mariadb/ft/tests/ft-clock-test.cc
Zardosht Kasheff 06df52d6e1 refs #5442, merge to main
git-svn-id: file:///svn/toku/tokudb@47493 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-17 00:01:05 -04:00

429 lines
13 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
#include "test.h"
#include "includes.h"
enum ftnode_verify_type {
read_all=1,
read_compressed,
read_none
};
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
static int
string_key_cmp(DB *UU(e), const DBT *a, const DBT *b)
{
char *CAST_FROM_VOIDP(s, a->data);
char *CAST_FROM_VOIDP(t, b->data);
return strcmp(s, t);
}
static int omt_cmp(OMTVALUE p, void *q)
{
LEAFENTRY CAST_FROM_VOIDP(a, p);
LEAFENTRY CAST_FROM_VOIDP(b, q);
void *ak, *bk;
uint32_t al, bl;
ak = le_key_and_len(a, &al);
bk = le_key_and_len(b, &bl);
int l = MIN(al, bl);
int c = memcmp(ak, bk, l);
if (c < 0) { return -1; }
if (c > 0) { return +1; }
int d = al - bl;
if (d < 0) { return -1; }
if (d > 0) { return +1; }
else { return 0; }
}
static LEAFENTRY
le_fastmalloc(const char *key, int keylen, const char *val, int vallen)
{
LEAFENTRY CAST_FROM_VOIDP(r, toku_malloc(sizeof(r->type) + sizeof(r->keylen) + sizeof(r->u.clean.vallen) +
keylen + vallen));
resource_assert(r);
r->type = LE_CLEAN;
r->keylen = keylen;
r->u.clean.vallen = vallen;
memcpy(&r->u.clean.key_val[0], key, keylen);
memcpy(&r->u.clean.key_val[keylen], val, vallen);
return r;
}
static LEAFENTRY
le_malloc(const char *key, const char *val)
{
int keylen = strlen(key) + 1;
int vallen = strlen(val) + 1;
return le_fastmalloc(key, keylen, val, vallen);
}
static void
test1(int fd, FT brt_h, FTNODE *dn) {
int r;
struct ftnode_fetch_extra bfe_all;
brt_h->compare_fun = string_key_cmp;
fill_bfe_for_full_read(&bfe_all, brt_h);
FTNODE_DISK_DATA ndd = NULL;
r = toku_deserialize_ftnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, &ndd, &bfe_all);
bool is_leaf = ((*dn)->height == 0);
assert(r==0);
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_AVAIL);
}
// should sweep and NOT get rid of anything
PAIR_ATTR attr;
memset(&attr,0,sizeof(attr));
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_AVAIL);
}
// should sweep and get compress all
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
if (!is_leaf) {
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
}
else {
assert(BP_STATE(*dn,i) == PT_ON_DISK);
}
}
PAIR_ATTR size;
bool req = toku_ftnode_pf_req_callback(*dn, &bfe_all);
assert(req);
toku_ftnode_pf_callback(*dn, ndd, &bfe_all, fd, &size);
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_AVAIL);
}
// should sweep and get compress all
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
if (!is_leaf) {
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
}
else {
assert(BP_STATE(*dn,i) == PT_ON_DISK);
}
}
req = toku_ftnode_pf_req_callback(*dn, &bfe_all);
assert(req);
toku_ftnode_pf_callback(*dn, ndd, &bfe_all, fd, &size);
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_AVAIL);
}
(*dn)->dirty = 1;
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_AVAIL);
}
toku_free(ndd);
toku_ftnode_free(dn);
}
static int search_cmp(struct ft_search* UU(so), DBT* UU(key)) {
