mirror of
https://github.com/MariaDB/server.git
synced 2025-01-21 22:34:18 +01:00
2387 lines
61 KiB
C
2387 lines
61 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1999-2002
|
|
* Sleepycat Software. All rights reserved.
|
|
*
|
|
* $Id: bt_verify.c,v 1.76 2002/07/03 19:03:51 bostic Exp $
|
|
*/
|
|
|
|
#include "db_config.h"
|
|
|
|
#ifndef lint
|
|
static const char revid[] = "$Id: bt_verify.c,v 1.76 2002/07/03 19:03:51 bostic Exp $";
|
|
#endif /* not lint */
|
|
|
|
#ifndef NO_SYSTEM_INCLUDES
|
|
#include <sys/types.h>
|
|
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "db_int.h"
|
|
#include "dbinc/db_page.h"
|
|
#include "dbinc/db_verify.h"
|
|
#include "dbinc/btree.h"
|
|
|
|
static int __bam_safe_getdata __P((DB *, PAGE *, u_int32_t, int, DBT *, int *));
|
|
static int __bam_vrfy_inp __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
|
|
db_indx_t *, u_int32_t));
|
|
static int __bam_vrfy_treeorder __P((DB *, db_pgno_t, PAGE *, BINTERNAL *,
|
|
BINTERNAL *, int (*)(DB *, const DBT *, const DBT *), u_int32_t));
|
|
static int __ram_vrfy_inp __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
|
|
db_indx_t *, u_int32_t));
|
|
|
|
#define OKFLAGS (DB_AGGRESSIVE | DB_NOORDERCHK | DB_SALVAGE)
|
|
|
|
/*
|
|
* __bam_vrfy_meta --
|
|
* Verify the btree-specific part of a metadata page.
|
|
*
|
|
* PUBLIC: int __bam_vrfy_meta __P((DB *, VRFY_DBINFO *, BTMETA *,
|
|
* PUBLIC: db_pgno_t, u_int32_t));
|
|
*/
|
|
int
|
|
__bam_vrfy_meta(dbp, vdp, meta, pgno, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
BTMETA *meta;
|
|
db_pgno_t pgno;
|
|
u_int32_t flags;
|
|
{
|
|
VRFY_PAGEINFO *pip;
|
|
int isbad, t_ret, ret;
|
|
db_indx_t ovflsize;
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
isbad = 0;
|
|
|
|
/*
|
|
* If VRFY_INCOMPLETE is not set, then we didn't come through
|
|
* __db_vrfy_pagezero and didn't incompletely
|
|
* check this page--we haven't checked it at all.
|
|
* Thus we need to call __db_vrfy_meta and check the common fields.
|
|
*
|
|
* If VRFY_INCOMPLETE is set, we've already done all the same work
|
|
* in __db_vrfy_pagezero, so skip the check.
|
|
*/
|
|
if (!F_ISSET(pip, VRFY_INCOMPLETE) &&
|
|
(ret = __db_vrfy_meta(dbp, vdp, &meta->dbmeta, pgno, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/* bt_minkey: must be >= 2; must produce sensible ovflsize */
|
|
|
|
/* avoid division by zero */
|
|
ovflsize = meta->minkey > 0 ?
|
|
B_MINKEY_TO_OVFLSIZE(dbp, meta->minkey, dbp->pgsize) : 0;
|
|
|
|
if (meta->minkey < 2 ||
|
|
ovflsize > B_MINKEY_TO_OVFLSIZE(dbp, DEFMINKEYPAGE, dbp->pgsize)) {
|
|
pip->bt_minkey = 0;
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: nonsensical bt_minkey value %lu on metadata page",
|
|
(u_long)pgno, (u_long)meta->minkey));
|
|
} else
|
|
pip->bt_minkey = meta->minkey;
|
|
|
|
/* bt_maxkey: no constraints (XXX: right?) */
|
|
pip->bt_maxkey = meta->maxkey;
|
|
|
|
/* re_len: no constraints on this (may be zero or huge--we make rope) */
|
|
pip->re_len = meta->re_len;
|
|
|
|
/*
|
|
* The root must not be current page or 0 and it must be within
|
|
* database. If this metadata page is the master meta data page
|
|
* of the file, then the root page had better be page 1.
|
|
*/
|
|
pip->root = 0;
|
|
if (meta->root == PGNO_INVALID ||
|
|
meta->root == pgno || !IS_VALID_PGNO(meta->root) ||
|
|
(pgno == PGNO_BASE_MD && meta->root != 1)) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: nonsensical root page %lu on metadata page",
|
|
(u_long)pgno, (u_long)meta->root));
|
|
} else
|
|
pip->root = meta->root;
|
|
|
|
/* Flags. */
|
|
if (F_ISSET(&meta->dbmeta, BTM_RENUMBER))
|
|
F_SET(pip, VRFY_IS_RRECNO);
|
|
|
|
if (F_ISSET(&meta->dbmeta, BTM_SUBDB)) {
|
|
/*
|
|
* If this is a master db meta page, it had better not have
|
|
* duplicates.
|
|
*/
|
|
if (F_ISSET(&meta->dbmeta, BTM_DUP) && pgno == PGNO_BASE_MD) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: Btree metadata page has both duplicates and multiple databases",
|
|
(u_long)pgno));
|
|
}
|
|
F_SET(pip, VRFY_HAS_SUBDBS);
|
|
}
|
|
|
|
if (F_ISSET(&meta->dbmeta, BTM_DUP))
|
|
F_SET(pip, VRFY_HAS_DUPS);
|
|
if (F_ISSET(&meta->dbmeta, BTM_DUPSORT))
|
|
F_SET(pip, VRFY_HAS_DUPSORT);
|
|
if (F_ISSET(&meta->dbmeta, BTM_RECNUM))
|
|
F_SET(pip, VRFY_HAS_RECNUMS);
|
|
if (F_ISSET(pip, VRFY_HAS_RECNUMS) && F_ISSET(pip, VRFY_HAS_DUPS)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: Btree metadata page illegally has both recnums and dups",
|
|
(u_long)pgno));
|
|
isbad = 1;
|
|
}
|
|
|
|
if (F_ISSET(&meta->dbmeta, BTM_RECNO)) {
|
|
F_SET(pip, VRFY_IS_RECNO);
|
|
dbp->type = DB_RECNO;
|
|
} else if (F_ISSET(pip, VRFY_IS_RRECNO)) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: metadata page has renumber flag set but is not recno",
|
|
(u_long)pgno));
|
|
}
|
|
|
|
if (F_ISSET(pip, VRFY_IS_RECNO) && F_ISSET(pip, VRFY_HAS_DUPS)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: recno metadata page specifies duplicates",
|
|
(u_long)pgno));
|
|
isbad = 1;
|
|
}
|
|
|
|
if (F_ISSET(&meta->dbmeta, BTM_FIXEDLEN))
|
|
F_SET(pip, VRFY_IS_FIXEDLEN);
|
|
else if (pip->re_len > 0) {
|
|
/*
|
|
* It's wrong to have an re_len if it's not a fixed-length
|
|
* database
|
|
*/
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: re_len of %lu in non-fixed-length database",
|
|
(u_long)pgno, (u_long)pip->re_len));
|
|
}
|
|
|
|
/*
|
|
* We do not check that the rest of the page is 0, because it may
|
|
* not be and may still be correct.
|
|
*/
|
|
|
|
err: if ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __ram_vrfy_leaf --
|
|
* Verify a recno leaf page.
|
|
*
|
|
* PUBLIC: int __ram_vrfy_leaf __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
|
|
* PUBLIC: u_int32_t));
|
|
*/
|
|
int
|
|
__ram_vrfy_leaf(dbp, vdp, h, pgno, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
PAGE *h;
|
|
db_pgno_t pgno;
|
|
u_int32_t flags;
|
|
{
|
|
BKEYDATA *bk;
|
|
VRFY_PAGEINFO *pip;
|
|
db_indx_t i;
|
|
int ret, t_ret, isbad;
|
|
u_int32_t re_len_guess, len;
|
|
|
|
isbad = 0;
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
if ((ret = __db_fchk(dbp->dbenv,
|
|
"__ram_vrfy_leaf", flags, OKFLAGS)) != 0)
|
|
goto err;
|
|
|
|
if (TYPE(h) != P_LRECNO) {
|
|
/* We should not have been called. */
|
|
TYPE_ERR_PRINT(dbp->dbenv, "__ram_vrfy_leaf", pgno, TYPE(h));
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Verify (and, if relevant, save off) page fields common to
|
|
* all PAGEs.
|
|
*/
|
|
if ((ret = __db_vrfy_datapage(dbp, vdp, h, pgno, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Verify inp[]. Return immediately if it returns DB_VERIFY_BAD;
|
|
* further checks are dangerous.
|
|
*/
|
|
if ((ret = __bam_vrfy_inp(dbp,
|
|
vdp, h, pgno, &pip->entries, flags)) != 0)
|
|
goto err;
|
|
|
|
if (F_ISSET(pip, VRFY_HAS_DUPS)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: Recno database has dups", (u_long)pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Walk through inp and see if the lengths of all the records are the
|
|
* same--if so, this may be a fixed-length database, and we want to
|
|
* save off this value. We know inp to be safe if we've gotten this
|
|
* far.
|
|
*/
|
|
re_len_guess = 0;
|
|
for (i = 0; i < NUM_ENT(h); i++) {
|
|
bk = GET_BKEYDATA(dbp, h, i);
|
|
/* KEYEMPTY. Go on. */
|
|
if (B_DISSET(bk->type))
|
|
continue;
|
|
if (bk->type == B_OVERFLOW)
|
|
len = ((BOVERFLOW *)bk)->tlen;
|
|
else if (bk->type == B_KEYDATA)
|
|
len = bk->len;
|
|
else {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: nonsensical type for item %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
continue;
|
|
}
|
|
if (re_len_guess == 0)
|
|
re_len_guess = len;
|
|
|
|
/*
|
|
* Is this item's len the same as the last one's? If not,
|
|
* reset to 0 and break--we don't have a single re_len.
|
|
* Otherwise, go on to the next item.
|
|
*/
|
|
if (re_len_guess != len) {
|
|
re_len_guess = 0;
|
|
break;
|
|
}
|
|
}
|
|
pip->re_len = re_len_guess;
|
|
|
|
/* Save off record count. */
|
|
pip->rec_cnt = NUM_ENT(h);
|
|
|
|
err: if ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_vrfy --
|
|
* Verify a btree leaf or internal page.
