) {
/* Here it suffices to use a LOCK_REC_NOT_GAP type lock;
we already have a normal shared lock on the appropriate
gap if the search criterion was not unique */
err = lock_clust_rec_read_check_and_lock_alt(
0, clust_block, clust_rec, clust_index,
LOCK_X, LOCK_REC_NOT_GAP, thr);
}
if (err != DB_SUCCESS) {
goto nonstandard_exit_func;
}
if (rec_get_deleted_flag(clust_rec, dict_table_is_comp(table))) {
/* This can happen if there is a circular reference of
rows such that cascading delete comes to delete a row
already in the process of being delete marked */
err = DB_SUCCESS;
goto nonstandard_exit_func;
}
if (table->fts) {
doc_id = fts_get_doc_id_from_rec(table, clust_rec,
clust_index, tmp_heap);
}
if (node->is_delete
? (foreign->type & DICT_FOREIGN_ON_DELETE_SET_NULL)
: (foreign->type & DICT_FOREIGN_ON_UPDATE_SET_NULL)) {
/* Build the appropriate update vector which sets
foreign->n_fields first fields in rec to SQL NULL */
if (table->fts) {
/* For the clause ON DELETE SET NULL, the cascade
operation is actually an update operation with the new
values being null. For FTS, this means that the old
values be deleted and no new values to be added.*/
cascade->fts_next_doc_id = FTS_NULL_DOC_ID;
}
update = cascade->update;
update->info_bits = 0;
update->n_fields = foreign->n_fields;
UNIV_MEM_INVALID(update->fields,
update->n_fields * sizeof *update->fields);
for (i = 0; i < foreign->n_fields; i++) {
upd_field_t* ufield = &update->fields[i];
ulint col_no = dict_index_get_nth_col_no(
index, i);
ulint prefix_col;
ufield->field_no = dict_table_get_nth_col_pos(
table, col_no, &prefix_col);
dict_col_t* col = dict_table_get_nth_col(
table, col_no);
dict_col_copy_type(col, dfield_get_type(&ufield->new_val));
ufield->orig_len = 0;
ufield->exp = NULL;
dfield_set_null(&ufield->new_val);
if (table->fts && dict_table_is_fts_column(
table->fts->indexes,
dict_index_get_nth_col_no(index, i),
dict_col_is_virtual(
dict_index_get_nth_col(index, i)))
!= ULINT_UNDEFINED) {
fts_col_affacted = TRUE;
}
}
if (fts_col_affacted) {
cascade->fts_doc_id = doc_id;
}
if (foreign->v_cols != NULL
&& foreign->v_cols->size() > 0) {
row_ins_foreign_fill_virtual(
cascade, clust_rec, clust_index,
node, foreign, &err);
if (err != DB_SUCCESS) {
goto nonstandard_exit_func;
}
}
} else if (table->fts && cascade->is_delete) {
/* DICT_FOREIGN_ON_DELETE_CASCADE case */
for (i = 0; i < foreign->n_fields; i++) {
if (table->fts && dict_table_is_fts_column(
table->fts->indexes,
dict_index_get_nth_col_no(index, i),
dict_col_is_virtual(
dict_index_get_nth_col(index, i)))
!= ULINT_UNDEFINED) {
fts_col_affacted = TRUE;
}
}
if (fts_col_affacted) {
cascade->fts_doc_id = doc_id;
}
}
if (!node->is_delete
&& (foreign->type & DICT_FOREIGN_ON_UPDATE_CASCADE)) {
/* Build the appropriate update vector which sets changing
foreign->n_fields first fields in rec to new values */
n_to_update = row_ins_cascade_calc_update_vec(
node, foreign, cascade->cascade_heap,
trx, &fts_col_affacted, cascade);
if (foreign->v_cols != NULL
&& foreign->v_cols->size() > 0) {
row_ins_foreign_fill_virtual(
cascade, clust_rec, clust_index,
node, foreign, &err);
if (err != DB_SUCCESS) {
goto nonstandard_exit_func;
}
}
if (n_to_update == ULINT_UNDEFINED) {
err = DB_ROW_IS_REFERENCED;
row_ins_foreign_report_err(
"Trying a cascaded update where the"
" updated value in the child\n"
"table would not fit in the length"
" of the column, or the value would\n"
"be NULL and the column is"
" declared as not NULL in the child table,",
thr, foreign, btr_pcur_get_rec(pcur), entry);
goto nonstandard_exit_func;
}
if (cascade->update->n_fields == 0) {
/* The update does not change any columns referred
to in this foreign key constraint: no need to do
anything */
err = DB_SUCCESS;
goto nonstandard_exit_func;
}
/* Mark the old Doc ID as deleted */
if (fts_col_affacted) {
ut_ad(table->fts);
cascade->fts_doc_id = doc_id;
}
}
/* Store pcur position and initialize or store the cascade node
pcur stored position */
btr_pcur_store_position(pcur, mtr);
if (index == clust_index) {
btr_pcur_copy_stored_position(cascade->pcur, pcur);
} else {
btr_pcur_store_position(cascade->pcur, mtr);
}
mtr_commit(mtr);
ut_a(cascade->pcur->rel_pos == BTR_PCUR_ON);
cascade->state = UPD_NODE_UPDATE_CLUSTERED;
#ifdef WITH_WSREP
err = wsrep_append_foreign_key(
thr_get_trx(thr),
foreign,
clust_rec,
clust_index,
FALSE, FALSE);
if (err != DB_SUCCESS) {
fprintf(stderr,
"WSREP: foreign key append failed: %d\n", err);
} else
#endif /* WITH_WSREP */
node->new_upd_nodes->push_back(cascade);
my_atomic_addlint(&table->n_foreign_key_checks_running, 1);
ut_ad(foreign->foreign_table->n_foreign_key_checks_running > 0);
/* Release the data dictionary latch for a while, so that we do not
starve other threads from doing CREATE TABLE etc. if we have a huge
cascaded operation running. The counter n_foreign_key_checks_running
will prevent other users from dropping or ALTERing the table when we
release the latch. */
row_mysql_unfreeze_data_dictionary(thr_get_trx(thr));
DEBUG_SYNC_C("innodb_dml_cascade_dict_unfreeze");
row_mysql_freeze_data_dictionary(thr_get_trx(thr));
mtr_start(mtr);
/* Restore pcur position */
btr_pcur_restore_position(BTR_SEARCH_LEAF, pcur, mtr);
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
DBUG_RETURN(err);
nonstandard_exit_func:
que_graph_free_recursive(cascade);
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
btr_pcur_store_position(pcur, mtr);
mtr_commit(mtr);
mtr_start(mtr);
btr_pcur_restore_position(BTR_SEARCH_LEAF, pcur, mtr);
DBUG_RETURN(err);
}
/*********************************************************************//**
Sets a shared lock on a record. Used in locking possible duplicate key
records and also in checking foreign key constraints.
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
static
dberr_t
row_ins_set_shared_rec_lock(
/*========================*/
ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP type lock */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: record */
dict_index_t* index, /*!< in: index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ut_ad(rec_offs_validate(rec, index, offsets));
if (dict_index_is_clust(index)) {
err = lock_clust_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_S, type, thr);
} else {
err = lock_sec_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_S, type, thr);
}
return(err);
}
/*********************************************************************//**
Sets a exclusive lock on a record. Used in locking possible duplicate key
records
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
static
dberr_t
row_ins_set_exclusive_rec_lock(
/*===========================*/
ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP type lock */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: record */
dict_index_t* index, /*!< in: index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ut_ad(rec_offs_validate(rec, index, offsets));
if (dict_index_is_clust(index)) {
err = lock_clust_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_X, type, thr);
} else {
err = lock_sec_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_X, type, thr);
}
return(err);
}
/* Decrement a counter in the destructor. */
class ib_dec_in_dtor {
public:
ib_dec_in_dtor(ulint& c): counter(c) {}
~ib_dec_in_dtor() {
my_atomic_addlint(&counter, -1);
}
private:
ulint& counter;
};
/***************************************************************//**
Checks if foreign key constraint fails for an index entry. Sets shared locks
which lock either the success or the failure of the constraint. NOTE that
the caller must have a shared latch on dict_operation_lock.