return 0;
}
static void
test2(int fd, FT brt_h, FTNODE *dn) {
struct ftnode_fetch_extra bfe_subset;
DBT left, right;
DB dummy_db;
memset(&dummy_db, 0, sizeof(dummy_db));
memset(&left, 0, sizeof(left));
memset(&right, 0, sizeof(right));
ft_search_t search_t;
brt_h->compare_fun = string_key_cmp;
fill_bfe_for_subset_read(
&bfe_subset,
brt_h,
ft_search_init(
&search_t,
search_cmp,
FT_SEARCH_LEFT,
NULL,
NULL
),
&left,
&right,
true,
true,
false
);
FTNODE_DISK_DATA ndd = NULL;
int r = toku_deserialize_ftnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, &ndd, &bfe_subset);
assert(r==0);
bool is_leaf = ((*dn)->height == 0);
// at this point, although both partitions are available, only the
// second basement node should have had its clock
// touched
assert(BP_STATE(*dn, 0) == PT_AVAIL);
assert(BP_STATE(*dn, 1) == PT_AVAIL);
assert(BP_SHOULD_EVICT(*dn, 0));
assert(!BP_SHOULD_EVICT(*dn, 1));
PAIR_ATTR attr;
memset(&attr,0,sizeof(attr));
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
assert(BP_STATE(*dn, 0) == (is_leaf) ? PT_ON_DISK : PT_COMPRESSED);
assert(BP_STATE(*dn, 1) == PT_AVAIL);
assert(BP_SHOULD_EVICT(*dn, 1));
toku_ftnode_pe_callback(*dn, attr, &attr, brt_h);
assert(BP_STATE(*dn, 1) == (is_leaf) ? PT_ON_DISK : PT_COMPRESSED);
bool req = toku_ftnode_pf_req_callback(*dn, &bfe_subset);
assert(req);
toku_ftnode_pf_callback(*dn, ndd, &bfe_subset, fd, &attr);
assert(BP_STATE(*dn, 0) == PT_AVAIL);
assert(BP_STATE(*dn, 1) == PT_AVAIL);
assert(BP_SHOULD_EVICT(*dn, 0));
assert(!BP_SHOULD_EVICT(*dn, 1));
toku_free(ndd);
toku_ftnode_free(dn);
}
static void
test3_leaf(int fd, FT brt_h, FTNODE *dn) {
struct ftnode_fetch_extra bfe_min;
DBT left, right;
DB dummy_db;
memset(&dummy_db, 0, sizeof(dummy_db));
memset(&left, 0, sizeof(left));
memset(&right, 0, sizeof(right));
brt_h->compare_fun = string_key_cmp;
fill_bfe_for_min_read(
&bfe_min,
brt_h
);
FTNODE_DISK_DATA ndd = NULL;
int r = toku_deserialize_ftnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, &ndd, &bfe_min);
assert(r==0);
//
// make sure we have a leaf
//
assert((*dn)->height == 0);
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn, i) == PT_ON_DISK);
}
toku_ftnode_free(dn);
toku_free(ndd);
}
static void
test_serialize_nonleaf(void) {
// struct ft_handle source_ft;
struct ftnode sn, *dn;
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
// source_ft.fd=fd;
sn.max_msn_applied_to_node_on_disk.msn = 0;
char *hello_string;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = FT_LAYOUT_VERSION;
sn.layout_version_original = FT_LAYOUT_VERSION;
sn.height = 1;
sn.n_children = 2;
sn.dirty = 1;
hello_string = toku_strdup("hello");
MALLOC_N(2, sn.bp);
MALLOC_N(1, sn.childkeys);
toku_fill_dbt(&sn.childkeys[0], hello_string, 6);
sn.totalchildkeylens = 6;
BP_BLOCKNUM(&sn, 0).b = 30;
BP_BLOCKNUM(&sn, 1).b = 35;
BP_STATE(&sn,0) = PT_AVAIL;
BP_STATE(&sn,1) = PT_AVAIL;
set_BNC(&sn, 0, toku_create_empty_nl());
set_BNC(&sn, 1, toku_create_empty_nl());
//Create XIDS
XIDS xids_0 = xids_get_root_xids();
XIDS xids_123;
XIDS xids_234;
r = xids_create_child(xids_0, &xids_123, (TXNID)123);
