mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 12:02:42 +01:00
2016 lines
63 KiB
C++
2016 lines
63 KiB
C++
/*
|
|
Copyright (c) 2000, 2010, Oracle and/or its affiliates.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
|
|
/* classes to use when handling where clause */
|
|
|
|
#ifndef _opt_range_h
|
|
#define _opt_range_h
|
|
|
|
#ifdef USE_PRAGMA_INTERFACE
|
|
#pragma interface /* gcc class implementation */
|
|
#endif
|
|
|
|
#include "records.h" /* READ_RECORD */
|
|
#include "queues.h" /* QUEUE */
|
|
#include "filesort.h" /* SORT_INFO */
|
|
|
|
/*
|
|
It is necessary to include set_var.h instead of item.h because there
|
|
are dependencies on include order for set_var.h and item.h. This
|
|
will be resolved later.
|
|
*/
|
|
#include "sql_class.h" // set_var.h: THD
|
|
#include "set_var.h" /* Item */
|
|
|
|
class JOIN;
|
|
class Item_sum;
|
|
|
|
struct KEY_PART {
|
|
uint16 key,part;
|
|
/* See KEY_PART_INFO for meaning of the next two: */
|
|
uint16 store_length, length;
|
|
uint8 null_bit;
|
|
/*
|
|
Keypart flags (0 when this structure is used by partition pruning code
|
|
for fake partitioning index description)
|
|
*/
|
|
uint8 flag;
|
|
Field *field;
|
|
Field::imagetype image_type;
|
|
};
|
|
|
|
|
|
/**
|
|
A helper function to invert min flags to max flags for DESC key parts.
|
|
It changes NEAR_MIN, NO_MIN_RANGE to NEAR_MAX, NO_MAX_RANGE appropriately
|
|
*/
|
|
|
|
inline uint invert_min_flag(uint min_flag)
|
|
{
|
|
uint max_flag_out = min_flag & ~(NEAR_MIN | NO_MIN_RANGE);
|
|
if (min_flag & NEAR_MIN) max_flag_out |= NEAR_MAX;
|
|
if (min_flag & NO_MIN_RANGE) max_flag_out |= NO_MAX_RANGE;
|
|
return max_flag_out;
|
|
}
|
|
|
|
|
|
/**
|
|
A helper function to invert max flags to min flags for DESC key parts.
|
|
It changes NEAR_MAX, NO_MAX_RANGE to NEAR_MIN, NO_MIN_RANGE appropriately
|
|
*/
|
|
|
|
inline uint invert_max_flag(uint max_flag)
|
|
{
|
|
uint min_flag_out = max_flag & ~(NEAR_MAX | NO_MAX_RANGE);
|
|
if (max_flag & NEAR_MAX) min_flag_out |= NEAR_MIN;
|
|
if (max_flag & NO_MAX_RANGE) min_flag_out |= NO_MIN_RANGE;
|
|
return min_flag_out;
|
|
}
|
|
|
|
class RANGE_OPT_PARAM;
|
|
/*
|
|
A construction block of the SEL_ARG-graph.
|
|
|
|
The following description only covers graphs of SEL_ARG objects with
|
|
sel_arg->type==KEY_RANGE:
|
|
|
|
One SEL_ARG object represents an "elementary interval" in form
|
|
|
|
min_value <=? table.keypartX <=? max_value
|
|
|
|
The interval is a non-empty interval of any kind: with[out] minimum/maximum
|
|
bound, [half]open/closed, single-point interval, etc.
|
|
|
|
1. SEL_ARG GRAPH STRUCTURE
|
|
|
|
SEL_ARG objects are linked together in a graph. The meaning of the graph
|
|
is better demostrated by an example:
|
|
|
|
tree->keys[i]
|
|
|
|
|
| $ $
|
|
| part=1 $ part=2 $ part=3
|
|
| $ $
|
|
| +-------+ $ +-------+ $ +--------+
|
|
| | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
|
|
| +-------+ $ +-------+ $ +--------+
|
|
| | $ $ |
|
|
| | $ $ +--------+
|
|
| | $ $ | kp3=12 |
|
|
| | $ $ +--------+
|
|
| +-------+ $ $
|
|
\->| kp1=2 |--$--------------$-+
|
|
+-------+ $ $ | +--------+
|
|
| $ $ ==>| kp3=11 |
|
|
+-------+ $ $ | +--------+
|
|
| kp1=3 |--$--------------$-+ |
|
|
+-------+ $ $ +--------+
|
|
| $ $ | kp3=14 |
|
|
... $ $ +--------+
|
|
|
|
The entire graph is partitioned into "interval lists".
|
|
|
|
An interval list is a sequence of ordered disjoint intervals over the same
|
|
key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
|
|
all intervals in the list form an RB-tree, linked via left/right/parent
|
|
pointers. The RB-tree root SEL_ARG object will be further called "root of the
|
|
interval list".
|
|
|
|
In the example pic, there are 4 interval lists:
|
|
"kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
|
|
The vertical lines represent SEL_ARG::next/prev pointers.
|
|
|
|
In an interval list, each member X may have SEL_ARG::next_key_part pointer
|
|
pointing to the root of another interval list Y. The pointed interval list
|
|
must cover a key part with greater number (i.e. Y->part > X->part).
|
|
|
|
In the example pic, the next_key_part pointers are represented by
|
|
horisontal lines.
|
|
|
|
2. SEL_ARG GRAPH SEMANTICS
|
|
|
|
It represents a condition in a special form (we don't have a name for it ATM)
|
|
The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
|
|
|
|
For example, the picture represents the condition in form:
|
|
(kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR
|
|
(kp1=2 AND (kp3=11 OR kp3=14)) OR
|
|
(kp1=3 AND (kp3=11 OR kp3=14))
|
|
|
|
|
|
3. SEL_ARG GRAPH USE
|
|
|
|
Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
|
|
Then walk the SEL_ARG graph and get a list of dijsoint ordered key
|
|
intervals (i.e. intervals in form
|
|
|
|
(constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)
|
|
|
|
Those intervals can be used to access the index. The uses are in:
|
|
- check_quick_select() - Walk the SEL_ARG graph and find an estimate of
|
|
how many table records are contained within all
|
|
intervals.
|
|
- get_quick_select() - Walk the SEL_ARG, materialize the key intervals,
|
|
and create QUICK_RANGE_SELECT object that will
|
|
read records within these intervals.
|
|
|
|
4. SPACE COMPLEXITY NOTES
|
|
|
|
SEL_ARG graph is a representation of an ordered disjoint sequence of
|
|
intervals over the ordered set of index tuple values.
|
|
|
|
For multi-part keys, one can construct a WHERE expression such that its
|
|
list of intervals will be of combinatorial size. Here is an example:
|
|
|
|
(keypart1 IN (1,2, ..., n1)) AND
|
|
(keypart2 IN (1,2, ..., n2)) AND
|
|
(keypart3 IN (1,2, ..., n3))
|
|
|
|
For this WHERE clause the list of intervals will have n1*n2*n3 intervals
|
|
of form
|
|
|
|
(keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i}
|
|
|
|
SEL_ARG graph structure aims to reduce the amount of required space by
|
|
"sharing" the elementary intervals when possible (the pic at the
|
|
beginning of this comment has examples of such sharing). The sharing may
|
|
prevent combinatorial blowup:
|
|
|
|
There are WHERE clauses that have combinatorial-size interval lists but
|
|
will be represented by a compact SEL_ARG graph.
|
|
Example:
|
|
(keypartN IN (1,2, ..., n1)) AND
|
|
...
|
|
(keypart2 IN (1,2, ..., n2)) AND
|
|
(keypart1 IN (1,2, ..., n3))
|
|
|
|
but not in all cases:
|
|
|
|
- There are WHERE clauses that do have a compact SEL_ARG-graph
|
|
representation but get_mm_tree() and its callees will construct a
|
|
graph of combinatorial size.
|
|
Example:
|
|
(keypart1 IN (1,2, ..., n1)) AND
|
|
(keypart2 IN (1,2, ..., n2)) AND
|
|
...
|
|
(keypartN IN (1,2, ..., n3))
|
|
|
|
- There are WHERE clauses for which the minimal possible SEL_ARG graph
|
|
representation will have combinatorial size.
|
|
Example:
|
|
By induction: Let's take any interval on some keypart in the middle:
|
|
|
|
kp15=c0
|
|
|
|
Then let's AND it with this interval 'structure' from preceding and
|
|
following keyparts:
|
|
|
|
(kp14=c1 AND kp16=c3) OR keypart14=c2) (*)
|
|
|
|
We will obtain this SEL_ARG graph:
|
|
|
|
kp14 $ kp15 $ kp16
|
|
$ $
|
|
+---------+ $ +---------+ $ +---------+
|
|
| kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 |
|
|
+---------+ $ +---------+ $ +---------+
|
|
| $ $
|
|
+---------+ $ +---------+ $
|
|
| kp14=c2 |--$-->| kp15=c0 | $
|
|
+---------+ $ +---------+ $
|
|
$ $
|
|
|
|
Note that we had to duplicate "kp15=c0" and there was no way to avoid
|
|
that.
|
|
The induction step: AND the obtained expression with another "wrapping"
|
|
expression like (*).
|
|
When the process ends because of the limit on max. number of keyparts
|
|
we'll have:
|
|
|
|
WHERE clause length is O(3*#max_keyparts)
|
|
SEL_ARG graph size is O(2^(#max_keyparts/2))
|
|
|
|
(it is also possible to construct a case where instead of 2 in 2^n we
|
|
have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31
|
|
nodes)
|
|
|
|
We avoid consuming too much memory by setting a limit on the number of
|
|
SEL_ARG object we can construct during one range analysis invocation.
