mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 14:54:20 +01:00
cd8840f04d
git-svn-id: file:///svn/tokudb.1131b+1080a+1185+nostatementexprs@6466 c7de825b-a66e-492c-adef-691d508d4ae1
980 lines
37 KiB
C
980 lines
37 KiB
C
/* -*- mode: C; c-basic-offset: 4 -*- */
|
|
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
|
|
|
|
#include "includes.h"
|
|
|
|
#if 0
|
|
static u_int64_t ntohll(u_int64_t v) {
|
|
union u {
|
|
u_int32_t l[2];
|
|
u_int64_t ll;
|
|
} uv;
|
|
uv.ll = v;
|
|
return (((u_int64_t)uv.l[0])<<32) + uv.l[1];
|
|
}
|
|
#endif
|
|
|
|
static u_int64_t umin64(u_int64_t a, u_int64_t b) {
|
|
if (a<b) return a;
|
|
return b;
|
|
}
|
|
|
|
static inline u_int64_t alignup (u_int64_t a, u_int64_t b) {
|
|
return ((a+b-1)/b)*b;
|
|
}
|
|
|
|
static void maybe_preallocate_in_file (int fd, u_int64_t size) {
|
|
struct stat sbuf;
|
|
{
|
|
int r = fstat(fd, &sbuf);
|
|
assert(r==0);
|
|
}
|
|
assert(sbuf.st_size >= 0);
|
|
if ((size_t)sbuf.st_size < size) {
|
|
const int N = umin64(size, 16<<20); // Double the size of the file, or add 16MB, whichever is less.
|
|
char *MALLOC_N(N, wbuf);
|
|
memset(wbuf, 0, N);
|
|
off_t start_write = alignup(sbuf.st_size, 4096);
|
|
assert(start_write >= sbuf.st_size);
|
|
ssize_t r = pwrite(fd, wbuf, N, start_write);
|
|
assert(r==N);
|
|
toku_free(wbuf);
|
|
}
|
|
}
|
|
|
|
// This mutex protects pwrite from running in parallel, and also protects modifications to the block allocator.
|
|
static pthread_mutex_t pwrite_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static int pwrite_is_locked=0;
|
|
|
|
static inline void
|
|
lock_for_pwrite (void) {
|
|
// Locks the pwrite_mutex.
|
|
int r = pthread_mutex_lock(&pwrite_mutex);
|
|
assert(r==0);
|
|
pwrite_is_locked = 1;
|
|
}
|
|
|
|
static inline void
|
|
unlock_for_pwrite (void) {
|
|
pwrite_is_locked = 0;
|
|
int r = pthread_mutex_unlock(&pwrite_mutex);
|
|
assert(r==0);
|
|
}
|
|
|
|
static ssize_t
|
|
toku_pwrite (int fd, const void *buf, size_t count, off_t offset)
|
|
// requires that the pwrite has been locked
|
|
{
|
|
assert(pwrite_is_locked);
|
|
maybe_preallocate_in_file(fd, offset+count);
|
|
return pwrite(fd, buf, count, offset);
|
|
}
|
|
|
|
// Don't include the compressed data size or the uncompressed data size.
|
|
|
|
static const int brtnode_header_overhead = (8+ // magic "tokunode" or "tokuleaf"
|
|
4+ // nodesize
|
|
8+ // checkpoint number
|
|
4+ // target node size
|
|
4+ // compressed data size
|
|
4+ // uncompressed data size
|
|
4+ // flags
|
|
4+ // height
|
|
4+ // random for fingerprint
|
|
4+ // localfingerprint
|
|
4); // crc32 at the end
|
|
|
|
static int deserialize_fifo_at (int fd, off_t at, FIFO *fifo);
|
|
|
|
static int
|
|
addupsize (OMTVALUE lev, u_int32_t UU(idx), void *vp) {
|
|
LEAFENTRY le=lev;
|
|
unsigned int *ip=vp;
|
|
(*ip) += OMT_ITEM_OVERHEAD + leafentry_disksize(le);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int toku_serialize_brtnode_size_slow (BRTNODE node) {
|
|
unsigned int size=brtnode_header_overhead;
|
|
if (node->height>0) {
|
|
unsigned int hsize=0;
|
|
unsigned int csize=0;
|
|
int i;
|
|
size+=4; /* n_children */
|
|
size+=4; /* subtree fingerprint. */
|
|
size+=4*(node->u.n.n_children-1); /* key lengths*/
|
|
if (node->flags & TOKU_DB_DUPSORT) size += 4*(node->u.n.n_children-1);
|
|
for (i=0; i<node->u.n.n_children-1; i++) {
|
|
csize+=toku_brtnode_pivot_key_len(node, node->u.n.childkeys[i]);
|
|
}
|
|
size+=(8+4+4+8)*(node->u.n.n_children); /* For each child, a child offset, a count for the number of hash table entries, the subtree fingerprint, and the leafentry_estimate. */
|
|
int n_buffers = node->u.n.n_children;
|
|
assert(0 <= n_buffers && n_buffers < TREE_FANOUT+1);
|
|
for (i=0; i< n_buffers; i++) {
|
|
FIFO_ITERATE(BNC_BUFFER(node,i),
|
|
key __attribute__((__unused__)), keylen,
|
|
data __attribute__((__unused__)), datalen,
|
|
type __attribute__((__unused__)), xid __attribute__((__unused__)),
|
|
(hsize+=BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+keylen+datalen));
|
|
}
|
|
assert(hsize==node->u.n.n_bytes_in_buffers);
|
|
assert(csize==node->u.n.totalchildkeylens);
|
|
return size+hsize+csize;
|
|
} else {
|
|
unsigned int hsize=0;
|
|
toku_omt_iterate(node->u.l.buffer,
|
|
addupsize,
|
|
&hsize);
|
|
assert(hsize<=node->u.l.n_bytes_in_buffer);
|
|
hsize+=4; /* add n entries in buffer table. */
|
|
return size+hsize;
|
|
}
|
|
}
|
|
|
|
// This is the size of the uncompressed data, including the uncompressed header, and including the 4 bytes for the information about how big is the compressed version, and how big is the uncompressed version.