|
|
*
|
|
* PUBLIC: int __bam_vrfy __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
|
|
* PUBLIC: u_int32_t));
|
|
*/
|
|
int
|
|
__bam_vrfy(dbp, vdp, h, pgno, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
PAGE *h;
|
|
db_pgno_t pgno;
|
|
u_int32_t flags;
|
|
{
|
|
VRFY_PAGEINFO *pip;
|
|
int ret, t_ret, isbad;
|
|
|
|
isbad = 0;
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
switch (TYPE(h)) {
|
|
case P_IBTREE:
|
|
case P_IRECNO:
|
|
case P_LBTREE:
|
|
case P_LDUP:
|
|
break;
|
|
default:
|
|
TYPE_ERR_PRINT(dbp->dbenv, "__bam_vrfy", pgno, TYPE(h));
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Verify (and, if relevant, save off) page fields common to
|
|
* all PAGEs.
|
|
*/
|
|
if ((ret = __db_vrfy_datapage(dbp, vdp, h, pgno, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* The record count is, on internal pages, stored in an overloaded
|
|
* next_pgno field. Save it off; we'll verify it when we check
|
|
* overall database structure. We could overload the field
|
|
* in VRFY_PAGEINFO, too, but this seems gross, and space
|
|
* is not at such a premium.
|
|
*/
|
|
pip->rec_cnt = RE_NREC(h);
|
|
|
|
/*
|
|
* Verify inp[].
|
|
*/
|
|
if (TYPE(h) == P_IRECNO) {
|
|
if ((ret = __ram_vrfy_inp(dbp,
|
|
vdp, h, pgno, &pip->entries, flags)) != 0)
|
|
goto err;
|
|
} else if ((ret = __bam_vrfy_inp(dbp,
|
|
vdp, h, pgno, &pip->entries, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: item order check unsafe: skipping",
|
|
(u_long)pgno));
|
|
} else if (!LF_ISSET(DB_NOORDERCHK) && (ret =
|
|
__bam_vrfy_itemorder(dbp, vdp, h, pgno, 0, 0, 0, flags)) != 0) {
|
|
/*
|
|
* We know that the elements of inp are reasonable.
|
|
*
|
|
* Check that elements fall in the proper order.
|
|
*/
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
err: if ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __ram_vrfy_inp --
|
|
* Verify that all entries in a P_IRECNO inp[] array are reasonable,
|
|
* and count them. Note that P_LRECNO uses __bam_vrfy_inp;
|
|
* P_IRECNOs are a special, and simpler, case, since they have
|
|
* RINTERNALs rather than BKEYDATA/BINTERNALs.
|
|
*/
|
|
static int
|
|
__ram_vrfy_inp(dbp, vdp, h, pgno, nentriesp, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
PAGE *h;
|
|
db_pgno_t pgno;
|
|
db_indx_t *nentriesp;
|
|
u_int32_t flags;
|
|
{
|
|
RINTERNAL *ri;
|
|
VRFY_CHILDINFO child;
|
|
VRFY_PAGEINFO *pip;
|
|
int ret, t_ret, isbad;
|
|
u_int32_t himark, i, offset, nentries;
|
|
db_indx_t *inp;
|
|
u_int8_t *pagelayout, *p;
|
|
|
|
isbad = 0;
|
|
memset(&child, 0, sizeof(VRFY_CHILDINFO));
|
|
nentries = 0;
|
|
pagelayout = NULL;
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
if (TYPE(h) != P_IRECNO) {
|
|
TYPE_ERR_PRINT(dbp->dbenv, "__ram_vrfy_inp", pgno, TYPE(h));
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
himark = dbp->pgsize;
|
|
if ((ret =
|
|
__os_malloc(dbp->dbenv, dbp->pgsize, &pagelayout)) != 0)
|
|
goto err;
|
|
memset(pagelayout, 0, dbp->pgsize);
|
|
inp = P_INP(dbp, h);
|
|
for (i = 0; i < NUM_ENT(h); i++) {
|
|
if ((u_int8_t *)inp + i >= (u_int8_t *)h + himark) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: entries listing %lu overlaps data",
|
|
(u_long)pgno, (u_long)i));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
offset = inp[i];
|
|
/*
|
|
* Check that the item offset is reasonable: it points
|
|
* somewhere after the inp array and before the end of the
|
|
* page.
|
|
*/
|
|
if (offset <= (u_int32_t)((u_int8_t *)inp + i -
|
|
(u_int8_t *)h) ||
|
|
offset > (u_int32_t)(dbp->pgsize - RINTERNAL_SIZE)) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: bad offset %lu at index %lu",
|
|
(u_long)pgno, (u_long)offset, (u_long)i));
|
|
continue;
|
|
}
|
|
|
|
/* Update the high-water mark (what HOFFSET should be) */
|
|
if (offset < himark)
|
|
himark = offset;
|
|
|
|
nentries++;
|
|
|
|
/* Make sure this RINTERNAL is not multiply referenced. */
|
|
ri = GET_RINTERNAL(dbp, h, i);
|
|
if (pagelayout[offset] == 0) {
|
|
pagelayout[offset] = 1;
|
|
child.pgno = ri->pgno;
|
|
child.type = V_RECNO;
|
|
child.nrecs = ri->nrecs;
|
|
if ((ret = __db_vrfy_childput(vdp, pgno, &child)) != 0)
|
|
goto err;
|
|
} else {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: RINTERNAL structure at offset %lu referenced twice",
|
|
(u_long)pgno, (u_long)offset));
|
|
isbad = 1;
|
|
}
|
|
}
|
|
|
|
for (p = pagelayout + himark;
|
|
p < pagelayout + dbp->pgsize;
|
|
p += RINTERNAL_SIZE)
|
|
if (*p != 1) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: gap between items at offset %lu",
|
|
(u_long)pgno, (u_long)(p - pagelayout)));
|
|
isbad = 1;
|
|
}
|
|
|
|
if ((db_indx_t)himark != HOFFSET(h)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: bad HOFFSET %lu, appears to be %lu",
|
|
(u_long)pgno, (u_long)(HOFFSET(h)), (u_long)himark));
|
|
isbad = 1;
|
|
}
|
|
|
|
*nentriesp = nentries;
|
|
|
|
err: if ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
if (pagelayout != NULL)
|
|
__os_free(dbp->dbenv, pagelayout);
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_vrfy_inp --
|
|
* Verify that all entries in inp[] array are reasonable;
|
|
* count them.
|
|
*/
|
|
static int
|
|
__bam_vrfy_inp(dbp, vdp, h, pgno, nentriesp, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
PAGE *h;
|
|
db_pgno_t pgno;
|
|
db_indx_t *nentriesp;
|
|
u_int32_t flags;
|
|
{
|
|
BKEYDATA *bk;
|
|
BOVERFLOW *bo;
|
|
VRFY_CHILDINFO child;
|
|
VRFY_PAGEINFO *pip;
|
|
int isbad, initem, isdupitem, ret, t_ret;
|
|
u_int32_t himark, offset; /* These would be db_indx_ts but for algnmt.*/
|
|
u_int32_t i, endoff, nentries;
|
|
u_int8_t *pagelayout;
|
|
|
|
isbad = isdupitem = 0;
|
|
nentries = 0;
|
|
memset(&child, 0, sizeof(VRFY_CHILDINFO));
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
switch (TYPE(h)) {
|
|
case P_IBTREE:
|
|
case P_LBTREE:
|
|
case P_LDUP:
|
|
case P_LRECNO:
|
|
break;
|
|
default:
|
|
/*
|
|
* In the salvager, we might call this from a page which
|
|
* we merely suspect is a btree page. Otherwise, it
|
|
* shouldn't get called--if it is, that's a verifier bug.
|
|
*/
|
|
if (LF_ISSET(DB_SALVAGE))
|
|
break;
|
|
TYPE_ERR_PRINT(dbp->dbenv, "__bam_vrfy_inp", pgno, TYPE(h));
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Loop through inp[], the array of items, until we either
|
|
* run out of entries or collide with the data. Keep track
|
|
* of h_offset in himark.
|
|
*
|
|
* For each element in inp[i], make sure it references a region
|
|
* that starts after the end of the inp array (as defined by
|
|
* NUM_ENT(h)), ends before the beginning of the page, doesn't
|
|
* overlap any other regions, and doesn't have a gap between
|
|
* it and the region immediately after it.
|
|
*/
|
|
himark = dbp->pgsize;
|
|
if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &pagelayout)) != 0)
|
|
goto err;
|
|
memset(pagelayout, 0, dbp->pgsize);
|
|
for (i = 0; i < NUM_ENT(h); i++) {
|
|
switch (ret = __db_vrfy_inpitem(dbp,
|
|
h, pgno, i, 1, flags, &himark, &offset)) {
|
|
case 0:
|
|
break;
|
|
case DB_VERIFY_BAD:
|
|
isbad = 1;
|
|
continue;
|
|
case DB_VERIFY_FATAL:
|
|
isbad = 1;
|
|
goto err;
|
|
default:
|
|
DB_ASSERT(ret != 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We now have a plausible beginning for the item, and we know
|
|
* its length is safe.
|
|
*
|
|
* Mark the beginning and end in pagelayout so we can make sure
|
|
* items have no overlaps or gaps.
|
|
*/
|
|
bk = GET_BKEYDATA(dbp, h, i);
|
|
#define ITEM_BEGIN 1
|
|
#define ITEM_END 2
|
|
if (pagelayout[offset] == 0)
|
|
pagelayout[offset] = ITEM_BEGIN;
|
|
else if (pagelayout[offset] == ITEM_BEGIN) {
|
|
/*
|
|
* Having two inp entries that point at the same patch
|
|
* of page is legal if and only if the page is
|
|
* a btree leaf and they're onpage duplicate keys--
|
|
* that is, if (i % P_INDX) == 0.
|
|
*/
|
|
if ((i % P_INDX == 0) && (TYPE(h) == P_LBTREE)) {
|
|
/* Flag for later. */
|
|
F_SET(pip, VRFY_HAS_DUPS);
|
|
|
|
/* Bump up nentries so we don't undercount. */
|
|
nentries++;
|
|
|
|
/*
|
|
* We'll check to make sure the end is
|
|
* equal, too.
|
|
*/
|
|
isdupitem = 1;
|
|
} else {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: duplicated item %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the end. Its location varies with the page type
|
|
* and the item type.
|
|
*
|
|
* If the end already has a sign other than 0, do nothing--
|
|
* it's an overlap that we'll catch later.
|
|
*/
|
|
switch(B_TYPE(bk->type)) {
|
|
case B_KEYDATA:
|
|
if (TYPE(h) == P_IBTREE)
|
|
/* It's a BINTERNAL. */
|
|
endoff = offset + BINTERNAL_SIZE(bk->len) - 1;
|
|
else
|
|
endoff = offset + BKEYDATA_SIZE(bk->len) - 1;
|
|
break;
|
|
case B_DUPLICATE:
|
|
/*
|
|
* Flag that we have dups; we'll check whether
|
|
* that's okay during the structure check.