|
|
|
|
5. SEL_ARG GRAPH WEIGHT
|
|
|
|
A SEL_ARG graph has a property we call weight, and we define it as follows:
|
|
|
|
<definition>
|
|
If the SEL_ARG graph does not have any node with multiple incoming
|
|
next_key_part edges, then its weight is the number of SEL_ARG objects used.
|
|
|
|
If there is a node with multiple incoming next_key_part edges, clone that
|
|
node, (and the nodes connected to it via prev/next links) and redirect one
|
|
of the incoming next_key_part edges to the clone.
|
|
|
|
Continue with cloning until we get a graph that has no nodes with multiple
|
|
incoming next_key_part edges. Then, the number of SEL_ARG objects in the
|
|
graph is the weight of the original graph.
|
|
</definition>
|
|
|
|
Example:
|
|
|
|
kp1 $ kp2 $ kp3
|
|
$ $
|
|
| +-------+ $ $
|
|
\->| kp1=2 |--$--------------$-+
|
|
+-------+ $ $ | +--------+
|
|
| $ $ ==>| kp3=11 |
|
|
+-------+ $ $ | +--------+
|
|
| kp1>3 |--$--------------$-+ |
|
|
+-------+ $ $ +--------+
|
|
$ $ | kp3=14 |
|
|
$ $ +--------+
|
|
$ $ |
|
|
$ $ +--------+
|
|
$ $ | kp3=14 |
|
|
$ $ +--------+
|
|
|
|
Here, the weight is 2 + 2*3=8.
|
|
|
|
The rationale behind using this definition of weight is:
|
|
- it has the same order-of-magnitude as the number of ranges that the
|
|
SEL_ARG graph is describing,
|
|
- it is a lot easier to compute than computing the number of ranges,
|
|
- it can be updated incrementally when performing AND/OR operations on
|
|
parts of the graph.
|
|
|
|
6. For handling DESC keyparts, See HowRangeOptimizerHandlesDescKeyparts
|
|
*/
|
|
|
|
class SEL_ARG :public Sql_alloc
|
|
{
|
|
static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
|
|
uint8 b_flag);
|
|
public:
|
|
uint8 min_flag,max_flag,maybe_flag;
|
|
uint8 part; // Which key part
|
|
uint8 maybe_null;
|
|
/*
|
|
The ordinal number the least significant component encountered in
|
|
the ranges of the SEL_ARG tree (the first component has number 1)
|
|
|
|
Note: this number is currently not precise, it is an upper bound.
|
|
@seealso SEL_ARG::get_max_key_part()
|
|
*/
|
|
uint16 max_part_no;
|
|
/*
|
|
Number of children of this element in the RB-tree, plus 1 for this
|
|
element itself.
|
|
*/
|
|
uint32 elements;
|
|
/*
|
|
Valid only for elements which are RB-tree roots: Number of times this
|
|
RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
|
|
SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
|
|
*/
|
|
ulong use_count;
|
|
|
|
Field *field;
|
|
uchar *min_value,*max_value; // Pointer to range
|
|
|
|
/*
|
|
eq_tree() requires that left == right == 0 if the type is MAYBE_KEY.
|
|
*/
|
|
SEL_ARG *left,*right; /* R-B tree children */
|
|
SEL_ARG *next,*prev; /* Links for bi-directional interval list */
|
|
SEL_ARG *parent; /* R-B tree parent */
|
|
SEL_ARG *next_key_part;
|
|
enum leaf_color { BLACK,RED } color;
|
|
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
|
|
|
|
/*
|
|
For R-B root nodes only: the graph weight, as defined above in the
|
|
SEL_ARG GRAPH WEIGHT section.
|
|
*/
|
|
uint weight;
|
|
enum { MAX_WEIGHT = 32000 };
|
|
|
|
#ifndef DBUG_OFF
|
|
uint verify_weight();
|
|
#endif
|
|
|
|
/* See RANGE_OPT_PARAM::alloced_sel_args */
|
|
enum { DEFAULT_MAX_SEL_ARGS = 16000 };
|
|
|
|
SEL_ARG() = default;
|
|
SEL_ARG(SEL_ARG &);
|
|
SEL_ARG(Field *, const uchar *, const uchar *);
|
|
SEL_ARG(Field *field, uint8 part,
|
|
uchar *min_value, uchar *max_value,
|
|
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
|
|
|
|
/* This is used to construct degenerate SEL_ARGS like ALWAYS, IMPOSSIBLE, etc */
|
|
SEL_ARG(enum Type type_arg)
|
|
:min_flag(0),
|
|
max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/,
|
|
elements(1),use_count(1),left(0),right(0),
|
|
next_key_part(0), color(BLACK), type(type_arg), weight(1)
|
|
{}
|
|
/**
|
|
returns true if a range predicate is equal. Use all_same()
|
|
to check for equality of all the predicates on this keypart.
|
|
*/
|
|
inline bool is_same(const SEL_ARG *arg) const
|
|
{
|
|
if (type != arg->type || part != arg->part)
|
|
return false;
|
|
if (type != KEY_RANGE)
|
|
return true;
|
|
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
|
|
}
|
|
|
|
uint get_max_key_part() const;
|
|
|
|
/**
|
|
returns true if all the predicates in the keypart tree are equal
|
|
*/
|
|
bool all_same(const SEL_ARG *arg) const
|
|
{
|
|
if (type != arg->type || part != arg->part)
|
|
return false;
|
|
if (type != KEY_RANGE)
|
|
return true;
|
|
if (arg == this)
|
|
return true;
|
|
const SEL_ARG *cmp_arg= arg->first();
|
|
const SEL_ARG *cur_arg= first();
|
|
for (; cur_arg && cmp_arg && cur_arg->is_same(cmp_arg);
|
|
cur_arg= cur_arg->next, cmp_arg= cmp_arg->next) ;
|
|
if (cur_arg || cmp_arg)
|
|
return false;
|
|
return true;
|
|
}
|
|
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
|
|
inline void maybe_smaller() { maybe_flag=1; }
|
|
/* Return true iff it's a single-point null interval */
|
|
inline bool is_null_interval() { return maybe_null && max_value[0] == 1; }
|
|
inline int cmp_min_to_min(const SEL_ARG* arg) const
|
|
{
|
|
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
|
|
}
|
|
inline int cmp_min_to_max(const SEL_ARG* arg) const
|
|
{
|
|
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
|
|
}
|
|
inline int cmp_max_to_max(const SEL_ARG* arg) const
|
|
{
|
|
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
|
|
}
|
|
inline int cmp_max_to_min(const SEL_ARG* arg) const
|
|
{
|
|
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
|
|
}
|
|
SEL_ARG *clone_and(THD *thd, SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
uchar *new_min,*new_max;
|
|
uint8 flag_min,flag_max;
|
|
if (cmp_min_to_min(arg) >= 0)
|
|
{
|
|
new_min=min_value; flag_min=min_flag;
|
|
}
|
|
else
|
|
{
|
|
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
|
|
}
|
|
if (cmp_max_to_max(arg) <= 0)
|
|
{
|
|
new_max=max_value; flag_max=max_flag;
|
|
}
|
|
else
|
|
{
|
|
new_max=arg->max_value; flag_max=arg->max_flag;
|
|
}
|
|
return new (thd->mem_root) SEL_ARG(field, part,
|
|
new_min, new_max, flag_min,
|
|
flag_max,
|
|
MY_TEST(maybe_flag && arg->maybe_flag));
|
|
}
|
|
SEL_ARG *clone_first(SEL_ARG *arg)
|
|
{ // min <= X < arg->min
|
|
return new SEL_ARG(field, part, min_value, arg->min_value,
|
|
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
|
|
maybe_flag | arg->maybe_flag);
|
|
}
|
|
SEL_ARG *clone_last(SEL_ARG *arg)
|
|
{ // min <= X <= key_max
|
|
return new SEL_ARG(field, part, min_value, arg->max_value,
|
|
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
|
|
}
|
|
SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);
|
|
|
|
bool copy_min(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
if (cmp_min_to_min(arg) > 0)
|
|
{
|
|
min_value=arg->min_value; min_flag=arg->min_flag;
|
|
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
|
(NO_MAX_RANGE | NO_MIN_RANGE))
|
|
return 1; // Full range
|
|
}
|
|
maybe_flag|=arg->maybe_flag;
|
|
return 0;
|
|
}
|
|
bool copy_max(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
if (cmp_max_to_max(arg) <= 0)
|
|
{
|
|
max_value=arg->max_value; max_flag=arg->max_flag;
|
|
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
|
(NO_MAX_RANGE | NO_MIN_RANGE))
|
|
return 1; // Full range
|
|
}
|
|
maybe_flag|=arg->maybe_flag;
|
|
return 0;
|
|
}
|
|
|
|
void copy_min_to_min(SEL_ARG *arg)
|
|
{
|
|
min_value=arg->min_value; min_flag=arg->min_flag;
|
|
}
|
|
void copy_min_to_max(SEL_ARG *arg)
|
|
{
|
|
max_value=arg->min_value;
|
|
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
|
|
}
|
|
void copy_max_to_min(SEL_ARG *arg)
|
|
{
|
|
min_value=arg->max_value;
|
|
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
|
|
}
|
|
/* returns a number of keypart values (0 or 1) appended to the key buffer */
|
|
int store_min(uint length, uchar **min_key,uint min_key_flag)
|
|
{
|
|
/* "(kp1 > c1) AND (kp2 OP c2) AND ..." -> (kp1 > c1) */
|
|
if ((min_flag & GEOM_FLAG) ||
|
|
(!(min_flag & NO_MIN_RANGE) &&
|
|
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
|
|
{
|
|
if (maybe_null && *min_value)
|
|
{
|
|
**min_key=1;
|
|
bzero(*min_key+1,length-1);
|
|
}
|
|
else
|
|
memcpy(*min_key,min_value,length);
|
|
(*min_key)+= length;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
/* returns a number of keypart values (0 or 1) appended to the key buffer */
|
|
int store_max(uint length, uchar **max_key, uint max_key_flag)
|
|
{
|
|
if (!(max_flag & NO_MAX_RANGE) &&
|
|
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
|
|
{
|
|
if (maybe_null && *max_value)
|
|
{
|
|
**max_key=1;
|
|
bzero(*max_key+1,length-1);
|
|
}
|
|
else
|
|
memcpy(*max_key,max_value,length);
|
|
(*max_key)+= length;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Save minimum and maximum, taking index order into account */
|
|
void store_min_max(KEY_PART *kp,
|
|
uint length,
|
|
uchar **min_key, uint min_flag,
|
|
uchar **max_key, uint max_flag,
|
|
int *min_part, int *max_part)
|
|
{
|
|
if (kp[part].flag & HA_REVERSE_SORT) {
|
|
*max_part += store_min(length, max_key, min_flag);
|
|
*min_part += store_max(length, min_key, max_flag);
|
|
} else {
|
|
*min_part += store_min(length, min_key, min_flag);
|
|
*max_part += store_max(length, max_key, max_flag);
|
|
}
|
|
}
|
|
/*
|
|
Get the flag for range's starting endpoint, taking index order into
|
|
account.
