mariadb/sql/opt_table_elimination.cc
Sergey Petrunya d294aae6c8 MWL#17: Table elimination: last fixes
- Add an @@optimizer_switch flag for table_elimination for debug build
- Better comments 

mysql-test/t/index_merge_myisam.test:
  MWL#17: Table elimination: last fixes
  - Add an @@optimizer_switch flag for table_elimination for debug build
sql/mysql_priv.h:
  MWL#17: Table elimination: last fixes
  - Add an @@optimizer_switch flag for table_elimination for debug build
sql/mysqld.cc:
  MWL#17: Table elimination: last fixes
  - Add an @@optimizer_switch flag for table_elimination for debug build
2009-08-24 22:10:48 +03:00

1567 lines
46 KiB
C++

/**
@file
@brief
Table Elimination Module
@defgroup Table_Elimination Table Elimination Module
@{
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include "my_bit.h"
#include "sql_select.h"
/*
OVERVIEW
========
This file contains table elimination module. The idea behind table
elimination is as follows: suppose we have a left join
SELECT * FROM t1 LEFT JOIN
(t2 JOIN t3) ON t3.primary_key=t1.col AND
t4.primary_key=t2.col
such that
* columns of the inner tables are not used anywhere ouside the outer join
(not in WHERE, not in GROUP/ORDER BY clause, not in select list etc etc),
* inner side of the outer join is guaranteed to produce at most one matching
record combination for each record combination of outer tables.
then the inner side of the outer join can be removed from the query, as it
will always produce only one record combination (either real or
null-complemented one) and we don't care about what that record combination
is.
MODULE INTERFACE
================
The module has one entry point - eliminate_tables() function, which one
needs to call (once) at some point before the join optimization.
eliminate_tables() operates over the JOIN structures. Logically, it
removes the right sides of outer join nests. Physically, it changes the
following members:
* Eliminated tables are marked as constant and moved to the front of the
join order.
* In addition to this, they are recorded in JOIN::eliminated_tables bitmap.
* Items that became disused because they were in the ON expression of an
eliminated outer join are notified by means of the Item tree walk which
calls Item::mark_as_eliminated_processor for every item
- At the moment the only Item that cares whether it was eliminated is
Item_subselect with its Item_subselect::eliminated flag which is used
by EXPLAIN code to check if the subquery should be shown in EXPLAIN.
Table elimination is redone on every PS re-execution.
TABLE ELIMINATION ALGORITHM FOR ONE OUTER JOIN
==============================================
As described above, we can remove inner side of an outer join if it is
1. not referred to from any other parts of the query
2. always produces one matching record combination.
We check #1 by doing a recursive descent down the join->join_list while
maintaining a union of used_tables() attribute of all Item expressions in
other parts of the query. When we encounter an outer join, we check if the
bitmap of tables on its inner side has intersection with tables that are used
elsewhere. No intersection means that inner side of the outer join could
potentially be eliminated.
In order to check #2, one needs to prove that inner side of an outer join
is functionally dependent on the outside. The proof is constructed from
functional dependencies of intermediate objects:
- Inner side of outer join is functionally dependent when each of its tables
are functionally dependent. (We assume a table is functionally dependent
when its dependencies allow to uniquely identify one table record, or no
records).
- Table is functionally dependent when it has got a unique key whose columns
are functionally dependent.
- A column is functionally dependent when we could locate an AND-part of a
certain ON clause in form
tblX.columnY= expr
where expr is functionally-depdendent.
These relationships are modeled as a bipartite directed graph that has
dependencies as edges and two kinds of nodes:
Value nodes:
- Table column values (each is a value of tblX.columnY)
- Table values (each node represents a table inside the join nest we're
trying to eliminate).
A value has one attribute, it is either bound (i.e. functionally dependent)
or not.
Module nodes:
- Modules representing tblX.colY=expr equalities. Equality module has
= incoming edges from columns used in expr
= outgoing edge to tblX.colY column.
- Nodes representing unique keys. Unique key has
= incoming edges from key component value modules
= outgoing edge to key's table module
- Inner side of outer join module. Outer join module has
= incoming edges from table value modules
= No outgoing edges. Once we reach it, we know we can eliminate the
outer join.
A module may depend on multiple values, and hence its primary attribute is
the number of its depedencies that are not bound.
The algorithm starts with equality nodes that don't have any incoming edges
(their expressions are either constant or depend only on tables that are
outside of the outer join in question) and performns a breadth-first
traversal. If we reach the outer join nest node, it means outer join is
functionally-dependant and can be eliminated. Otherwise it cannot be.
HANDLING MULTIPLE NESTED OUTER JOINS
====================================
Outer joins that are not nested one within another are eliminated
independently. For nested outer joins we have the following considerations:
1. ON expressions from children outer joins must be taken into account
Consider this example:
SELECT t0.*
FROM
t0
LEFT JOIN
(t1 LEFT JOIN t2 ON t2.primary_key=t1.col1)
ON
t1.primary_key=t0.col AND t2.col1=t1.col2
Here we cannot eliminate the "... LEFT JOIN t2 ON ..." part alone because the
ON clause of top level outer join has references to table t2.
We can eliminate the entire "... LEFT JOIN (t1 LEFT JOIN t2) ON .." part,
but in order to do that, we must look at both ON expressions.
2. ON expressions of parent outer joins are useless.
Consider an example:
SELECT t0.*
FROM
t0
LEFT JOIN
(t1 LEFT JOIN t2 ON some_expr)
ON
t2.primary_key=t1.col -- (*)
Here the uppermost ON expression has a clause that gives us functional
dependency of table t2 on t1 and hence could be used to eliminate the
"... LEFT JOIN t2 ON..." part.