|
|
*/
|
|
F_SET(pip, VRFY_HAS_DUPS);
|
|
/* FALLTHROUGH */
|
|
case B_OVERFLOW:
|
|
/*
|
|
* Overflow entries on internal pages are stored
|
|
* as the _data_ of a BINTERNAL; overflow entries
|
|
* on leaf pages are stored as the entire entry.
|
|
*/
|
|
endoff = offset +
|
|
((TYPE(h) == P_IBTREE) ?
|
|
BINTERNAL_SIZE(BOVERFLOW_SIZE) :
|
|
BOVERFLOW_SIZE) - 1;
|
|
break;
|
|
default:
|
|
/*
|
|
* We'll complain later; for now, just mark
|
|
* a minimum.
|
|
*/
|
|
endoff = offset + BKEYDATA_SIZE(0) - 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this is an onpage duplicate key we've seen before,
|
|
* the end had better coincide too.
|
|
*/
|
|
if (isdupitem && pagelayout[endoff] != ITEM_END) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: duplicated item %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
isbad = 1;
|
|
} else if (pagelayout[endoff] == 0)
|
|
pagelayout[endoff] = ITEM_END;
|
|
isdupitem = 0;
|
|
|
|
/*
|
|
* There should be no deleted items in a quiescent tree,
|
|
* except in recno.
|
|
*/
|
|
if (B_DISSET(bk->type) && TYPE(h) != P_LRECNO) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: item %lu marked deleted",
|
|
(u_long)pgno, (u_long)i));
|
|
}
|
|
|
|
/*
|
|
* Check the type and such of bk--make sure it's reasonable
|
|
* for the pagetype.
|
|
*/
|
|
switch (B_TYPE(bk->type)) {
|
|
case B_KEYDATA:
|
|
/*
|
|
* This is a normal, non-overflow BKEYDATA or BINTERNAL.
|
|
* The only thing to check is the len, and that's
|
|
* already been done.
|
|
*/
|
|
break;
|
|
case B_DUPLICATE:
|
|
if (TYPE(h) == P_IBTREE) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: duplicate page referenced by internal btree page at item %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
break;
|
|
} else if (TYPE(h) == P_LRECNO) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: duplicate page referenced by recno page at item %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case B_OVERFLOW:
|
|
bo = (TYPE(h) == P_IBTREE) ?
|
|
(BOVERFLOW *)(((BINTERNAL *)bk)->data) :
|
|
(BOVERFLOW *)bk;
|
|
|
|
if (B_TYPE(bk->type) == B_OVERFLOW)
|
|
/* Make sure tlen is reasonable. */
|
|
if (bo->tlen > dbp->pgsize * vdp->last_pgno) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: impossible tlen %lu, item %lu",
|
|
(u_long)pgno,
|
|
(u_long)bo->tlen, (u_long)i));
|
|
/* Don't save as a child. */
|
|
break;
|
|
}
|
|
|
|
if (!IS_VALID_PGNO(bo->pgno) || bo->pgno == pgno ||
|
|
bo->pgno == PGNO_INVALID) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: offpage item %lu has bad pgno %lu",
|
|
(u_long)pgno, (u_long)i, (u_long)bo->pgno));
|
|
/* Don't save as a child. */
|
|
break;
|
|
}
|
|
|
|
child.pgno = bo->pgno;
|
|
child.type = (B_TYPE(bk->type) == B_OVERFLOW ?
|
|
V_OVERFLOW : V_DUPLICATE);
|
|
child.tlen = bo->tlen;
|
|
if ((ret = __db_vrfy_childput(vdp, pgno, &child)) != 0)
|
|
goto err;
|
|
break;
|
|
default:
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: item %lu of invalid type %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now, loop through and make sure the items are contiguous and
|
|
* non-overlapping.
|
|
*/
|
|
initem = 0;
|
|
for (i = himark; i < dbp->pgsize; i++)
|
|
if (initem == 0)
|
|
switch (pagelayout[i]) {
|
|
case 0:
|
|
/* May be just for alignment. */
|
|
if (i != ALIGN(i, sizeof(u_int32_t)))
|
|
continue;
|
|
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: gap between items at offset %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
/* Find the end of the gap */
|
|
for ( ; pagelayout[i + 1] == 0 &&
|
|
(size_t)(i + 1) < dbp->pgsize; i++)
|
|
;
|
|
break;
|
|
case ITEM_BEGIN:
|
|
/* We've found an item. Check its alignment. */
|
|
if (i != ALIGN(i, sizeof(u_int32_t))) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: offset %lu unaligned",
|
|
(u_long)pgno, (u_long)i));
|
|
}
|
|
initem = 1;
|
|
nentries++;
|
|
break;
|
|
case ITEM_END:
|
|
/*
|
|
* We've hit the end of an item even though
|
|
* we don't think we're in one; must
|
|
* be an overlap.
|
|
*/
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: overlapping items at offset %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
break;
|
|
default:
|
|
/* Should be impossible. */
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
else
|
|
switch (pagelayout[i]) {
|
|
case 0:
|
|
/* In the middle of an item somewhere. Okay. */
|
|
break;
|
|
case ITEM_END:
|
|
/* End of an item; switch to out-of-item mode.*/
|
|
initem = 0;
|
|
break;
|
|
case ITEM_BEGIN:
|
|
/*
|
|
* Hit a second item beginning without an
|
|
* end. Overlap.
|
|
*/
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: overlapping items at offset %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
break;
|
|
}
|
|
|
|
(void)__os_free(dbp->dbenv, pagelayout);
|
|
|
|
/* Verify HOFFSET. */
|
|
if ((db_indx_t)himark != HOFFSET(h)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: bad HOFFSET %lu, appears to be %lu",
|
|
(u_long)pgno, (u_long)HOFFSET(h), (u_long)himark));
|
|
isbad = 1;
|
|
}
|
|
|
|
err: if (nentriesp != NULL)
|
|
*nentriesp = nentries;
|
|
|
|
if ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
|
|
return ((isbad == 1 && ret == 0) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_vrfy_itemorder --
|
|
* Make sure the items on a page sort correctly.
|
|
*
|
|
* Assumes that NUM_ENT(h) and inp[0]..inp[NUM_ENT(h) - 1] are
|
|
* reasonable; be sure that __bam_vrfy_inp has been called first.
|
|
*
|
|
* If ovflok is set, it also assumes that overflow page chains
|
|
* hanging off the current page have been sanity-checked, and so we
|
|
* can use __bam_cmp to verify their ordering. If it is not set,
|
|
* and we run into an overflow page, carp and return DB_VERIFY_BAD;
|
|
* we shouldn't be called if any exist.
|
|
*
|
|
* PUBLIC: int __bam_vrfy_itemorder __P((DB *, VRFY_DBINFO *, PAGE *,
|
|
* PUBLIC: db_pgno_t, u_int32_t, int, int, u_int32_t));
|
|
*/
|
|
int
|
|
__bam_vrfy_itemorder(dbp, vdp, h, pgno, nentries, ovflok, hasdups, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
PAGE *h;
|
|
db_pgno_t pgno;
|
|
u_int32_t nentries;
|
|
int ovflok, hasdups;
|
|
u_int32_t flags;
|
|
{
|
|
DBT dbta, dbtb, dup_1, dup_2, *p1, *p2, *tmp;
|
|
BTREE *bt;
|
|
BINTERNAL *bi;
|
|
BKEYDATA *bk;
|
|
BOVERFLOW *bo;
|
|
VRFY_PAGEINFO *pip;
|
|
db_indx_t i;
|
|
int cmp, freedup_1, freedup_2, isbad, ret, t_ret;
|
|
int (*dupfunc) __P((DB *, const DBT *, const DBT *));
|
|
int (*func) __P((DB *, const DBT *, const DBT *));
|
|
void *buf1, *buf2, *tmpbuf;
|
|
|
|
/*
|
|
* We need to work in the ORDERCHKONLY environment where we might
|
|
* not have a pip, but we also may need to work in contexts where
|
|
* NUM_ENT isn't safe.
|
|
*/
|
|
if (vdp != NULL) {
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
nentries = pip->entries;
|
|
} else
|
|
pip = NULL;
|
|
|
|
ret = isbad = 0;
|
|
bo = NULL; /* Shut up compiler. */
|
|
|
|
memset(&dbta, 0, sizeof(DBT));
|
|
F_SET(&dbta, DB_DBT_REALLOC);
|
|
|
|
memset(&dbtb, 0, sizeof(DBT));
|
|
F_SET(&dbtb, DB_DBT_REALLOC);
|
|
|
|
buf1 = buf2 = NULL;
|
|
|
|
DB_ASSERT(!LF_ISSET(DB_NOORDERCHK));
|
|
|
|
dupfunc = (dbp->dup_compare == NULL) ? __bam_defcmp : dbp->dup_compare;
|
|
if (TYPE(h) == P_LDUP)
|
|
func = dupfunc;
|
|
else {
|
|
func = __bam_defcmp;
|
|
if (dbp->bt_internal != NULL) {
|
|
bt = (BTREE *)dbp->bt_internal;
|
|
if (bt->bt_compare != NULL)
|
|
func = bt->bt_compare;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We alternate our use of dbta and dbtb so that we can walk
|
|
* through the page key-by-key without copying a dbt twice.
|
|
* p1 is always the dbt for index i - 1, and p2 for index i.
|
|
*/
|
|
p1 = &dbta;
|
|
p2 = &dbtb;
|
|
|
|
/*
|
|
* Loop through the entries. nentries ought to contain the
|
|
* actual count, and so is a safe way to terminate the loop; whether
|
|
* we inc. by one or two depends on whether we're a leaf page--
|
|
* on a leaf page, we care only about keys. On internal pages
|
|
* and LDUP pages, we want to check the order of all entries.
|
|
*
|
|
* Note that on IBTREE pages, we start with item 1, since item
|
|
* 0 doesn't get looked at by __bam_cmp.
|
|
*/
|
|
for (i = (TYPE(h) == P_IBTREE) ? 1 : 0; i < nentries;
|
|
i += (TYPE(h) == P_LBTREE) ? P_INDX : O_INDX) {
|
|
/*
|
|
* Put key i-1, now in p2, into p1, by swapping DBTs and bufs.
|
|
*/
|
|
tmp = p1;
|
|
p1 = p2;
|
|
p2 = tmp;
|
|
tmpbuf = buf1;
|
|
buf1 = buf2;
|
|
buf2 = tmpbuf;
|
|
|
|
/*
|
|
* Get key i into p2.