|
|
*/
|
|
uint get_min_flag(KEY_PART *kp)
|
|
{
|
|
return (kp[part].flag & HA_REVERSE_SORT)? invert_max_flag(max_flag) : min_flag;
|
|
}
|
|
/*
|
|
Get the flag for range's starting endpoint, taking index order into
|
|
account.
|
|
*/
|
|
uint get_max_flag(KEY_PART *kp)
|
|
{
|
|
return (kp[part].flag & HA_REVERSE_SORT)? invert_min_flag(min_flag) : max_flag ;
|
|
}
|
|
/* Get the previous interval, taking index order into account */
|
|
inline SEL_ARG* index_order_prev(KEY_PART *kp)
|
|
{
|
|
return (kp[part].flag & HA_REVERSE_SORT)? next : prev;
|
|
}
|
|
/* Get the next interval, taking index order into account */
|
|
inline SEL_ARG* index_order_next(KEY_PART *kp)
|
|
{
|
|
return (kp[part].flag & HA_REVERSE_SORT)? prev : next;
|
|
}
|
|
|
|
/*
|
|
Produce a single multi-part interval, taking key part ordering into
|
|
account.
|
|
*/
|
|
void store_next_min_max_keys(KEY_PART *key, uchar **cur_min_key,
|
|
uint *cur_min_flag, uchar **cur_max_key,
|
|
uint *cur_max_flag, int *min_part,
|
|
int *max_part);
|
|
|
|
/*
|
|
Returns a number of keypart values appended to the key buffer
|
|
for min key and max key. This function is used by both Range
|
|
Analysis and Partition pruning. For partition pruning we have
|
|
to ensure that we don't store also subpartition fields. Thus
|
|
we have to stop at the last partition part and not step into
|
|
the subpartition fields. For Range Analysis we set last_part
|
|
to MAX_KEY which we should never reach.
|
|
*/
|
|
int store_min_key(KEY_PART *key,
|
|
uchar **range_key,
|
|
uint *range_key_flag,
|
|
uint last_part,
|
|
bool start_key)
|
|
{
|
|
SEL_ARG *key_tree= first();
|
|
uint res= key_tree->store_min(key[key_tree->part].store_length,
|
|
range_key, *range_key_flag);
|
|
// add flags only if a key_part is written to the buffer
|
|
if (!res)
|
|
return 0;
|
|
*range_key_flag|= key_tree->min_flag;
|
|
SEL_ARG *nkp= key_tree->next_key_part;
|
|
if (nkp && nkp->type == SEL_ARG::KEY_RANGE &&
|
|
key_tree->part != last_part &&
|
|
nkp->part == key_tree->part+1 &&
|
|
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
|
|
{
|
|
const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
|
|
if (start_key == asc)
|
|
{
|
|
res+= nkp->store_min_key(key, range_key, range_key_flag, last_part,
|
|
start_key);
|
|
}
|
|
else
|
|
{
|
|
uint tmp_flag = invert_min_flag(*range_key_flag);
|
|
res += nkp->store_max_key(key, range_key, &tmp_flag, last_part,
|
|
start_key);
|
|
*range_key_flag = invert_max_flag(tmp_flag);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* returns a number of keypart values appended to the key buffer */
|
|
int store_max_key(KEY_PART *key,
|
|
uchar **range_key,
|
|
uint *range_key_flag,
|
|
uint last_part,
|
|
bool start_key)
|
|
{
|
|
SEL_ARG *key_tree= last();
|
|
uint res=key_tree->store_max(key[key_tree->part].store_length,
|
|
range_key, *range_key_flag);
|
|
if (!res)
|
|
return 0;
|
|
*range_key_flag|= key_tree->max_flag;
|
|
SEL_ARG *nkp= key_tree->next_key_part;
|
|
if (nkp && nkp->type == SEL_ARG::KEY_RANGE &&
|
|
key_tree->part != last_part &&
|
|
nkp->part == key_tree->part+1 &&
|
|
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
|
|
{
|
|
const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
|
|
if ((!start_key && asc) || (start_key && !asc))
|
|
{
|
|
res += nkp->store_max_key(key, range_key, range_key_flag, last_part,
|
|
start_key);
|
|
}
|
|
else
|
|
{
|
|
uint tmp_flag = invert_max_flag(*range_key_flag);
|
|
res += nkp->store_min_key(key, range_key, &tmp_flag, last_part,
|
|
start_key);
|
|
*range_key_flag = invert_min_flag(tmp_flag);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SEL_ARG *insert(SEL_ARG *key);
|
|
SEL_ARG *tree_delete(SEL_ARG *key);
|
|
SEL_ARG *find_range(SEL_ARG *key);
|
|
SEL_ARG *rb_insert(SEL_ARG *leaf);
|
|
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
|
|
#ifdef EXTRA_DEBUG
|
|
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
|
|
void test_use_count(SEL_ARG *root);
|
|
#endif
|
|
SEL_ARG *first();
|
|
const SEL_ARG *first() const;
|
|
SEL_ARG *last();
|
|
void make_root();
|
|
inline bool simple_key()
|
|
{
|
|
return !next_key_part && elements == 1;
|
|
}
|
|
void increment_use_count(long count)
|
|
{
|
|
if (next_key_part)
|
|
{
|
|
next_key_part->use_count+=count;
|
|
count*= (next_key_part->use_count-count);
|
|
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
|
|
if (pos->next_key_part)
|
|
pos->increment_use_count(count);
|
|
}
|
|
}
|
|
void incr_refs()
|
|
{
|
|
increment_use_count(1);
|
|
use_count++;
|
|
}
|
|
void incr_refs_all()
|
|
{
|
|
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
|
{
|
|
pos->increment_use_count(1);
|
|
}
|
|
use_count++;
|
|
}
|
|
void free_tree()
|
|
{
|
|
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
|
if (pos->next_key_part)
|
|
{
|
|
pos->next_key_part->use_count--;
|
|
pos->next_key_part->free_tree();
|
|
}
|
|
}
|
|
|
|
inline SEL_ARG **parent_ptr()
|
|
{
|
|
return parent->left == this ? &parent->left : &parent->right;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if this SEL_ARG object represents a single-point interval
|
|
|
|
SYNOPSIS
|
|
is_singlepoint()
|
|
|
|
DESCRIPTION
|
|
Check if this SEL_ARG object (not tree) represents a single-point
|
|
interval, i.e. if it represents a "keypart = const" or
|
|
"keypart IS NULL".
|
|
|
|
RETURN
|
|
TRUE This SEL_ARG object represents a singlepoint interval
|
|
FALSE Otherwise
|
|
*/
|
|
|
|
bool is_singlepoint() const
|
|
{
|
|
/*
|
|
Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
|
|
flags, and the same for right edge.
|
|
*/
|
|
if (min_flag || max_flag)
|
|
return FALSE;
|
|
uchar *min_val= min_value;
|
|
uchar *max_val= max_value;
|
|
|
|
if (maybe_null)
|
|
{
|
|
/* First byte is a NULL value indicator */
|
|
if (*min_val != *max_val)
|
|
return FALSE;
|
|
|
|
if (*min_val)
|
|
return TRUE; /* This "x IS NULL" */
|
|
min_val++;
|
|
max_val++;
|
|
}
|
|
return !field->key_cmp(min_val, max_val);
|
|
}
|
|
SEL_ARG *clone_tree(RANGE_OPT_PARAM *param);
|
|
};
|
|
|
|
/*
|
|
HowRangeOptimizerHandlesDescKeyparts
|
|
====================================
|
|
|
|
Starting with MySQL-8.0 and MariaDB 10.8, index key parts may be descending,
|
|
for example:
|
|
|
|
INDEX idx1(col1, col2 DESC, col3, col4 DESC)
|
|
|
|
Range Optimizer handles this as follows:
|
|
|
|
Other than that, the SEL_ARG graph is built without any regard to DESC
|
|
keyparts.
|
|
|
|
For example, for an index
|
|
|
|
INDEX idx2(kp1 DESC, kp2)
|
|
|
|
and range
|
|
|
|
kp1 BETWEEN 10 and 20 (RANGE-1)
|
|
|
|
the SEL_ARG will have min_value=10, max_value=20
|
|
|
|
The ordering of key parts is taken into account when SEL_ARG graph is
|
|
linearized to ranges, in sel_arg_range_seq_next() and get_quick_keys().