However, we would not actually encounter this situation, because before the
table elimination we run simplify_joins(), which, among other things, upon
seeing a functional dependency condition like (*) will convert the outer join
of
"... LEFT JOIN t2 ON ..."
into inner join and thus make table elimination not to consider eliminating
table t2.
*/
class Value_dep;
class Field_value;
class Table_value;
class Module_dep;
class Equality_module;
class Outer_join_module;
class Key_module;
class Func_dep_analyzer;
/*
A value, something that can be bound or not bound. Also, values can be linked
in a list.
*/
class Value_dep : public Sql_alloc
{
public:
Value_dep(): bound(FALSE), next(NULL) {}
virtual void now_bound(Func_dep_analyzer *fda, Module_dep **bound_modules)=0;
virtual ~Value_dep() {} /* only to shut up compiler warnings */
bool bound;
Value_dep *next;
};
/*
A table field value. There is exactly only one such object for any tblX.fieldY
- the field depends on its table and equalities
- expressions that use the field are its dependencies
*/
class Field_value : public Value_dep
{
public:
Field_value(Table_value *table_arg, Field *field_arg) :
table(table_arg), field(field_arg)
{}
Table_value *table; /* Table this field is from */
Field *field;
/*
Field_deps that belong to one table form a linked list, ordered by
field_index
*/
Field_value *next_table_field;
/*
Offset to bits in Func_dep_analyzer::expr_deps
*/
uint bitmap_offset;
void now_bound(Func_dep_analyzer *fda, Module_dep **bound_modules);
void signal_from_field_to_exprs(Func_dep_analyzer* fda,
Module_dep **bound_modules);
};
/*
A table value. There is one Table_value object for every table that can
potentially be eliminated.
Dependencies:
- table depends on any of its unique keys
- has its fields and embedding outer join as dependency
*/
class Table_value : public Value_dep
{
public:
Table_value(TABLE *table_arg) :
table(table_arg), fields(NULL), keys(NULL)
{}
TABLE *table;
Field_value *fields; /* Ordered list of fields that belong to this table */
Key_module *keys; /* Ordered list of Unique keys in this table */
void now_bound(Func_dep_analyzer *fda, Module_dep **bound_modules);
};
/*
A 'module'. Module has unsatisfied dependencies, number of whose is stored in
unknown_args. Modules also can be linked together in a list.
*/
class Module_dep : public Sql_alloc
{
public:
virtual bool now_bound(Func_dep_analyzer *fda, Value_dep **bound_modules)=0;
virtual ~Module_dep(){}
/*
Used to make a linked list of elements that became bound and thus can
make elements that depend on them bound, too.
*/
Module_dep *next;
uint unknown_args;
Module_dep() : next(NULL), unknown_args(0) {}
};
/*
This represents either
- "tbl.column= expr" equality dependency, i.e. tbl.column depends on fields
used in the expression, or
- tbl1.col1=tbl2.col2=... multi-equality.
*/
class Equality_module : public Module_dep
{
public:
Field_value *field;
Item *expression;
List<Field_value> *mult_equal_fields;
/* Used during condition analysis only, similar to KEYUSE::level */
uint level;
bool now_bound(Func_dep_analyzer *fda, Value_dep **bound_values);
};
/*
A Unique key.
- Unique key depends on all of its components
- Key's table is its dependency
*/
class Key_module: public Module_dep
{
public:
Key_module(Table_value *table_arg, uint keyno_arg, uint n_parts_arg) :
table(table_arg), keyno(keyno_arg), next_table_key(NULL)
{
unknown_args= n_parts_arg;
}
Table_value *table; /* Table this key is from */
uint keyno;
/* Unique keys form a linked list, ordered by keyno */
Key_module *next_table_key;
bool now_bound(Func_dep_analyzer *fda, Value_dep **bound_values);
};
/*
An outer join nest that is subject to elimination
- it depends on all tables inside it
- has its parent outer join as dependency
*/
class Outer_join_module: public Module_dep
{
public:
Outer_join_module(uint n_children)
{
unknown_args= n_children;
}
bool now_bound(Func_dep_analyzer *fda, Value_dep **bound_values);
};
/*
Functional dependency analyzer context
*/
class Func_dep_analyzer
{
public:
Func_dep_analyzer(JOIN *join_arg) : join(join_arg)
{
bzero(table_deps, sizeof(table_deps));
}
JOIN *join; /* Join we're working on */
/* Tables that we're looking at eliminating */
table_map usable_tables;
/* Array of equality dependencies */
Equality_module *equality_mods;
uint n_equality_mods; /* Number of elements in the array */
uint n_equality_mods_alloced;
/* tablenr -> Table_value* mapping. */
Table_value *table_deps[MAX_KEY];
/* Element for the outer join we're attempting to eliminate */
Outer_join_module *outer_join_dep;
/*
Bitmap of how expressions depend on bits. Given a Field_value object,
one can check bitmap_is_set(expr_deps, field_val->bitmap_offset + expr_no)
to see if expression equality_mods[expr_no] depends on the given field.