|
|
*/
|
|
switch (TYPE(h)) {
|
|
case P_IBTREE:
|
|
bi = GET_BINTERNAL(dbp, h, i);
|
|
if (B_TYPE(bi->type) == B_OVERFLOW) {
|
|
bo = (BOVERFLOW *)(bi->data);
|
|
goto overflow;
|
|
} else {
|
|
p2->data = bi->data;
|
|
p2->size = bi->len;
|
|
}
|
|
|
|
/*
|
|
* The leftmost key on an internal page must be
|
|
* len 0, since it's just a placeholder and
|
|
* automatically sorts less than all keys.
|
|
*
|
|
* XXX
|
|
* This criterion does not currently hold!
|
|
* See todo list item #1686. Meanwhile, it's harmless
|
|
* to just not check for it.
|
|
*/
|
|
#if 0
|
|
if (i == 0 && bi->len != 0) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: lowest key on internal page of nonzero length",
|
|
(u_long)pgno));
|
|
}
|
|
#endif
|
|
break;
|
|
case P_LBTREE:
|
|
case P_LDUP:
|
|
bk = GET_BKEYDATA(dbp, h, i);
|
|
if (B_TYPE(bk->type) == B_OVERFLOW) {
|
|
bo = (BOVERFLOW *)bk;
|
|
goto overflow;
|
|
} else {
|
|
p2->data = bk->data;
|
|
p2->size = bk->len;
|
|
}
|
|
break;
|
|
default:
|
|
/*
|
|
* This means our caller screwed up and sent us
|
|
* an inappropriate page.
|
|
*/
|
|
TYPE_ERR_PRINT(dbp->dbenv,
|
|
"__bam_vrfy_itemorder", pgno, TYPE(h))
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
if (0) {
|
|
/*
|
|
* If ovflok != 1, we can't safely go chasing
|
|
* overflow pages with the normal routines now;
|
|
* they might be unsafe or nonexistent. Mark this
|
|
* page as incomplete and return.
|
|
*
|
|
* Note that we don't need to worry about freeing
|
|
* buffers, since they can't have been allocated
|
|
* if overflow items are unsafe.
|
|
*/
|
|
overflow: if (!ovflok) {
|
|
F_SET(pip, VRFY_INCOMPLETE);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Overflow items are safe to chase. Do so.
|
|
* Fetch the overflow item into p2->data,
|
|
* NULLing it or reallocing it as appropriate.
|
|
*
|
|
* (We set p2->data to buf2 before the call
|
|
* so we're sure to realloc if we can and if p2
|
|
* was just pointing at a non-overflow item.)
|
|
*/
|
|
p2->data = buf2;
|
|
if ((ret = __db_goff(dbp,
|
|
p2, bo->tlen, bo->pgno, NULL, NULL)) != 0) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: error %lu in fetching overflow item %lu",
|
|
(u_long)pgno, (u_long)ret, (u_long)i));
|
|
}
|
|
/* In case it got realloc'ed and thus changed. */
|
|
buf2 = p2->data;
|
|
}
|
|
|
|
/* Compare with the last key. */
|
|
if (p1->data != NULL && p2->data != NULL) {
|
|
cmp = func(dbp, p1, p2);
|
|
|
|
/* comparison succeeded */
|
|
if (cmp > 0) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: out-of-order key at entry %lu",
|
|
(u_long)pgno, (u_long)i));
|
|
/* proceed */
|
|
} else if (cmp == 0) {
|
|
/*
|
|
* If they compared equally, this
|
|
* had better be a (sub)database with dups.
|
|
* Mark it so we can check during the
|
|
* structure check.
|
|
*/
|
|
if (pip != NULL)
|
|
F_SET(pip, VRFY_HAS_DUPS);
|
|
else if (hasdups == 0) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: database with no duplicates has duplicated keys",
|
|
(u_long)pgno));
|
|
}
|
|
|
|
/*
|
|
* If we're a btree leaf, check to see
|
|
* if the data items of these on-page dups are
|
|
* in sorted order. If not, flag this, so
|
|
* that we can make sure during the
|
|
* structure checks that the DUPSORT flag
|
|
* is unset.
|
|
*
|
|
* At this point i points to a duplicate key.
|
|
* Compare the datum before it (same key)
|
|
* to the datum after it, i.e. i-1 to i+1.
|
|
*/
|
|
if (TYPE(h) == P_LBTREE) {
|
|
/*
|
|
* Unsafe; continue and we'll pick
|
|
* up the bogus nentries later.
|
|
*/
|
|
if (i + 1 >= (db_indx_t)nentries)
|
|
continue;
|
|
|
|
/*
|
|
* We don't bother with clever memory
|
|
* management with on-page dups,
|
|
* as it's only really a big win
|
|
* in the overflow case, and overflow
|
|
* dups are probably (?) rare.
|
|
*/
|
|
if (((ret = __bam_safe_getdata(dbp,
|
|
h, i - 1, ovflok, &dup_1,
|
|
&freedup_1)) != 0) ||
|
|
((ret = __bam_safe_getdata(dbp,
|
|
h, i + 1, ovflok, &dup_2,
|
|
&freedup_2)) != 0))
|
|
goto err;
|
|
|
|
/*
|
|
* If either of the data are NULL,
|
|
* it's because they're overflows and
|
|
* it's not safe to chase them now.
|
|
* Mark an incomplete and return.
|
|
*/
|
|
if (dup_1.data == NULL ||
|
|
dup_2.data == NULL) {
|
|
DB_ASSERT(!ovflok);
|
|
F_SET(pip, VRFY_INCOMPLETE);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If the dups are out of order,
|
|
* flag this. It's not an error
|
|
* until we do the structure check
|
|
* and see whether DUPSORT is set.
|
|
*/
|
|
if (dupfunc(dbp, &dup_1, &dup_2) > 0)
|
|
F_SET(pip, VRFY_DUPS_UNSORTED);
|
|
|
|
if (freedup_1)
|
|
__os_ufree(dbp->dbenv,
|
|
dup_1.data);
|
|
if (freedup_2)
|
|
__os_ufree(dbp->dbenv,
|
|
dup_2.data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
err: if (pip != NULL && ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0) && ret == 0)
|
|
ret = t_ret;
|
|
|
|
if (buf1 != NULL)
|
|
__os_ufree(dbp->dbenv, buf1);
|
|
if (buf2 != NULL)
|
|
__os_ufree(dbp->dbenv, buf2);
|
|
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_vrfy_structure --
|
|
* Verify the tree structure of a btree database (including the master
|
|
* database containing subdbs).
|
|
*
|
|
* PUBLIC: int __bam_vrfy_structure __P((DB *, VRFY_DBINFO *, db_pgno_t,
|
|
* PUBLIC: u_int32_t));
|
|
*/
|
|
int
|
|
__bam_vrfy_structure(dbp, vdp, meta_pgno, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
db_pgno_t meta_pgno;
|
|
u_int32_t flags;
|
|
{
|
|
DB *pgset;
|
|
VRFY_PAGEINFO *mip, *rip;
|
|
db_pgno_t root, p;
|
|
int t_ret, ret;
|
|
u_int32_t nrecs, level, relen, stflags;
|
|
|
|
mip = rip = 0;
|
|
pgset = vdp->pgset;
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, meta_pgno, &mip)) != 0)
|
|
return (ret);
|
|
|
|
if ((ret = __db_vrfy_pgset_get(pgset, meta_pgno, (int *)&p)) != 0)
|
|
goto err;
|
|
if (p != 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: btree metadata page observed twice",
|
|
(u_long)meta_pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
if ((ret = __db_vrfy_pgset_inc(pgset, meta_pgno)) != 0)
|
|
goto err;
|
|
|
|
root = mip->root;
|
|
|
|
if (root == 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: btree metadata page has no root",
|
|
(u_long)meta_pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, root, &rip)) != 0)
|
|
goto err;
|
|
|
|
switch (rip->type) {
|
|
case P_IBTREE:
|
|
case P_LBTREE:
|
|
stflags = flags | ST_TOPLEVEL;
|
|
if (F_ISSET(mip, VRFY_HAS_DUPS))
|
|
stflags |= ST_DUPOK;
|
|
if (F_ISSET(mip, VRFY_HAS_DUPSORT))
|
|
stflags |= ST_DUPSORT;
|
|
if (F_ISSET(mip, VRFY_HAS_RECNUMS))
|
|
stflags |= ST_RECNUM;
|
|
ret = __bam_vrfy_subtree(dbp,
|
|
vdp, root, NULL, NULL, stflags, NULL, NULL, NULL);
|
|
break;
|
|
case P_IRECNO:
|
|
case P_LRECNO:
|
|
stflags = flags | ST_RECNUM | ST_IS_RECNO | ST_TOPLEVEL;
|
|
if (mip->re_len > 0)
|
|
stflags |= ST_RELEN;
|
|
if ((ret = __bam_vrfy_subtree(dbp, vdp,
|
|
root, NULL, NULL, stflags, &level, &nrecs, &relen)) != 0)
|
|
goto err;
|
|
/*
|
|
* Even if mip->re_len > 0, re_len may come back zero if the
|
|
* tree is empty. It should be okay to just skip the check in
|
|
* this case, as if there are any non-deleted keys at all,
|
|
* that should never happen.
|
|
*/
|
|
if (mip->re_len > 0 && relen > 0 && mip->re_len != relen) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: recno database has bad re_len %lu",
|
|
(u_long)meta_pgno, (u_long)relen));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
ret = 0;
|
|
break;
|
|
case P_LDUP:
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: duplicate tree referenced from metadata page",
|
|
(u_long)meta_pgno));
|
|
ret = DB_VERIFY_BAD;
|
|
break;
|
|
default:
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: btree root of incorrect type %lu on metadata page",
|
|
(u_long)meta_pgno, (u_long)rip->type));
|
|
ret = DB_VERIFY_BAD;
|
|
break;
|
|
}
|
|
|
|
err: if (mip != NULL && ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, mip)) != 0) && ret == 0)
|
|
ret = t_ret;
|
|
if (rip != NULL && ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, rip)) != 0) && ret == 0)
|
|
ret = t_ret;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_vrfy_subtree--
|
|
* Verify a subtree (or entire) btree with specified root.
|
|
*
|
|
* Note that this is public because it must be called to verify
|
|
* offpage dup trees, including from hash.