|
|
|
|
The storage engine expects the first bound to be the first in the index and
|
|
the last bound to be the last, that is, for (RANGE-1) we will flip min and
|
|
max and generate these key_range structures:
|
|
|
|
start.key='20' , end.key='10'
|
|
|
|
See SEL_ARG::store_min_max(). The flag values are flipped as well, see
|
|
SEL_ARG::get_min_flag(), get_max_flag().
|
|
|
|
== Handling multiple key parts ==
|
|
|
|
For multi-part keys, the order of key parts has an effect on which ranges are
|
|
generated. Consider
|
|
|
|
kp1 >= 10 AND kp2 >'foo'
|
|
|
|
for INDEX(kp1 ASC, kp2 ASC) the range will be
|
|
|
|
(kp1, kp2) > (10, 'foo')
|
|
|
|
while for INDEX(kp1 ASC, kp2 DESC) it will be just
|
|
|
|
kp1 >= 10
|
|
|
|
Another example:
|
|
|
|
(kp1 BETWEEN 10 AND 20) AND (kp2 BETWEEN 'foo' AND 'quux')
|
|
|
|
with INDEX (kp1 ASC, kp2 ASC) will generate
|
|
|
|
(10, 'foo') <= (kp1, kp2) < (20, 'quux')
|
|
|
|
while with index INDEX (kp1 ASC, kp2 DESC) it will generate
|
|
|
|
(10, 'quux') <= (kp1, kp2) < (20, 'foo')
|
|
|
|
This is again achieved by sel_arg_range_seq_next() and get_quick_keys()
|
|
flipping SEL_ARG's min,max, their flags and next/prev as needed.
|
|
*/
|
|
|
|
extern MYSQL_PLUGIN_IMPORT SEL_ARG null_element;
|
|
|
|
class SEL_ARG_IMPOSSIBLE: public SEL_ARG
|
|
{
|
|
public:
|
|
SEL_ARG_IMPOSSIBLE(Field *field)
|
|
:SEL_ARG(field, 0, 0)
|
|
{
|
|
type= SEL_ARG::IMPOSSIBLE;
|
|
}
|
|
};
|
|
|
|
|
|
class RANGE_OPT_PARAM
|
|
{
|
|
public:
|
|
THD *thd; /* Current thread handle */
|
|
TABLE *table; /* Table being analyzed */
|
|
table_map prev_tables;
|
|
table_map read_tables;
|
|
table_map current_table; /* Bit of the table being analyzed */
|
|
|
|
/* Array of parts of all keys for which range analysis is performed */
|
|
KEY_PART *key_parts;
|
|
KEY_PART *key_parts_end;
|
|
MEM_ROOT *mem_root; /* Memory that will be freed when range analysis completes */
|
|
MEM_ROOT *old_root; /* Memory that will last until the query end */
|
|
/*
|
|
Number of indexes used in range analysis (In SEL_TREE::keys only first
|
|
#keys elements are not empty)
|
|
*/
|
|
uint keys;
|
|
|
|
/*
|
|
If true, the index descriptions describe real indexes (and it is ok to
|
|
call field->optimize_range(real_keynr[...], ...).
|
|
Otherwise index description describes fake indexes.
|
|
*/
|
|
bool using_real_indexes;
|
|
|
|
/*
|
|
Aggressively remove "scans" that do not have conditions on first
|
|
keyparts. Such scans are usable when doing partition pruning but not
|
|
regular range optimization.
|
|
*/
|
|
bool remove_jump_scans;
|
|
|
|
/*
|
|
TRUE <=> Range analyzer should remove parts of condition that are found
|
|
to be always FALSE.
|
|
*/
|
|
bool remove_false_where_parts;
|
|
|
|
/*
|
|
Which functions should give SQL notes for unusable keys.
|
|
*/
|
|
Item_func::Bitmap note_unusable_keys;
|
|
|
|
/*
|
|
used_key_no -> table_key_no translation table. Only makes sense if
|
|
using_real_indexes==TRUE
|
|
*/
|
|
uint real_keynr[MAX_KEY];
|
|
|
|
/*
|
|
Used to store 'current key tuples', in both range analysis and
|
|
partitioning (list) analysis
|
|
*/
|
|
uchar *min_key;
|
|
uchar *max_key;
|
|
|
|
/* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */
|
|
uint alloced_sel_args;
|
|
|
|
bool force_default_mrr;
|
|
KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
|
|
|
|
bool statement_should_be_aborted() const
|
|
{
|
|
return
|
|
thd->killed ||
|
|
thd->is_error() ||
|
|
alloced_sel_args > thd->variables.optimizer_max_sel_args;
|
|
}
|
|
};
|
|
|
|
|
|
class Explain_quick_select;
|
|
/*
|
|
A "MIN_TUPLE < tbl.key_tuple < MAX_TUPLE" interval.
|
|
|
|
One of endpoints may be absent. 'flags' member has flags which tell whether
|
|
the endpoints are '<' or '<='.
|
|
*/
|
|
class QUICK_RANGE :public Sql_alloc {
|
|
public:
|
|
uchar *min_key,*max_key;
|
|
uint16 min_length,max_length,flag;
|
|
key_part_map min_keypart_map, // bitmap of used keyparts in min_key
|
|
max_keypart_map; // bitmap of used keyparts in max_key
|
|
#ifdef HAVE_valgrind
|
|
uint16 dummy; /* Avoid warnings on 'flag' */
|
|
#endif
|
|
QUICK_RANGE(); /* Full range */
|
|
QUICK_RANGE(THD *thd, const uchar *min_key_arg, uint min_length_arg,
|
|
key_part_map min_keypart_map_arg,
|
|
const uchar *max_key_arg, uint max_length_arg,
|
|
key_part_map max_keypart_map_arg,
|
|
uint flag_arg)
|
|
: min_key((uchar*) thd->memdup(min_key_arg, min_length_arg + 1)),
|
|
max_key((uchar*) thd->memdup(max_key_arg, max_length_arg + 1)),
|
|
min_length((uint16) min_length_arg),
|
|
max_length((uint16) max_length_arg),
|
|
flag((uint16) flag_arg),
|
|
min_keypart_map(min_keypart_map_arg),
|
|
max_keypart_map(max_keypart_map_arg)
|
|
{
|
|
#ifdef HAVE_valgrind
|
|
dummy=0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
Initializes a key_range object for communication with storage engine.
|
|
|
|
This function facilitates communication with the Storage Engine API by
|
|
translating the minimum endpoint of the interval represented by this
|
|
QUICK_RANGE into an index range endpoint specifier for the engine.
|
|
|
|
@param Pointer to an uninitialized key_range C struct.
|
|
|
|
@param prefix_length The length of the search key prefix to be used for
|
|
lookup.
|
|
|
|
@param keypart_map A set (bitmap) of keyparts to be used.
|
|
*/
|
|
void make_min_endpoint(key_range *kr, uint prefix_length,
|
|
key_part_map keypart_map) {
|
|
make_min_endpoint(kr);
|
|
kr->length= MY_MIN(kr->length, prefix_length);
|
|
kr->keypart_map&= keypart_map;
|
|
}
|
|
|
|
/**
|
|
Initializes a key_range object for communication with storage engine.
|
|
|
|
This function facilitates communication with the Storage Engine API by
|
|
translating the minimum endpoint of the interval represented by this
|
|
QUICK_RANGE into an index range endpoint specifier for the engine.
|
|
|
|
@param Pointer to an uninitialized key_range C struct.
|
|
*/
|
|
void make_min_endpoint(key_range *kr) {
|
|
kr->key= (const uchar*)min_key;
|
|
kr->length= min_length;
|
|
kr->keypart_map= min_keypart_map;
|
|
kr->flag= ((flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
|
|
(flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
|
|
}
|
|
|
|
/**
|
|
Initializes a key_range object for communication with storage engine.
|
|
|
|
This function facilitates communication with the Storage Engine API by
|
|
translating the maximum endpoint of the interval represented by this
|
|
QUICK_RANGE into an index range endpoint specifier for the engine.
|
|
|
|
@param Pointer to an uninitialized key_range C struct.
|
|
|
|
@param prefix_length The length of the search key prefix to be used for
|
|
lookup.
|
|
|
|
@param keypart_map A set (bitmap) of keyparts to be used.
|
|
*/
|
|
void make_max_endpoint(key_range *kr, uint prefix_length,
|
|
key_part_map keypart_map) {
|
|
make_max_endpoint(kr);
|
|
kr->length= MY_MIN(kr->length, prefix_length);
|
|
kr->keypart_map&= keypart_map;
|
|
}
|
|
|
|
/**
|
|
Initializes a key_range object for communication with storage engine.
|
|
|
|
This function facilitates communication with the Storage Engine API by
|
|
translating the maximum endpoint of the interval represented by this
|
|
QUICK_RANGE into an index range endpoint specifier for the engine.
|
|
|
|
@param Pointer to an uninitialized key_range C struct.
|
|
*/
|
|
void make_max_endpoint(key_range *kr) {
|
|
kr->key= (const uchar*)max_key;
|
|
kr->length= max_length;
|
|
kr->keypart_map= max_keypart_map;
|
|
/*
|
|
We use READ_AFTER_KEY here because if we are reading on a key
|
|
prefix we want to find all keys with this prefix
|
|
*/
|
|
kr->flag= (flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
|
|
}
|
|
};
|
|
|
|
|
|
/*
|
|
Quick select interface.