|
|
unsigned int toku_serialize_brtnode_size (BRTNODE node) {
|
|
unsigned int result =brtnode_header_overhead;
|
|
assert(sizeof(off_t)==8);
|
|
if (node->height>0) {
|
|
result+=4; /* n_children */
|
|
result+=4; /* subtree fingerpirnt */
|
|
result+=4*(node->u.n.n_children-1); /* key lengths*/
|
|
if (node->flags & TOKU_DB_DUPSORT) result += 4*(node->u.n.n_children-1); /* data lengths */
|
|
result+=node->u.n.totalchildkeylens; /* the lengths of the pivot keys, without their key lengths. */
|
|
result+=(8+4+4+8)*(node->u.n.n_children); /* For each child, a child offset, a count for the number of hash table entries, the subtree fingerprint, and the leafentry_estimate. */
|
|
result+=node->u.n.n_bytes_in_buffers;
|
|
} else {
|
|
result+=4; /* n_entries in buffer table. */
|
|
result+=node->u.l.n_bytes_in_buffer;
|
|
if (toku_memory_check) {
|
|
unsigned int slowresult = toku_serialize_brtnode_size_slow(node);
|
|
if (result!=slowresult) printf("%s:%d result=%u slowresult=%u\n", __FILE__, __LINE__, result, slowresult);
|
|
assert(result==slowresult);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
wbufwriteleafentry (OMTVALUE lev, u_int32_t UU(idx), void *v) {
|
|
LEAFENTRY le=lev;
|
|
struct wbuf *thisw=v;
|
|
wbuf_LEAFENTRY(thisw, le);
|
|
return 0;
|
|
}
|
|
|
|
enum { uncompressed_magic_len = (8 // tokuleaf or tokunode
|
|
+4 // version
|
|
+8 // lsn
|
|
) };
|
|
|
|
enum { compression_header_len = (4 // compressed_len
|
|
+4 // uncompressed_len
|
|
) };
|
|
|
|
void toku_serialize_brtnode_to (int fd, BLOCKNUM blocknum, BRTNODE node, struct brt_header *h) {
|
|
//printf("%s:%d serializing\n", __FILE__, __LINE__);
|
|
struct wbuf w;
|
|
int i;
|
|
unsigned int calculated_size = toku_serialize_brtnode_size(node) - 8; // don't include the compressed or uncompressed sizes
|
|
//assert(calculated_size<=size);
|
|
//char buf[size];
|
|
char *MALLOC_N(calculated_size, buf);
|
|
//toku_verify_counts(node);
|
|
//assert(size>0);
|
|
//printf("%s:%d serializing %lld w height=%d p0=%p\n", __FILE__, __LINE__, off, node->height, node->mdicts[0]);
|
|
wbuf_init(&w, buf, node->nodesize);
|
|
wbuf_literal_bytes(&w, "toku", 4);
|
|
if (node->height==0) wbuf_literal_bytes(&w, "leaf", 4);
|
|
else wbuf_literal_bytes(&w, "node", 4);
|
|
wbuf_int(&w, BRT_LAYOUT_VERSION);
|
|
wbuf_ulonglong(&w, node->log_lsn.lsn);
|
|
//printf("%s:%d %lld.calculated_size=%d\n", __FILE__, __LINE__, off, calculated_size);
|
|
wbuf_uint(&w, node->nodesize);
|
|
wbuf_uint(&w, node->flags);
|
|
wbuf_int(&w, node->height);
|
|
//printf("%s:%d %lld rand=%08x sum=%08x height=%d\n", __FILE__, __LINE__, node->thisnodename, node->rand4fingerprint, node->subtree_fingerprint, node->height);
|
|
wbuf_uint(&w, node->rand4fingerprint);
|
|
wbuf_uint(&w, node->local_fingerprint);
|
|
// printf("%s:%d wrote %08x for node %lld\n", __FILE__, __LINE__, node->local_fingerprint, (long long)node->thisnodename);
|
|
//printf("%s:%d local_fingerprint=%8x\n", __FILE__, __LINE__, node->local_fingerprint);
|
|
//printf("%s:%d w.ndone=%d n_children=%d\n", __FILE__, __LINE__, w.ndone, node->n_children);
|
|
if (node->height>0) {
|
|
assert(node->u.n.n_children>0);
|
|
// Local fingerprint is not actually stored while in main memory. Must calculate it.
|
|
// Subtract the child fingerprints from the subtree fingerprint to get the local fingerprint.
|
|
{
|
|
u_int32_t subtree_fingerprint = node->local_fingerprint;
|
|
for (i=0; i<node->u.n.n_children; i++) {
|
|
subtree_fingerprint += BNC_SUBTREE_FINGERPRINT(node, i);
|
|
}
|
|
wbuf_uint(&w, subtree_fingerprint);
|
|
}
|
|
wbuf_int(&w, node->u.n.n_children);
|
|
for (i=0; i<node->u.n.n_children; i++) {
|
|
wbuf_uint(&w, BNC_SUBTREE_FINGERPRINT(node, i));
|
|
wbuf_ulonglong(&w, BNC_SUBTREE_LEAFENTRY_ESTIMATE(node, i));
|
|
}
|
|
//printf("%s:%d w.ndone=%d\n", __FILE__, __LINE__, w.ndone);
|
|
for (i=0; i<node->u.n.n_children-1; i++) {
|
|
if (node->flags & TOKU_DB_DUPSORT) {
|
|
wbuf_bytes(&w, kv_pair_key(node->u.n.childkeys[i]), kv_pair_keylen(node->u.n.childkeys[i]));
|
|
wbuf_bytes(&w, kv_pair_val(node->u.n.childkeys[i]), kv_pair_vallen(node->u.n.childkeys[i]));
|
|
} else {
|
|
wbuf_bytes(&w, kv_pair_key(node->u.n.childkeys[i]), toku_brtnode_pivot_key_len(node, node->u.n.childkeys[i]));
|
|
}
|
|
//printf("%s:%d w.ndone=%d (childkeylen[%d]=%d\n", __FILE__, __LINE__, w.ndone, i, node->childkeylens[i]);
|
|
}
|
|
for (i=0; i<node->u.n.n_children; i++) {
|
|
wbuf_BLOCKNUM(&w, BNC_BLOCKNUM(node,i));
|
|
//printf("%s:%d w.ndone=%d\n", __FILE__, __LINE__, w.ndone);