*/
MY_BITMAP expr_deps;
};
void eliminate_tables(JOIN *join);
static bool
eliminate_tables_for_list(JOIN *join,
List<TABLE_LIST> *join_list,
table_map tables_in_list,
Item *on_expr,
table_map tables_used_elsewhere);
static
bool check_func_dependency(JOIN *join,
table_map dep_tables,
List_iterator<TABLE_LIST> *it,
TABLE_LIST *oj_tbl,
Item* cond);
static
void build_eq_mods_for_cond(Func_dep_analyzer *fda, Equality_module **eq_mod,
uint *and_level, Item *cond);
static
void add_eq_mod(Func_dep_analyzer *fda, Equality_module **eq_mod,
uint and_level,
Item_func *cond, Item *left, Item *right);
static
Equality_module *merge_func_deps(Equality_module *start,
Equality_module *new_fields,
Equality_module *end, uint and_level);
static Table_value *get_table_value(Func_dep_analyzer *fda, TABLE *table);
static Field_value *get_field_value(Func_dep_analyzer *fda, Field *field);
static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl);
static void add_eq_mod2(Func_dep_analyzer *fda, Equality_module **eq_mod,
uint and_level, Field_value *field_val, Item *right,
List<Field_value>* mult_equal_fields);
#ifndef DBUG_OFF
static void dbug_print_deps(Func_dep_analyzer *fda);
#endif
/*******************************************************************************************/
/*
Produce Eq_dep elements for given condition.
SYNOPSIS
build_eq_mods_for_cond()
fda Table elimination context
eq_mod INOUT Put produced equality conditions here
and_level INOUT AND-level (like in add_key_fields)
cond Condition to process
DESCRIPTION
This function is modeled after add_key_fields()
*/
static
void build_eq_mods_for_cond(Func_dep_analyzer *fda, Equality_module **eq_mod,
uint *and_level, Item *cond)
{
if (cond->type() == Item_func::COND_ITEM)
{
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Equality_module *org_key_fields= *eq_mod;
/* AND/OR */
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
Item *item;
while ((item=li++))
build_eq_mods_for_cond(fda, eq_mod, and_level, item);
for (; org_key_fields != *eq_mod ; org_key_fields++)
org_key_fields->level= *and_level;
}
else
{
Item *item;
(*and_level)++;
build_eq_mods_for_cond(fda, eq_mod, and_level, li++);
while ((item=li++))
{
Equality_module *start_key_fields= *eq_mod;
(*and_level)++;
build_eq_mods_for_cond(fda, eq_mod, and_level, item);
*eq_mod= merge_func_deps(org_key_fields, start_key_fields, *eq_mod,
++(*and_level));
}
}
return;
}
if (cond->type() != Item::FUNC_ITEM)
return;
Item_func *cond_func= (Item_func*) cond;
Item **args= cond_func->arguments();
switch (cond_func->functype()) {
case Item_func::IN_FUNC:
{
if (cond_func->argument_count() == 2)
{
add_eq_mod(fda, eq_mod, *and_level, cond_func, args[0], args[1]);
add_eq_mod(fda, eq_mod, *and_level, cond_func, args[1], args[0]);
}
break;
}
case Item_func::BETWEEN:
{
Item *fld;
if (!((Item_func_between*)cond)->negated &&
(fld= args[0]->real_item())->type() == Item::FIELD_ITEM &&
args[1]->eq(args[2], ((Item_field*)fld)->field->binary()))
{
add_eq_mod(fda, eq_mod, *and_level, cond_func, args[0], args[1]);
add_eq_mod(fda, eq_mod, *and_level, cond_func, args[1], args[0]);
}
break;
}
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
{
add_eq_mod(fda, eq_mod, *and_level, cond_func, args[0], args[1]);
add_eq_mod(fda, eq_mod, *and_level, cond_func, args[1], args[0]);
break;
}
case Item_func::ISNULL_FUNC:
{
Item *tmp=new Item_null;
if (tmp)
add_eq_mod(fda, eq_mod, *and_level, cond_func, args[0], args[1]);
break;
}
case Item_func::MULT_EQUAL_FUNC:
{
/*
The condition is a
tbl1.field1 = tbl2.field2 = tbl3.field3 [= const_expr]
multiple-equality. Do two things:
- Collect an ordered List<Field_value> of tblX.colY where tblX is one
of those that we're trying to eliminate.
- rembember if there was a const_expr or tblY.colZ that we can consider
bound.
Store all collected information in a Equality_module object.
*/
Item_equal *item_equal= (Item_equal*)cond;
List<Field_value> *fvl;
if (!(fvl= new List<Field_value>))
break;
Item_equal_iterator it(*item_equal);
Item_field *item;
Item *bound_item= item_equal->get_const();
while ((item= it++))
{
if ((item->used_tables() & fda->usable_tables))
{
Field_value *field_val;
if ((field_val= get_field_value(fda, item->field)))
{
List_iterator<Field_value> it2(*fvl);
Field_value *other_f;
uint field_val_ratio= field_val->field->table->tablenr*MAX_FIELDS +
field_val->field->field_index;
bool added= FALSE;
while ((other_f= it2++))
{
uint other_f_ratio= other_f->field->table->tablenr*MAX_FIELDS +
other_f->field->field_index;
if (other_f_ratio > field_val_ratio)
{
*(it2.ref())= field_val;
it2.after(other_f);
added= TRUE;
break;
}
}
if (!added)
fvl->push_back(field_val);
}
}
else
{
if (!bound_item)
bound_item= item;
}
}
add_eq_mod2(fda, eq_mod, *and_level, NULL, bound_item, fvl);
break;
}
default:
break;
}
}
/*
Perform an OR operation on two (adjacent) Equality_module arrays.
SYNOPSIS
merge_func_deps()
start Start of left OR-part
new_fields Start of right OR-part
end End of right OR-part
and_level AND-level.