|
|
*
|
|
* PUBLIC: int __bam_vrfy_subtree __P((DB *, VRFY_DBINFO *, db_pgno_t, void *,
|
|
* PUBLIC: void *, u_int32_t, u_int32_t *, u_int32_t *, u_int32_t *));
|
|
*/
|
|
int
|
|
__bam_vrfy_subtree(dbp,
|
|
vdp, pgno, l, r, flags, levelp, nrecsp, relenp)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
db_pgno_t pgno;
|
|
void *l, *r;
|
|
u_int32_t flags, *levelp, *nrecsp, *relenp;
|
|
{
|
|
BINTERNAL *li, *ri, *lp, *rp;
|
|
DB *pgset;
|
|
DB_MPOOLFILE *mpf;
|
|
DBC *cc;
|
|
PAGE *h;
|
|
VRFY_CHILDINFO *child;
|
|
VRFY_PAGEINFO *pip;
|
|
db_indx_t i;
|
|
db_pgno_t next_pgno, prev_pgno;
|
|
db_recno_t child_nrecs, nrecs;
|
|
u_int32_t child_level, child_relen, level, relen, stflags;
|
|
u_int8_t leaf_type;
|
|
int (*func) __P((DB *, const DBT *, const DBT *));
|
|
int isbad, p, ret, t_ret, toplevel;
|
|
|
|
mpf = dbp->mpf;
|
|
ret = isbad = 0;
|
|
nrecs = 0;
|
|
h = NULL;
|
|
relen = 0;
|
|
leaf_type = P_INVALID;
|
|
next_pgno = prev_pgno = PGNO_INVALID;
|
|
rp = (BINTERNAL *)r;
|
|
lp = (BINTERNAL *)l;
|
|
|
|
/* Provide feedback on our progress to the application. */
|
|
if (!LF_ISSET(DB_SALVAGE))
|
|
__db_vrfy_struct_feedback(dbp, vdp);
|
|
|
|
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
|
|
return (ret);
|
|
|
|
cc = NULL;
|
|
level = pip->bt_level;
|
|
|
|
toplevel = LF_ISSET(ST_TOPLEVEL) ? 1 : 0;
|
|
LF_CLR(ST_TOPLEVEL);
|
|
|
|
/*
|
|
* If this is the root, initialize the vdp's prev- and next-pgno
|
|
* accounting.
|
|
*
|
|
* For each leaf page we hit, we'll want to make sure that
|
|
* vdp->prev_pgno is the same as pip->prev_pgno and vdp->next_pgno is
|
|
* our page number. Then, we'll set vdp->next_pgno to pip->next_pgno
|
|
* and vdp->prev_pgno to our page number, and the next leaf page in
|
|
* line should be able to do the same verification.
|
|
*/
|
|
if (toplevel) {
|
|
/*
|
|
* Cache the values stored in the vdp so that if we're an
|
|
* auxiliary tree such as an off-page duplicate set, our
|
|
* caller's leaf page chain doesn't get lost.
|
|
*/
|
|
prev_pgno = vdp->prev_pgno;
|
|
next_pgno = vdp->next_pgno;
|
|
leaf_type = vdp->leaf_type;
|
|
vdp->next_pgno = vdp->prev_pgno = PGNO_INVALID;
|
|
vdp->leaf_type = P_INVALID;
|
|
}
|
|
|
|
/*
|
|
* We are recursively descending a btree, starting from the root
|
|
* and working our way out to the leaves.
|
|
*
|
|
* There are four cases we need to deal with:
|
|
* 1. pgno is a recno leaf page. Any children are overflows.
|
|
* 2. pgno is a duplicate leaf page. Any children
|
|
* are overflow pages; traverse them, and then return
|
|
* level and nrecs.
|
|
* 3. pgno is an ordinary leaf page. Check whether dups are
|
|
* allowed, and if so, traverse any off-page dups or
|
|
* overflows. Then return nrecs and level.
|
|
* 4. pgno is a recno internal page. Recursively check any
|
|
* child pages, making sure their levels are one lower
|
|
* and their nrecs sum to ours.
|
|
* 5. pgno is a btree internal page. Same as #4, plus we
|
|
* must verify that for each pair of BINTERNAL entries
|
|
* N and N+1, the leftmost item on N's child sorts
|
|
* greater than N, and the rightmost item on N's child
|
|
* sorts less than N+1.
|
|
*
|
|
* Furthermore, in any sorted page type (P_LDUP, P_LBTREE, P_IBTREE),
|
|
* we need to verify the internal sort order is correct if,
|
|
* due to overflow items, we were not able to do so earlier.
|
|
*/
|
|
switch (pip->type) {
|
|
case P_LRECNO:
|
|
case P_LDUP:
|
|
case P_LBTREE:
|
|
/*
|
|
* Cases 1, 2 and 3.
|
|
*
|
|
* We're some sort of leaf page; verify
|
|
* that our linked list of leaves is consistent.
|
|
*/
|
|
if (vdp->leaf_type == P_INVALID) {
|
|
/*
|
|
* First leaf page. Set the type that all its
|
|
* successors should be, and verify that our prev_pgno
|
|
* is PGNO_INVALID.
|
|
*/
|
|
vdp->leaf_type = pip->type;
|
|
if (pip->prev_pgno != PGNO_INVALID)
|
|
goto bad_prev;
|
|
} else {
|
|
/*
|
|
* Successor leaf page. Check our type, the previous
|
|
* page's next_pgno, and our prev_pgno.
|
|
*/
|
|
if (pip->type != vdp->leaf_type) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: unexpected page type %lu found in leaf chain (expected %lu)",
|
|
(u_long)pip->pgno, (u_long)pip->type,
|
|
(u_long)vdp->leaf_type));
|
|
isbad = 1;
|
|
}
|
|
if (pip->pgno != vdp->next_pgno) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: incorrect next_pgno %lu found in leaf chain (should be %lu)",
|
|
(u_long)vdp->prev_pgno,
|
|
(u_long)vdp->next_pgno, (u_long)pip->pgno));
|
|
isbad = 1;
|
|
}
|
|
if (pip->prev_pgno != vdp->prev_pgno) {
|
|
bad_prev: EPRINT((dbp->dbenv,
|
|
"Page %lu: incorrect prev_pgno %lu found in leaf chain (should be %lu)",
|
|
(u_long)pip->pgno, (u_long)pip->prev_pgno,
|
|
(u_long)vdp->prev_pgno));
|
|
isbad = 1;
|
|
}
|
|
}
|
|
vdp->prev_pgno = pip->pgno;
|
|
vdp->next_pgno = pip->next_pgno;
|
|
|
|
/*
|
|
* Overflow pages are common to all three leaf types;
|
|
* traverse the child list, looking for overflows.
|
|
*/
|
|
if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0)
|
|
goto err;
|
|
for (ret = __db_vrfy_ccset(cc, pgno, &child); ret == 0;
|
|
ret = __db_vrfy_ccnext(cc, &child))
|
|
if (child->type == V_OVERFLOW &&
|
|
(ret = __db_vrfy_ovfl_structure(dbp, vdp,
|
|
child->pgno, child->tlen,
|
|
flags | ST_OVFL_LEAF)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto done;
|
|
}
|
|
|
|
if ((ret = __db_vrfy_ccclose(cc)) != 0)
|
|
goto err;
|
|
cc = NULL;
|
|
|
|
/* Case 1 */
|
|
if (pip->type == P_LRECNO) {
|
|
if (!LF_ISSET(ST_IS_RECNO) &&
|
|
!(LF_ISSET(ST_DUPOK) && !LF_ISSET(ST_DUPSORT))) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: recno leaf page non-recno tree",
|
|
(u_long)pgno));
|
|
goto done;
|
|
}
|
|
goto leaf;
|
|
} else if (LF_ISSET(ST_IS_RECNO)) {
|
|
/*
|
|
* It's a non-recno leaf. Had better not be a recno
|
|
* subtree.
|
|
*/
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: non-recno leaf page in recno tree",
|
|
(u_long)pgno));
|
|
goto done;
|
|
}
|
|
|
|
/* Case 2--no more work. */
|
|
if (pip->type == P_LDUP)
|
|
goto leaf;
|
|
|
|
/* Case 3 */
|
|
|
|
/* Check if we have any dups. */
|
|
if (F_ISSET(pip, VRFY_HAS_DUPS)) {
|
|
/* If dups aren't allowed in this btree, trouble. */
|
|
if (!LF_ISSET(ST_DUPOK)) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: duplicates in non-dup btree",
|
|
(u_long)pgno));
|
|
} else {
|
|
/*
|
|
* We correctly have dups. If any are off-page,
|
|
* traverse those btrees recursively.
|
|
*/
|
|
if ((ret =
|
|
__db_vrfy_childcursor(vdp, &cc)) != 0)
|
|
goto err;
|
|
for (ret = __db_vrfy_ccset(cc, pgno, &child);
|
|
ret == 0;
|
|
ret = __db_vrfy_ccnext(cc, &child)) {
|
|
stflags = flags | ST_RECNUM | ST_DUPSET;
|
|
/* Skip any overflow entries. */
|
|
if (child->type == V_DUPLICATE) {
|
|
if ((ret = __db_vrfy_duptype(
|
|
dbp, vdp, child->pgno,
|
|
stflags)) != 0) {
|
|
isbad = 1;
|
|
/* Next child. */
|
|
continue;
|
|
}
|
|
if ((ret = __bam_vrfy_subtree(
|
|
dbp, vdp, child->pgno, NULL,
|
|
NULL, stflags | ST_TOPLEVEL,
|
|
NULL, NULL, NULL)) != 0) {
|
|
if (ret !=
|
|
DB_VERIFY_BAD)
|
|
goto err;
|
|
else
|
|
isbad = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((ret = __db_vrfy_ccclose(cc)) != 0)
|
|
goto err;
|
|
cc = NULL;
|
|
|
|
/*
|
|
* If VRFY_DUPS_UNSORTED is set,
|
|
* ST_DUPSORT had better not be.
|
|
*/
|
|
if (F_ISSET(pip, VRFY_DUPS_UNSORTED) &&
|
|
LF_ISSET(ST_DUPSORT)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: unsorted duplicate set in sorted-dup database",
|
|
(u_long)pgno));
|
|
isbad = 1;
|
|
}
|
|
}
|
|
}
|
|
goto leaf;
|
|
case P_IBTREE:
|
|
case P_IRECNO:
|
|
/* We handle these below. */
|
|
break;
|
|
default:
|
|
/*
|
|
* If a P_IBTREE or P_IRECNO contains a reference to an
|
|
* invalid page, we'll wind up here; handle it gracefully.
|
|
* Note that the code at the "done" label assumes that the
|
|
* current page is a btree/recno one of some sort; this
|
|
* is not the case here, so we goto err.