|
|
}
|
|
|
|
{
|
|
int n_buffers = node->u.n.n_children;
|
|
u_int32_t check_local_fingerprint = 0;
|
|
for (i=0; i< n_buffers; i++) {
|
|
//printf("%s:%d p%d=%p n_entries=%d\n", __FILE__, __LINE__, i, node->mdicts[i], mdict_n_entries(node->mdicts[i]));
|
|
wbuf_int(&w, toku_fifo_n_entries(BNC_BUFFER(node,i)));
|
|
FIFO_ITERATE(BNC_BUFFER(node,i), key, keylen, data, datalen, type, xid,
|
|
{
|
|
assert(type>=0 && type<256);
|
|
wbuf_char(&w, (unsigned char)type);
|
|
wbuf_TXNID(&w, xid);
|
|
wbuf_bytes(&w, key, keylen);
|
|
wbuf_bytes(&w, data, datalen);
|
|
check_local_fingerprint+=node->rand4fingerprint*toku_calc_fingerprint_cmd(type, xid, key, keylen, data, datalen);
|
|
});
|
|
}
|
|
//printf("%s:%d check_local_fingerprint=%8x\n", __FILE__, __LINE__, check_local_fingerprint);
|
|
if (check_local_fingerprint!=node->local_fingerprint) printf("%s:%d node=%" PRId64 " fingerprint expected=%08x actual=%08x\n", __FILE__, __LINE__, node->thisnodename.b, check_local_fingerprint, node->local_fingerprint);
|
|
assert(check_local_fingerprint==node->local_fingerprint);
|
|
}
|
|
} else {
|
|
//printf("%s:%d writing node %lld n_entries=%d\n", __FILE__, __LINE__, node->thisnodename, toku_gpma_n_entries(node->u.l.buffer));
|
|
wbuf_uint(&w, toku_omt_size(node->u.l.buffer));
|
|
toku_omt_iterate(node->u.l.buffer, wbufwriteleafentry, &w);
|
|
}
|
|
assert(w.ndone<=w.size);
|
|
#ifdef CRC_ATEND
|
|
wbuf_int(&w, crc32(toku_null_crc, w.buf, w.ndone));
|
|
#endif
|
|
#ifdef CRC_INCR
|
|
{
|
|
u_int32_t checksum = x1764_finish(&w.checksum);
|
|
wbuf_uint(&w, checksum);
|
|
}
|
|
#endif
|
|
|
|
if (calculated_size!=w.ndone)
|
|
printf("%s:%d w.done=%u calculated_size=%u\n", __FILE__, __LINE__, w.ndone, calculated_size);
|
|
assert(calculated_size==w.ndone);
|
|
|
|
// The uncompressed part of the header is
|
|
// tokuleaf(8),
|
|
// version(4),
|
|
// lsn(8),
|
|
// compressed_len(4),[which includes only the compressed data]
|
|
// uncompressed_len(4)[which includes only the compressed data, not the header]
|
|
|
|
// The first part of the data is uncompressed
|
|
uLongf uncompressed_len = calculated_size-uncompressed_magic_len;
|
|
uLongf compressed_len= compressBound(uncompressed_len);
|
|
char *MALLOC_N(compressed_len+uncompressed_magic_len+compression_header_len, compressed_buf);
|
|
|
|
memcpy(compressed_buf, buf, uncompressed_magic_len);
|
|
if (0) printf("First 4 bytes before compressing data are %02x%02x%02x%02x\n",
|
|
buf[uncompressed_magic_len], buf[uncompressed_magic_len+1],
|
|
buf[uncompressed_magic_len+2], buf[uncompressed_magic_len+3]);
|
|
{
|
|
int r = compress2(((Bytef*)compressed_buf)+uncompressed_magic_len + compression_header_len, &compressed_len,
|
|
((Bytef*)buf)+uncompressed_magic_len, calculated_size-uncompressed_magic_len,
|
|
1);
|
|
assert(r==Z_OK);
|
|
}
|
|
|
|
if (0) printf("Size before compressing %u, after compression %lu\n", calculated_size-uncompressed_magic_len, compressed_len);
|
|
|
|
((int32_t*)(compressed_buf+uncompressed_magic_len))[0] = htonl(compressed_len);
|
|
((int32_t*)(compressed_buf+uncompressed_magic_len))[1] = htonl(uncompressed_len);
|
|
|
|
//write_now: printf("%s:%d Writing %d bytes\n", __FILE__, __LINE__, w.ndone);
|
|
{
|
|
lock_for_pwrite();
|
|
// If the node has never been written, then write the whole buffer, including the zeros
|
|
assert(blocknum.b>=0);
|
|
//printf("%s:%d h=%p\n", __FILE__, __LINE__, h);
|
|
//printf("%s:%d translated_blocknum_limit=%lu blocknum.b=%lu\n", __FILE__, __LINE__, h->translated_blocknum_limit, blocknum.b);
|
|
//printf("%s:%d allocator=%p\n", __FILE__, __LINE__, h->block_allocator);
|
|
//printf("%s:%d bt=%p\n", __FILE__, __LINE__, h->block_translation);
|
|
if (h->translated_blocknum_limit <= (u_int64_t)blocknum.b) {
|
|
if (h->block_translation == 0) assert(h->translated_blocknum_limit==0);
|
|
u_int64_t new_limit = blocknum.b + 1;
|
|
u_int64_t old_limit = h->translated_blocknum_limit;
|
|
u_int64_t j;
|
|
XREALLOC_N(new_limit, h->block_translation);
|
|
for (j=old_limit; j<new_limit; j++) {
|
|
h->block_translation[j].diskoff = 0;
|
|
h->block_translation[j].size = 0;
|
|
}
|
|
h->translated_blocknum_limit = new_limit;
|
|
}
|
|
if (h->block_translation[blocknum.b].size > 0) {
|
|
block_allocator_free_block(h->block_allocator, h->block_translation[blocknum.b].diskoff);
|
|
h->block_translation[blocknum.b].diskoff = 0;
|
|
h->block_translation[blocknum.b].size = 0;
|
|
}
|
|
h->dirty = 1; // Allocating a block dirties the header.