@return DB_SUCCESS, DB_NO_REFERENCED_ROW, or DB_ROW_IS_REFERENCED */
dberr_t
row_ins_check_foreign_constraint(
/*=============================*/
ibool check_ref,/*!< in: TRUE if we want to check that
the referenced table is ok, FALSE if we
want to check the foreign key table */
dict_foreign_t* foreign,/*!< in: foreign constraint; NOTE that the
tables mentioned in it must be in the
dictionary cache if they exist at all */
dict_table_t* table, /*!< in: if check_ref is TRUE, then the foreign
table, else the referenced table */
dtuple_t* entry, /*!< in: index entry for index */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
upd_node_t* upd_node;
dict_table_t* check_table;
dict_index_t* check_index;
ulint n_fields_cmp;
btr_pcur_t pcur;
int cmp;
mtr_t mtr;
trx_t* trx = thr_get_trx(thr);
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
DBUG_ENTER("row_ins_check_foreign_constraint");
rec_offs_init(offsets_);
ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_S));
err = DB_SUCCESS;
if (trx->check_foreigns == FALSE) {
/* The user has suppressed foreign key checks currently for
this session */
goto exit_func;
}
/* If any of the foreign key fields in entry is SQL NULL, we
suppress the foreign key check: this is compatible with Oracle,
for example */
for (ulint i = 0; i < foreign->n_fields; i++) {
if (dfield_is_null(dtuple_get_nth_field(entry, i))) {
goto exit_func;
}
}
if (que_node_get_type(thr->run_node) == QUE_NODE_UPDATE) {
upd_node = static_cast<upd_node_t*>(thr->run_node);
if (!(upd_node->is_delete) && upd_node->foreign == foreign) {
/* If a cascaded update is done as defined by a
foreign key constraint, do not check that
constraint for the child row. In ON UPDATE CASCADE
the update of the parent row is only half done when
we come here: if we would check the constraint here
for the child row it would fail.
A QUESTION remains: if in the child table there are
several constraints which refer to the same parent
table, we should merge all updates to the child as
one update? And the updates can be contradictory!
Currently we just perform the update associated
with each foreign key constraint, one after
another, and the user has problems predicting in
which order they are performed. */
goto exit_func;
}
}
if (check_ref) {
check_table = foreign->referenced_table;
check_index = foreign->referenced_index;
} else {
check_table = foreign->foreign_table;
check_index = foreign->foreign_index;
}
if (check_table == NULL
|| check_table->ibd_file_missing
|| check_index == NULL) {
if (!srv_read_only_mode && check_ref) {
FILE* ef = dict_foreign_err_file;
std::string fk_str;
row_ins_set_detailed(trx, foreign);
row_ins_foreign_trx_print(trx);
fputs("Foreign key constraint fails for table ", ef);
ut_print_name(ef, trx,
foreign->foreign_table_name);
fputs(":\n", ef);
fk_str = dict_print_info_on_foreign_key_in_create_format(
trx, foreign, TRUE);
fputs(fk_str.c_str(), ef);
fprintf(ef, "\nTrying to add to index %s tuple:\n",
foreign->foreign_index->name());
dtuple_print(ef, entry);
fputs("\nBut the parent table ", ef);
ut_print_name(ef, trx,
foreign->referenced_table_name);
fputs("\nor its .ibd file does"
" not currently exist!\n", ef);
mutex_exit(&dict_foreign_err_mutex);
err = DB_NO_REFERENCED_ROW;
}
goto exit_func;
}
if (check_table != table) {
/* We already have a LOCK_IX on table, but not necessarily
on check_table */
err = lock_table(0, check_table, LOCK_IS, thr);
if (err != DB_SUCCESS) {
goto do_possible_lock_wait;
}
}
mtr_start(&mtr);
/* Store old value on n_fields_cmp */
n_fields_cmp = dtuple_get_n_fields_cmp(entry);
dtuple_set_n_fields_cmp(entry, foreign->n_fields);
btr_pcur_open(check_index, entry, PAGE_CUR_GE,
BTR_SEARCH_LEAF, &pcur, &mtr);
/* Scan index records and check if there is a matching record */
do {
const rec_t* rec = btr_pcur_get_rec(&pcur);
const buf_block_t* block = btr_pcur_get_block(&pcur);
if (page_rec_is_infimum(rec)) {
continue;
}
offsets = rec_get_offsets(rec, check_index,
offsets, ULINT_UNDEFINED, &heap);
if (page_rec_is_supremum(rec)) {
err = row_ins_set_shared_rec_lock(LOCK_ORDINARY, block,
rec, check_index,
offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
continue;
default:
goto end_scan;
}
}
cmp = cmp_dtuple_rec(entry, rec, offsets);
if (cmp == 0) {
if (rec_get_deleted_flag(rec,
rec_offs_comp(offsets))) {
err = row_ins_set_shared_rec_lock(
LOCK_ORDINARY, block,
rec, check_index, offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto end_scan;
}
} else {
/* Found a matching record. Lock only
a record because we can allow inserts
into gaps */
err = row_ins_set_shared_rec_lock(
LOCK_REC_NOT_GAP, block,
rec, check_index, offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto end_scan;
}
if (check_ref) {
err = DB_SUCCESS;
#ifdef WITH_WSREP
err = wsrep_append_foreign_key(
thr_get_trx(thr),
foreign,
rec,
check_index,
check_ref, TRUE);
#endif /* WITH_WSREP */
goto end_scan;
} else if (foreign->type != 0) {
/* There is an ON UPDATE or ON DELETE
condition: check them in a separate
function */
err = row_ins_foreign_check_on_constraint(
thr, foreign, &pcur, entry,
&mtr);
if (err != DB_SUCCESS) {
/* Since reporting a plain
"duplicate key" error
message to the user in
cases where a long CASCADE
operation would lead to a
duplicate key in some
other table is very
confusing, map duplicate
key errors resulting from
FK constraints to a
separate error code. */
if (err == DB_DUPLICATE_KEY) {
err = DB_FOREIGN_DUPLICATE_KEY;
}
goto end_scan;
}
/* row_ins_foreign_check_on_constraint
may have repositioned pcur on a
different block */
block = btr_pcur_get_block(&pcur);
} else {
row_ins_foreign_report_err(
"Trying to delete or update",
thr, foreign, rec, entry);
err = DB_ROW_IS_REFERENCED;
goto end_scan;
}
}
} else {
ut_a(cmp < 0);
err = row_ins_set_shared_rec_lock(
LOCK_GAP, block,
rec, check_index, offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
if (check_ref) {
err = DB_NO_REFERENCED_ROW;
row_ins_foreign_report_add_err(
trx, foreign, rec, entry);
} else {
err = DB_SUCCESS;
}
default:
break;
}
goto end_scan;
}
} while (btr_pcur_move_to_next(&pcur, &mtr));
if (check_ref) {
row_ins_foreign_report_add_err(
trx, foreign, btr_pcur_get_rec(&pcur), entry);
err = DB_NO_REFERENCED_ROW;
} else {
err = DB_SUCCESS;
}
end_scan:
btr_pcur_close(&pcur);
mtr_commit(&mtr);
/* Restore old value */
dtuple_set_n_fields_cmp(entry, n_fields_cmp);
do_possible_lock_wait:
if (err == DB_LOCK_WAIT) {
/* An object that will correctly decrement the FK check counter
when it goes out of this scope. */
ib_dec_in_dtor dec(check_table->n_foreign_key_checks_running);
trx->error_state = err;
que_thr_stop_for_mysql(thr);
thr->lock_state = QUE_THR_LOCK_ROW;
/* To avoid check_table being dropped, increment counter */
my_atomic_addlint(
&check_table->n_foreign_key_checks_running, 1);
lock_wait_suspend_thread(thr);
thr->lock_state = QUE_THR_LOCK_NOLOCK;
DBUG_PRINT("to_be_dropped",
("table: %s", check_table->name.m_name));
if (check_table->to_be_dropped) {
/* The table is being dropped. We shall timeout
this operation */
err = DB_LOCK_WAIT_TIMEOUT;
goto exit_func;
}
}
exit_func:
if (heap != NULL) {
mem_heap_free(heap);
}
DBUG_RETURN(err);
}
/***************************************************************//**
Checks if foreign key constraints fail for an index entry. If index
is not mentioned in any constraint, this function does nothing,
Otherwise does searches to the indexes of referenced tables and
sets shared locks which lock either the success or the failure of
a constraint.
@return DB_SUCCESS or error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_check_foreign_constraints(
/*==============================*/
dict_table_t* table, /*!< in: table */
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: index entry for index */
que_thr_t* thr) /*!< in: query thread */
{
dict_foreign_t* foreign;
dberr_t err;
trx_t* trx;
ibool got_s_lock = FALSE;
trx = thr_get_trx(thr);
DEBUG_SYNC_C_IF_THD(thr_get_trx(thr)->mysql_thd,
"foreign_constraint_check_for_ins");
for (dict_foreign_set::iterator it = table->foreign_set.begin();
it != table->foreign_set.end();
++it) {
foreign = *it;
if (foreign->foreign_index == index) {
dict_table_t* ref_table = NULL;
dict_table_t* referenced_table
= foreign->referenced_table;
if (referenced_table == NULL) {
ref_table = dict_table_open_on_name(
foreign->referenced_table_name_lookup,
FALSE, FALSE, DICT_ERR_IGNORE_NONE);
}
if (0 == trx->dict_operation_lock_mode) {
got_s_lock = TRUE;
row_mysql_freeze_data_dictionary(trx);
}
/* NOTE that if the thread ends up waiting for a lock
we will release dict_operation_lock temporarily!