DESCRIPTION
This function is invoked for two adjacent arrays of Equality_module elements:
$LEFT_PART $RIGHT_PART
+-----------------------+-----------------------+
start new_fields end
The goal is to produce an array which would correspnd to the combined
$LEFT_PART OR $RIGHT_PART
condition. This is achieved as follows: First, we apply distrubutive law:
(fdep_A_1 AND fdep_A_2 AND ...) OR (fdep_B_1 AND fdep_B_2 AND ...) =
= AND_ij (fdep_A_[i] OR fdep_B_[j])
Then we walk over the obtained "fdep_A_[i] OR fdep_B_[j]" pairs, and
- Discard those that that have left and right part referring to different
columns. We can't infer anything useful from "col1=expr1 OR col2=expr2".
- When left and right parts refer to the same column, we check if they are
essentially the same.
= If they are the same, we keep one copy
"t.col=expr OR t.col=expr" -> "t.col=expr
= if they are different , then we discard both
"t.col=expr1 OR t.col=expr2" -> (nothing useful)
(no per-table or for-index FUNC_DEPS exist yet at this phase).
See also merge_key_fields().
RETURN
End of the result array
*/
static
Equality_module *merge_func_deps(Equality_module *start, Equality_module *new_fields,
Equality_module *end, uint and_level)
{
if (start == new_fields)
return start; /* (nothing) OR (...) -> (nothing) */
if (new_fields == end)
return start; /* (...) OR (nothing) -> (nothing) */
Equality_module *first_free=new_fields;
for (; new_fields != end ; new_fields++)
{
for (Equality_module *old=start ; old != first_free ; old++)
{
if (old->field == new_fields->field)
{
if (!old->field)
{
/*
OR-ing two multiple equalities. We must compute an intersection of
used fields, and check the constants according to these rules:
a=b=c=d OR a=c=e=f -> a=c (compute intersection)
a=const1 OR a=b -> (nothing)
a=const1 OR a=const1 -> a=const1
a=const1 OR a=const2 -> (nothing)
If we're performing an OR operation over multiple equalities, e.g.
(a=b=c AND p=q) OR (a=b AND v=z)
then we'll need to try combining each equality with each. ANDed
equalities are guaranteed to be disjoint, so we'll only get one
hit.
*/
if (old->expression && new_fields->expression &&
old->expression->eq_by_collation(new_fields->expression,
old->mult_equal_fields->head()->field->binary(),
old->mult_equal_fields->head()->field->charset()))
{
/* Ok, keep */
}
else
{
/* no single constant/bound item. */
old->expression= NULL;
}
List <Field_value> *fv;
if (!(fv= new List<Field_value>))
break;
List_iterator<Field_value> it1(*old->mult_equal_fields);
List_iterator<Field_value> it2(*new_fields->mult_equal_fields);
Field_value *lfield= it1++;
Field_value *rfield= it2++;
// Merge
while (lfield && rfield)
{
if (lfield == rfield)
fv->push_back(lfield);
else
{
uint left_ratio= lfield->field->table->tablenr*MAX_FIELDS +
lfield->field->field_index;
uint right_ratio= rfield->field->table->tablenr*MAX_FIELDS +
rfield->field->field_index;
if (left_ratio < right_ratio)
lfield=it1++;
else
rfield=it2++;
}
}
if (fv->elements + test(old->expression) > 1)
{
old->mult_equal_fields= fv;
old->level= and_level;
}
}
else if (!new_fields->expression->const_item())
{
/*
If the value matches, we can use the key reference.
If not, we keep it until we have examined all new values
*/
if (old->expression->eq(new_fields->expression,
old->field->field->binary()))
{
old->level= and_level;
}
}
else if (old->expression->eq_by_collation(new_fields->expression,
old->field->field->binary(),
old->field->field->charset()))
{
old->level= and_level;
}
else
{
/* The expressions are different. */
if (old == --first_free) // If last item
break;
*old= *first_free; // Remove old value
old--; // Retry this value
}
}
}
}
/*
Ok, the results are within the [start, first_free) range, and the useful
elements have level==and_level. Now, remove all unusable elements:
*/
for (Equality_module *old=start ; old != first_free ;)
{
if (old->level != and_level)
{ // Not used in all levels
if (old == --first_free)
break;
*old= *first_free; // Remove old value
continue;
}
old++;
}
return first_free;
}
/*
Add an Equality_module element for left=right condition
SYNOPSIS
add_eq_mod()
fda Table elimination context
eq_mod INOUT Store created Equality_module here and increment ptr if
you do so
and_level AND-level ()
cond Condition we've inferred the left=right equality from.
left Left expression
right Right expression
usable_tables Create Equality_module only if Left_expression's table
belongs to this set.
DESCRIPTION
Check if the passed equality means that 'left' expr is functionally dependent on
the 'right', and if yes, create an Equality_module object for it.
RETURN
FALSE OK
TRUE Out of memory
*/
static
void add_eq_mod(Func_dep_analyzer *fda, Equality_module **eq_mod,
uint and_level, Item_func *cond, Item *left, Item *right)
{
if ((left->used_tables() & fda->usable_tables) &&
!(right->used_tables() & RAND_TABLE_BIT) &&
left->real_item()->type() == Item::FIELD_ITEM)
{
Field *field= ((Item_field*)left->real_item())->field;
if (field->result_type() == STRING_RESULT)
{
if (right->result_type() != STRING_RESULT)
{
if (field->cmp_type() != right->result_type())
return;
}
else
{
/*
We can't assume there's a functional dependency if the effective
collation of the operation differ from the field collation.