|
|
size_t n_to_write = uncompressed_magic_len + compression_header_len + compressed_len;
|
|
u_int64_t offset;
|
|
block_allocator_alloc_block(h->block_allocator, n_to_write, &offset);
|
|
h->block_translation[blocknum.b].diskoff = offset;
|
|
h->block_translation[blocknum.b].size = n_to_write;
|
|
ssize_t r=toku_pwrite(fd, compressed_buf, n_to_write, offset);
|
|
if (r<0) printf("r=%ld errno=%d\n", (long)r, errno);
|
|
assert(r==(ssize_t)n_to_write);
|
|
unlock_for_pwrite();
|
|
}
|
|
|
|
//printf("%s:%d wrote %d bytes for %lld size=%lld\n", __FILE__, __LINE__, w.ndone, off, size);
|
|
assert(w.ndone<=node->nodesize);
|
|
toku_free(buf);
|
|
toku_free(compressed_buf);
|
|
}
|
|
|
|
int toku_deserialize_brtnode_from (int fd, BLOCKNUM blocknum, u_int32_t fullhash, BRTNODE *brtnode, struct brt_header *h) {
|
|
assert(0 <= blocknum.b && (u_int64_t)blocknum.b < h->translated_blocknum_limit);
|
|
DISKOFF offset = h->block_translation[blocknum.b].diskoff;
|
|
TAGMALLOC(BRTNODE, result);
|
|
struct rbuf rc;
|
|
int i;
|
|
int r;
|
|
if (result==0) {
|
|
r=errno;
|
|
if (0) { died0: toku_free(result); }
|
|
return r;
|
|
}
|
|
result->ever_been_written = 1;
|
|
char uncompressed_header[uncompressed_magic_len + compression_header_len];
|
|
u_int32_t compressed_size;
|
|
u_int32_t uncompressed_size;
|
|
{
|
|
// get the compressed size
|
|
r = pread(fd, uncompressed_header, sizeof(uncompressed_header), offset);
|
|
//printf("%s:%d r=%d the datasize=%d\n", __FILE__, __LINE__, r, ntohl(datasize_n));
|
|
if (r!=(int)sizeof(uncompressed_header)) {
|
|
if (r==-1) r=errno;
|
|
else r = DB_BADFORMAT;
|
|
goto died0;
|
|
}
|
|
compressed_size = ntohl(*(u_int32_t*)(&uncompressed_header[uncompressed_magic_len]));
|
|
if (compressed_size<=0 || compressed_size>(1<<30)) { r = DB_BADFORMAT; goto died0; }
|
|
uncompressed_size = ntohl(*(u_int32_t*)(&uncompressed_header[uncompressed_magic_len+4]));
|
|
if (uncompressed_size<=0 || uncompressed_size>(1<<30)) { r = DB_BADFORMAT; goto died0; }
|
|
if (0) printf("Compressed size = %u, uncompressed size=%u\n", compressed_size, uncompressed_size);
|
|
}
|
|
|
|
unsigned char *MALLOC_N(compressed_size, compressed_data);
|
|
assert(compressed_data);
|
|
|
|
{
|
|
ssize_t rlen=pread(fd, compressed_data, compressed_size, offset+uncompressed_magic_len + compression_header_len);
|
|
//printf("%s:%d pread->%d offset=%ld datasize=%d\n", __FILE__, __LINE__, r, offset, compressed_size + uncompressed_magic_len + compression_header_len);
|
|
assert((size_t)rlen==compressed_size);
|
|
//printf("Got %d %d %d %d\n", rc.buf[0], rc.buf[1], rc.buf[2], rc.buf[3]);
|
|
}
|
|
|
|
rc.size= uncompressed_size + uncompressed_magic_len;
|
|
assert(rc.size>0);
|
|
|
|
rc.buf=toku_malloc(rc.size);
|
|
assert(rc.buf);
|
|
|
|
memcpy(rc.buf, uncompressed_header, uncompressed_magic_len);
|
|
{
|
|
uLongf destlen = uncompressed_size;
|
|
r = uncompress(rc.buf+uncompressed_magic_len, &destlen,
|
|
compressed_data, compressed_size);
|
|
assert(destlen==uncompressed_size);
|
|
assert(r==Z_OK);
|
|
}
|
|
if (0) printf("First 4 bytes of uncompressed data are %02x%02x%02x%02x\n",
|
|
rc.buf[uncompressed_magic_len], rc.buf[uncompressed_magic_len+1],
|
|
rc.buf[uncompressed_magic_len+2], rc.buf[uncompressed_magic_len+3]);
|
|
|
|
toku_free(compressed_data);
|
|
rc.ndone=0;
|
|
//printf("Deserializing %lld datasize=%d\n", off, datasize);
|
|
{
|
|
bytevec tmp;
|
|
rbuf_literal_bytes(&rc, &tmp, 8);
|
|
if (memcmp(tmp, "tokuleaf", 8)!=0
|
|
&& memcmp(tmp, "tokunode", 8)!=0) {
|
|
r = DB_BADFORMAT;
|
|
return r;
|
|
}
|
|
}
|
|
result->layout_version = rbuf_int(&rc);
|
|
{
|
|
switch (result->layout_version) {
|
|
case BRT_LAYOUT_VERSION_9: goto ok_layout_version;
|
|
// Don't support older versions.
|
|
}
|
|
r=DB_BADFORMAT;
|
|
return r;
|
|
ok_layout_version: ;
|
|
}
|
|
result->disk_lsn.lsn = rbuf_ulonglong(&rc);
|
|
result->nodesize = rbuf_int(&rc);
|
|
result->log_lsn = result->disk_lsn;
|
|
|
|
result->thisnodename = blocknum;
|
|
result->flags = rbuf_int(&rc);
|
|
result->height = rbuf_int(&rc);
|
|
result->rand4fingerprint = rbuf_int(&rc);
|
|
result->local_fingerprint = rbuf_int(&rc);
|
|
// printf("%s:%d read %08x\n", __FILE__, __LINE__, result->local_fingerprint);
|
|
result->dirty = 0;
|
|
result->fullhash = fullhash;
|
|
//printf("height==%d\n", result->height);
|
|
if (result->height>0) {
|
|
result->u.n.totalchildkeylens=0;
|
|
u_int32_t subtree_fingerprint = rbuf_int(&rc);
|
|
u_int32_t check_subtree_fingerprint = 0;
|
|
result->u.n.n_children = rbuf_int(&rc);
|
|
MALLOC_N(result->u.n.n_children+1, result->u.n.childinfos);
|
|
MALLOC_N(result->u.n.n_children, result->u.n.childkeys);
|
|
//printf("n_children=%d\n", result->n_children);
|
|
assert(result->u.n.n_children>=0 && result->u.n.n_children<=TREE_FANOUT);
|
|
for (i=0; i<result->u.n.n_children; i++) {
|
|
u_int32_t childfp = rbuf_int(&rc);
|
|
BNC_SUBTREE_FINGERPRINT(result, i)= childfp;
|
|
check_subtree_fingerprint += childfp;
|
|