But the counter on the table protects the referenced
table from being dropped while the check is running. */
err = row_ins_check_foreign_constraint(
TRUE, foreign, table, entry, thr);
if (got_s_lock) {
row_mysql_unfreeze_data_dictionary(trx);
}
if (ref_table != NULL) {
dict_table_close(ref_table, FALSE, FALSE);
}
if (err != DB_SUCCESS) {
return(err);
}
}
}
return(DB_SUCCESS);
}
/***************************************************************//**
Checks if a unique key violation to rec would occur at the index entry
insert.
@return TRUE if error */
static
ibool
row_ins_dupl_error_with_rec(
/*========================*/
const rec_t* rec, /*!< in: user record; NOTE that we assume
that the caller already has a record lock on
the record! */
const dtuple_t* entry, /*!< in: entry to insert */
dict_index_t* index, /*!< in: index */
const ulint* offsets)/*!< in: rec_get_offsets(rec, index) */
{
ulint matched_fields;
ulint n_unique;
ulint i;
ut_ad(rec_offs_validate(rec, index, offsets));
n_unique = dict_index_get_n_unique(index);
matched_fields = 0;
cmp_dtuple_rec_with_match(entry, rec, offsets, &matched_fields);
if (matched_fields < n_unique) {
return(FALSE);
}
/* In a unique secondary index we allow equal key values if they
contain SQL NULLs */
if (!dict_index_is_clust(index) && !index->nulls_equal) {
for (i = 0; i < n_unique; i++) {
if (dfield_is_null(dtuple_get_nth_field(entry, i))) {
return(FALSE);
}
}
}
return(!rec_get_deleted_flag(rec, rec_offs_comp(offsets)));
}
/***************************************************************//**
Scans a unique non-clustered index at a given index entry to determine
whether a uniqueness violation has occurred for the key value of the entry.
Set shared locks on possible duplicate records.
@return DB_SUCCESS, DB_DUPLICATE_KEY, or DB_LOCK_WAIT */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_scan_sec_index_for_duplicate(
/*=================================*/
ulint flags, /*!< in: undo logging and locking flags */
dict_index_t* index, /*!< in: non-clustered unique index */
dtuple_t* entry, /*!< in: index entry */
que_thr_t* thr, /*!< in: query thread */
bool s_latch,/*!< in: whether index->lock is being held */
mtr_t* mtr, /*!< in/out: mini-transaction */
mem_heap_t* offsets_heap)
/*!< in/out: memory heap that can be emptied */
{
ulint n_unique;
int cmp;
ulint n_fields_cmp;
btr_pcur_t pcur;
dberr_t err = DB_SUCCESS;
ulint allow_duplicates;
ulint* offsets = NULL;
DBUG_ENTER("row_ins_scan_sec_index_for_duplicate");
ut_ad(s_latch == rw_lock_own_flagged(
&index->lock, RW_LOCK_FLAG_S | RW_LOCK_FLAG_SX));
n_unique = dict_index_get_n_unique(index);
/* If the secondary index is unique, but one of the fields in the
n_unique first fields is NULL, a unique key violation cannot occur,
since we define NULL != NULL in this case */
if (!index->nulls_equal) {
for (ulint i = 0; i < n_unique; i++) {
if (UNIV_SQL_NULL == dfield_get_len(
dtuple_get_nth_field(entry, i))) {
DBUG_RETURN(DB_SUCCESS);
}
}
}
/* Store old value on n_fields_cmp */
n_fields_cmp = dtuple_get_n_fields_cmp(entry);
dtuple_set_n_fields_cmp(entry, n_unique);
btr_pcur_open(index, entry, PAGE_CUR_GE,
s_latch
? BTR_SEARCH_LEAF | BTR_ALREADY_S_LATCHED
: BTR_SEARCH_LEAF,
&pcur, mtr);
allow_duplicates = thr_get_trx(thr)->duplicates;
/* Scan index records and check if there is a duplicate */
do {
const rec_t* rec = btr_pcur_get_rec(&pcur);
const buf_block_t* block = btr_pcur_get_block(&pcur);
const ulint lock_type = LOCK_ORDINARY;
if (page_rec_is_infimum(rec)) {
continue;
}
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &offsets_heap);
if (flags & BTR_NO_LOCKING_FLAG) {
/* Set no locks when applying log
in online table rebuild. */
} else if (allow_duplicates) {
/* If the SQL-query will update or replace
duplicate key we will take X-lock for
duplicates ( REPLACE, LOAD DATAFILE REPLACE,
INSERT ON DUPLICATE KEY UPDATE). */
err = row_ins_set_exclusive_rec_lock(
lock_type, block, rec, index, offsets, thr);
} else {
err = row_ins_set_shared_rec_lock(
lock_type, block, rec, index, offsets, thr);
}
switch (err) {
case DB_SUCCESS_LOCKED_REC:
err = DB_SUCCESS;
case DB_SUCCESS:
break;
default:
goto end_scan;
}
if (page_rec_is_supremum(rec)) {
continue;
}
cmp = cmp_dtuple_rec(entry, rec, offsets);
if (cmp == 0) {
if (row_ins_dupl_error_with_rec(rec, entry,
index, offsets)) {
err = DB_DUPLICATE_KEY;
thr_get_trx(thr)->error_info = index;
/* If the duplicate is on hidden FTS_DOC_ID,
state so in the error log */
if (index == index->table->fts_doc_id_index
&& DICT_TF2_FLAG_IS_SET(
index->table,
DICT_TF2_FTS_HAS_DOC_ID)) {
ib::error() << "Duplicate FTS_DOC_ID"
" value on table "
<< index->table->name;
}
goto end_scan;
}
} else {
ut_a(cmp < 0);
goto end_scan;
}
} while (btr_pcur_move_to_next(&pcur, mtr));
end_scan:
/* Restore old value */
dtuple_set_n_fields_cmp(entry, n_fields_cmp);
DBUG_RETURN(err);
}
/** Checks for a duplicate when the table is being rebuilt online.
@retval DB_SUCCESS when no duplicate is detected
@retval DB_SUCCESS_LOCKED_REC when rec is an exact match of entry or
a newer version of entry (the entry should not be inserted)
@retval DB_DUPLICATE_KEY when entry is a duplicate of rec */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_duplicate_online(
/*=====================*/
ulint n_uniq, /*!< in: offset of DB_TRX_ID */
const dtuple_t* entry, /*!< in: entry that is being inserted */
const rec_t* rec, /*!< in: clustered index record */
ulint* offsets)/*!< in/out: rec_get_offsets(rec) */
{
ulint fields = 0;
/* During rebuild, there should not be any delete-marked rows
in the new table. */
ut_ad(!rec_get_deleted_flag(rec, rec_offs_comp(offsets)));
ut_ad(dtuple_get_n_fields_cmp(entry) == n_uniq);
/* Compare the PRIMARY KEY fields and the
DB_TRX_ID, DB_ROLL_PTR. */
cmp_dtuple_rec_with_match_low(
entry, rec, offsets, n_uniq + 2, &fields);
if (fields < n_uniq) {
/* Not a duplicate. */
return(DB_SUCCESS);
}
if (fields == n_uniq + 2) {
/* rec is an exact match of entry. */
return(DB_SUCCESS_LOCKED_REC);
}
return(DB_DUPLICATE_KEY);
}
/** Checks for a duplicate when the table is being rebuilt online.
@retval DB_SUCCESS when no duplicate is detected
@retval DB_SUCCESS_LOCKED_REC when rec is an exact match of entry or
a newer version of entry (the entry should not be inserted)
@retval DB_DUPLICATE_KEY when entry is a duplicate of rec */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_duplicate_error_in_clust_online(
/*====================================*/
ulint n_uniq, /*!< in: offset of DB_TRX_ID */
const dtuple_t* entry, /*!< in: entry that is being inserted */
const btr_cur_t*cursor, /*!< in: cursor on insert position */
ulint** offsets,/*!< in/out: rec_get_offsets(rec) */
mem_heap_t** heap) /*!< in/out: heap for offsets */
{
dberr_t err = DB_SUCCESS;
const rec_t* rec = btr_cur_get_rec(cursor);
if (cursor->low_match >= n_uniq && !page_rec_is_infimum(rec)) {
*offsets = rec_get_offsets(rec, cursor->index, *offsets,
ULINT_UNDEFINED, heap);
err = row_ins_duplicate_online(n_uniq, entry, rec, *offsets);
if (err != DB_SUCCESS) {
return(err);
}
}
rec = page_rec_get_next_const(btr_cur_get_rec(cursor));
if (cursor->up_match >= n_uniq && !page_rec_is_supremum(rec)) {
*offsets = rec_get_offsets(rec, cursor->index, *offsets,
ULINT_UNDEFINED, heap);
err = row_ins_duplicate_online(n_uniq, entry, rec, *offsets);
}
return(err);
}
/***************************************************************//**
Checks if a unique key violation error would occur at an index entry
insert. Sets shared locks on possible duplicate records. Works only
for a clustered index!
