mariadb/extra/yassl/taocrypt/include/misc.hpp
msvensson@neptunus.(none) 64a64d0fbf Import yaSSL version 1.4.0
2006-09-25 16:40:29 +02:00

873 lines
20 KiB
C++

/* misc.hpp
*
* Copyright (C) 2003 Sawtooth Consulting Ltd.
*
* This file is part of yaSSL.
*
* yaSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* There are special exceptions to the terms and conditions of the GPL as it
* is applied to yaSSL. View the full text of the exception in the file
* FLOSS-EXCEPTIONS in the directory of this software distribution.
*
* yaSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/* based on Wei Dai's misc.h from CryptoPP */
#ifndef TAO_CRYPT_MISC_HPP
#define TAO_CRYPT_MISC_HPP
#if !defined(DO_TAOCRYPT_KERNEL_MODE)
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#else
#include "kernelc.hpp"
#endif
#include "types.hpp"
#include "type_traits.hpp"
namespace TaoCrypt {
// Delete static singleton holders
void CleanUp();
#ifdef YASSL_PURE_C
// library allocation
struct new_t {}; // TaoCrypt New type
extern new_t tc; // pass in parameter
} // namespace TaoCrypt
void* operator new (size_t, TaoCrypt::new_t);
void* operator new[](size_t, TaoCrypt::new_t);
void operator delete (void*, TaoCrypt::new_t);
void operator delete[](void*, TaoCrypt::new_t);
namespace TaoCrypt {
template<typename T>
void tcDelete(T* ptr)
{
if (ptr) ptr->~T();
::operator delete(ptr, TaoCrypt::tc);
}
template<typename T>
void tcArrayDelete(T* ptr)
{
// can't do array placement destruction since not tracking size in
// allocation, only allow builtins to use array placement since they
// don't need destructors called
typedef char builtin[IsFundamentalType<T>::Yes ? 1 : -1];
(void)sizeof(builtin);
::operator delete[](ptr, TaoCrypt::tc);
}
#define NEW_TC new (TaoCrypt::tc)
// to resolve compiler generated operator delete on base classes with
// virtual destructors (when on stack), make sure doesn't get called
class virtual_base {
public:
static void operator delete(void*) { assert(0); }
};
#else // YASSL_PURE_C
template<typename T>
void tcDelete(T* ptr)
{
delete ptr;
}
template<typename T>
void tcArrayDelete(T* ptr)
{
delete[] ptr;
}
#define NEW_TC new
class virtual_base {};
#endif // YASSL_PURE_C
#if defined(_MSC_VER) || defined(__BCPLUSPLUS__)
#define INTEL_INTRINSICS
#define FAST_ROTATE
#elif defined(__MWERKS__) && TARGET_CPU_PPC
#define PPC_INTRINSICS
#define FAST_ROTATE
#elif defined(__GNUC__) && defined(__i386__)
// GCC does peephole optimizations which should result in using rotate
// instructions
#define FAST_ROTATE
#endif
// no gas on these systems ?, disable for now
#if defined(__sun__) || defined (__QNX__) || defined (__APPLE__)
#define TAOCRYPT_DISABLE_X86ASM
#endif
// icc problem with -03 and integer, disable for now
#if defined(__INTEL_COMPILER)
#define TAOCRYPT_DISABLE_X86ASM
#endif
// Turn on ia32 ASM for Big Integer
// CodeWarrior defines _MSC_VER
#if !defined(TAOCRYPT_DISABLE_X86ASM) && ((defined(_MSC_VER) && \
!defined(__MWERKS__) && defined(_M_IX86)) || \
(defined(__GNUC__) && defined(__i386__)))
#define TAOCRYPT_X86ASM_AVAILABLE
#endif
// Turn on ia32 ASM for Ciphers and Message Digests
// Seperate define since these are more complex, use member offsets
// and user may want to turn off while leaving Big Integer optos on
#if defined(TAOCRYPT_X86ASM_AVAILABLE) && !defined(DISABLE_TAO_ASM)
#define TAO_ASM
#endif
// Extra word in older vtable implementations, for ASM member offset
#if defined(__GNUC__) && __GNUC__ < 3
#define OLD_GCC_OFFSET
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
# define TAOCRYPT_MALLOC_ALIGNMENT_IS_16
#endif
#if defined(__linux__) || defined(__sun__) || defined(__CYGWIN__)
# define TAOCRYPT_MEMALIGN_AVAILABLE
#endif