BNC_SUBTREE_LEAFENTRY_ESTIMATE(result, i)=rbuf_ulonglong(&rc);
|
|
}
|
|
for (i=0; i<result->u.n.n_children-1; i++) {
|
|
if (result->flags & TOKU_DB_DUPSORT) {
|
|
bytevec keyptr, dataptr;
|
|
unsigned int keylen, datalen;
|
|
rbuf_bytes(&rc, &keyptr, &keylen);
|
|
rbuf_bytes(&rc, &dataptr, &datalen);
|
|
result->u.n.childkeys[i] = kv_pair_malloc(keyptr, keylen, dataptr, datalen);
|
|
} else {
|
|
bytevec childkeyptr;
|
|
unsigned int cklen;
|
|
rbuf_bytes(&rc, &childkeyptr, &cklen); /* Returns a pointer into the rbuf. */
|
|
result->u.n.childkeys[i] = kv_pair_malloc((void*)childkeyptr, cklen, 0, 0);
|
|
}
|
|
//printf(" key %d length=%d data=%s\n", i, result->childkeylens[i], result->childkeys[i]);
|
|
result->u.n.totalchildkeylens+=toku_brtnode_pivot_key_len(result, result->u.n.childkeys[i]);
|
|
}
|
|
for (i=0; i<result->u.n.n_children; i++) {
|
|
BNC_BLOCKNUM(result,i) = rbuf_blocknum(&rc);
|
|
BNC_HAVE_FULLHASH(result, i) = FALSE;
|
|
BNC_NBYTESINBUF(result,i) = 0;
|
|
//printf("Child %d at %lld\n", i, result->children[i]);
|
|
}
|
|
result->u.n.n_bytes_in_buffers = 0;
|
|
for (i=0; i<result->u.n.n_children; i++) {
|
|
r=toku_fifo_create(&BNC_BUFFER(result,i));
|
|
if (r!=0) {
|
|
int j;
|
|
if (0) { died_12: j=result->u.n.n_bytes_in_buffers; }
|
|
for (j=0; j<i; j++) toku_fifo_free(&BNC_BUFFER(result,j));
|
|
return DB_BADFORMAT;
|
|
}
|
|
}
|
|
{
|
|
int cnum;
|
|
u_int32_t check_local_fingerprint = 0;
|
|
for (cnum=0; cnum<result->u.n.n_children; cnum++) {
|
|
int n_in_this_hash = rbuf_int(&rc);
|
|
//printf("%d in hash\n", n_in_hash);
|
|
for (i=0; i<n_in_this_hash; i++) {
|
|
int diff;
|
|
bytevec key; ITEMLEN keylen;
|
|
bytevec val; ITEMLEN vallen;
|
|
//toku_verify_counts(result);
|
|
int type = rbuf_char(&rc);
|
|
TXNID xid = rbuf_ulonglong(&rc);
|
|
rbuf_bytes(&rc, &key, &keylen); /* Returns a pointer into the rbuf. */
|
|
rbuf_bytes(&rc, &val, &vallen);
|
|
check_local_fingerprint += result->rand4fingerprint * toku_calc_fingerprint_cmd(type, xid, key, keylen, val, vallen);
|
|
//printf("Found %s,%s\n", (char*)key, (char*)val);
|
|
{
|
|
r=toku_fifo_enq(BNC_BUFFER(result, cnum), key, keylen, val, vallen, type, xid); /* Copies the data into the hash table. */
|
|
if (r!=0) { goto died_12; }
|
|
}
|
|
diff = keylen + vallen + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD;
|
|
result->u.n.n_bytes_in_buffers += diff;
|
|
BNC_NBYTESINBUF(result,cnum) += diff;
|
|
//printf("Inserted\n");
|
|
}
|
|
}
|
|
if (check_local_fingerprint != result->local_fingerprint) {
|
|
fprintf(stderr, "%s:%d local fingerprint is wrong (found %8x calcualted %8x\n", __FILE__, __LINE__, result->local_fingerprint, check_local_fingerprint);
|
|
return DB_BADFORMAT;
|
|
}
|
|
if (check_subtree_fingerprint+check_local_fingerprint != subtree_fingerprint) {
|
|
fprintf(stderr, "%s:%d subtree fingerprint is wrong\n", __FILE__, __LINE__);
|
|
return DB_BADFORMAT;
|
|
}
|
|
}
|
|
} else {
|
|
int n_in_buf = rbuf_int(&rc);
|
|
result->u.l.n_bytes_in_buffer = 0;
|
|
result->u.l.seqinsert = 0;
|
|
|
|
//printf("%s:%d r PMA= %p\n", __FILE__, __LINE__, result->u.l.buffer);
|
|
toku_mempool_init(&result->u.l.buffer_mempool, rc.buf, uncompressed_size + uncompressed_magic_len);
|
|
|
|
u_int32_t actual_sum = 0;
|
|
u_int32_t start_of_data = rc.ndone;
|
|
OMTVALUE *MALLOC_N(n_in_buf, array);
|
|
for (i=0; i<n_in_buf; i++) {
|
|
LEAFENTRY le = (LEAFENTRY)(&rc.buf[rc.ndone]);
|
|
u_int32_t disksize = leafentry_disksize(le);
|
|
rc.ndone += disksize;
|
|
assert(rc.ndone<=rc.size);
|
|
|
|
array[i]=(OMTVALUE)le;
|
|
actual_sum += x1764_memory(le, disksize);
|
|
}
|
|
u_int32_t end_of_data = rc.ndone;
|
|
result->u.l.n_bytes_in_buffer += end_of_data-start_of_data + n_in_buf*OMT_ITEM_OVERHEAD;
|
|
actual_sum *= result->rand4fingerprint;
|
|
r = toku_omt_create_from_sorted_array(&result->u.l.buffer, array, n_in_buf);
|
|
toku_free(array);
|
|
if (r!=0) {
|
|
if (0) { died_21: toku_omt_destroy(&result->u.l.buffer); }
|
|
return DB_BADFORMAT;
|
|
}
|
|
|
|
result->u.l.buffer_mempool.frag_size = start_of_data;
|
|
result->u.l.buffer_mempool.free_offset = end_of_data;
|
|
|
|
if (r!=0) goto died_21;
|
|
if (actual_sum!=result->local_fingerprint) {
|
|
//fprintf(stderr, "%s:%d Corrupted checksum stored=%08x rand=%08x actual=%08x height=%d n_keys=%d\n", __FILE__, __LINE__, result->rand4fingerprint, result->local_fingerprint, actual_sum, result->height, n_in_buf);
|
|
return DB_BADFORMAT;
|
|
// goto died_21;
|
|
} else {
|
|
//fprintf(stderr, "%s:%d Good checksum=%08x height=%d\n", __FILE__, __LINE__, actual_sum, result->height);
|
|
}
|
|
|
|
//toku_verify_counts(result);
|
|
}
|
|
{
|
|
unsigned int n_read_so_far = rc.ndone;
|
|
if (n_read_so_far+4!=rc.size) {
|
|
r = DB_BADFORMAT; goto died_21;
|
|
}
|
|
uint32_t crc = x1764_memory(rc.buf, n_read_so_far);
|
|
uint32_t storedcrc = rbuf_int(&rc);
|
|
if (crc!=storedcrc) {
|
|
printf("Bad CRC\n");
|
|
printf("%s:%d crc=%08x stored=%08x\n", __FILE__, __LINE__, crc, storedcrc);
|
|
assert(0);//this is wrong!!!