|
|
This class is a parent for all QUICK_*_SELECT and FT_SELECT classes.
|
|
|
|
The usage scenario is as follows:
|
|
1. Create quick select
|
|
quick= new QUICK_XXX_SELECT(...);
|
|
|
|
2. Perform lightweight initialization. This can be done in 2 ways:
|
|
2.a: Regular initialization
|
|
if (quick->init())
|
|
{
|
|
//the only valid action after failed init() call is delete
|
|
delete quick;
|
|
}
|
|
2.b: Special initialization for quick selects merged by QUICK_ROR_*_SELECT
|
|
if (quick->init_ror_merged_scan())
|
|
delete quick;
|
|
|
|
3. Perform zero, one, or more scans.
|
|
while (...)
|
|
{
|
|
// initialize quick select for scan. This may allocate
|
|
// buffers and/or prefetch rows.
|
|
if (quick->reset())
|
|
{
|
|
//the only valid action after failed reset() call is delete
|
|
delete quick;
|
|
//abort query
|
|
}
|
|
|
|
// perform the scan
|
|
do
|
|
{
|
|
res= quick->get_next();
|
|
} while (res && ...)
|
|
}
|
|
|
|
4. Delete the select:
|
|
delete quick;
|
|
|
|
NOTE
|
|
quick select doesn't use Sql_alloc/MEM_ROOT allocation because "range
|
|
checked for each record" functionality may create/destroy
|
|
O(#records_in_some_table) quick selects during query execution.
|
|
*/
|
|
|
|
class QUICK_SELECT_I
|
|
{
|
|
public:
|
|
ha_rows records; /* estimate of # of records to be retrieved */
|
|
double read_time; /* time to perform this retrieval */
|
|
TABLE *head;
|
|
/*
|
|
Index this quick select uses, or MAX_KEY for quick selects
|
|
that use several indexes
|
|
*/
|
|
uint index;
|
|
|
|
/*
|
|
Total length of first used_key_parts parts of the key.
|
|
Applicable if index!= MAX_KEY.
|
|
*/
|
|
uint max_used_key_length;
|
|
|
|
/*
|
|
Max. number of (first) key parts this quick select uses for retrieval.
|
|
eg. for "(key1p1=c1 AND key1p2=c2) OR key1p1=c2" used_key_parts == 2.
|
|
Applicable if index!= MAX_KEY.
|
|
|
|
For QUICK_GROUP_MIN_MAX_SELECT it includes MIN/MAX argument keyparts.
|
|
*/
|
|
uint used_key_parts;
|
|
|
|
QUICK_SELECT_I();
|
|
virtual ~QUICK_SELECT_I() = default;;
|
|
|
|
/*
|
|
Do post-constructor initialization.
|
|
SYNOPSIS
|
|
init()
|
|
|
|
init() performs initializations that should have been in constructor if
|
|
it was possible to return errors from constructors. The join optimizer may
|
|
create and then delete quick selects without retrieving any rows so init()
|
|
must not contain any IO or CPU intensive code.
|
|
|
|
If init() call fails the only valid action is to delete this quick select,
|
|
reset() and get_next() must not be called.
|
|
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
virtual int init() = 0;
|
|
|
|
/*
|
|
Initialize quick select for row retrieval.
|
|
SYNOPSIS
|
|
reset()
|
|
|
|
reset() should be called when it is certain that row retrieval will be
|
|
necessary. This call may do heavyweight initialization like buffering first
|
|
N records etc. If reset() call fails get_next() must not be called.
|
|
Note that reset() may be called several times if
|
|
* the quick select is executed in a subselect
|
|
* a JOIN buffer is used
|
|
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
virtual int reset(void) = 0;
|
|
|
|
virtual int get_next() = 0; /* get next record to retrieve */
|
|
|
|
/* Range end should be called when we have looped over the whole index */
|
|
virtual void range_end() {}
|
|
|
|
virtual bool reverse_sorted() = 0;
|
|
virtual bool unique_key_range() { return false; }
|
|
|
|
/*
|
|
Request that this quick select produces sorted output. Not all quick
|
|
selects can do it, the caller is responsible for calling this function
|
|
only for those quick selects that can.
|
|
*/
|
|
virtual void need_sorted_output() = 0;
|
|
enum {
|
|
QS_TYPE_RANGE = 0,
|
|
QS_TYPE_INDEX_INTERSECT = 1,
|
|
QS_TYPE_INDEX_MERGE = 2,
|
|
QS_TYPE_RANGE_DESC = 3,
|
|
QS_TYPE_FULLTEXT = 4,
|
|
QS_TYPE_ROR_INTERSECT = 5,
|
|
QS_TYPE_ROR_UNION = 6,
|
|
QS_TYPE_GROUP_MIN_MAX = 7
|
|
};
|
|
|
|
/* Get type of this quick select - one of the QS_TYPE_* values */
|
|
virtual int get_type() = 0;
|
|
|
|
/*
|
|
Initialize this quick select as a merged scan inside a ROR-union or a ROR-
|
|
intersection scan. The caller must not additionally call init() if this
|
|
function is called.
|
|
SYNOPSIS
|
|
init_ror_merged_scan()
|
|
reuse_handler If true, the quick select may use table->handler,
|
|
otherwise it must create and use a separate handler
|
|
object.
|
|
RETURN
|
|
0 Ok
|
|
other Error
|
|
*/
|
|
virtual int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc)
|
|
{ DBUG_ASSERT(0); return 1; }
|
|
|
|
/*
|
|
Save ROWID of last retrieved row in file->ref. This used in ROR-merging.
|
|
*/
|
|
virtual void save_last_pos(){};
|
|
|
|
void add_key_and_length(String *key_names,
|
|
String *used_lengths,
|
|
bool *first);
|
|
|
|
/*
|
|
Append comma-separated list of keys this quick select uses to key_names;
|
|
append comma-separated list of corresponding used lengths to used_lengths.
|
|
This is used by select_describe.
|
|
*/
|
|
virtual void add_keys_and_lengths(String *key_names,
|
|
String *used_lengths)=0;
|
|
|
|
void add_key_name(String *str, bool *first);
|
|
|
|
/* Save information about quick select's query plan */
|
|
virtual Explain_quick_select* get_explain(MEM_ROOT *alloc)= 0;
|
|
|
|
/*
|
|
Return 1 if any index used by this quick select
|
|
uses field which is marked in passed bitmap.
|
|
*/
|
|
virtual bool is_keys_used(const MY_BITMAP *fields);
|
|
|
|
/**
|
|
Simple sanity check that the quick select has been set up
|
|
correctly. Function is overridden by quick selects that merge
|
|
indices.
|
|
*/
|
|
virtual bool is_valid() { return index != MAX_KEY; };
|
|
|
|
/*
|
|
rowid of last row retrieved by this quick select. This is used only when
|
|
doing ROR-index_merge selects
|
|
*/
|
|
uchar *last_rowid;
|
|
|
|
/*
|
|
Table record buffer used by this quick select.
|
|
*/
|
|
uchar *record;
|
|
|
|
virtual void replace_handler(handler *new_file)
|
|
{
|
|
DBUG_ASSERT(0); /* Only supported in QUICK_RANGE_SELECT */
|
|
}
|
|
|
|
#ifndef DBUG_OFF
|
|
/*
|
|
Print quick select information to DBUG_FILE. Caller is responsible
|
|
for locking DBUG_FILE before this call and unlocking it afterwards.
|
|
*/
|
|
virtual void dbug_dump(int indent, bool verbose)= 0;
|
|
#endif
|
|
|
|
/*
|
|
Returns a QUICK_SELECT with reverse order of to the index.
|
|
*/
|
|
virtual QUICK_SELECT_I *make_reverse(uint used_key_parts_arg) { return NULL; }
|
|
|
|
/*
|
|
Add the key columns used by the quick select into table's read set.
|
|
|
|
This is used by an optimization in filesort.
|
|
*/
|
|
virtual void add_used_key_part_to_set()=0;
|
|
};
|
|
|
|
|
|
struct st_qsel_param;
|
|
class PARAM;
|
|
|
|
|
|
/*
|
|
MRR range sequence, array<QUICK_RANGE> implementation: sequence traversal
|
|
context.
|
|
*/
|
|
typedef struct st_quick_range_seq_ctx
|
|
{
|
|
QUICK_RANGE **first;
|
|
QUICK_RANGE **cur;
|
|
QUICK_RANGE **last;
|
|
} QUICK_RANGE_SEQ_CTX;
|
|
|
|
range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags);
|
|
bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);
|
|
|
|
|
|
/*
|
|
Quick select that does a range scan on a single key. The records are
|
|
returned in key order.