*/
if (field->cmp_type() == STRING_RESULT &&
((Field_str*)field)->charset() != cond->compare_collation())
return;
}
}
Field_value *field_val;
if ((field_val= get_field_value(fda, field)))
add_eq_mod2(fda, eq_mod, and_level, field_val, right, NULL);
}
}
/* Just add eq_mod w/o any checks */
static void add_eq_mod2(Func_dep_analyzer *fda, Equality_module **eq_mod,
uint and_level, Field_value *field_val, Item *right,
List<Field_value>* mult_equal_fields)
{
if (*eq_mod == fda->equality_mods + fda->n_equality_mods_alloced)
{
/*
We've filled the entire equality_mods array. Replace it with a bigger
one. We do it somewhat inefficiently but it doesn't matter.
*/
Equality_module *new_arr;
if (!(new_arr= new Equality_module[fda->n_equality_mods_alloced *2]))
return;
fda->n_equality_mods_alloced *= 2;
for (int i= 0; i < *eq_mod - fda->equality_mods; i++)
new_arr[i]= fda->equality_mods[i];
fda->equality_mods= new_arr;
*eq_mod= new_arr + (*eq_mod - fda->equality_mods);
}
(*eq_mod)->field= field_val;
(*eq_mod)->expression= right;
(*eq_mod)->level= and_level;
(*eq_mod)->mult_equal_fields= mult_equal_fields;
(*eq_mod)++;
}
/*
Get a Table_value object for the given table, creating it if necessary.
*/
static Table_value *get_table_value(Func_dep_analyzer *fda, TABLE *table)
{
Table_value *tbl_dep;
if (!(tbl_dep= new Table_value(table)))
return NULL;
Key_module **key_list= &(tbl_dep->keys);
/* Add dependencies for unique keys */
for (uint i=0; i < table->s->keys; i++)
{
KEY *key= table->key_info + i;
if ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME)
{
Key_module *key_dep= new Key_module(tbl_dep, i, key->key_parts);
*key_list= key_dep;
key_list= &(key_dep->next_table_key);
}
}
return fda->table_deps[table->tablenr]= tbl_dep;
}
/*
Get a Field_value object for the given field, creating it if necessary
*/
static Field_value *get_field_value(Func_dep_analyzer *fda, Field *field)
{
TABLE *table= field->table;
Table_value *tbl_dep;
/* First, get the table*/
if (!(tbl_dep= fda->table_deps[table->tablenr]))
{
if (!(tbl_dep= get_table_value(fda, table)))
return NULL;
}
/* Try finding the field in field list */
Field_value **pfield= &(tbl_dep->fields);
while (*pfield && (*pfield)->field->field_index < field->field_index)
{
pfield= &((*pfield)->next_table_field);
}
if (*pfield && (*pfield)->field->field_index == field->field_index)
return *pfield;
/* Create the field and insert it in the list */
Field_value *new_field= new Field_value(tbl_dep, field);
new_field->next_table_field= *pfield;
*pfield= new_field;
return new_field;
}
/*
This is used to analyze expressions in "tbl.col=expr" dependencies so
that we can figure out which fields the expression depends on.
*/
class Field_dependency_recorder : public Field_enumerator
{
public:
Field_dependency_recorder(Func_dep_analyzer *te_arg): fda(te_arg)
{}
void see_field(Field *field)
{
Table_value *tbl_dep;
if ((tbl_dep= fda->table_deps[field->table->tablenr]))
{
for (Field_value *field_dep= tbl_dep->fields; field_dep;
field_dep= field_dep->next_table_field)
{
if (field->field_index == field_dep->field->field_index)
{
uint offs= field_dep->bitmap_offset + expr_offset;
if (!bitmap_is_set(&fda->expr_deps, offs))
fda->equality_mods[expr_offset].unknown_args++;
bitmap_set_bit(&fda->expr_deps, offs);
return;
}
}
/*
We got here if didn't find this field. It's not a part of
a unique key, and/or there is no field=expr element for it.
Bump the dependency anyway, this will signal that this dependency
cannot be satisfied.
*/
fda->equality_mods[expr_offset].unknown_args++;
}
else
saw_other_tbl= TRUE;
}
Func_dep_analyzer *fda;
/* Offset of the expression we're processing in the dependency bitmap */
uint expr_offset;
bool saw_other_tbl;
};
/*
Setup inbound dependency relationships for tbl.col=expr equalities
SYNOPSIS
setup_equality_modules_deps()
fda Table elimination context
bound_deps_list OUT Start of linked list of elements that were found to
be bound (caller will use this to see if that
allows to declare further elements bound)
DESCRIPTION
Setup inbound dependency relationships for tbl.col=expr equalities:
- allocate a bitmap where we store such dependencies
- for each "tbl.col=expr" equality, analyze the expr part and find out
which fields it refers to and set appropriate dependencies.
RETURN
FALSE OK
TRUE Out of memory
*/
static
bool setup_equality_modules_deps(Func_dep_analyzer *fda,
Module_dep **bound_deps_list)
{
DBUG_ENTER("setup_equality_modules_deps");
/*
Count Field_value objects and assign each of them a unique bitmap_offset
value.
*/
uint offset= 0;
for (Table_value **tbl_dep=fda->table_deps;
tbl_dep < fda->table_deps + MAX_TABLES;
tbl_dep++)
{
if (*tbl_dep)
{
for (Field_value *field_dep= (*tbl_dep)->fields;
field_dep;
field_dep= field_dep->next_table_field)
{
field_dep->bitmap_offset= offset;
offset += fda->n_equality_mods;
}
}
}
void *buf;
if (!(buf= current_thd->alloc(bitmap_buffer_size(offset))) ||
bitmap_init(&fda->expr_deps, (my_bitmap_map*)buf, offset, FALSE))
{
DBUG_RETURN(TRUE);
}
bitmap_clear_all(&fda->expr_deps);
/*
Analyze all "field=expr" dependencies, and have fda->expr_deps encode
dependencies of expressions from fields.