CKERR(r);
r = xids_create_child(xids_123, &xids_234, (TXNID)234);
CKERR(r);
r = toku_bnc_insert_msg(BNC(&sn, 0), "a", 2, "aval", 5, FT_NONE, next_dummymsn(), xids_0, true, NULL, string_key_cmp); assert_zero(r);
r = toku_bnc_insert_msg(BNC(&sn, 0), "b", 2, "bval", 5, FT_NONE, next_dummymsn(), xids_123, false, NULL, string_key_cmp); assert_zero(r);
r = toku_bnc_insert_msg(BNC(&sn, 1), "x", 2, "xval", 5, FT_NONE, next_dummymsn(), xids_234, true, NULL, string_key_cmp); assert_zero(r);
//Cleanup:
xids_destroy(&xids_0);
xids_destroy(&xids_123);
xids_destroy(&xids_234);
FT_HANDLE XMALLOC(brt);
FT XCALLOC(brt_h);
toku_ft_init(brt_h,
make_blocknum(0),
ZERO_LSN,
TXNID_NONE,
4*1024*1024,
128*1024,
TOKU_DEFAULT_COMPRESSION_METHOD);
brt->ft = brt_h;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
FTNODE_DISK_DATA ndd = NULL;
r = toku_serialize_ftnode_to(fd, make_blocknum(20), &sn, &ndd, true, brt->ft, false);
assert(r==0);
test1(fd, brt_h, &dn);
test2(fd, brt_h, &dn);
toku_free(hello_string);
destroy_nonleaf_childinfo(BNC(&sn, 0));
destroy_nonleaf_childinfo(BNC(&sn, 1));
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_free(ndd);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h->h);
toku_free(brt_h);
toku_free(brt);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf(void) {
// struct ft_handle source_ft;
struct ftnode sn, *dn;
int fd = open(__SRCFILE__ ".ft_handle", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = FT_LAYOUT_VERSION;
sn.layout_version_original = FT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 2;
sn.dirty = 1;
LEAFENTRY elts[3];
elts[0] = le_malloc("a", "aval");
elts[1] = le_malloc("b", "bval");
elts[2] = le_malloc("x", "xval");
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(1, sn.childkeys);
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("b", 2), 2);
sn.totalchildkeylens = 2;
BP_STATE(&sn,0) = PT_AVAIL;
BP_STATE(&sn,1) = PT_AVAIL;
set_BLB(&sn, 0, toku_create_empty_bn());
set_BLB(&sn, 1, toku_create_empty_bn());
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
FT_HANDLE XMALLOC(brt);
FT XCALLOC(brt_h);
toku_ft_init(brt_h,
make_blocknum(0),
ZERO_LSN,
TXNID_NONE,
4*1024*1024,
128*1024,
TOKU_DEFAULT_COMPRESSION_METHOD);
brt->ft = brt_h;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
{ int r_truncate = ftruncate(fd, 0); CKERR(r_truncate); }
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, fd, false);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
FTNODE_DISK_DATA ndd = NULL;
r = toku_serialize_ftnode_to(fd, make_blocknum(20), &sn, &ndd, true, brt->ft, false);
assert(r==0);
test1(fd, brt_h, &dn);
test3_leaf(fd, brt_h,&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
for (int i = 0; i < 3; ++i) {
toku_free(elts[i]);
}
for (int i = 0; i < sn.n_children; i++) {
struct mempool * mp = &(BLB_BUFFER_MEMPOOL(&sn, i));
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h->h);
toku_free(brt_h);
toku_free(brt);
toku_free(ndd);
r = close(fd); assert(r != -1);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
initialize_dummymsn();
test_serialize_nonleaf();
test_serialize_leaf();
return 0;
}