|
|
r = DB_BADFORMAT;
|
|
goto died_21;
|
|
}
|
|
}
|
|
//printf("%s:%d Ok got %lld n_children=%d\n", __FILE__, __LINE__, result->thisnodename, result->n_children);
|
|
if (result->height>0) {
|
|
// For height==0 we used the buf inside the OMT
|
|
toku_free(rc.buf);
|
|
}
|
|
*brtnode = result;
|
|
//toku_verify_counts(result);
|
|
return 0;
|
|
}
|
|
|
|
struct sum_info {
|
|
unsigned int dsum;
|
|
unsigned int msum;
|
|
unsigned int count;
|
|
u_int32_t fp;
|
|
};
|
|
|
|
static int
|
|
sum_item (OMTVALUE lev, u_int32_t UU(idx), void *vsi) {
|
|
LEAFENTRY le=lev;
|
|
struct sum_info *si = vsi;
|
|
si->count++;
|
|
si->dsum += OMT_ITEM_OVERHEAD + leafentry_disksize(le);
|
|
si->msum += leafentry_memsize(le);
|
|
si->fp += toku_le_crc(le);
|
|
return 0;
|
|
}
|
|
|
|
void toku_verify_counts (BRTNODE node) {
|
|
/*foo*/
|
|
if (node->height==0) {
|
|
assert(node->u.l.buffer);
|
|
struct sum_info sum_info = {0,0,0,0};
|
|
toku_omt_iterate(node->u.l.buffer, sum_item, &sum_info);
|
|
assert(sum_info.count==toku_omt_size(node->u.l.buffer));
|
|
assert(sum_info.dsum==node->u.l.n_bytes_in_buffer);
|
|
assert(sum_info.msum == node->u.l.buffer_mempool.free_offset - node->u.l.buffer_mempool.frag_size);
|
|
|
|
u_int32_t fps = node->rand4fingerprint * sum_info.fp;
|
|
assert(fps==node->local_fingerprint);
|
|
} else {
|
|
unsigned int sum = 0;
|
|
int i;
|
|
for (i=0; i<node->u.n.n_children; i++)
|
|
sum += BNC_NBYTESINBUF(node,i);
|
|
// We don't rally care of the later buffers have garbage in them. Valgrind would do a better job noticing if we leave it uninitialized.
|
|
// But for now the code always initializes the later tables so they are 0.
|
|
assert(sum==node->u.n.n_bytes_in_buffers);
|
|
}
|
|
}
|
|
|
|
int toku_serialize_brt_header_size (struct brt_header *h) {
|
|
unsigned int size = (+8 // "tokudata"
|
|
+4 // size
|
|
+4 // version
|
|
+4 // tree's nodesize
|
|
+8 // free blocks
|
|
+8 // unused blocks
|
|
+4 // n_named_roots
|
|
+8 // max_blocknum_translated
|
|
+8 // block_translation_address_on_disk
|
|
);
|
|
if (h->n_named_roots<0) {
|
|
size+=(+8 // diskoff
|
|
+4 // flags
|
|
);
|
|
} else {
|
|
int i;
|
|
for (i=0; i<h->n_named_roots; i++) {
|
|
size+=(+8 // root diskoff
|
|
+4 // flags
|
|
+4 // length of null terminated string (including null)
|
|
+1 + strlen(h->names[i]) // null-terminated string
|
|
);
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
int toku_serialize_brt_header_to_wbuf (struct wbuf *wbuf, struct brt_header *h) {
|
|
unsigned int size = toku_serialize_brt_header_size (h); // !!! seems silly to recompute the size when the caller knew it. Do we really need the size?
|
|
wbuf_literal_bytes(wbuf, "tokudata", 8);
|
|
wbuf_int (wbuf, size);
|
|
wbuf_int (wbuf, BRT_LAYOUT_VERSION);
|
|
wbuf_int (wbuf, h->nodesize);
|
|
wbuf_BLOCKNUM(wbuf, h->free_blocks);
|
|
wbuf_BLOCKNUM(wbuf, h->unused_blocks);
|
|
wbuf_int (wbuf, h->n_named_roots);
|
|
if (h->block_translation_address_on_disk != 0) {
|
|
block_allocator_free_block(h->block_allocator, h->block_translation_address_on_disk);
|
|
}
|
|
block_allocator_alloc_block(h->block_allocator, 4 + 16*h->translated_blocknum_limit, &h->block_translation_address_on_disk);
|
|
//printf("%s:%d bta=%lu size=%lu\n", __FILE__, __LINE__, h->block_translation_address_on_disk, 4 + 16*h->translated_blocknum_limit);
|
|
wbuf_ulonglong(wbuf, h->translated_blocknum_limit);
|
|
wbuf_DISKOFF(wbuf, h->block_translation_address_on_disk);
|
|
if (h->n_named_roots>=0) {
|
|
int i;
|
|
for (i=0; i<h->n_named_roots; i++) {
|
|
char *s = h->names[i];
|
|
unsigned int l = 1+strlen(s);
|
|
wbuf_BLOCKNUM(wbuf, h->roots[i]);
|
|
wbuf_int (wbuf, h->flags_array[i]);
|
|
wbuf_bytes (wbuf, s, l);
|
|
assert(l>0 && s[l-1]==0);
|
|
}
|
|
} else {
|
|
wbuf_BLOCKNUM(wbuf, h->roots[0]);
|
|
wbuf_int (wbuf, h->flags_array[0]);
|
|
}
|
|
assert(wbuf->ndone<=wbuf->size);
|
|
return 0;
|
|
}
|
|
|
|
int toku_serialize_brt_header_to (int fd, struct brt_header *h) {
|
|
lock_for_pwrite();
|
|
{
|
|
struct wbuf w;
|
|
unsigned int size = toku_serialize_brt_header_size (h);
|
|
wbuf_init(&w, toku_malloc(size), size);
|
|
int r=toku_serialize_brt_header_to_wbuf(&w, h);
|
|
assert(r==0);
|
|
assert(w.ndone==size);
|
|
ssize_t nwrote = toku_pwrite(fd, w.buf, w.ndone, 0);
|
|
if (nwrote<0) perror("pwrite");
|
|
assert((size_t)nwrote==w.ndone);
|
|
toku_free(w.buf);
|
|
}
|
|
{
|
|
struct wbuf w;
|
|
u_int64_t size = 4 + h->translated_blocknum_limit * 16; // 4 for the checksum
|
|
//printf("%s:%d writing translation table of size %ld at %ld\n", __FILE__, __LINE__, size, h->block_translation_address_on_disk);
|
|
wbuf_init(&w, toku_malloc(size), size);
|
|
u_int64_t i;
|
|
for (i=0; i<h->translated_blocknum_limit; i++) {
|
|
//printf("%s:%d %ld,%ld\n", __FILE__, __LINE__, h->block_translation[i].diskoff, h->block_translation[i].size);
|
|
wbuf_ulonglong(&w, h->block_translation[i].diskoff);
|
|
wbuf_ulonglong(&w, h->block_translation[i].size);
|
|
}
|
|
u_int32_t checksum = x1764_finish(&w.checksum);
|
|
wbuf_int(&w, checksum);
|
|
ssize_t nwrote = toku_pwrite(fd, w.buf, size, h->block_translation_address_on_disk);
|
|
assert(nwrote==(ssize_t)size);
|
|
toku_free(w.buf);
|
|
};
|
|
unlock_for_pwrite();
|
|
return 0;
|
|
}
|
|
|
|
// We only deserialize brt header once and then share everything with all the brts.