@retval DB_SUCCESS if no error
@retval DB_DUPLICATE_KEY if error,
@retval DB_LOCK_WAIT if we have to wait for a lock on a possible duplicate
record
@retval DB_SUCCESS_LOCKED_REC if an exact match of the record was found
in online table rebuild (flags & (BTR_KEEP_SYS_FLAG | BTR_NO_LOCKING_FLAG)) */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_duplicate_error_in_clust(
/*=============================*/
ulint flags, /*!< in: undo logging and locking flags */
btr_cur_t* cursor, /*!< in: B-tree cursor */
const dtuple_t* entry, /*!< in: entry to insert */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr */
{
dberr_t err;
rec_t* rec;
ulint n_unique;
trx_t* trx = thr_get_trx(thr);
mem_heap_t*heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
UT_NOT_USED(mtr);
ut_ad(dict_index_is_clust(cursor->index));
/* NOTE: For unique non-clustered indexes there may be any number
of delete marked records with the same value for the non-clustered
index key (remember multiversioning), and which differ only in
the row refererence part of the index record, containing the
clustered index key fields. For such a secondary index record,
to avoid race condition, we must FIRST do the insertion and after
that check that the uniqueness condition is not breached! */
/* NOTE: A problem is that in the B-tree node pointers on an
upper level may match more to the entry than the actual existing
user records on the leaf level. So, even if low_match would suggest
that a duplicate key violation may occur, this may not be the case. */
n_unique = dict_index_get_n_unique(cursor->index);
if (cursor->low_match >= n_unique) {
rec = btr_cur_get_rec(cursor);
if (!page_rec_is_infimum(rec)) {
offsets = rec_get_offsets(rec, cursor->index, offsets,
ULINT_UNDEFINED, &heap);
ulint lock_type;
lock_type =
trx->isolation_level <= TRX_ISO_READ_COMMITTED
? LOCK_REC_NOT_GAP : LOCK_ORDINARY;
/* We set a lock on the possible duplicate: this
is needed in logical logging of MySQL to make
sure that in roll-forward we get the same duplicate
errors as in original execution */
if (flags & BTR_NO_LOCKING_FLAG) {
/* Do nothing if no-locking is set */
err = DB_SUCCESS;
} else if (trx->duplicates) {
/* If the SQL-query will update or replace
duplicate key we will take X-lock for
duplicates ( REPLACE, LOAD DATAFILE REPLACE,
INSERT ON DUPLICATE KEY UPDATE). */
err = row_ins_set_exclusive_rec_lock(
lock_type,
btr_cur_get_block(cursor),
rec, cursor->index, offsets, thr);
} else {
err = row_ins_set_shared_rec_lock(
lock_type,
btr_cur_get_block(cursor), rec,
cursor->index, offsets, thr);
}
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto func_exit;
}
if (row_ins_dupl_error_with_rec(
rec, entry, cursor->index, offsets)) {
duplicate:
trx->error_info = cursor->index;
err = DB_DUPLICATE_KEY;
goto func_exit;
}
}
}
if (cursor->up_match >= n_unique) {
rec = page_rec_get_next(btr_cur_get_rec(cursor));
if (!page_rec_is_supremum(rec)) {
offsets = rec_get_offsets(rec, cursor->index, offsets,
ULINT_UNDEFINED, &heap);
if (trx->duplicates) {
/* If the SQL-query will update or replace
duplicate key we will take X-lock for
duplicates ( REPLACE, LOAD DATAFILE REPLACE,
INSERT ON DUPLICATE KEY UPDATE). */
err = row_ins_set_exclusive_rec_lock(
LOCK_REC_NOT_GAP,
btr_cur_get_block(cursor),
rec, cursor->index, offsets, thr);
} else {
err = row_ins_set_shared_rec_lock(
LOCK_REC_NOT_GAP,
btr_cur_get_block(cursor),
rec, cursor->index, offsets, thr);
}
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto func_exit;
}
if (row_ins_dupl_error_with_rec(
rec, entry, cursor->index, offsets)) {
goto duplicate;
}
}
/* This should never happen */
ut_error;
}
err = DB_SUCCESS;
func_exit:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(err);
}
/***************************************************************//**
Checks if an index entry has long enough common prefix with an
existing record so that the intended insert of the entry must be
changed to a modify of the existing record. In the case of a clustered
index, the prefix must be n_unique fields long. In the case of a
secondary index, all fields must be equal. InnoDB never updates
secondary index records in place, other than clearing or setting the
delete-mark flag. We could be able to update the non-unique fields
of a unique secondary index record by checking the cursor->up_match,
but we do not do so, because it could have some locking implications.
@return TRUE if the existing record should be updated; FALSE if not */
UNIV_INLINE
ibool
row_ins_must_modify_rec(
/*====================*/
const btr_cur_t* cursor) /*!< in: B-tree cursor */
{
/* NOTE: (compare to the note in row_ins_duplicate_error_in_clust)
Because node pointers on upper levels of the B-tree may match more
to entry than to actual user records on the leaf level, we
have to check if the candidate record is actually a user record.
A clustered index node pointer contains index->n_unique first fields,
and a secondary index node pointer contains all index fields. */
return(cursor->low_match
>= dict_index_get_n_unique_in_tree(cursor->index)
&& !page_rec_is_infimum(btr_cur_get_rec(cursor)));
}
/***************************************************************//**
Tries to insert an entry into a clustered index, ignoring foreign key
constraints. If a record with the same unique key is found, the other
record is necessarily marked deleted by a committed transaction, or a
unique key violation error occurs. The delete marked record is then
updated to an existing record, and we must write an undo log record on
the delete marked record.
@retval DB_SUCCESS on success
@retval DB_LOCK_WAIT on lock wait when !(flags & BTR_NO_LOCKING_FLAG)
@retval DB_FAIL if retry with BTR_MODIFY_TREE is needed
@return error code */
dberr_t
row_ins_clust_index_entry_low(
/*==========================*/
ulint flags, /*!< in: undo logging and locking flags */
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether we wish optimistic or
pessimistic descent down the index tree */
dict_index_t* index, /*!< in: clustered index */
ulint n_uniq, /*!< in: 0 or index->n_uniq */
dtuple_t* entry, /*!< in/out: index entry to insert */
ulint n_ext, /*!< in: number of externally stored columns */
que_thr_t* thr, /*!< in: query thread */
bool dup_chk_only)
/*!< in: if true, just do duplicate check
and return. don't execute actual insert. */
{
btr_pcur_t pcur;
btr_cur_t* cursor;
dberr_t err = DB_SUCCESS;
big_rec_t* big_rec = NULL;
mtr_t mtr;
ib_uint64_t auto_inc = 0;
mem_heap_t* offsets_heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
DBUG_ENTER("row_ins_clust_index_entry_low");
ut_ad(dict_index_is_clust(index));
ut_ad(!dict_index_is_unique(index)
|| n_uniq == dict_index_get_n_unique(index));
ut_ad(!n_uniq || n_uniq == dict_index_get_n_unique(index));
ut_ad(!thr_get_trx(thr)->in_rollback);
mtr_start(&mtr);
if (dict_table_is_temporary(index->table)) {
/* Disable REDO logging as the lifetime of temp-tables is
limited to server or connection lifetime and so REDO
information is not needed on restart for recovery.
