mariadb/sql/sql_manager.cc
Davi Arnaut a10ae35328 Bug#34043: Server loops excessively in _checkchunk() when safemalloc is enabled
Essentially, the problem is that safemalloc is excruciatingly
slow as it checks all allocated blocks for overrun at each
memory management primitive, yielding a almost exponential
slowdown for the memory management functions (malloc, realloc,
free). The overrun check basically consists of verifying some
bytes of a block for certain magic keys, which catches some
simple forms of overrun. Another minor problem is violation
of aliasing rules and that its own internal list of blocks
is prone to corruption.

Another issue with safemalloc is rather the maintenance cost
as the tool has a significant impact on the server code.
Given the magnitude of memory debuggers available nowadays,
especially those that are provided with the platform malloc
implementation, maintenance of a in-house and largely obsolete
memory debugger becomes a burden that is not worth the effort
due to its slowness and lack of support for detecting more
common forms of heap corruption.

Since there are third-party tools that can provide the same
functionality at a lower or comparable performance cost, the
solution is to simply remove safemalloc. Third-party tools
can provide the same functionality at a lower or comparable
performance cost. 

The removal of safemalloc also allows a simplification of the
malloc wrappers, removing quite a bit of kludge: redefinition
of my_malloc, my_free and the removal of the unused second
argument of my_free. Since free() always check whether the
supplied pointer is null, redudant checks are also removed.

Also, this patch adds unit testing for my_malloc and moves
my_realloc implementation into the same file as the other
memory allocation primitives.
2010-07-08 18:20:08 -03:00

162 lines
4.1 KiB
C++

/* Copyright (C) 2000, 2002, 2005 MySQL AB, 2008-2009 Sun Microsystems, Inc
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
* sql_manager.cc
* This thread manages various maintenance tasks.
*
* o Flushing the tables every flush_time seconds.
* o Berkeley DB: removing unneeded log files.
*/
#include "sql_priv.h"
#include "sql_manager.h"
#include "unireg.h" // REQUIRED: for other includes
#include "sql_base.h" // flush_tables
static bool volatile manager_thread_in_use;
static bool abort_manager;
pthread_t manager_thread;
mysql_mutex_t LOCK_manager;
mysql_cond_t COND_manager;
struct handler_cb {
struct handler_cb *next;
void (*action)(void);
};
static struct handler_cb * volatile cb_list;
bool mysql_manager_submit(void (*action)())
{
bool result= FALSE;
struct handler_cb * volatile *cb;
mysql_mutex_lock(&LOCK_manager);
cb= &cb_list;
while (*cb && (*cb)->action != action)
cb= &(*cb)->next;
if (!*cb)
{
*cb= (struct handler_cb *)my_malloc(sizeof(struct handler_cb), MYF(MY_WME));
if (!*cb)
result= TRUE;
else
{
(*cb)->next= NULL;
(*cb)->action= action;
}
}
mysql_mutex_unlock(&LOCK_manager);
return result;
}
pthread_handler_t handle_manager(void *arg __attribute__((unused)))
{
int error = 0;
struct timespec abstime;
bool reset_flush_time = TRUE;
struct handler_cb *cb= NULL;
my_thread_init();
DBUG_ENTER("handle_manager");
pthread_detach_this_thread();
manager_thread = pthread_self();
manager_thread_in_use = 1;
for (;;)
{
mysql_mutex_lock(&LOCK_manager);
/* XXX: This will need to be made more general to handle different
* polling needs. */
if (flush_time)
{
if (reset_flush_time)
{
set_timespec(abstime, flush_time);
reset_flush_time = FALSE;
}
while ((!error || error == EINTR) && !abort_manager)
error= mysql_cond_timedwait(&COND_manager, &LOCK_manager, &abstime);
}
else
{
while ((!error || error == EINTR) && !abort_manager)
error= mysql_cond_wait(&COND_manager, &LOCK_manager);
}
if (cb == NULL)
{
cb= cb_list;
cb_list= NULL;
}
mysql_mutex_unlock(&LOCK_manager);
if (abort_manager)
break;
if (error == ETIMEDOUT || error == ETIME)
{
tdc_flush_unused_tables();
error = 0;
reset_flush_time = TRUE;
}
while (cb)
{
struct handler_cb *next= cb->next;
cb->action();
my_free(cb);
cb= next;
}
}
manager_thread_in_use = 0;
DBUG_LEAVE; // Can't use DBUG_RETURN after my_thread_end
my_thread_end();
return (NULL);
}
/* Start handle manager thread */
void start_handle_manager()
{
DBUG_ENTER("start_handle_manager");
abort_manager = false;
if (flush_time && flush_time != ~(ulong) 0L)
{
pthread_t hThread;
if (mysql_thread_create(key_thread_handle_manager,
&hThread, &connection_attrib, handle_manager, 0))
sql_print_warning("Can't create handle_manager thread");
}
DBUG_VOID_RETURN;
}
/* Initiate shutdown of handle manager thread */
void stop_handle_manager()
{
DBUG_ENTER("stop_handle_manager");
abort_manager = true;
mysql_mutex_lock(&LOCK_manager);
if (manager_thread_in_use)
{
DBUG_PRINT("quit", ("initiate shutdown of handle manager thread: 0x%lx",
(ulong)manager_thread));
mysql_cond_signal(&COND_manager);
}
mysql_mutex_unlock(&LOCK_manager);
DBUG_VOID_RETURN;
}