Also collect a linked list of equalities that are bound.
*/
Module_dep *bound_dep= NULL;
Field_dependency_recorder deps_recorder(fda);
for (Equality_module *eq_mod= fda->equality_mods;
eq_mod < fda->equality_mods + fda->n_equality_mods;
eq_mod++)
{
deps_recorder.expr_offset= eq_mod - fda->equality_mods;
deps_recorder.saw_other_tbl= FALSE;
eq_mod->unknown_args= 0;
if (eq_mod->field)
{
/* Regular tbl.col=expr(tblX1.col1, tblY1.col2, ...) */
eq_mod->expression->walk(&Item::check_column_usage_processor, FALSE,
(uchar*)&deps_recorder);
}
else
{
/* It's a multi-equality */
eq_mod->unknown_args= !test(eq_mod->expression);
List_iterator<Field_value> it(*eq_mod->mult_equal_fields);
Field_value* field_val;
while ((field_val= it++))
{
uint offs= field_val->bitmap_offset + eq_mod - fda->equality_mods;
bitmap_set_bit(&fda->expr_deps, offs);
}
}
if (!eq_mod->unknown_args)
{
eq_mod->next= bound_dep;
bound_dep= eq_mod;
}
}
*bound_deps_list= bound_dep;
DBUG_RETURN(FALSE);
}
/*
Perform table elimination
SYNOPSIS
eliminate_tables()
join Join to work on
DESCRIPTION
This is the entry point for table elimination. Grep for MODULE INTERFACE
section in this file for calling convention.
The idea behind table elimination is that if we have an outer join:
SELECT * FROM t1 LEFT JOIN
(t2 JOIN t3) ON t3.primary_key=t1.col AND
t4.primary_key=t2.col
such that
1. columns of the inner tables are not used anywhere ouside the outer
join (not in WHERE, not in GROUP/ORDER BY clause, not in select list
etc etc), and
2. inner side of the outer join is guaranteed to produce at most one
record combination for each record combination of outer tables.
then the inner side of the outer join can be removed from the query.
This is because it will always produce one matching record (either a
real match or a NULL-complemented record combination), and since there
are no references to columns of the inner tables anywhere, it doesn't
matter which record combination it was.
This function primary handles checking #1. It collects a bitmap of
tables that are not used in select list/GROUP BY/ORDER BY/HAVING/etc and
thus can possibly be eliminated.
SIDE EFFECTS
See the OVERVIEW section at the top of this file.
*/
void eliminate_tables(JOIN *join)
{
THD* thd= join->thd;
Item *item;
table_map used_tables;
DBUG_ENTER("eliminate_tables");
DBUG_ASSERT(join->eliminated_tables == 0);
/* If there are no outer joins, we have nothing to eliminate: */
if (!join->outer_join)
DBUG_VOID_RETURN;
#ifndef DBUG_OFF
if (!optimizer_flag(thd, OPTIMIZER_SWITCH_TABLE_ELIMINATION))
DBUG_VOID_RETURN;
#endif
/* Find the tables that are referred to from WHERE/HAVING */
used_tables= (join->conds? join->conds->used_tables() : 0) |
(join->having? join->having->used_tables() : 0);
/* Add tables referred to from the select list */
List_iterator<Item> it(join->fields_list);
while ((item= it++))
used_tables |= item->used_tables();
/* Add tables referred to from ORDER BY and GROUP BY lists */
ORDER *all_lists[]= { join->order, join->group_list};
for (int i=0; i < 2; i++)
{
for (ORDER *cur_list= all_lists[i]; cur_list; cur_list= cur_list->next)
used_tables |= (*(cur_list->item))->used_tables();
}
if (join->select_lex == &thd->lex->select_lex)
{
/* Multi-table UPDATE: don't eliminate tables referred from SET statement */
if (thd->lex->sql_command == SQLCOM_UPDATE_MULTI)
{
/* Multi-table UPDATE and DELETE: don't eliminate the tables we modify: */
used_tables |= thd->table_map_for_update;
List_iterator<Item> it2(thd->lex->value_list);
while ((item= it2++))
used_tables |= item->used_tables();
}
if (thd->lex->sql_command == SQLCOM_DELETE_MULTI)
{
TABLE_LIST *tbl;
for (tbl= (TABLE_LIST*)thd->lex->auxiliary_table_list.first;
tbl; tbl= tbl->next_local)
{
used_tables |= tbl->table->map;
}
}
}
table_map all_tables= join->all_tables_map();
if (all_tables & ~used_tables)
{
/* There are some tables that we probably could eliminate. Try it. */
eliminate_tables_for_list(join, join->join_list, all_tables, NULL,
used_tables);
}
DBUG_VOID_RETURN;
}
/*
Perform table elimination in a given join list
SYNOPSIS
eliminate_tables_for_list()
fda Table elimination context
join_list Join list to work on
list_tables Bitmap of tables embedded in the join_list.
on_expr ON expression, if the join list is the inner side
of an outer join.
NULL means it's not an outer join but rather a
top-level join list.
tables_used_elsewhere Bitmap of tables that are referred to from
somewhere outside of the join list (e.g.
select list, HAVING, other ON expressions, etc).