|
|
*/
|
|
class QUICK_RANGE_SELECT : public QUICK_SELECT_I
|
|
{
|
|
protected:
|
|
THD *thd;
|
|
bool no_alloc;
|
|
MEM_ROOT *parent_alloc;
|
|
|
|
/* true if we enabled key only reads */
|
|
handler *file;
|
|
|
|
/* Members to deal with case when this quick select is a ROR-merged scan */
|
|
bool in_ror_merged_scan;
|
|
MY_BITMAP column_bitmap;
|
|
bool free_file; /* TRUE <=> this->file is "owned" by this quick select */
|
|
|
|
/* Range pointers to be used when not using MRR interface */
|
|
/* Members needed to use the MRR interface */
|
|
QUICK_RANGE_SEQ_CTX qr_traversal_ctx;
|
|
public:
|
|
uint mrr_flags; /* Flags to be used with MRR interface */
|
|
protected:
|
|
uint mrr_buf_size; /* copy from thd->variables.mrr_buff_size */
|
|
HANDLER_BUFFER *mrr_buf_desc; /* the handler buffer */
|
|
|
|
/* Info about index we're scanning */
|
|
|
|
DYNAMIC_ARRAY ranges; /* ordered array of range ptrs */
|
|
QUICK_RANGE **cur_range; /* current element in ranges */
|
|
|
|
QUICK_RANGE *last_range;
|
|
|
|
KEY_PART *key_parts;
|
|
KEY_PART_INFO *key_part_info;
|
|
|
|
bool dont_free; /* Used by QUICK_SELECT_DESC */
|
|
|
|
int cmp_next(QUICK_RANGE *range);
|
|
int cmp_prev(QUICK_RANGE *range);
|
|
bool row_in_ranges();
|
|
public:
|
|
MEM_ROOT alloc;
|
|
|
|
QUICK_RANGE_SELECT(THD *thd, TABLE *table,uint index_arg,bool no_alloc,
|
|
MEM_ROOT *parent_alloc, bool *create_err);
|
|
~QUICK_RANGE_SELECT();
|
|
virtual QUICK_RANGE_SELECT *clone(bool *create_error)
|
|
{ return new QUICK_RANGE_SELECT(thd, head, index, no_alloc, parent_alloc,
|
|
create_error); }
|
|
|
|
void need_sorted_output() override;
|
|
int init() override;
|
|
int reset(void) override;
|
|
int get_next() override;
|
|
void range_end() override;
|
|
int get_next_prefix(uint prefix_length, uint group_key_parts,
|
|
uchar *cur_prefix);
|
|
bool reverse_sorted() override { return 0; }
|
|
bool unique_key_range() override;
|
|
int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc) override;
|
|
void save_last_pos() override
|
|
{ file->position(record); }
|
|
int get_type() override { return QS_TYPE_RANGE; }
|
|
void add_keys_and_lengths(String *key_names, String *used_lengths) override;
|
|
Explain_quick_select *get_explain(MEM_ROOT *alloc) override;
|
|
#ifndef DBUG_OFF
|
|
void dbug_dump(int indent, bool verbose) override;
|
|
#endif
|
|
void replace_handler(handler *new_file) override { file= new_file; }
|
|
QUICK_SELECT_I *make_reverse(uint used_key_parts_arg) override;
|
|
|
|
void add_used_key_part_to_set() override;
|
|
|
|
private:
|
|
/* Default copy ctor used by QUICK_SELECT_DESC */
|
|
friend class TRP_ROR_INTERSECT;
|
|
friend
|
|
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
|
|
struct st_table_ref *ref,
|
|
ha_rows records);
|
|
friend bool get_quick_keys(PARAM *param, QUICK_RANGE_SELECT *quick,
|
|
KEY_PART *key, SEL_ARG *key_tree,
|
|
uchar *min_key, uint min_key_flag,
|
|
uchar *max_key, uint max_key_flag);
|
|
friend QUICK_RANGE_SELECT *get_quick_select(PARAM*,uint idx,
|
|
SEL_ARG *key_tree,
|
|
uint mrr_flags,
|
|
uint mrr_buf_size,
|
|
MEM_ROOT *alloc);
|
|
friend class QUICK_SELECT_DESC;
|
|
friend class QUICK_INDEX_SORT_SELECT;
|
|
friend class QUICK_INDEX_MERGE_SELECT;
|
|
friend class QUICK_ROR_INTERSECT_SELECT;
|
|
friend class QUICK_INDEX_INTERSECT_SELECT;
|
|
friend class QUICK_GROUP_MIN_MAX_SELECT;
|
|
friend bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);
|
|
friend range_seq_t quick_range_seq_init(void *init_param,
|
|
uint n_ranges, uint flags);
|
|
friend
|
|
int read_keys_and_merge_scans(THD *thd, TABLE *head,
|
|
List<QUICK_RANGE_SELECT> quick_selects,
|
|
QUICK_RANGE_SELECT *pk_quick_select,
|
|
READ_RECORD *read_record,
|
|
bool intersection,
|
|
key_map *filtered_scans,
|
|
Unique **unique_ptr);
|
|
|
|
};
|
|
|
|
|
|
class QUICK_RANGE_SELECT_GEOM: public QUICK_RANGE_SELECT
|
|
{
|
|
public:
|
|
QUICK_RANGE_SELECT_GEOM(THD *thd, TABLE *table, uint index_arg,
|
|
bool no_alloc, MEM_ROOT *parent_alloc,
|
|
bool *create_err)
|
|
:QUICK_RANGE_SELECT(thd, table, index_arg, no_alloc, parent_alloc,
|
|
create_err)
|
|
{};
|
|
QUICK_RANGE_SELECT *clone(bool *create_error) override
|
|
{
|
|
DBUG_ASSERT(0);
|
|
return new QUICK_RANGE_SELECT_GEOM(thd, head, index, no_alloc,
|
|
parent_alloc, create_error);
|
|
}
|
|
int get_next() override;
|
|
};
|
|
|
|
|
|
/*
|
|
QUICK_INDEX_SORT_SELECT is the base class for the common functionality of:
|
|
- QUICK_INDEX_MERGE_SELECT, access based on multi-index merge/union
|
|
- QUICK_INDEX_INTERSECT_SELECT, access based on multi-index intersection
|
|
|
|
|
|
QUICK_INDEX_SORT_SELECT uses
|
|
* QUICK_RANGE_SELECTs to get rows
|
|
* Unique class
|
|
- to remove duplicate rows for QUICK_INDEX_MERGE_SELECT
|
|
- to intersect rows for QUICK_INDEX_INTERSECT_SELECT
|
|
|
|
INDEX MERGE OPTIMIZER
|
|
Current implementation doesn't detect all cases where index merge could
|
|
be used, in particular:
|
|
|
|
* index_merge+'using index' is not supported
|
|
|
|
* If WHERE part contains complex nested AND and OR conditions, some ways
|
|
to retrieve rows using index merge will not be considered. The choice
|
|
of read plan may depend on the order of conjuncts/disjuncts in WHERE
|
|
part of the query, see comments near imerge_list_or_list and
|
|
SEL_IMERGE::or_sel_tree_with_checks functions for details.
|
|
|
|
* There is no "index_merge_ref" method (but index merge on non-first
|
|
table in join is possible with 'range checked for each record').
|
|
|
|
|
|
ROW RETRIEVAL ALGORITHM
|
|
|
|
index merge/intersection uses Unique class for duplicates removal.
|
|
index merge/intersection takes advantage of Clustered Primary Key (CPK)
|
|
if the table has one.
|
|
The index merge/intersection algorithm consists of two phases:
|
|
|
|
Phase 1
|
|
(implemented by a QUICK_INDEX_MERGE_SELECT::read_keys_and_merge call):
|
|
|
|
prepare()
|
|
{
|
|
activate 'index only';
|
|
while(retrieve next row for non-CPK scan)
|
|
{
|
|
if (there is a CPK scan and row will be retrieved by it)
|
|
skip this row;
|
|
else
|
|
put its rowid into Unique;
|
|
}
|
|
deactivate 'index only';
|
|
}
|
|
|
|
Phase 2
|
|
(implemented as sequence of QUICK_INDEX_MERGE_SELECT::get_next calls):
|
|
|
|
fetch()
|
|
{
|
|
retrieve all rows from row pointers stored in Unique
|
|
(merging/intersecting them);
|
|
free Unique;
|
|
if (! intersection)
|
|
retrieve all rows for CPK scan;
|
|
}
|
|
*/
|
|
|
|
class QUICK_INDEX_SORT_SELECT : public QUICK_SELECT_I
|
|
{
|
|
protected:
|
|
Unique *unique;
|
|
public:
|
|
QUICK_INDEX_SORT_SELECT(THD *thd, TABLE *table);
|
|
~QUICK_INDEX_SORT_SELECT();
|
|
|
|
int init() override;
|
|
void need_sorted_output() override { DBUG_ASSERT(0); /* Can't do it */ }
|
|
int reset(void) override;
|
|
bool reverse_sorted() override { return false; }
|
|
bool unique_key_range() override { return false; }
|
|
bool is_keys_used(const MY_BITMAP *fields) override;
|
|
#ifndef DBUG_OFF
|
|
void dbug_dump(int indent, bool verbose) override;
|
|
#endif
|
|
Explain_quick_select *get_explain(MEM_ROOT *alloc) override;
|
|
|
|
bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);
|
|
|
|
/* range quick selects this index merge/intersect consists of */
|
|
List<QUICK_RANGE_SELECT> quick_selects;
|
|
|
|
/* quick select that uses clustered primary key (NULL if none) */
|
|
QUICK_RANGE_SELECT* pk_quick_select;
|
|
|
|
MEM_ROOT alloc;
|
|
THD *thd;
|
|
bool is_valid() override
|
|
{
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
QUICK_RANGE_SELECT *quick;
|
|
bool valid= true;
|
|
while ((quick= it++))
|
|
{
|
|
if (!quick->is_valid())
|
|
{
|
|
valid= false;
|
|
break;
|
|
}
|
|
}
|
|
return valid;
|
|
}
|
|
virtual int read_keys_and_merge()= 0;
|
|
/* used to get rows collected in Unique */
|
|
READ_RECORD read_record;
|
|
|
|
void add_used_key_part_to_set() override;
|
|
};
|
|
|
|
|
|
|
|
class QUICK_INDEX_MERGE_SELECT : public QUICK_INDEX_SORT_SELECT
|
|
{
|
|
private:
|
|
/* true if this select is currently doing a clustered PK scan */
|
|
bool doing_pk_scan;
|
|
protected:
|
|
int read_keys_and_merge() override;
|
|
|
|
public:
|
|
QUICK_INDEX_MERGE_SELECT(THD *thd_arg, TABLE *table)
|
|
:QUICK_INDEX_SORT_SELECT(thd_arg, table) {}
|
|
|
|
int get_next() override;
|
|
int get_type() override { return QS_TYPE_INDEX_MERGE; }
|
|
void add_keys_and_lengths(String *key_names, String *used_lengths) override;
|
|
};
|
|
|
|
class QUICK_INDEX_INTERSECT_SELECT : public QUICK_INDEX_SORT_SELECT
|
|
{
|
|
protected:
|
|
int read_keys_and_merge() override;
|
|
|
|
public:
|
|
QUICK_INDEX_INTERSECT_SELECT(THD *thd_arg, TABLE *table)
|
|
:QUICK_INDEX_SORT_SELECT(thd_arg, table) {}
|
|
|
|
key_map filtered_scans;
|
|
int get_next() override;
|
|
int get_type() override { return QS_TYPE_INDEX_INTERSECT; }
|
|
void add_keys_and_lengths(String *key_names, String *used_lengths) override;
|
|
Explain_quick_select *get_explain(MEM_ROOT *alloc) override;
|
|
};
|
|
|
|
|
|
/*
|
|
Rowid-Ordered Retrieval (ROR) index intersection quick select.