|
|
*
|
|
* If the page is entirely zeroed, its pip->type will be a lie
|
|
* (we assumed it was a hash page, as they're allowed to be
|
|
* zeroed); handle this case specially.
|
|
*/
|
|
if (F_ISSET(pip, VRFY_IS_ALLZEROES))
|
|
ZEROPG_ERR_PRINT(dbp->dbenv,
|
|
pgno, "btree or recno page");
|
|
else
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: btree or recno page is of inappropriate type %lu",
|
|
(u_long)pgno, (u_long)pip->type));
|
|
ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Cases 4 & 5: This is a btree or recno internal page. For each child,
|
|
* recurse, keeping a running count of nrecs and making sure the level
|
|
* is always reasonable.
|
|
*/
|
|
if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0)
|
|
goto err;
|
|
for (ret = __db_vrfy_ccset(cc, pgno, &child); ret == 0;
|
|
ret = __db_vrfy_ccnext(cc, &child))
|
|
if (child->type == V_RECNO) {
|
|
if (pip->type != P_IRECNO) {
|
|
TYPE_ERR_PRINT(dbp->dbenv, "__bam_vrfy_subtree",
|
|
pgno, pip->type);
|
|
DB_ASSERT(0);
|
|
ret = EINVAL;
|
|
goto err;
|
|
}
|
|
if ((ret = __bam_vrfy_subtree(dbp, vdp, child->pgno,
|
|
NULL, NULL, flags, &child_level, &child_nrecs,
|
|
&child_relen)) != 0) {
|
|
if (ret != DB_VERIFY_BAD)
|
|
goto done;
|
|
else
|
|
isbad = 1;
|
|
}
|
|
|
|
if (LF_ISSET(ST_RELEN)) {
|
|
if (relen == 0)
|
|
relen = child_relen;
|
|
/*
|
|
* child_relen may be zero if the child subtree
|
|
* is empty.
|
|
*/
|
|
else if (child_relen > 0 &&
|
|
relen != child_relen) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: recno page returned bad re_len %lu",
|
|
(u_long)child->pgno,
|
|
(u_long)child_relen));
|
|
}
|
|
if (relenp)
|
|
*relenp = relen;
|
|
}
|
|
if (LF_ISSET(ST_RECNUM))
|
|
nrecs += child_nrecs;
|
|
if (level != child_level + 1) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv, "Page %lu: recno level incorrect: got %lu, expected %lu",
|
|
(u_long)child->pgno, (u_long)child_level,
|
|
(u_long)(level - 1)));
|
|
}
|
|
} else if (child->type == V_OVERFLOW &&
|
|
(ret = __db_vrfy_ovfl_structure(dbp, vdp,
|
|
child->pgno, child->tlen, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto done;
|
|
}
|
|
|
|
if ((ret = __db_vrfy_ccclose(cc)) != 0)
|
|
goto err;
|
|
cc = NULL;
|
|
|
|
/* We're done with case 4. */
|
|
if (pip->type == P_IRECNO)
|
|
goto done;
|
|
|
|
/*
|
|
* Case 5. Btree internal pages.
|
|
* As described above, we need to iterate through all the
|
|
* items on the page and make sure that our children sort appropriately
|
|
* with respect to them.
|
|
*
|
|
* For each entry, li will be the "left-hand" key for the entry
|
|
* itself, which must sort lower than all entries on its child;
|
|
* ri will be the key to its right, which must sort greater.
|
|
*/
|
|
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
|
|
goto err;
|
|
for (i = 0; i < pip->entries; i += O_INDX) {
|
|
li = GET_BINTERNAL(dbp, h, i);
|
|
ri = (i + O_INDX < pip->entries) ?
|
|
GET_BINTERNAL(dbp, h, i + O_INDX) : NULL;
|
|
|
|
/*
|
|
* The leftmost key is forcibly sorted less than all entries,
|
|
* so don't bother passing it.
|
|
*/
|
|
if ((ret = __bam_vrfy_subtree(dbp, vdp, li->pgno,
|
|
i == 0 ? NULL : li, ri, flags, &child_level,
|
|
&child_nrecs, NULL)) != 0) {
|
|
if (ret != DB_VERIFY_BAD)
|
|
goto done;
|
|
else
|
|
isbad = 1;
|
|
}
|
|
|
|
if (LF_ISSET(ST_RECNUM)) {
|
|
/*
|
|
* Keep a running tally on the actual record count so
|
|
* we can return it to our parent (if we have one) or
|
|
* compare it to the NRECS field if we're a root page.
|
|
*/
|
|
nrecs += child_nrecs;
|
|
|
|
/*
|
|
* Make sure the actual record count of the child
|
|
* is equal to the value in the BINTERNAL structure.
|
|
*/
|
|
if (li->nrecs != child_nrecs) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: item %lu has incorrect record count of %lu, should be %lu",
|
|
(u_long)pgno, (u_long)i, (u_long)li->nrecs,
|
|
(u_long)child_nrecs));
|
|
}
|
|
}
|
|
|
|
if (level != child_level + 1) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: Btree level incorrect: got %lu, expected %lu",
|
|
(u_long)li->pgno,
|
|
(u_long)child_level, (u_long)(level - 1)));
|
|
}
|
|
}
|
|
|
|
if (0) {
|
|
leaf: level = LEAFLEVEL;
|
|
if (LF_ISSET(ST_RECNUM))
|
|
nrecs = pip->rec_cnt;
|
|
|
|
/* XXX
|
|
* We should verify that the record count on a leaf page
|
|
* is the sum of the number of keys and the number of
|
|
* records in its off-page dups. This requires looking
|
|
* at the page again, however, and it may all be changing
|
|
* soon, so for now we don't bother.
|
|
*/
|
|
|
|
if (LF_ISSET(ST_RELEN) && relenp)
|
|
*relenp = pip->re_len;
|
|
}
|
|
done: if (F_ISSET(pip, VRFY_INCOMPLETE) && isbad == 0 && ret == 0) {
|
|
/*
|
|
* During the page-by-page pass, item order verification was
|
|
* not finished due to the presence of overflow items. If
|
|
* isbad == 0, though, it's now safe to do so, as we've
|
|
* traversed any child overflow pages. Do it.
|
|
*/
|
|
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
|
|
goto err;
|
|
if ((ret = __bam_vrfy_itemorder(dbp,
|
|
vdp, h, pgno, 0, 1, 0, flags)) != 0)
|
|
goto err;
|
|
F_CLR(pip, VRFY_INCOMPLETE);
|
|
}
|
|
|
|
/*
|
|
* It's possible to get to this point with a page that has no
|
|
* items, but without having detected any sort of failure yet.
|
|
* Having zero items is legal if it's a leaf--it may be the
|
|
* root page in an empty tree, or the tree may have been
|
|
* modified with the DB_REVSPLITOFF flag set (there's no way
|
|
* to tell from what's on disk). For an internal page,
|
|
* though, having no items is a problem (all internal pages
|
|
* must have children).
|
|
*/
|
|
if (isbad == 0 && ret == 0) {
|
|
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
|
|
goto err;
|
|
|
|
if (NUM_ENT(h) == 0 && ISINTERNAL(h)) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: internal page is empty and should not be",
|
|
(u_long)pgno));
|
|
isbad = 1;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Our parent has sent us BINTERNAL pointers to parent records
|
|
* so that we can verify our place with respect to them. If it's
|
|
* appropriate--we have a default sort function--verify this.
|
|
*/
|
|
if (isbad == 0 && ret == 0 && !LF_ISSET(DB_NOORDERCHK) && lp != NULL) {
|
|
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
|
|
goto err;
|
|
|
|
/*
|
|
* __bam_vrfy_treeorder needs to know what comparison function
|
|
* to use. If ST_DUPSET is set, we're in a duplicate tree
|
|
* and we use the duplicate comparison function; otherwise,
|
|
* use the btree one. If unset, use the default, of course.
|
|
*/
|
|
func = LF_ISSET(ST_DUPSET) ? dbp->dup_compare :
|
|
((BTREE *)dbp->bt_internal)->bt_compare;
|
|
if (func == NULL)
|
|
func = __bam_defcmp;
|
|
|
|
if ((ret = __bam_vrfy_treeorder(
|
|
dbp, pgno, h, lp, rp, func, flags)) != 0) {
|
|
if (ret == DB_VERIFY_BAD)
|
|
isbad = 1;
|
|
else
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is guaranteed to succeed for leaf pages, but no harm done.
|
|
*
|
|
* Internal pages below the top level do not store their own
|
|
* record numbers, so we skip them.
|
|
*/
|
|
if (LF_ISSET(ST_RECNUM) && nrecs != pip->rec_cnt && toplevel) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: bad record count: has %lu records, claims %lu",
|
|
(u_long)pgno, (u_long)nrecs, (u_long)pip->rec_cnt));
|
|
}
|
|
|
|
if (levelp)
|
|
*levelp = level;
|
|
if (nrecsp)
|
|
*nrecsp = nrecs;
|
|
|
|
pgset = vdp->pgset;
|
|
if ((ret = __db_vrfy_pgset_get(pgset, pgno, &p)) != 0)
|
|
goto err;
|
|
if (p != 0) {
|
|
isbad = 1;
|
|
EPRINT((dbp->dbenv, "Page %lu: linked twice", (u_long)pgno));
|
|
} else if ((ret = __db_vrfy_pgset_inc(pgset, pgno)) != 0)
|
|
goto err;
|
|
|
|
if (toplevel)
|
|
/*
|
|
* The last page's next_pgno in the leaf chain should have been
|
|
* PGNO_INVALID.
|
|
*/
|
|
if (vdp->next_pgno != PGNO_INVALID) {
|
|
EPRINT((dbp->dbenv, "Page %lu: unterminated leaf chain",
|
|
(u_long)vdp->prev_pgno));
|
|
isbad = 1;
|
|
}
|
|
|
|
err: if (toplevel) {
|
|
/* Restore our caller's settings. */
|
|
vdp->next_pgno = next_pgno;
|
|
vdp->prev_pgno = prev_pgno;
|
|
vdp->leaf_type = leaf_type;
|
|
}
|
|
|
|
if (h != NULL && (t_ret = mpf->put(mpf, h, 0)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
if ((t_ret =
|
|
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
|
|
ret = t_ret;
|
|
if (cc != NULL && ((t_ret = __db_vrfy_ccclose(cc)) != 0) && ret == 0)
|
|
ret = t_ret;
|
|
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_vrfy_treeorder --
|
|
* Verify that the lowest key on a page sorts greater than the
|
|
* BINTERNAL which points to it (lp), and the highest key
|
|
* sorts less than the BINTERNAL above that (rp).