DESCRIPTION
Perform table elimination in a given join list.
RETURN
TRUE The entire join list eliminated
FALSE Join list wasn't eliminated (but some of its possibly were)
*/
static bool
eliminate_tables_for_list(JOIN *join, List<TABLE_LIST> *join_list,
table_map list_tables, Item *on_expr,
table_map tables_used_elsewhere)
{
TABLE_LIST *tbl;
List_iterator<TABLE_LIST> it(*join_list);
table_map tables_used_on_left= 0;
bool all_eliminated= TRUE;
while ((tbl= it++))
{
if (tbl->on_expr)
{
table_map outside_used_tables= tables_used_elsewhere |
tables_used_on_left;
if (tbl->nested_join)
{
/* This is "... LEFT JOIN (join_nest) ON cond" */
if (eliminate_tables_for_list(join,
&tbl->nested_join->join_list,
tbl->nested_join->used_tables,
tbl->on_expr,
outside_used_tables))
{
mark_as_eliminated(join, tbl);
}
else
all_eliminated= FALSE;
}
else
{
/* This is "... LEFT JOIN tbl ON cond" */
if (!(tbl->table->map & outside_used_tables) &&
check_func_dependency(join, tbl->table->map, NULL, tbl,
tbl->on_expr))
{
mark_as_eliminated(join, tbl);
}
else
all_eliminated= FALSE;
}
tables_used_on_left |= tbl->on_expr->used_tables();
}
else
{
DBUG_ASSERT(!tbl->nested_join);
}
}
/* Try eliminating the nest we're called for */
if (all_eliminated && on_expr && !(list_tables & tables_used_elsewhere))
{
it.rewind();
return check_func_dependency(join, list_tables & ~join->eliminated_tables,
&it, NULL, on_expr);
}
return FALSE; /* not eliminated */
}
/*
Check if given condition makes given set of tables functionally-dependent
SYNOPSIS
check_func_dependency()
fda Table elimination context
tables Set of tables we want to be functionally dependent
cond Condition to use
DESCRIPTION
Check if we can use given condition to infer that the set of given tables
is functionally-dependent on everything else.
RETURN
TRUE - Yes, functionally dependent
FALSE - No, or error
*/
static
bool check_func_dependency(JOIN *join,
table_map dep_tables,
List_iterator<TABLE_LIST> *it,
TABLE_LIST *oj_tbl,
Item* cond)
{
Module_dep *bound_modules;
Func_dep_analyzer fda(join);
/*
Pre-alloc some Equality_module structures. We don't need this to be
guaranteed upper bound.
*/
fda.n_equality_mods_alloced=
join->thd->lex->current_select->max_equal_elems +
(join->thd->lex->current_select->cond_count+1)*2 +
join->thd->lex->current_select->between_count;
if (!(fda.equality_mods= new Equality_module[fda.n_equality_mods_alloced]))
return FALSE;
Equality_module* last_eq_mod= fda.equality_mods;
/* Create Table_value objects for all tables we're trying to eliminate */
if (oj_tbl)
{
if (!get_table_value(&fda, oj_tbl->table))
return FALSE;
}
else
{
TABLE_LIST *tbl;
while ((tbl= (*it)++))
{
if (tbl->table && (tbl->table->map & dep_tables))
{
if (!get_table_value(&fda, tbl->table))
return FALSE;
}
}
}
fda.usable_tables= dep_tables;
/*
Analyze the the ON expression and create Equality_module objects and
Field_value objects for the used fields.
*/
uint and_level=0;
build_eq_mods_for_cond(&fda, &last_eq_mod, &and_level, cond);
if (!(fda.n_equality_mods= last_eq_mod - fda.equality_mods))
return FALSE; /* No useful conditions */
if (!(fda.outer_join_dep= new Outer_join_module(my_count_bits(dep_tables))) ||
setup_equality_modules_deps(&fda, &bound_modules))
{
return FALSE; /* OOM, default to non-dependent */
}
DBUG_EXECUTE("test", dbug_print_deps(&fda); );
/* The forward running wave algorithm: */
Value_dep *bound_values= NULL;
while (bound_modules)
{
for (;bound_modules; bound_modules= bound_modules->next)
{
if (bound_modules->now_bound(&fda, &bound_values))
return TRUE; /* Dependent */
}
for (;bound_values; bound_values=bound_values->next)
bound_values->now_bound(&fda, &bound_modules);
}
return FALSE; /* Not dependent */
}
void Table_value::now_bound(Func_dep_analyzer *fda,
Module_dep **bound_modules)
{
DBUG_PRINT("info", ("table %s is now bound", table->alias));
/* Signal to all fields that they are now bound */
for (Field_value *field_dep= fields; field_dep;
field_dep= field_dep->next_table_field)
{
if (!field_dep->bound)
{
/* Mark as bound and add to the list */
field_dep->bound= TRUE;
field_dep->signal_from_field_to_exprs(fda, bound_modules);
}
}
/* Signal to outer join that one more table is known */
if (fda->outer_join_dep->unknown_args &&
!--fda->outer_join_dep->unknown_args)
{
/* Mark as bound and add to the list */
fda->outer_join_dep->next= *bound_modules;
*bound_modules= fda->outer_join_dep;
}
}
void Field_value::now_bound(Func_dep_analyzer *fda,
Module_dep **bound_modules)
{
DBUG_PRINT("info", ("field %s.%s is now bound", field->table->alias,
field->field_name));
/* Signal to unique keys and expressions that use this field*/
for (Key_module *key_dep= table->keys; key_dep;
key_dep= key_dep->next_table_key)
{
if (field->part_of_key.is_set(key_dep->keyno) &&
key_dep->unknown_args && !--key_dep->unknown_args)
{
DBUG_PRINT("info", ("key %s.%s is now bound",
key_dep->table->table->alias,
key_dep->table->table->key_info[key_dep->keyno].name));
/* Mark as bound and add to the list */
key_dep->next= *bound_modules;
*bound_modules= key_dep;
}
}
signal_from_field_to_exprs(fda, bound_modules);
}
/*
Walk through expressions that depend on this field and notify them
that this field is now known.