|
|
This quick select produces intersection of row sequences returned
|
|
by several QUICK_RANGE_SELECTs it "merges".
|
|
|
|
All merged QUICK_RANGE_SELECTs must return rowids in rowid order.
|
|
QUICK_ROR_INTERSECT_SELECT will return rows in rowid order, too.
|
|
|
|
All merged quick selects retrieve {rowid, covered_fields} tuples (not full
|
|
table records).
|
|
QUICK_ROR_INTERSECT_SELECT retrieves full records if it is not being used
|
|
by QUICK_ROR_INTERSECT_SELECT and all merged quick selects together don't
|
|
cover needed all fields.
|
|
|
|
If one of the merged quick selects is a Clustered PK range scan, it is
|
|
used only to filter rowid sequence produced by other merged quick selects.
|
|
*/
|
|
|
|
class QUICK_ROR_INTERSECT_SELECT : public QUICK_SELECT_I
|
|
{
|
|
public:
|
|
QUICK_ROR_INTERSECT_SELECT(THD *thd, TABLE *table,
|
|
bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc);
|
|
~QUICK_ROR_INTERSECT_SELECT();
|
|
|
|
int init() override;
|
|
void need_sorted_output() override { DBUG_ASSERT(0); /* Can't do it */ }
|
|
int reset(void) override;
|
|
int get_next() override;
|
|
bool reverse_sorted() override { return false; }
|
|
bool unique_key_range() override { return false; }
|
|
int get_type() override { return QS_TYPE_ROR_INTERSECT; }
|
|
void add_keys_and_lengths(String *key_names, String *used_lengths) override;
|
|
Explain_quick_select *get_explain(MEM_ROOT *alloc) override;
|
|
bool is_keys_used(const MY_BITMAP *fields) override;
|
|
void add_used_key_part_to_set() override;
|
|
#ifndef DBUG_OFF
|
|
void dbug_dump(int indent, bool verbose) override;
|
|
#endif
|
|
int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc) override;
|
|
bool push_quick_back(MEM_ROOT *alloc, QUICK_RANGE_SELECT *quick_sel_range);
|
|
|
|
class QUICK_SELECT_WITH_RECORD : public Sql_alloc
|
|
{
|
|
public:
|
|
QUICK_RANGE_SELECT *quick;
|
|
uchar *key_tuple;
|
|
~QUICK_SELECT_WITH_RECORD() { delete quick; }
|
|
};
|
|
|
|
/*
|
|
Range quick selects this intersection consists of, not including
|
|
cpk_quick.
|
|
*/
|
|
List<QUICK_SELECT_WITH_RECORD> quick_selects;
|
|
|
|
bool is_valid() override
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
|
|
QUICK_SELECT_WITH_RECORD *quick;
|
|
bool valid= true;
|
|
while ((quick= it++))
|
|
{
|
|
if (!quick->quick->is_valid())
|
|
{
|
|
valid= false;
|
|
break;
|
|
}
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
/*
|
|
Merged quick select that uses Clustered PK, if there is one. This quick
|
|
select is not used for row retrieval, it is used for row retrieval.
|
|
*/
|
|
QUICK_RANGE_SELECT *cpk_quick;
|
|
|
|
MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
|
|
THD *thd; /* current thread */
|
|
bool need_to_fetch_row; /* if true, do retrieve full table records. */
|
|
/* in top-level quick select, true if merged scans where initialized */
|
|
bool scans_inited;
|
|
};
|
|
|
|
|
|
/*
|
|
Rowid-Ordered Retrieval index union select.
|
|
This quick select produces union of row sequences returned by several
|
|
quick select it "merges".
|
|
|
|
All merged quick selects must return rowids in rowid order.
|
|
QUICK_ROR_UNION_SELECT will return rows in rowid order, too.
|
|
|
|
All merged quick selects are set not to retrieve full table records.
|
|
ROR-union quick select always retrieves full records.
|
|
|
|
*/
|
|
|
|
class QUICK_ROR_UNION_SELECT : public QUICK_SELECT_I
|
|
{
|
|
public:
|
|
QUICK_ROR_UNION_SELECT(THD *thd, TABLE *table);
|
|
~QUICK_ROR_UNION_SELECT();
|
|
|
|
int init() override;
|
|
void need_sorted_output() override { DBUG_ASSERT(0); /* Can't do it */ }
|
|
int reset(void) override;
|
|
int get_next() override;
|
|
bool reverse_sorted() override { return false; }
|
|
bool unique_key_range() override { return false; }
|
|
int get_type() override { return QS_TYPE_ROR_UNION; }
|
|
void add_keys_and_lengths(String *key_names, String *used_lengths) override;
|
|
Explain_quick_select *get_explain(MEM_ROOT *alloc) override;
|
|
bool is_keys_used(const MY_BITMAP *fields) override;
|
|
void add_used_key_part_to_set() override;
|
|
#ifndef DBUG_OFF
|
|
void dbug_dump(int indent, bool verbose) override;
|
|
#endif
|
|
|
|
bool push_quick_back(QUICK_SELECT_I *quick_sel_range);
|
|
|
|
List<QUICK_SELECT_I> quick_selects; /* Merged quick selects */
|
|
|
|
bool is_valid() override
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
QUICK_SELECT_I *quick;
|
|
bool valid= true;
|
|
while ((quick= it++))
|
|
{
|
|
if (!quick->is_valid())
|
|
{
|
|
valid= false;
|
|
break;
|
|
}
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
QUEUE queue; /* Priority queue for merge operation */
|
|
MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
|
|
|
|
THD *thd; /* current thread */
|
|
uchar *cur_rowid; /* buffer used in get_next() */
|
|
uchar *prev_rowid; /* rowid of last row returned by get_next() */
|
|
bool have_prev_rowid; /* true if prev_rowid has valid data */
|
|
uint rowid_length; /* table rowid length */
|
|
private:
|
|
bool scans_inited;
|
|
};
|
|
|
|
|
|
/*
|
|
Index scan for GROUP-BY queries with MIN/MAX aggregate functions.
|
|
|
|
This class provides a specialized index access method for GROUP-BY queries
|
|
of the forms:
|
|
|
|
SELECT A_1,...,A_k, [B_1,...,B_m], [MIN(C)], [MAX(C)]
|
|
FROM T
|
|
WHERE [RNG(A_1,...,A_p ; where p <= k)]
|
|
[AND EQ(B_1,...,B_m)]
|
|
[AND PC(C)]
|
|
[AND PA(A_i1,...,A_iq)]
|
|
GROUP BY A_1,...,A_k;
|
|
|
|
or
|
|
|
|
SELECT DISTINCT A_i1,...,A_ik
|
|
FROM T
|
|
WHERE [RNG(A_1,...,A_p ; where p <= k)]
|
|
[AND PA(A_i1,...,A_iq)];
|
|
|
|
where all selected fields are parts of the same index.
|
|
The class of queries that can be processed by this quick select is fully
|
|
specified in the description of get_best_trp_group_min_max() in opt_range.cc.
|
|
|
|
The get_next() method directly produces result tuples, thus obviating the
|
|
need to call end_send_group() because all grouping is already done inside
|
|
get_next().
|
|
|
|
Since one of the requirements is that all select fields are part of the same
|
|
index, this class produces only index keys, and not complete records.