|
|
*
|
|
* If lp is NULL, this means that it was the leftmost key on the
|
|
* parent, which (regardless of sort function) sorts less than
|
|
* all keys. No need to check it.
|
|
*
|
|
* If rp is NULL, lp was the highest key on the parent, so there's
|
|
* no higher key we must sort less than.
|
|
*/
|
|
static int
|
|
__bam_vrfy_treeorder(dbp, pgno, h, lp, rp, func, flags)
|
|
DB *dbp;
|
|
db_pgno_t pgno;
|
|
PAGE *h;
|
|
BINTERNAL *lp, *rp;
|
|
int (*func) __P((DB *, const DBT *, const DBT *));
|
|
u_int32_t flags;
|
|
{
|
|
BOVERFLOW *bo;
|
|
DBT dbt;
|
|
db_indx_t last;
|
|
int ret, cmp;
|
|
|
|
memset(&dbt, 0, sizeof(DBT));
|
|
F_SET(&dbt, DB_DBT_MALLOC);
|
|
ret = 0;
|
|
|
|
/*
|
|
* Empty pages are sorted correctly by definition. We check
|
|
* to see whether they ought to be empty elsewhere; leaf
|
|
* pages legally may be.
|
|
*/
|
|
if (NUM_ENT(h) == 0)
|
|
return (0);
|
|
|
|
switch (TYPE(h)) {
|
|
case P_IBTREE:
|
|
case P_LDUP:
|
|
last = NUM_ENT(h) - O_INDX;
|
|
break;
|
|
case P_LBTREE:
|
|
last = NUM_ENT(h) - P_INDX;
|
|
break;
|
|
default:
|
|
TYPE_ERR_PRINT(dbp->dbenv,
|
|
"__bam_vrfy_treeorder", pgno, TYPE(h));
|
|
DB_ASSERT(0);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* The key on page h, the child page, is more likely to be
|
|
* an overflow page, so we pass its offset, rather than lp/rp's,
|
|
* into __bam_cmp. This will take advantage of __db_moff.
|
|
*/
|
|
|
|
/*
|
|
* Skip first-item check if we're an internal page--the first
|
|
* entry on an internal page is treated specially by __bam_cmp,
|
|
* so what's on the page shouldn't matter. (Plus, since we're passing
|
|
* our page and item 0 as to __bam_cmp, we'll sort before our
|
|
* parent and falsely report a failure.)
|
|
*/
|
|
if (lp != NULL && TYPE(h) != P_IBTREE) {
|
|
if (lp->type == B_KEYDATA) {
|
|
dbt.data = lp->data;
|
|
dbt.size = lp->len;
|
|
} else if (lp->type == B_OVERFLOW) {
|
|
bo = (BOVERFLOW *)lp->data;
|
|
if ((ret = __db_goff(dbp, &dbt, bo->tlen, bo->pgno,
|
|
NULL, NULL)) != 0)
|
|
return (ret);
|
|
} else {
|
|
DB_ASSERT(0);
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: unknown type for internal record",
|
|
(u_long)PGNO(h)));
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* On error, fall through, free if neeeded, and return. */
|
|
if ((ret = __bam_cmp(dbp, &dbt, h, 0, func, &cmp)) == 0) {
|
|
if (cmp > 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: first item on page sorted greater than parent entry",
|
|
(u_long)PGNO(h)));
|
|
ret = DB_VERIFY_BAD;
|
|
}
|
|
} else
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: first item on page had comparison error",
|
|
(u_long)PGNO(h)));
|
|
|
|
if (dbt.data != lp->data)
|
|
__os_ufree(dbp->dbenv, dbt.data);
|
|
if (ret != 0)
|
|
return (ret);
|
|
}
|
|
|
|
if (rp != NULL) {
|
|
if (rp->type == B_KEYDATA) {
|
|
dbt.data = rp->data;
|
|
dbt.size = rp->len;
|
|
} else if (rp->type == B_OVERFLOW) {
|
|
bo = (BOVERFLOW *)rp->data;
|
|
if ((ret = __db_goff(dbp, &dbt, bo->tlen, bo->pgno,
|
|
NULL, NULL)) != 0)
|
|
return (ret);
|
|
} else {
|
|
DB_ASSERT(0);
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: unknown type for internal record",
|
|
(u_long)PGNO(h)));
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* On error, fall through, free if neeeded, and return. */
|
|
if ((ret = __bam_cmp(dbp, &dbt, h, last, func, &cmp)) == 0) {
|
|
if (cmp < 0) {
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: last item on page sorted greater than parent entry",
|
|
(u_long)PGNO(h)));
|
|
ret = DB_VERIFY_BAD;
|
|
}
|
|
} else
|
|
EPRINT((dbp->dbenv,
|
|
"Page %lu: last item on page had comparison error",
|
|
(u_long)PGNO(h)));
|
|
|
|
if (dbt.data != rp->data)
|
|
__os_ufree(dbp->dbenv, dbt.data);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_salvage --
|
|
* Safely dump out anything that looks like a key on an alleged
|
|
* btree leaf page.
|
|
*
|
|
* PUBLIC: int __bam_salvage __P((DB *, VRFY_DBINFO *, db_pgno_t, u_int32_t,
|
|
* PUBLIC: PAGE *, void *, int (*)(void *, const void *), DBT *,
|
|
* PUBLIC: u_int32_t));
|
|
*/
|
|
int
|
|
__bam_salvage(dbp, vdp, pgno, pgtype, h, handle, callback, key, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
db_pgno_t pgno;
|
|
u_int32_t pgtype;
|
|
PAGE *h;
|
|
void *handle;
|
|
int (*callback) __P((void *, const void *));
|
|
DBT *key;
|
|
u_int32_t flags;
|
|
{
|
|
DBT dbt, unkdbt;
|
|
BKEYDATA *bk;
|
|
BOVERFLOW *bo;
|
|
db_indx_t i, beg, end, *inp;
|
|
u_int32_t himark;
|
|
u_int8_t *pgmap;
|
|
void *ovflbuf;
|
|
int t_ret, ret, err_ret;
|
|
|
|
/* Shut up lint. */
|
|
COMPQUIET(end, 0);
|
|
|
|
ovflbuf = pgmap = NULL;
|
|
err_ret = ret = 0;
|
|
inp = P_INP(dbp, h);
|
|
|
|
memset(&dbt, 0, sizeof(DBT));
|
|
dbt.flags = DB_DBT_REALLOC;
|
|
|
|
memset(&unkdbt, 0, sizeof(DBT));
|
|
unkdbt.size = (u_int32_t)(strlen("UNKNOWN") + 1);
|
|
unkdbt.data = "UNKNOWN";
|
|
|
|
/*
|
|
* Allocate a buffer for overflow items. Start at one page;
|
|
* __db_safe_goff will realloc as needed.
|
|
*/
|
|
if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &ovflbuf)) != 0)
|
|
return (ret);
|
|
|
|
if (LF_ISSET(DB_AGGRESSIVE)) {
|
|
if ((ret =
|
|
__os_malloc(dbp->dbenv, dbp->pgsize, &pgmap)) != 0)
|
|
goto err;
|
|
memset(pgmap, 0, dbp->pgsize);
|
|
}
|
|
|
|
/*
|
|
* Loop through the inp array, spitting out key/data pairs.
|
|
*
|
|
* If we're salvaging normally, loop from 0 through NUM_ENT(h).
|
|
* If we're being aggressive, loop until we hit the end of the page--
|
|
* NUM_ENT() may be bogus.
|
|
*/
|
|
himark = dbp->pgsize;
|
|
for (i = 0;; i += O_INDX) {
|
|
/* If we're not aggressive, break when we hit NUM_ENT(h). */
|
|
if (!LF_ISSET(DB_AGGRESSIVE) && i >= NUM_ENT(h))
|
|
break;
|
|
|
|
/* Verify the current item. */
|
|
ret = __db_vrfy_inpitem(dbp,
|
|
h, pgno, i, 1, flags, &himark, NULL);
|
|
/* If this returned a fatality, it's time to break. */
|
|
if (ret == DB_VERIFY_FATAL) {
|
|
/*
|
|
* Don't return DB_VERIFY_FATAL; it's private
|
|
* and means only that we can't go on with this
|
|
* page, not with the whole database. It's
|
|
* not even an error if we've run into it
|
|
* after NUM_ENT(h).
|
|
*/
|
|
ret = (i < NUM_ENT(h)) ? DB_VERIFY_BAD : 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this returned 0, it's safe to print or (carefully)
|
|
* try to fetch.
|
|
*/
|
|
if (ret == 0) {
|
|
/*
|
|
* We only want to print deleted items if
|
|
* DB_AGGRESSIVE is set.
|
|
*/
|
|
bk = GET_BKEYDATA(dbp, h, i);
|
|
if (!LF_ISSET(DB_AGGRESSIVE) && B_DISSET(bk->type))
|
|
continue;
|
|
|
|
/*
|
|
* We're going to go try to print the next item. If
|
|
* key is non-NULL, we're a dup page, so we've got to
|
|
* print the key first, unless SA_SKIPFIRSTKEY is set
|
|
* and we're on the first entry.
|
|
*/
|
|
if (key != NULL &&
|
|
(i != 0 || !LF_ISSET(SA_SKIPFIRSTKEY)))
|
|
if ((ret = __db_prdbt(key,
|
|
0, " ", handle, callback, 0, vdp)) != 0)
|
|
err_ret = ret;
|
|
|
|
beg = inp[i];
|
|
switch (B_TYPE(bk->type)) {
|
|
case B_DUPLICATE:
|
|
end = beg + BOVERFLOW_SIZE - 1;
|
|
/*
|
|
* If we're not on a normal btree leaf page,
|
|
* there shouldn't be off-page
|
|
* dup sets. Something's confused; just
|
|
* drop it, and the code to pick up unlinked
|
|
* offpage dup sets will print it out
|
|
* with key "UNKNOWN" later.
|
|
*/
|
|
if (pgtype != P_LBTREE)
|
|
break;
|
|
|
|
bo = (BOVERFLOW *)bk;
|
|
|
|
/*
|
|
* If the page number is unreasonable, or
|
|
* if this is supposed to be a key item,
|
|
* just spit out "UNKNOWN"--the best we
|
|
* can do is run into the data items in the
|
|
* unlinked offpage dup pass.