Disable locking as temp-tables are local to a connection. */
ut_ad(flags & BTR_NO_LOCKING_FLAG);
ut_ad(!dict_index_is_online_ddl(index));
ut_ad(!index->table->persistent_autoinc);
mtr.set_log_mode(MTR_LOG_NO_REDO);
} else {
mtr.set_named_space(index->space);
if (mode == BTR_MODIFY_LEAF
&& dict_index_is_online_ddl(index)) {
mode = BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED;
mtr_s_lock(dict_index_get_lock(index), &mtr);
}
if (unsigned ai = index->table->persistent_autoinc) {
/* Prepare to persist the AUTO_INCREMENT value
from the index entry to PAGE_ROOT_AUTO_INC. */
const dfield_t* dfield = dtuple_get_nth_field(
entry, ai - 1);
auto_inc = dfield_is_null(dfield)
? 0
: row_parse_int(static_cast<const byte*>(
dfield->data),
dfield->len,
dfield->type.mtype,
dfield->type.prtype
& DATA_UNSIGNED);
}
}
/* Note that we use PAGE_CUR_LE as the search mode, because then
the function will return in both low_match and up_match of the
cursor sensible values */
btr_pcur_open_low(index, 0, entry, PAGE_CUR_LE, mode, &pcur,
__FILE__, __LINE__, auto_inc, &mtr);
cursor = btr_pcur_get_btr_cur(&pcur);
cursor->thr = thr;
#ifdef UNIV_DEBUG
{
page_t* page = btr_cur_get_page(cursor);
rec_t* first_rec = page_rec_get_next(
page_get_infimum_rec(page));
ut_ad(page_rec_is_supremum(first_rec)
|| rec_n_fields_is_sane(index, first_rec, entry));
}
#endif /* UNIV_DEBUG */
if (n_uniq
&& (cursor->up_match >= n_uniq || cursor->low_match >= n_uniq)) {
if (flags
== (BTR_CREATE_FLAG | BTR_NO_LOCKING_FLAG
| BTR_NO_UNDO_LOG_FLAG | BTR_KEEP_SYS_FLAG)) {
/* Set no locks when applying log
in online table rebuild. Only check for duplicates. */
err = row_ins_duplicate_error_in_clust_online(
n_uniq, entry, cursor,
&offsets, &offsets_heap);
switch (err) {
case DB_SUCCESS:
break;
default:
ut_ad(0);
/* fall through */
case DB_SUCCESS_LOCKED_REC:
case DB_DUPLICATE_KEY:
thr_get_trx(thr)->error_info = cursor->index;
}
} else {
/* Note that the following may return also
DB_LOCK_WAIT */
err = row_ins_duplicate_error_in_clust(
flags, cursor, entry, thr, &mtr);
}
if (err != DB_SUCCESS) {
err_exit:
mtr_commit(&mtr);
goto func_exit;
}
}
if (dup_chk_only) {
mtr_commit(&mtr);
goto func_exit;
}
/* Note: Allowing duplicates would qualify for modification of
an existing record as the new entry is exactly same as old entry. */
if (row_ins_must_modify_rec(cursor)) {
/* There is already an index entry with a long enough common
prefix, we must convert the insert into a modify of an
existing record */
mem_heap_t* entry_heap = mem_heap_create(1024);
err = row_ins_clust_index_entry_by_modify(
&pcur, flags, mode, &offsets, &offsets_heap,
entry_heap, entry, thr, &mtr);
if (err == DB_SUCCESS && dict_index_is_online_ddl(index)) {
row_log_table_insert(btr_cur_get_rec(cursor), entry,
index, offsets);
}
mtr_commit(&mtr);
mem_heap_free(entry_heap);
} else {
rec_t* insert_rec;
if (mode != BTR_MODIFY_TREE) {
ut_ad((mode & ~BTR_ALREADY_S_LATCHED)
== BTR_MODIFY_LEAF);
err = btr_cur_optimistic_insert(
flags, cursor, &offsets, &offsets_heap,
entry, &insert_rec, &big_rec,
n_ext, thr, &mtr);
} else {
if (buf_LRU_buf_pool_running_out()) {
err = DB_LOCK_TABLE_FULL;
goto err_exit;
}
DEBUG_SYNC_C("before_insert_pessimitic_row_ins_clust");
err = btr_cur_optimistic_insert(
flags, cursor,
&offsets, &offsets_heap,
entry, &insert_rec, &big_rec,
n_ext, thr, &mtr);
if (err == DB_FAIL) {
err = btr_cur_pessimistic_insert(
flags, cursor,
&offsets, &offsets_heap,
entry, &insert_rec, &big_rec,
n_ext, thr, &mtr);
}
}
if (big_rec != NULL) {
mtr_commit(&mtr);
/* Online table rebuild could read (and
ignore) the incomplete record at this point.
If online rebuild is in progress, the
row_ins_index_entry_big_rec() will write log. */
DBUG_EXECUTE_IF(
"row_ins_extern_checkpoint",
log_make_checkpoint_at(
LSN_MAX, TRUE););
err = row_ins_index_entry_big_rec(
entry, big_rec, offsets, &offsets_heap, index,
thr_get_trx(thr)->mysql_thd,
__FILE__, __LINE__);
dtuple_convert_back_big_rec(index, entry, big_rec);
} else {
if (err == DB_SUCCESS
&& dict_index_is_online_ddl(index)) {
row_log_table_insert(
insert_rec, entry, index, offsets);
}
mtr_commit(&mtr);
}
}
func_exit:
if (offsets_heap != NULL) {
mem_heap_free(offsets_heap);
}
btr_pcur_close(&pcur);
DBUG_RETURN(err);
}
/** Start a mini-transaction and check if the index will be dropped.
@param[in,out] mtr mini-transaction
@param[in,out] index secondary index
@param[in] check whether to check
@param[in] search_mode flags
@return true if the index is to be dropped */
static MY_ATTRIBUTE((warn_unused_result))
bool
row_ins_sec_mtr_start_and_check_if_aborted(
mtr_t* mtr,
dict_index_t* index,
bool check,
ulint search_mode)
{
ut_ad(!dict_index_is_clust(index));
ut_ad(mtr->is_named_space(index->space));
const mtr_log_t log_mode = mtr->get_log_mode();
mtr_start(mtr);
mtr->set_named_space(index->space);
mtr->set_log_mode(log_mode);
if (!check) {
return(false);
}
if (search_mode & BTR_ALREADY_S_LATCHED) {
mtr_s_lock(dict_index_get_lock(index), mtr);
} else {
mtr_sx_lock(dict_index_get_lock(index), mtr);
}
switch (index->online_status) {
case ONLINE_INDEX_ABORTED:
case ONLINE_INDEX_ABORTED_DROPPED:
ut_ad(!index->is_committed());
return(true);
case ONLINE_INDEX_COMPLETE:
return(false);
case ONLINE_INDEX_CREATION:
break;
}
ut_error;
return(true);
}
/***************************************************************//**
Tries to insert an entry into a secondary index. If a record with exactly the
same fields is found, the other record is necessarily marked deleted.
It is then unmarked. Otherwise, the entry is just inserted to the index.
@retval DB_SUCCESS on success
@retval DB_LOCK_WAIT on lock wait when !(flags & BTR_NO_LOCKING_FLAG)
@retval DB_FAIL if retry with BTR_MODIFY_TREE is needed
@return error code */
dberr_t
row_ins_sec_index_entry_low(
/*========================*/
ulint flags, /*!< in: undo logging and locking flags */
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether we wish optimistic or
pessimistic descent down the index tree */
dict_index_t* index, /*!< in: secondary index */
mem_heap_t* offsets_heap,
/*!< in/out: memory heap that can be emptied */
mem_heap_t* heap, /*!< in/out: memory heap */
dtuple_t* entry, /*!< in/out: index entry to insert */
trx_id_t trx_id, /*!< in: PAGE_MAX_TRX_ID during
row_log_table_apply(), or 0 */
que_thr_t* thr, /*!< in: query thread */
bool dup_chk_only)
/*!< in: if true, just do duplicate check
and return. don't execute actual insert. */
{
DBUG_ENTER("row_ins_sec_index_entry_low");
btr_cur_t cursor;
ulint search_mode = mode;
dberr_t err = DB_SUCCESS;
ulint n_unique;
mtr_t mtr;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
rtr_info_t rtr_info;
ut_ad(!dict_index_is_clust(index));
ut_ad(mode == BTR_MODIFY_LEAF || mode == BTR_MODIFY_TREE);
cursor.thr = thr;
cursor.rtr_info = NULL;
ut_ad(thr_get_trx(thr)->id != 0);
mtr_start(&mtr);
mtr.set_named_space(index->space);
if (dict_table_is_temporary(index->table)) {
/* Disable REDO logging as the lifetime of temp-tables is
limited to server or connection lifetime and so REDO
information is not needed on restart for recovery.
Disable locking as temp-tables are local to a connection. */
ut_ad(flags & BTR_NO_LOCKING_FLAG);
mtr.set_log_mode(MTR_LOG_NO_REDO);
} else if (!dict_index_is_spatial(index)) {
/* Enable insert buffering if it's neither temp-table
nor spatial index. */
search_mode |= BTR_INSERT;
}
/* Ensure that we acquire index->lock when inserting into an
index with index->online_status == ONLINE_INDEX_COMPLETE, but
could still be subject to rollback_inplace_alter_table().
This prevents a concurrent change of index->online_status.