|
|
static int
|
|
deserialize_brtheader (u_int32_t size, int fd, DISKOFF off, struct brt_header **brth) {
|
|
// We already know the first 8 bytes are "tokudata", and we read in the size.
|
|
struct brt_header *MALLOC(h);
|
|
if (h==0) return errno;
|
|
int ret=-1;
|
|
if (0) { died0: toku_free(h); return ret; }
|
|
struct rbuf rc;
|
|
rc.buf = toku_malloc(size-12); // we can skip the first 12 bytes.
|
|
if (rc.buf == NULL) { ret=errno; if (0) { died1: toku_free(rc.buf); } goto died0; }
|
|
rc.size = size-12;
|
|
if (rc.size<=0) { ret = EINVAL; goto died1; }
|
|
rc.ndone = 0;
|
|
{
|
|
ssize_t r = pread(fd, rc.buf, size-12, off+12);
|
|
if (r!=(ssize_t)size-12) { ret = EINVAL; goto died1; }
|
|
}
|
|
h->dirty=0;
|
|
h->layout_version = rbuf_int(&rc);
|
|
h->nodesize = rbuf_int(&rc);
|
|
assert(h->layout_version==BRT_LAYOUT_VERSION_9);
|
|
h->free_blocks = rbuf_blocknum(&rc);
|
|
h->unused_blocks = rbuf_blocknum(&rc);
|
|
h->n_named_roots = rbuf_int(&rc);
|
|
h->translated_blocknum_limit = rbuf_diskoff(&rc);
|
|
h->block_translation_size_on_disk = 4 + 16 * h->translated_blocknum_limit;
|
|
h->block_translation_address_on_disk = rbuf_diskoff(&rc);
|
|
// Set up the the block translation buffer.
|
|
create_block_allocator(&h->block_allocator, h->nodesize, BLOCK_ALLOCATOR_ALIGNMENT);
|
|
// printf("%s:%d translated_blocknum_limit=%ld, block_translation_address_on_disk=%ld\n", __FILE__, __LINE__, h->translated_blocknum_limit, h->block_translation_address_on_disk);
|
|
if (h->block_translation_address_on_disk == 0) {
|
|
h->block_translation = 0;
|
|
} else {
|
|
lock_for_pwrite();
|
|
block_allocator_alloc_block_at(h->block_allocator, h->block_translation_size_on_disk, h->block_translation_address_on_disk);
|
|
XMALLOC_N(h->translated_blocknum_limit, h->block_translation);
|
|
unsigned char *XMALLOC_N(h->block_translation_size_on_disk, tbuf);
|
|
{
|
|
ssize_t r = pread(fd, tbuf, h->block_translation_size_on_disk, h->block_translation_address_on_disk);
|
|
assert(r==(ssize_t)h->block_translation_size_on_disk);
|
|
}
|
|
{
|
|
// check the checksum
|
|
u_int32_t x1764 = x1764_memory(tbuf, h->block_translation_size_on_disk - 4);
|
|
u_int64_t offset = h->block_translation_size_on_disk - 4;
|
|
//printf("%s:%d read from %ld (x1764 offset=%ld) size=%ld\n", __FILE__, __LINE__, h->block_translation_address_on_disk, offset, h->block_translation_size_on_disk);
|
|
u_int32_t stored_x1764 = ntohl(*(int*)(tbuf + offset));
|
|
assert(x1764 == stored_x1764);
|
|
}
|
|
// now read all that data.
|
|
u_int64_t i;
|
|
struct rbuf rt;
|
|
rt.buf = tbuf;
|
|
rt.ndone = 0;
|
|
rt.size = h->block_translation_size_on_disk-4;
|
|
assert(rt.size>0);
|
|
for (i=0; i<h->translated_blocknum_limit; i++) {
|
|
h->block_translation[i].diskoff = rbuf_diskoff(&rt);
|
|
h->block_translation[i].size = rbuf_diskoff(&rt);
|
|
if (h->block_translation[i].size > 0)
|
|
block_allocator_alloc_block_at(h->block_allocator, h->block_translation[i].size, h->block_translation[i].diskoff);
|
|
//printf("%s:%d %ld %ld\n", __FILE__, __LINE__, h->block_translation[i].diskoff, h->block_translation[i].size);
|
|
}
|
|
unlock_for_pwrite();
|
|
toku_free(tbuf);
|
|
}
|
|
if (h->n_named_roots>=0) {
|
|
int i;
|
|
int n_to_malloc = (h->n_named_roots == 0) ? 1 : h->n_named_roots;
|
|
MALLOC_N(n_to_malloc, h->flags_array); if (h->flags_array==0) { ret=errno; if (0) { died2: free(h->flags_array); } goto died1; }
|
|
MALLOC_N(n_to_malloc, h->roots); if (h->roots==0) { ret=errno; if (0) { died3: if (h->n_named_roots>=0) free(h->roots); } goto died2; }
|
|
MALLOC_N(n_to_malloc, h->root_hashes); if (h->root_hashes==0) { ret=errno; if (0) { died4: if (h->n_named_roots>=0) free(h->root_hashes); } goto died3; }
|
|
MALLOC_N(n_to_malloc, h->names); if (h->names==0) { ret=errno; if (0) { died5: if (h->n_named_roots>=0) free(h->names); } goto died4; }
|
|
for (i=0; i<h->n_named_roots; i++) {
|
|
h->root_hashes[i].valid = FALSE;
|
|
h->roots[i] = rbuf_blocknum(&rc);
|
|
h->flags_array[i] = rbuf_int(&rc);
|
|
bytevec nameptr;
|
|
unsigned int len;
|
|
rbuf_bytes(&rc, &nameptr, &len);
|
|
assert(strlen(nameptr)+1==len);
|
|
h->names[i] = toku_memdup(nameptr, len);
|
|
assert(len == 0 || h->names[i] != NULL); // make sure the malloc worked. Give up if this malloc failed...