|
|
*/
|
|
if (!IS_VALID_PGNO(bo->pgno) ||
|
|
(i % P_INDX == 0)) {
|
|
/* Not much to do on failure. */
|
|
if ((ret = __db_prdbt(&unkdbt, 0, " ",
|
|
handle, callback, 0, vdp)) != 0)
|
|
err_ret = ret;
|
|
break;
|
|
}
|
|
|
|
if ((ret = __db_salvage_duptree(dbp,
|
|
vdp, bo->pgno, &dbt, handle, callback,
|
|
flags | SA_SKIPFIRSTKEY)) != 0)
|
|
err_ret = ret;
|
|
|
|
break;
|
|
case B_KEYDATA:
|
|
end =
|
|
ALIGN(beg + bk->len, sizeof(u_int32_t)) - 1;
|
|
dbt.data = bk->data;
|
|
dbt.size = bk->len;
|
|
if ((ret = __db_prdbt(&dbt,
|
|
0, " ", handle, callback, 0, vdp)) != 0)
|
|
err_ret = ret;
|
|
break;
|
|
case B_OVERFLOW:
|
|
end = beg + BOVERFLOW_SIZE - 1;
|
|
bo = (BOVERFLOW *)bk;
|
|
if ((ret = __db_safe_goff(dbp, vdp,
|
|
bo->pgno, &dbt, &ovflbuf, flags)) != 0) {
|
|
err_ret = ret;
|
|
/* We care about err_ret more. */
|
|
(void)__db_prdbt(&unkdbt, 0, " ",
|
|
handle, callback, 0, vdp);
|
|
break;
|
|
}
|
|
if ((ret = __db_prdbt(&dbt,
|
|
0, " ", handle, callback, 0, vdp)) != 0)
|
|
err_ret = ret;
|
|
break;
|
|
default:
|
|
/*
|
|
* We should never get here; __db_vrfy_inpitem
|
|
* should not be returning 0 if bk->type
|
|
* is unrecognizable.
|
|
*/
|
|
DB_ASSERT(0);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* If we're being aggressive, mark the beginning
|
|
* and end of the item; we'll come back and print
|
|
* whatever "junk" is in the gaps in case we had
|
|
* any bogus inp elements and thereby missed stuff.
|
|
*/
|
|
if (LF_ISSET(DB_AGGRESSIVE)) {
|
|
pgmap[beg] = ITEM_BEGIN;
|
|
pgmap[end] = ITEM_END;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If i is odd and this is a btree leaf, we've printed out a key but not
|
|
* a datum; fix this imbalance by printing an "UNKNOWN".
|
|
*/
|
|
if (pgtype == P_LBTREE && (i % P_INDX == 1) && ((ret =
|
|
__db_prdbt(&unkdbt, 0, " ", handle, callback, 0, vdp)) != 0))
|
|
err_ret = ret;
|
|
|
|
err: if (pgmap != NULL)
|
|
__os_free(dbp->dbenv, pgmap);
|
|
__os_free(dbp->dbenv, ovflbuf);
|
|
|
|
/* Mark this page as done. */
|
|
if ((t_ret = __db_salvage_markdone(vdp, pgno)) != 0)
|
|
return (t_ret);
|
|
|
|
return ((err_ret != 0) ? err_ret : ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_salvage_walkdupint --
|
|
* Walk a known-good btree or recno internal page which is part of
|
|
* a dup tree, calling __db_salvage_duptree on each child page.
|
|
*
|
|
* PUBLIC: int __bam_salvage_walkdupint __P((DB *, VRFY_DBINFO *, PAGE *,
|
|
* PUBLIC: DBT *, void *, int (*)(void *, const void *), u_int32_t));
|
|
*/
|
|
int
|
|
__bam_salvage_walkdupint(dbp, vdp, h, key, handle, callback, flags)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
PAGE *h;
|
|
DBT *key;
|
|
void *handle;
|
|
int (*callback) __P((void *, const void *));
|
|
u_int32_t flags;
|
|
{
|
|
RINTERNAL *ri;
|
|
BINTERNAL *bi;
|
|
int ret, t_ret;
|
|
db_indx_t i;
|
|
|
|
ret = 0;
|
|
for (i = 0; i < NUM_ENT(h); i++) {
|
|
switch (TYPE(h)) {
|
|
case P_IBTREE:
|
|
bi = GET_BINTERNAL(dbp, h, i);
|
|
if ((t_ret = __db_salvage_duptree(dbp,
|
|
vdp, bi->pgno, key, handle, callback, flags)) != 0)
|
|
ret = t_ret;
|
|
break;
|
|
case P_IRECNO:
|
|
ri = GET_RINTERNAL(dbp, h, i);
|
|
if ((t_ret = __db_salvage_duptree(dbp,
|
|
vdp, ri->pgno, key, handle, callback, flags)) != 0)
|
|
ret = t_ret;
|
|
break;
|
|
default:
|
|
__db_err(dbp->dbenv,
|
|
"__bam_salvage_walkdupint called on non-int. page");
|
|
DB_ASSERT(0);
|
|
return (EINVAL);
|
|
}
|
|
/* Pass SA_SKIPFIRSTKEY, if set, on to the 0th child only. */
|
|
flags &= ~LF_ISSET(SA_SKIPFIRSTKEY);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_meta2pgset --
|
|
* Given a known-good meta page, return in pgsetp a 0-terminated list of
|
|
* db_pgno_t's corresponding to the pages in the btree.
|
|
*
|
|
* We do this by a somewhat sleazy method, to avoid having to traverse the
|
|
* btree structure neatly: we walk down the left side to the very
|
|
* first leaf page, then we mark all the pages in the chain of
|
|
* NEXT_PGNOs (being wary of cycles and invalid ones), then we
|
|
* consolidate our scratch array into a nice list, and return. This
|
|
* avoids the memory management hassles of recursion and the
|
|
* trouble of walking internal pages--they just don't matter, except
|
|
* for the left branch.
|
|
*
|
|
* PUBLIC: int __bam_meta2pgset __P((DB *, VRFY_DBINFO *, BTMETA *,
|
|
* PUBLIC: u_int32_t, DB *));
|
|
*/
|
|
int
|
|
__bam_meta2pgset(dbp, vdp, btmeta, flags, pgset)
|
|
DB *dbp;
|
|
VRFY_DBINFO *vdp;
|
|
BTMETA *btmeta;
|
|
u_int32_t flags;
|
|
DB *pgset;
|
|
{
|
|
BINTERNAL *bi;
|
|
DB_MPOOLFILE *mpf;
|
|
PAGE *h;
|
|
RINTERNAL *ri;
|
|
db_pgno_t current, p;
|
|
int err_ret, ret;
|
|
|
|
mpf = dbp->mpf;
|
|
h = NULL;
|
|
ret = err_ret = 0;
|
|
DB_ASSERT(pgset != NULL);
|
|
for (current = btmeta->root;;) {
|
|
if (!IS_VALID_PGNO(current) || current == PGNO(btmeta)) {
|
|
err_ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
if ((ret = mpf->get(mpf, ¤t, 0, &h)) != 0) {
|
|
err_ret = ret;
|
|
goto err;
|
|
}
|
|
|
|
switch (TYPE(h)) {
|
|
case P_IBTREE:
|
|
case P_IRECNO:
|
|
if ((ret = __bam_vrfy(dbp,
|
|
vdp, h, current, flags | DB_NOORDERCHK)) != 0) {
|
|
err_ret = ret;
|
|
goto err;
|
|
}
|
|
if (TYPE(h) == P_IBTREE) {
|
|
bi = GET_BINTERNAL(dbp, h, 0);
|
|
current = bi->pgno;
|
|
} else { /* P_IRECNO */
|
|
ri = GET_RINTERNAL(dbp, h, 0);
|
|
current = ri->pgno;
|
|
}
|
|
break;
|
|
case P_LBTREE:
|
|
case P_LRECNO:
|
|
goto traverse;
|
|
default:
|
|
err_ret = DB_VERIFY_BAD;
|
|
goto err;
|
|
}
|
|
|
|
if ((ret = mpf->put(mpf, h, 0)) != 0)
|
|
err_ret = ret;
|
|
h = NULL;
|
|
}
|
|
|
|
/*
|
|
* At this point, current is the pgno of leaf page h, the 0th in the
|
|
* tree we're concerned with.
|
|
*/
|
|
traverse:
|
|
while (IS_VALID_PGNO(current) && current != PGNO_INVALID) {
|
|
if (h == NULL && (ret = mpf->get(mpf, ¤t, 0, &h)) != 0) {
|
|
err_ret = ret;
|
|
break;
|
|
}
|
|
|
|
if ((ret = __db_vrfy_pgset_get(pgset, current, (int *)&p)) != 0)
|
|
goto err;
|
|
|
|
if (p != 0) {
|
|
/*
|
|
* We've found a cycle. Return success anyway--
|
|
* our caller may as well use however much of
|
|
* the pgset we've come up with.
|
|
*/
|
|
break;
|
|
}
|
|
if ((ret = __db_vrfy_pgset_inc(pgset, current)) != 0)
|
|
goto err;
|
|
|
|
current = NEXT_PGNO(h);
|
|
if ((ret = mpf->put(mpf, h, 0)) != 0)
|
|
err_ret = ret;
|
|
h = NULL;
|
|
}
|
|
|
|
err: if (h != NULL)
|
|
(void)mpf->put(mpf, h, 0);
|
|
|
|
return (ret == 0 ? err_ret : ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_safe_getdata --
|
|
*
|
|
* Utility function for __bam_vrfy_itemorder. Safely gets the datum at
|
|
* index i, page h, and sticks it in DBT dbt. If ovflok is 1 and i's an
|
|
* overflow item, we do a safe_goff to get the item and signal that we need
|
|
* to free dbt->data; if ovflok is 0, we leaves the DBT zeroed.
|
|
*/
|
|
static int
|
|
__bam_safe_getdata(dbp, h, i, ovflok, dbt, freedbtp)
|
|
DB *dbp;
|
|
PAGE *h;
|
|
u_int32_t i;
|
|
int ovflok;
|
|
DBT *dbt;
|
|
int *freedbtp;
|
|
{
|
|
BKEYDATA *bk;
|
|
BOVERFLOW *bo;
|
|
|
|
memset(dbt, 0, sizeof(DBT));
|
|
*freedbtp = 0;
|
|
|
|
bk = GET_BKEYDATA(dbp, h, i);
|
|
if (B_TYPE(bk->type) == B_OVERFLOW) {
|
|
if (!ovflok)
|
|
return (0);
|
|
|
|
bo = (BOVERFLOW *)bk;
|
|
F_SET(dbt, DB_DBT_MALLOC);
|
|
|
|
*freedbtp = 1;
|
|
return (__db_goff(dbp, dbt, bo->tlen, bo->pgno, NULL, NULL));
|
|
} else {
|
|
dbt->data = bk->data;
|
|
dbt->size = bk->len;
|
|
}
|
|
|
|
return (0);
|
|
}
|