|
|
*/
|
|
|
|
class QUICK_GROUP_MIN_MAX_SELECT : public QUICK_SELECT_I
|
|
{
|
|
private:
|
|
handler * const file; /* The handler used to get data. */
|
|
JOIN *join; /* Descriptor of the current query */
|
|
KEY *index_info; /* The index chosen for data access */
|
|
uchar *record; /* Buffer where the next record is returned. */
|
|
uchar *tmp_record; /* Temporary storage for next_min(), next_max(). */
|
|
uchar *group_prefix; /* Key prefix consisting of the GROUP fields. */
|
|
const uint group_prefix_len; /* Length of the group prefix. */
|
|
uint group_key_parts; /* A number of keyparts in the group prefix */
|
|
bool have_min; /* Specify whether we are computing */
|
|
bool have_max; /* a MIN, a MAX, or both. */
|
|
bool have_agg_distinct;/* aggregate_function(DISTINCT ...). */
|
|
bool seen_first_key; /* Denotes whether the first key was retrieved.*/
|
|
bool doing_key_read; /* true if we enabled key only reads */
|
|
|
|
KEY_PART_INFO *min_max_arg_part; /* The keypart of the only argument field */
|
|
/* of all MIN/MAX functions. */
|
|
uint min_max_arg_len; /* The length of the MIN/MAX argument field */
|
|
uchar *key_infix; /* Infix of constants from equality predicates. */
|
|
uint key_infix_len;
|
|
DYNAMIC_ARRAY min_max_ranges; /* Array of range ptrs for the MIN/MAX field. */
|
|
uint real_prefix_len; /* Length of key prefix extended with key_infix. */
|
|
uint real_key_parts; /* A number of keyparts in the above value. */
|
|
List<Item_sum> *min_functions;
|
|
List<Item_sum> *max_functions;
|
|
List_iterator<Item_sum> *min_functions_it;
|
|
List_iterator<Item_sum> *max_functions_it;
|
|
/*
|
|
Use index scan to get the next different key instead of jumping into it
|
|
through index read
|
|
*/
|
|
bool is_index_scan;
|
|
public:
|
|
/*
|
|
The following two members are public to allow easy access from
|
|
TRP_GROUP_MIN_MAX::make_quick()
|
|
*/
|
|
MEM_ROOT alloc; /* Memory pool for this and quick_prefix_select data. */
|
|
QUICK_RANGE_SELECT *quick_prefix_select;/* For retrieval of group prefixes. */
|
|
private:
|
|
int next_prefix();
|
|
int next_min_in_range();
|
|
int next_max_in_range();
|
|
int next_min();
|
|
int next_max();
|
|
void update_min_result();
|
|
void update_max_result();
|
|
int cmp_min_max_key(const uchar *key, uint16 length);
|
|
public:
|
|
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join, bool have_min,
|
|
bool have_max, bool have_agg_distinct,
|
|
KEY_PART_INFO *min_max_arg_part,
|
|
uint group_prefix_len, uint group_key_parts,
|
|
uint used_key_parts, KEY *index_info, uint
|
|
use_index, double read_cost, ha_rows records, uint
|
|
key_infix_len, uchar *key_infix, MEM_ROOT
|
|
*parent_alloc, bool is_index_scan);
|
|
~QUICK_GROUP_MIN_MAX_SELECT();
|
|
bool add_range(SEL_ARG *sel_range);
|
|
void update_key_stat();
|
|
void adjust_prefix_ranges();
|
|
bool alloc_buffers();
|
|
int init() override;
|
|
void need_sorted_output() override { /* always do it */ }
|
|
int reset() override;
|
|
int get_next() override;
|
|
bool reverse_sorted() override { return false; }
|
|
bool unique_key_range() override { return false; }
|
|
int get_type() override { return QS_TYPE_GROUP_MIN_MAX; }
|
|
void add_keys_and_lengths(String *key_names, String *used_lengths) override;
|
|
void add_used_key_part_to_set() override;
|
|
#ifndef DBUG_OFF
|
|
void dbug_dump(int indent, bool verbose) override;
|
|
#endif
|
|
bool is_agg_distinct() { return have_agg_distinct; }
|
|
bool loose_scan_is_scanning() { return is_index_scan; }
|
|
Explain_quick_select *get_explain(MEM_ROOT *alloc) override;
|
|
};
|
|
|
|
|
|
class QUICK_SELECT_DESC: public QUICK_RANGE_SELECT
|
|
{
|
|
public:
|
|
QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint used_key_parts);
|
|
QUICK_RANGE_SELECT *clone(bool *create_error) override
|
|
{ DBUG_ASSERT(0); return new QUICK_SELECT_DESC(this, used_key_parts); }
|
|
int get_next() override;
|
|
bool reverse_sorted() override { return 1; }
|
|
int get_type() override { return QS_TYPE_RANGE_DESC; }
|
|
QUICK_SELECT_I *make_reverse(uint used_key_parts_arg) override
|
|
{
|
|
return this; // is already reverse sorted
|
|
}
|
|
private:
|
|
bool range_reads_after_key(QUICK_RANGE *range);
|
|
int reset(void) override { rev_it.rewind(); return QUICK_RANGE_SELECT::reset(); }
|
|
List<QUICK_RANGE> rev_ranges;
|
|
List_iterator<QUICK_RANGE> rev_it;
|
|
uint used_key_parts;
|
|
};
|
|
|
|
|
|
class SQL_SELECT :public Sql_alloc {
|
|
public:
|
|
QUICK_SELECT_I *quick; // If quick-select used
|
|
COND *cond; // where condition
|
|
|
|
/*
|
|
When using Index Condition Pushdown: condition that we've had before
|
|
extracting and pushing index condition.
|
|
In other cases, NULL.
|
|
*/
|
|
Item *pre_idx_push_select_cond;
|
|
TABLE *head;
|
|
IO_CACHE file; // Positions to used records
|
|
ha_rows records; // Records in use if read from file
|
|
double read_time; // Time to read rows
|
|
key_map quick_keys; // Possible quick keys
|
|
key_map needed_reg; // Possible quick keys after prev tables.
|
|
table_map const_tables,read_tables;
|
|
/* See PARAM::possible_keys */
|
|
key_map possible_keys;
|
|
bool free_cond; /* Currently not used and always FALSE */
|
|
|
|
SQL_SELECT();
|
|
~SQL_SELECT();
|
|
void cleanup();
|
|
void set_quick(QUICK_SELECT_I *new_quick) { delete quick; quick= new_quick; }
|
|
|
|
/*
|
|
@return
|
|
true - for ERROR and IMPOSSIBLE_RANGE
|
|
false - Ok
|
|
*/
|
|
bool check_quick(THD *thd, bool force_quick_range, ha_rows limit,
|
|
Item_func::Bitmap note_unusable_keys)
|
|
{
|
|
key_map tmp;
|
|
tmp.set_all();
|
|
return test_quick_select(thd, tmp, 0, limit, force_quick_range,
|
|
FALSE, FALSE, FALSE,
|
|
note_unusable_keys) != OK;
|
|
}
|
|
|
|
/*
|
|
RETURN
|
|
0 if record must be skipped <-> (cond && cond->val_int() == 0)
|
|
-1 if error
|
|
1 otherwise
|
|
*/
|
|
inline int skip_record(THD *thd)
|
|
{
|
|
int rc= MY_TEST(!cond || cond->val_int());
|
|
if (thd->is_error())
|
|
rc= -1;
|
|
return rc;
|
|
}
|
|
|
|
enum quick_select_return_type {
|
|
IMPOSSIBLE_RANGE = -1,
|
|
ERROR,
|
|
OK
|
|
};
|
|
|
|
enum quick_select_return_type
|
|
test_quick_select(THD *thd, key_map keys, table_map prev_tables,
|
|
ha_rows limit,
|
|
bool force_quick_range,
|
|
bool ordered_output,
|
|
bool remove_false_parts_of_where,
|
|
bool only_single_index_range_scan,
|
|
Item_func::Bitmap note_unusable_keys);
|
|
};
|
|
|
|
typedef enum SQL_SELECT::quick_select_return_type quick_select_return;
|
|
|
|
|
|
class SQL_SELECT_auto
|
|
{
|
|
SQL_SELECT *select;
|
|
public:
|
|
SQL_SELECT_auto(): select(NULL)
|
|
{}
|
|
~SQL_SELECT_auto()
|
|
{
|
|
delete select;
|
|
}
|
|
SQL_SELECT_auto&
|
|
operator= (SQL_SELECT *_select)
|
|
{
|
|
select= _select;
|
|
return *this;
|
|
}
|
|
operator SQL_SELECT * () const
|
|
{
|
|
return select;
|
|
}
|
|
SQL_SELECT *
|
|
operator-> () const
|
|
{
|
|
return select;
|
|
}
|
|
operator bool () const
|
|
{
|
|
return select;
|
|
}
|
|
};
|
|
|
|
|
|
class FT_SELECT: public QUICK_RANGE_SELECT
|
|
{
|
|
public:
|
|
FT_SELECT(THD *thd, TABLE *table, uint key, bool *create_err) :
|
|
QUICK_RANGE_SELECT (thd, table, key, 1, NULL, create_err)
|
|
{ (void) init(); }
|
|
~FT_SELECT() { file->ft_end(); }
|
|
QUICK_RANGE_SELECT *clone(bool *create_error) override
|
|
{ DBUG_ASSERT(0); return new FT_SELECT(thd, head, index, create_error); }
|
|
int init() override { return file->ft_init(); }
|
|
int reset() override { return 0; }
|
|
int get_next() override { return file->ha_ft_read(record); }
|
|
int get_type() override { return QS_TYPE_FULLTEXT; }
|
|
};
|
|
|
|
FT_SELECT *get_ft_select(THD *thd, TABLE *table, uint key);
|
|
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
|
|
struct st_table_ref *ref,
|
|
ha_rows records);
|
|
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
|
|
table_map read_tables, COND *conds,
|
|
SORT_INFO* filesort,
|
|
bool allow_null_cond, int *error);
|
|
|
|
bool calculate_cond_selectivity_for_table(THD *thd, TABLE *table, Item **cond);
|
|
|
|
bool eq_ranges_exceeds_limit(RANGE_SEQ_IF *seq, void *seq_init_param,
|
|
uint limit);
|
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
|
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond);
|
|
#endif
|
|
void store_key_image_to_rec(Field *field, uchar *ptr, uint len);
|
|
|
|
extern String null_string;
|
|
|
|
/* check this number of rows (default value) */
|
|
#define SELECTIVITY_SAMPLING_LIMIT 100
|
|
/* but no more then this part of table (10%) */
|
|
#define SELECTIVITY_SAMPLING_SHARE 0.10
|
|
/* do not check if we are going check less then this number of records */
|
|
#define SELECTIVITY_SAMPLING_THRESHOLD 10
|
|
|
|
#endif
|