|
|
}
|
|
} else {
|
|
int n_to_malloc = 1;
|
|
MALLOC_N(n_to_malloc, h->flags_array); if (h->flags_array==0) { ret=errno; goto died1; }
|
|
MALLOC_N(n_to_malloc, h->roots); if (h->roots==0) { ret=errno; goto died2; }
|
|
MALLOC_N(n_to_malloc, h->root_hashes); if (h->root_hashes==0) { ret=errno; goto died3; }
|
|
h->names = 0;
|
|
h->roots[0] = rbuf_blocknum(&rc);
|
|
h->root_hashes[0].valid = FALSE;
|
|
h->flags_array[0] = rbuf_int(&rc);
|
|
}
|
|
if (rc.ndone!=rc.size) {ret = EINVAL; goto died5;}
|
|
toku_free(rc.buf);
|
|
{
|
|
int r;
|
|
if ((r = deserialize_fifo_at(fd, block_allocator_allocated_limit(h->block_allocator), &h->fifo))) return r;
|
|
}
|
|
*brth = h;
|
|
return 0;
|
|
}
|
|
|
|
int toku_deserialize_brtheader_from (int fd, BLOCKNUM blocknum, struct brt_header **brth) {
|
|
//printf("%s:%d calling MALLOC\n", __FILE__, __LINE__);
|
|
assert(blocknum.b==0);
|
|
DISKOFF offset = 0;
|
|
//printf("%s:%d malloced %p\n", __FILE__, __LINE__, h);
|
|
|
|
char magic[12];
|
|
ssize_t r = pread(fd, magic, 12, offset);
|
|
if (r==0) return -1;
|
|
if (r<0) return errno;
|
|
if (r!=12) return EINVAL;
|
|
assert(memcmp(magic,"tokudata",8)==0);
|
|
// It's version 7 or later, and the magi clooks OK
|
|
return deserialize_brtheader(ntohl(*(int*)(&magic[8])), fd, offset, brth);
|
|
}
|
|
|
|
unsigned int toku_brt_pivot_key_len (BRT brt, struct kv_pair *pk) {
|
|
if (brt->flags & TOKU_DB_DUPSORT) {
|
|
return kv_pair_keylen(pk) + kv_pair_vallen(pk);
|
|
} else {
|
|
return kv_pair_keylen(pk);
|
|
}
|
|
}
|
|
|
|
unsigned int toku_brtnode_pivot_key_len (BRTNODE node, struct kv_pair *pk) {
|
|
if (node->flags & TOKU_DB_DUPSORT) {
|
|
return kv_pair_keylen(pk) + kv_pair_vallen(pk);
|
|
} else {
|
|
return kv_pair_keylen(pk);
|
|
}
|
|
}
|
|
|
|
// To serialize the fifo, we just write it all at the end of the file.
|
|
// For now, just do all the writes as separate system calls. This function is hardly ever called, and
|
|
// we might not be able to allocate a large enough buffer to hold everything,
|
|
// and it would be more complex to batch up several writes.
|
|
int toku_serialize_fifo_at (int fd, off_t freeoff, FIFO fifo) {
|
|
//printf("%s:%d Serializing fifo at %" PRId64 " (count=%d)\n", __FILE__, __LINE__, freeoff, toku_fifo_n_entries(fifo));
|
|
lock_for_pwrite();
|
|
{
|
|
enum { size=4 };
|
|
char buf[size];
|
|
struct wbuf w;
|
|
wbuf_init(&w, buf, size);
|
|
wbuf_int(&w, toku_fifo_n_entries(fifo));
|
|
ssize_t r = toku_pwrite(fd, w.buf, size, freeoff);
|
|
if (r!=size) return errno;
|
|
freeoff+=size;
|
|
}
|
|
FIFO_ITERATE(fifo, key, keylen, val, vallen, type, xid,
|
|
{
|
|
size_t size=keylen+vallen+1+8+4+4;
|
|
char *MALLOC_N(size, buf);
|
|
assert(buf!=0);
|
|
struct wbuf w;
|
|
wbuf_init(&w, buf, size);
|
|
assert(type>=0 && type<256);
|
|
wbuf_char(&w, (unsigned char)type);
|
|
wbuf_TXNID(&w, xid);
|
|
wbuf_bytes(&w, key, keylen);
|
|
//printf("%s:%d Writing %d bytes: %s\n", __FILE__, __LINE__, vallen, (char*)val);
|
|
wbuf_bytes(&w, val, vallen);
|
|
assert(w.ndone==size);
|
|
ssize_t r = toku_pwrite(fd, w.buf, (size_t)size, freeoff);
|
|
if (r<0) {
|
|
unlock_for_pwrite();
|
|
return errno;
|
|
}
|
|
assert(r==(ssize_t)size);
|
|
freeoff+=size;
|
|
toku_free(buf);
|
|
});
|
|
unlock_for_pwrite();
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
read_int (int fd, off_t *at, u_int32_t *result) {
|
|
int v;
|
|
ssize_t r = pread(fd, &v, 4, *at);
|
|
if (r<0) return errno;
|
|
assert(r==4);
|
|
*result = ntohl(v);
|
|
(*at) += 4;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
read_char (int fd, off_t *at, char *result) {
|
|
ssize_t r = pread(fd, result, 1, *at);
|
|
if (r<0) return errno;
|
|
assert(r==1);
|
|
(*at)++;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
read_u_int64_t (int fd, off_t *at, u_int64_t *result) {
|
|
u_int32_t v1=0,v2=0;
|
|
int r;
|
|
if ((r = read_int(fd, at, &v1))) return r;
|
|
if ((r = read_int(fd, at, &v2))) return r;
|
|
*result = (((u_int64_t)v1)<<32) + v2;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
read_nbytes (int fd, off_t *at, char **data, u_int32_t len) {
|
|
char *result = toku_malloc(len);
|
|
if (result==0) return errno;
|
|
ssize_t r = pread(fd, result, len, *at);
|
|
//printf("%s:%d read %d bytes at %" PRId64 ", which are %s\n", __FILE__, __LINE__, len, *at, result);
|
|
if (r<0) return errno;
|
|
assert(r==(ssize_t)len);
|
|
(*at)+=len;
|
|
*data=result;
|
|
return 0;
|
|
}
|
|
|
|
static int deserialize_fifo_at (int fd, off_t at, FIFO *fifo) {
|
|
FIFO result;
|
|
int r = toku_fifo_create(&result);
|
|
if (r) return r;
|
|
u_int32_t count=0;
|
|
if ((r=read_int(fd, &at, &count))) return r;
|
|
u_int32_t i;
|
|
for (i=0; i<count; i++) {
|
|
char type;
|
|
TXNID xid;
|
|
u_int32_t keylen=0, vallen=0;
|
|
char *key=0, *val=0;
|
|
if ((r=read_char(fd, &at, &type))) return r;
|
|
if ((r=read_u_int64_t(fd, &at, &xid))) return r;
|
|
if ((r=read_int(fd, &at, &keylen))) return r;
|
|
if ((r=read_nbytes(fd, &at, &key, keylen))) return r;
|
|
if ((r=read_int(fd, &at, &vallen))) return r;
|
|
if ((r=read_nbytes(fd, &at, &val, vallen))) return r;
|
|
//printf("%s:%d read %d byte key, key=%s\n dlen=%d data=%s\n", __FILE__, __LINE__, keylen, key, vallen, val);
|
|
if ((r=toku_fifo_enq(result, key, keylen, val, vallen, type, xid))) return r;
|
|
toku_free(key);
|
|
toku_free(val);
|
|
}
|
|
*fifo = result;
|
|
//printf("%s:%d *fifo=%p\n", __FILE__, __LINE__, result);
|
|
return 0;
|
|
}
|