The memory object cannot be freed as long as we have an open
reference to the table, or index->table->n_ref_count > 0. */
const bool check = !index->is_committed();
if (check) {
DEBUG_SYNC_C("row_ins_sec_index_enter");
if (mode == BTR_MODIFY_LEAF) {
search_mode |= BTR_ALREADY_S_LATCHED;
mtr_s_lock(dict_index_get_lock(index), &mtr);
} else {
mtr_sx_lock(dict_index_get_lock(index), &mtr);
}
if (row_log_online_op_try(
index, entry, thr_get_trx(thr)->id)) {
goto func_exit;
}
}
/* Note that we use PAGE_CUR_LE as the search mode, because then
the function will return in both low_match and up_match of the
cursor sensible values */
if (!thr_get_trx(thr)->check_unique_secondary) {
search_mode |= BTR_IGNORE_SEC_UNIQUE;
}
if (dict_index_is_spatial(index)) {
cursor.index = index;
rtr_init_rtr_info(&rtr_info, false, &cursor, index, false);
rtr_info_update_btr(&cursor, &rtr_info);
err = btr_cur_search_to_nth_level(
index, 0, entry, PAGE_CUR_RTREE_INSERT,
search_mode,
&cursor, 0, __FILE__, __LINE__, &mtr);
if (mode == BTR_MODIFY_LEAF && rtr_info.mbr_adj) {
mtr_commit(&mtr);
rtr_clean_rtr_info(&rtr_info, true);
rtr_init_rtr_info(&rtr_info, false, &cursor,
index, false);
rtr_info_update_btr(&cursor, &rtr_info);
mtr_start(&mtr);
mtr.set_named_space(index->space);
search_mode &= ~BTR_MODIFY_LEAF;
search_mode |= BTR_MODIFY_TREE;
err = btr_cur_search_to_nth_level(
index, 0, entry, PAGE_CUR_RTREE_INSERT,
search_mode,
&cursor, 0, __FILE__, __LINE__, &mtr);
mode = BTR_MODIFY_TREE;
}
DBUG_EXECUTE_IF(
"rtree_test_check_count", {
goto func_exit;});
} else {
err = btr_cur_search_to_nth_level(
index, 0, entry, PAGE_CUR_LE,
search_mode,
&cursor, 0, __FILE__, __LINE__, &mtr);
}
if (err != DB_SUCCESS) {
trx_t* trx = thr_get_trx(thr);
if (err == DB_DECRYPTION_FAILED) {
ib_push_warning(trx->mysql_thd,
DB_DECRYPTION_FAILED,
"Table %s is encrypted but encryption service or"
" used key_id is not available. "
" Can't continue reading table.",
index->table->name);
index->table->is_encrypted = true;
}
goto func_exit;
}
if (cursor.flag == BTR_CUR_INSERT_TO_IBUF) {
ut_ad(!dict_index_is_spatial(index));
/* The insert was buffered during the search: we are done */
goto func_exit;
}
#ifdef UNIV_DEBUG
{
page_t* page = btr_cur_get_page(&cursor);
rec_t* first_rec = page_rec_get_next(
page_get_infimum_rec(page));
ut_ad(page_rec_is_supremum(first_rec)
|| rec_n_fields_is_sane(index, first_rec, entry));
}
#endif /* UNIV_DEBUG */
n_unique = dict_index_get_n_unique(index);
if (dict_index_is_unique(index)
&& (cursor.low_match >= n_unique || cursor.up_match >= n_unique)) {
mtr_commit(&mtr);
DEBUG_SYNC_C("row_ins_sec_index_unique");
if (row_ins_sec_mtr_start_and_check_if_aborted(
&mtr, index, check, search_mode)) {
goto func_exit;
}
err = row_ins_scan_sec_index_for_duplicate(
flags, index, entry, thr, check, &mtr, offsets_heap);
mtr_commit(&mtr);
switch (err) {
case DB_SUCCESS:
break;
case DB_DUPLICATE_KEY:
if (!index->is_committed()) {
ut_ad(!thr_get_trx(thr)
->dict_operation_lock_mode);
mutex_enter(&dict_sys->mutex);
dict_set_corrupted_index_cache_only(index);
mutex_exit(&dict_sys->mutex);
/* Do not return any error to the
caller. The duplicate will be reported
by ALTER TABLE or CREATE UNIQUE INDEX.
Unfortunately we cannot report the
duplicate key value to the DDL thread,
because the altered_table object is
private to its call stack. */
err = DB_SUCCESS;
}
/* fall through */
default:
if (dict_index_is_spatial(index)) {
rtr_clean_rtr_info(&rtr_info, true);
}
DBUG_RETURN(err);
}
if (row_ins_sec_mtr_start_and_check_if_aborted(
&mtr, index, check, search_mode)) {
goto func_exit;
}
DEBUG_SYNC_C("row_ins_sec_index_entry_dup_locks_created");
/* We did not find a duplicate and we have now
locked with s-locks the necessary records to
prevent any insertion of a duplicate by another
transaction. Let us now reposition the cursor and
continue the insertion. */
btr_cur_search_to_nth_level(
index, 0, entry, PAGE_CUR_LE,
(search_mode
& ~(BTR_INSERT | BTR_IGNORE_SEC_UNIQUE)),
&cursor, 0, __FILE__, __LINE__, &mtr);
}
if (!(flags & BTR_NO_LOCKING_FLAG)
&& dict_index_is_unique(index)
&& thr_get_trx(thr)->duplicates
&& thr_get_trx(thr)->isolation_level >= TRX_ISO_REPEATABLE_READ) {
/* When using the REPLACE statement or ON DUPLICATE clause, a
gap lock is taken on the position of the to-be-inserted record,
to avoid other concurrent transactions from inserting the same
record. */
dberr_t err;
const rec_t* rec = page_rec_get_next_const(
btr_cur_get_rec(&cursor));
ut_ad(!page_rec_is_infimum(rec));
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &offsets_heap);
err = row_ins_set_exclusive_rec_lock(
LOCK_GAP, btr_cur_get_block(&cursor), rec,
index, offsets, thr);
switch (err) {
case DB_SUCCESS:
case DB_SUCCESS_LOCKED_REC:
if (thr_get_trx(thr)->error_state != DB_DUPLICATE_KEY) {
break;
}
/* Fall through (skip actual insert) after we have
successfully acquired the gap lock. */
default:
goto func_exit;
}
}
ut_ad(thr_get_trx(thr)->error_state == DB_SUCCESS);
if (dup_chk_only) {
goto func_exit;
}
if (row_ins_must_modify_rec(&cursor)) {
/* There is already an index entry with a long enough common
prefix, we must convert the insert into a modify of an
existing record */
offsets = rec_get_offsets(
btr_cur_get_rec(&cursor), index, offsets,
ULINT_UNDEFINED, &offsets_heap);
err = row_ins_sec_index_entry_by_modify(
flags, mode, &cursor, &offsets,
offsets_heap, heap, entry, thr, &mtr);
if (err == DB_SUCCESS && dict_index_is_spatial(index)
&& rtr_info.mbr_adj) {
err = rtr_ins_enlarge_mbr(&cursor, thr, &mtr);
}
} else {
rec_t* insert_rec;
big_rec_t* big_rec;
if (mode == BTR_MODIFY_LEAF) {
err = btr_cur_optimistic_insert(
flags, &cursor, &offsets, &offsets_heap,
entry, &insert_rec,
&big_rec, 0, thr, &mtr);
if (err == DB_SUCCESS
&& dict_index_is_spatial(index)
&& rtr_info.mbr_adj) {
err = rtr_ins_enlarge_mbr(&cursor, thr, &mtr);
}
} else {
ut_ad(mode == BTR_MODIFY_TREE);
if (buf_LRU_buf_pool_running_out()) {
err = DB_LOCK_TABLE_FULL;
goto func_exit;
}
err = btr_cur_optimistic_insert(
flags, &cursor,
&offsets, &offsets_heap,
entry, &insert_rec,
&big_rec, 0, thr, &mtr);
if (err == DB_FAIL) {
err = btr_cur_pessimistic_insert(
flags, &cursor,
&offsets, &offsets_heap,
entry, &insert_rec,
&big_rec, 0, thr, &mtr);
}
if (err == DB_SUCCESS
&& dict_index_is_spatial(index)
&& rtr_info.mbr_adj) {
err = rtr_ins_enlarge_mbr(&cursor, thr, &mtr);
}
}
if (err == DB_SUCCESS && trx_id) {
page_update_max_trx_id(
btr_cur_get_block(&cursor),
btr_cur_get_page_zip(&cursor),
trx_id, &mtr);
}
ut_ad(!big_rec);
}
func_exit:
if (dict_index_is_spatial(index)) {
rtr_clean_rtr_info(&rtr_info, true);
}
mtr_commit(&mtr);
DBUG_RETURN(err);
}
/***************************************************************//**
Tries to insert the externally stored fields (off-page columns)
of a clustered index entry.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
dberr_t
row_ins_index_entry_big_rec_func(
/*=============================*/
const dtuple_t* entry, /*!< in/out: index entry to insert */
const big_rec_t* big_rec,/*!< in: externally stored fields */
ulint* offsets,/*!< in/out: rec offsets */
mem_heap_t** heap, /*!< in/out: memory heap */
dict_index_t* index, /*!< in: index */
const char* file, /*!< in: file name of caller */
#ifndef DBUG_OFF
const void* thd, /*!< in: connection, or NULL */
#endif /* DBUG_OFF */
ulint line) /*!< in: line number of caller */
{
mtr_t mtr;
btr_pcur_t pcur;
rec_t* rec;
dberr_t error;
ut_ad(dict_index_is_clust(index));
DEBUG_SYNC_C_IF_THD(thd, "before_row_ins_extern_latch");
mtr_start(&mtr);
mtr.set_named_space(index->space);
dict_disable_redo_if_temporary(index->table, &mtr);
btr_pcur_open(index, entry, PAGE_CUR_LE, BTR_MODIFY_TREE,
&pcur, &mtr);
rec = btr_pcur_get_rec(&pcur);
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, heap);
DEBUG_SYNC_C_IF_THD(thd, "before_row_ins_extern");
error = btr_store_big_rec_extern_fields(
&pcur, 0, offsets, big_rec, &mtr, BTR_STORE_INSERT);