*/
void Field_value::signal_from_field_to_exprs(Func_dep_analyzer* fda,
Module_dep **bound_modules)
{
for (uint i=0; i < fda->n_equality_mods; i++)
{
if (bitmap_is_set(&fda->expr_deps, bitmap_offset + i) &&
fda->equality_mods[i].unknown_args &&
!--fda->equality_mods[i].unknown_args)
{
/* Mark as bound and add to the list */
Equality_module* eq_mod= &fda->equality_mods[i];
eq_mod->next= *bound_modules;
*bound_modules= eq_mod;
}
}
}
bool Outer_join_module::now_bound(Func_dep_analyzer *fda,
Value_dep **bound_values)
{
DBUG_PRINT("info", ("Outer join eliminated"));
return TRUE; /* Signal out that the search is finished */
}
bool Equality_module::now_bound(Func_dep_analyzer *fda,
Value_dep **bound_values)
{
if (mult_equal_fields)
{
/* It's a=b=c=... multiple equality. Mark all equality members as known. */
List_iterator<Field_value> it(*mult_equal_fields);
Field_value *fv;
while ((fv= it++))
{
if (!fv->bound)
{
/* Mark as bound and add to the list */
fv->bound= TRUE;
fv->next= *bound_values;
*bound_values= fv;
}
}
}
else
{
/* It's a fieldX=exprY equality. Mark exprY as known */
if (!field->bound)
{
/* Mark as bound and add to the list */
field->bound= TRUE;
field->next= *bound_values;
*bound_values= field;
}
}
return FALSE;
}
/* Unique key is known means its table is known */
bool Key_module::now_bound(Func_dep_analyzer *fda, Value_dep **bound_values)
{
if (!table->bound)
{
/* Mark as bound and add to the list */
table->bound= TRUE;
table->next= *bound_values;
*bound_values= table;
}
return FALSE;
}
/*
Mark one table or the whole join nest as eliminated.
*/
static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl)
{
TABLE *table;
/*
NOTE: there are TABLE_LIST object that have
tbl->table!= NULL && tbl->nested_join!=NULL and
tbl->table == tbl->nested_join->join_list->element(..)->table
*/
if (tbl->nested_join)
{
TABLE_LIST *child;
List_iterator<TABLE_LIST> it(tbl->nested_join->join_list);
while ((child= it++))
mark_as_eliminated(join, child);
}
else if ((table= tbl->table))
{
JOIN_TAB *tab= tbl->table->reginfo.join_tab;
if (!(join->const_table_map & tab->table->map))
{
DBUG_PRINT("info", ("Eliminated table %s", table->alias));
tab->type= JT_CONST;
join->eliminated_tables |= table->map;
join->const_table_map|= table->map;
set_position(join, join->const_tables++, tab, (KEYUSE*)0);
}
}
if (tbl->on_expr)
tbl->on_expr->walk(&Item::mark_as_eliminated_processor, FALSE, NULL);
}
#ifndef DBUG_OFF
static
void dbug_print_deps(Func_dep_analyzer *fda)
{
DBUG_ENTER("dbug_print_deps");
DBUG_LOCK_FILE;
fprintf(DBUG_FILE,"deps {\n");
/* Start with printing equalities */
for (Equality_module *eq_mod= fda->equality_mods;
eq_mod != fda->equality_mods + fda->n_equality_mods; eq_mod++)
{
char buf[128];
String str(buf, sizeof(buf), &my_charset_bin);
str.length(0);
eq_mod->expression->print(&str, QT_ORDINARY);
if (eq_mod->field)
{
fprintf(DBUG_FILE, " equality%d: %s -> %s.%s\n",
eq_mod - fda->equality_mods,
str.c_ptr(),
eq_mod->field->table->table->alias,
eq_mod->field->field->field_name);
}
else
{
fprintf(DBUG_FILE, " equality%d: multi-equality",
eq_mod - fda->equality_mods);
}
}
fprintf(DBUG_FILE,"\n");
/* Then tables and their fields */
for (uint i=0; i < MAX_TABLES; i++)
{
Table_value *table_dep;
if ((table_dep= fda->table_deps[i]))
{
/* Print table */
fprintf(DBUG_FILE, " table %s\n", table_dep->table->alias);
/* Print fields */
for (Field_value *field_dep= table_dep->fields; field_dep;
field_dep= field_dep->next_table_field)
{
fprintf(DBUG_FILE, " field %s.%s ->", table_dep->table->alias,
field_dep->field->field_name);
uint ofs= field_dep->bitmap_offset;
for (uint bit= ofs; bit < ofs + fda->n_equality_mods; bit++)
{
if (bitmap_is_set(&fda->expr_deps, bit))
fprintf(DBUG_FILE, " equality%d ", bit - ofs);
}
fprintf(DBUG_FILE, "\n");
}
}
}
fprintf(DBUG_FILE,"\n}\n");
DBUG_UNLOCK_FILE;
DBUG_VOID_RETURN;
}
#endif
/**
@} (end of group Table_Elimination)
*/