DEBUG_SYNC_C_IF_THD(thd, "after_row_ins_extern");
if (error == DB_SUCCESS
&& dict_index_is_online_ddl(index)) {
row_log_table_insert(btr_pcur_get_rec(&pcur), entry,
index, offsets);
}
mtr_commit(&mtr);
btr_pcur_close(&pcur);
return(error);
}
/***************************************************************//**
Inserts an entry into a clustered index. Tries first optimistic,
then pessimistic descent down the tree. If the entry matches enough
to a delete marked record, performs the insert by updating or delete
unmarking the delete marked record.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DUPLICATE_KEY, or some other error code */
dberr_t
row_ins_clust_index_entry(
/*======================*/
dict_index_t* index, /*!< in: clustered index */
dtuple_t* entry, /*!< in/out: index entry to insert */
que_thr_t* thr, /*!< in: query thread */
ulint n_ext, /*!< in: number of externally stored columns */
bool dup_chk_only)
/*!< in: if true, just do duplicate check
and return. don't execute actual insert. */
{
dberr_t err;
ulint n_uniq;
DBUG_ENTER("row_ins_clust_index_entry");
if (!index->table->foreign_set.empty()) {
err = row_ins_check_foreign_constraints(
index->table, index, entry, thr);
if (err != DB_SUCCESS) {
DBUG_RETURN(err);
}
}
n_uniq = dict_index_is_unique(index) ? index->n_uniq : 0;
/* Try first optimistic descent to the B-tree */
log_free_check();
const ulint flags = dict_table_is_temporary(index->table)
? BTR_NO_LOCKING_FLAG
: 0;
err = row_ins_clust_index_entry_low(
flags, BTR_MODIFY_LEAF, index, n_uniq, entry,
n_ext, thr, dup_chk_only);
DEBUG_SYNC_C_IF_THD(thr_get_trx(thr)->mysql_thd,
"after_row_ins_clust_index_entry_leaf");
if (err != DB_FAIL) {
DEBUG_SYNC_C("row_ins_clust_index_entry_leaf_after");
DBUG_RETURN(err);
}
/* Try then pessimistic descent to the B-tree */
log_free_check();
err = row_ins_clust_index_entry_low(
flags, BTR_MODIFY_TREE, index, n_uniq, entry,
n_ext, thr, dup_chk_only);
DBUG_RETURN(err);
}
/***************************************************************//**
Inserts an entry into a secondary index. Tries first optimistic,
then pessimistic descent down the tree. If the entry matches enough
to a delete marked record, performs the insert by updating or delete
unmarking the delete marked record.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DUPLICATE_KEY, or some other error code */
dberr_t
row_ins_sec_index_entry(
/*====================*/
dict_index_t* index, /*!< in: secondary index */
dtuple_t* entry, /*!< in/out: index entry to insert */
que_thr_t* thr, /*!< in: query thread */
bool dup_chk_only)
/*!< in: if true, just do duplicate check
and return. don't execute actual insert. */
{
dberr_t err;
mem_heap_t* offsets_heap;
mem_heap_t* heap;
DBUG_EXECUTE_IF("row_ins_sec_index_entry_timeout", {
DBUG_SET("-d,row_ins_sec_index_entry_timeout");
return(DB_LOCK_WAIT);});
if (!index->table->foreign_set.empty()) {
err = row_ins_check_foreign_constraints(index->table, index,
entry, thr);
if (err != DB_SUCCESS) {
return(err);
}
}
ut_ad(thr_get_trx(thr)->id != 0);
offsets_heap = mem_heap_create(1024);
heap = mem_heap_create(1024);
/* Try first optimistic descent to the B-tree */
log_free_check();
const ulint flags = dict_table_is_temporary(index->table)
? BTR_NO_LOCKING_FLAG
: 0;
err = row_ins_sec_index_entry_low(
flags, BTR_MODIFY_LEAF, index, offsets_heap, heap, entry,
0, thr, dup_chk_only);
if (err == DB_FAIL) {
mem_heap_empty(heap);
/* Try then pessimistic descent to the B-tree */
log_free_check();
err = row_ins_sec_index_entry_low(
flags, BTR_MODIFY_TREE, index,
offsets_heap, heap, entry, 0, thr,
dup_chk_only);
}
mem_heap_free(heap);
mem_heap_free(offsets_heap);
return(err);
}
/***************************************************************//**
Inserts an index entry to index. Tries first optimistic, then pessimistic
descent down the tree. If the entry matches enough to a delete marked record,
performs the insert by updating or delete unmarking the delete marked
record.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DUPLICATE_KEY, or some other error code */
static
dberr_t
row_ins_index_entry(
/*================*/
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in/out: index entry to insert */
que_thr_t* thr) /*!< in: query thread */
{
ut_ad(thr_get_trx(thr)->id != 0);
DBUG_EXECUTE_IF("row_ins_index_entry_timeout", {
DBUG_SET("-d,row_ins_index_entry_timeout");
return(DB_LOCK_WAIT);});
if (dict_index_is_clust(index)) {
return(row_ins_clust_index_entry(index, entry, thr, 0, false));
} else {
return(row_ins_sec_index_entry(index, entry, thr, false));
}
}
/*****************************************************************//**
This function generate MBR (Minimum Bounding Box) for spatial objects
and set it to spatial index field. */
static
void
row_ins_spatial_index_entry_set_mbr_field(
/*======================================*/
dfield_t* field, /*!< in/out: mbr field */
const dfield_t* row_field) /*!< in: row field */
{
uchar* dptr = NULL;
ulint dlen = 0;
double mbr[SPDIMS * 2];
/* This must be a GEOMETRY datatype */
ut_ad(DATA_GEOMETRY_MTYPE(field->type.mtype));
dptr = static_cast<uchar*>(dfield_get_data(row_field));
dlen = dfield_get_len(row_field);
/* obtain the MBR */
rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
static_cast<uint>(dlen - GEO_DATA_HEADER_SIZE),
SPDIMS, mbr);
/* Set mbr as index entry data */
dfield_write_mbr(field, mbr);
}
/** Sets the values of the dtuple fields in entry from the values of appropriate
columns in row.
@param[in] index index handler
@param[out] entry index entry to make
@param[in] row row
@return DB_SUCCESS if the set is successful */
dberr_t
row_ins_index_entry_set_vals(
const dict_index_t* index,
dtuple_t* entry,
const dtuple_t* row)
{
ulint n_fields;
ulint i;
ulint num_v = dtuple_get_n_v_fields(entry);
n_fields = dtuple_get_n_fields(entry);
for (i = 0; i < n_fields + num_v; i++) {
dict_field_t* ind_field = NULL;
dfield_t* field;
const dfield_t* row_field;
ulint len;
dict_col_t* col;
if (i >= n_fields) {
/* This is virtual field */
field = dtuple_get_nth_v_field(entry, i - n_fields);
col = &dict_table_get_nth_v_col(
index->table, i - n_fields)->m_col;
} else {
field = dtuple_get_nth_field(entry, i);
ind_field = dict_index_get_nth_field(index, i);
col = ind_field->col;
}
if (dict_col_is_virtual(col)) {
const dict_v_col_t* v_col
= reinterpret_cast<const dict_v_col_t*>(col);
ut_ad(dtuple_get_n_fields(row)
== dict_table_get_n_cols(index->table));
row_field = dtuple_get_nth_v_field(row, v_col->v_pos);
} else {
row_field = dtuple_get_nth_field(
row, ind_field->col->ind);
}
len = dfield_get_len(row_field);
/* Check column prefix indexes */
if (ind_field != NULL && ind_field->prefix_len > 0
&& dfield_get_len(row_field) != UNIV_SQL_NULL) {
const dict_col_t* col
= dict_field_get_col(ind_field);
len = dtype_get_at_most_n_mbchars(
col->prtype, col->mbminmaxlen,
ind_field->prefix_len,
len,
static_cast<const char*>(
dfield_get_data(row_field)));
ut_ad(!dfield_is_ext(row_field));
}
/* Handle spatial index. For the first field, replace
the data with its MBR (Minimum Bounding Box). */
if ((i == 0) && dict_index_is_spatial(index)) {
if (!row_field->data
|| row_field->len < GEO_DATA_HEADER_SIZE) {
return(DB_CANT_CREATE_GEOMETRY_OBJECT);
}
row_ins_spatial_index_entry_set_mbr_field(
field, row_field);
continue;
}
dfield_set_data(field, dfield_get_data(row_field), len);
if (dfield_is_ext(row_field)) {
ut_ad(dict_index_is_clust(index));
dfield_set_ext(field);
}
}
return(DB_SUCCESS);
}
/***********************************************************//**
Inserts a single index entry to the table.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins_index_entry_step(
/*=====================*/
ins_node_t* node, /*!< in: row insert node */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
DBUG_ENTER("row_ins_index_entry_step");
ut_ad(dtuple_check_typed(node->row));
err = row_ins_index_entry_set_vals(node->index, node->entry, node->row);
if (err != DB_SUCCESS) {
DBUG_RETURN(err);
}
ut_ad(dtuple_check_typed(node->entry));
err = row_ins_index_entry(node->index, node->entry, thr);
DEBUG_SYNC_C_IF_THD(thr_get_trx(thr)->mysql_thd,
"after_row_ins_index_entry_step");
DBUG_RETURN(err);
}
/***********************************************************//**
Allocates a row id for row and inits the node->index field. */
UNIV_INLINE
void
row_ins_alloc_row_id_step(
/*======================*/
ins_node_t* node) /*!< in: row insert node */
{
row_id_t row_id;
ut_ad(node->state == INS_NODE_ALLOC_ROW_ID);
if (dict_index_is_unique(dict_table_get_first_index(node->table))) {
/* No row id is stored if the clustered index is unique */
return;
}
/* Fill in row id value to row */
row_id = dict_sys_get_new_row_id();
dict_sys_write_row_id(node->row_id_buf, row_id);
}
/***********************************************************//**
Gets a row to insert from the values list. */
UNIV_INLINE
void
row_ins_get_row_from_values(
/*========================*/
ins_node_t* node) /*!< in: row insert node */
{
que_node_t* list_node;
dfield_t* dfield;
dtuple_t* row;
ulint i;
/* The field values are copied in the buffers of the select node and
it is safe to use them until we fetch from select again: therefore
we can just copy the pointers */
row = node->row;
i = 0;
list_node = node->values_list;
while (list_node) {
eval_exp(list_node);
dfield = dtuple_get_nth_field(row, i);
dfield_copy_data(dfield, que_node_get_val(list_node));
i++;
list_node = que_node_get_next(list_node);
}
}
/***********************************************************//**
Gets a row to insert from the select list. */
UNIV_INLINE
void
row_ins_get_row_from_select(
/*========================*/
ins_node_t* node) /*!< in: row insert node */
{
que_node_t* list_node;
dfield_t* dfield;
dtuple_t* row;
ulint i;
/* The field values are copied in the buffers of the select node and
it is safe to use them until we fetch from select again: therefore
we can just copy the pointers */
row = node->row;
i = 0;
list_node = node->select->select_list;
while (list_node) {
dfield = dtuple_get_nth_field(row, i);
dfield_copy_data(dfield, que_node_get_val(list_node));
i++;
list_node = que_node_get_next(list_node);
}
}
/***********************************************************//**
Inserts a row to a table.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_ins(
/*====*/
ins_node_t* node, /*!< in: row insert node */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
DBUG_ENTER("row_ins");
DBUG_PRINT("row_ins", ("table: %s", node->table->name.m_name));
if (node->duplicate) {
thr_get_trx(thr)->error_state = DB_DUPLICATE_KEY;
}
if (node->state == INS_NODE_ALLOC_ROW_ID) {
row_ins_alloc_row_id_step(node);
node->index = dict_table_get_first_index(node->table);
node->entry = UT_LIST_GET_FIRST(node->entry_list);
if (node->ins_type == INS_SEARCHED) {
row_ins_get_row_from_select(node);
} else if (node->ins_type == INS_VALUES) {
row_ins_get_row_from_values(node);
}
node->state = INS_NODE_INSERT_ENTRIES;
}
ut_ad(node->state == INS_NODE_INSERT_ENTRIES);
while (node->index != NULL) {
if (node->index->type != DICT_FTS) {
err = row_ins_index_entry_step(node, thr);
switch (err) {
case DB_SUCCESS:
break;
case DB_DUPLICATE_KEY:
ut_ad(dict_index_is_unique(node->index));
if (thr_get_trx(thr)->isolation_level
>= TRX_ISO_REPEATABLE_READ
&& thr_get_trx(thr)->duplicates) {
/* When we are in REPLACE statement or
INSERT .. ON DUPLICATE UPDATE
statement, we process all the
unique secondary indexes, even after we
encounter a duplicate error. This is
done to take necessary gap locks in
secondary indexes to block concurrent
transactions from inserting the
searched records. */
if (!node->duplicate) {
/* Save 1st dup error. Ignore
subsequent dup errors. */
node->duplicate = node->index;
thr_get_trx(thr)->error_state
= DB_DUPLICATE_KEY;
}
break;
}
// fall through
default:
DBUG_RETURN(err);
}
}
if (node->duplicate && dict_table_is_temporary(node->table)) {
ut_ad(thr_get_trx(thr)->error_state
== DB_DUPLICATE_KEY);
/* For TEMPORARY TABLE, we won't lock anything,
so we can simply break here instead of requiring
GAP locks for other unique secondary indexes,
pretending we have consumed all indexes. */
node->index = NULL;
node->entry = NULL;
break;
}
node->index = dict_table_get_next_index(node->index);
node->entry = UT_LIST_GET_NEXT(tuple_list, node->entry);
DBUG_EXECUTE_IF(
"row_ins_skip_sec",
node->index = NULL; node->entry = NULL; break;);
/* Skip corrupted secondary index and its entry */
while (node->index && dict_index_is_corrupted(node->index)) {
node->index = dict_table_get_next_index(node->index);
node->entry = UT_LIST_GET_NEXT(tuple_list, node->entry);
}
/* After encountering a duplicate key error, we process
remaining indexes just to place gap locks and no actual
insertion will take place. These gap locks are needed
only for unique indexes. So skipping non-unique indexes. */
if (node->duplicate) {
while (node->index
&& !dict_index_is_unique(node->index)) {
node->index = dict_table_get_next_index(
node->index);
node->entry = UT_LIST_GET_NEXT(tuple_list,
node->entry);
}
thr_get_trx(thr)->error_state = DB_DUPLICATE_KEY;
}
}
ut_ad(node->entry == NULL);
thr_get_trx(thr)->error_info = node->duplicate;
node->state = INS_NODE_ALLOC_ROW_ID;
DBUG_RETURN(node->duplicate ? DB_DUPLICATE_KEY : DB_SUCCESS);
}
/***********************************************************//**
Inserts a row to a table. This is a high-level function used in SQL execution
graphs.
@return query thread to run next or NULL */
que_thr_t*
row_ins_step(
/*=========*/
que_thr_t* thr) /*!< in: query thread */
{
ins_node_t* node;
que_node_t* parent;
sel_node_t* sel_node;
trx_t* trx;
dberr_t err;
ut_ad(thr);
DEBUG_SYNC_C("innodb_row_ins_step_enter");
trx = thr_get_trx(thr);
trx_start_if_not_started_xa(trx, true);
node = static_cast<ins_node_t*>(thr->run_node);
ut_ad(que_node_get_type(node) == QUE_NODE_INSERT);
parent = que_node_get_parent(node);
sel_node = node->select;
if (thr->prev_node == parent) {
node->state = INS_NODE_SET_IX_LOCK;
}
/* If this is the first time this node is executed (or when
execution resumes after wait for the table IX lock), set an
IX lock on the table and reset the possible select node. MySQL's
partitioned table code may also call an insert within the same
SQL statement AFTER it has used this table handle to do a search.
This happens, for example, when a row update moves it to another
partition. In that case, we have already set the IX lock on the
table during the search operation, and there is no need to set
it again here. But we must write trx->id to node->trx_id_buf. */
memset(node->trx_id_buf, 0, DATA_TRX_ID_LEN);
trx_write_trx_id(node->trx_id_buf, trx->id);
if (node->state == INS_NODE_SET_IX_LOCK) {
node->state = INS_NODE_ALLOC_ROW_ID;
/* It may be that the current session has not yet started
its transaction, or it has been committed: */
if (trx->id == node->trx_id) {
/* No need to do IX-locking */
goto same_trx;
}
err = lock_table(0, node->table, LOCK_IX, thr);
DBUG_EXECUTE_IF("ib_row_ins_ix_lock_wait",
err = DB_LOCK_WAIT;);
if (err != DB_SUCCESS) {
goto error_handling;
}
node->trx_id = trx->id;
same_trx:
if (node->ins_type == INS_SEARCHED) {
/* Reset the cursor */
sel_node->state = SEL_NODE_OPEN;
/* Fetch a row to insert */
thr->run_node = sel_node;
return(thr);
}
}
if ((node->ins_type == INS_SEARCHED)
&& (sel_node->state != SEL_NODE_FETCH)) {
ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS);
/* No more rows to insert */
thr->run_node = parent;
return(thr);
}
/* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */
err = row_ins(node, thr);
error_handling:
trx->error_state = err;
if (err != DB_SUCCESS) {
/* err == DB_LOCK_WAIT or SQL error detected */
return(NULL);
}
/* DO THE TRIGGER ACTIONS HERE */
if (node->ins_type == INS_SEARCHED) {
/* Fetch a row to insert */
thr->run_node = sel_node;
} else {
thr->run_node = que_node_get_parent(node);
}
return(thr);
}