#if defined(_WIN32) || defined(__CYGWIN__)
#define TAOCRYPT_WIN32_AVAILABLE
#endif
#if defined(__unix__) || defined(__MACH__)
#define TAOCRYPT_UNIX_AVAILABLE
#endif
// VC60 workaround: it doesn't allow typename in some places
#if defined(_MSC_VER) && (_MSC_VER < 1300)
#define CPP_TYPENAME
#else
#define CPP_TYPENAME typename
#endif
#ifdef _MSC_VER
#define TAOCRYPT_NO_VTABLE __declspec(novtable)
#else
#define TAOCRYPT_NO_VTABLE
#endif
#ifdef USE_SYS_STL
// use system STL
#define STL_VECTOR_FILE <vector>
#define STL_LIST_FILE <list>
#define STL_ALGORITHM_FILE <algorithm>
#define STL_MEMORY_FILE <memory>
#define STL_NAMESPACE std
#else
// use mySTL
#define STL_VECTOR_FILE "vector.hpp"
#define STL_LIST_FILE "list.hpp"
#define STL_ALGORITHM_FILE "algorithm.hpp"
#define STL_MEMORY_FILE "memory.hpp"
#define STL_NAMESPACE mySTL
#endif
// ***************** DLL related ********************
#ifdef TAOCRYPT_WIN32_AVAILABLE
#ifdef TAOCRYPT_EXPORTS
#define TAOCRYPT_IS_DLL
#define TAOCRYPT_DLL __declspec(dllexport)
#elif defined(TAOCRYPT_IMPORTS)
#define TAOCRYPT_IS_DLL
#define TAOCRYPT_DLL __declspec(dllimport)
#else
#define TAOCRYPT_DLL
#endif // EXPORTS
#define TAOCRYPT_API __stdcall
#define TAOCRYPT_CDECL __cdecl
#else // TAOCRYPT_WIN32_AVAILABLE
#define TAOCRYPT_DLL
#define TAOCRYPT_API
#define TAOCRYPT_CDECL
#endif // TAOCRYPT_WIN32_AVAILABLE
// ****************** tempalte stuff *******************
#if defined(TAOCRYPT_MANUALLY_INSTANTIATE_TEMPLATES) && \
!defined(TAOCRYPT_IMPORTS)
#define TAOCRYPT_DLL_TEMPLATE_CLASS template class TAOCRYPT_DLL
#elif defined(__MWERKS__)
#define TAOCRYPT_DLL_TEMPLATE_CLASS extern class TAOCRYPT_DLL
#else
#define TAOCRYPT_DLL_TEMPLATE_CLASS extern template class TAOCRYPT_DLL
#endif
#if defined(TAOCRYPT_MANUALLY_INSTANTIATE_TEMPLATES) && \
!defined(TAOCRYPT_EXPORTS)
#define TAOCRYPT_STATIC_TEMPLATE_CLASS template class
#elif defined(__MWERKS__)
#define TAOCRYPT_STATIC_TEMPLATE_CLASS extern class
#else
#define TAOCRYPT_STATIC_TEMPLATE_CLASS extern template class
#endif
// ************** compile-time assertion ***************
template <bool b>
struct CompileAssert
{
static char dummy[2*b-1];
};
#define TAOCRYPT_COMPILE_ASSERT(assertion) \
TAOCRYPT_COMPILE_ASSERT_INSTANCE(assertion, __LINE__)
#if defined(TAOCRYPT_EXPORTS) || defined(TAOCRYPT_IMPORTS)
#define TAOCRYPT_COMPILE_ASSERT_INSTANCE(assertion, instance)
#else
#define TAOCRYPT_COMPILE_ASSERT_INSTANCE(assertion, instance) \
(void)sizeof(CompileAssert<(assertion)>)
#endif
#define TAOCRYPT_ASSERT_JOIN(X, Y) TAOCRYPT_DO_ASSERT_JOIN(X, Y)
#define TAOCRYPT_DO_ASSERT_JOIN(X, Y) X##Y
/*************** helpers *****************************/
inline unsigned int BitsToBytes(unsigned int bitCount)
{
return ((bitCount+7)/(8));
}
inline unsigned int BytesToWords(unsigned int byteCount)
{
return ((byteCount+WORD_SIZE-1)/WORD_SIZE);
}
inline unsigned int BitsToWords(unsigned int bitCount)
{
return ((bitCount+WORD_BITS-1)/(WORD_BITS));
}
inline void CopyWords(word* r, const word* a, word32 n)
{
for (word32 i = 0; i < n; i++)
r[i] = a[i];
}
inline unsigned int CountWords(const word* X, unsigned int N)
{
while (N && X[N-1]==0)
N--;
return N;
}
inline void SetWords(word* r, word a, unsigned int n)
{
for (unsigned int i=0; i<n; i++)
r[i] = a;
}
enum ByteOrder { LittleEndianOrder = 0, BigEndianOrder = 1 };
enum CipherDir {ENCRYPTION, DECRYPTION};
inline CipherDir ReverseDir(CipherDir dir)
{
return (dir == ENCRYPTION) ? DECRYPTION : ENCRYPTION;
}
template <typename ENUM_TYPE, int VALUE>
struct EnumToType
{
static ENUM_TYPE ToEnum() { return (ENUM_TYPE)VALUE; }
};
typedef EnumToType<ByteOrder, LittleEndianOrder> LittleEndian;
typedef EnumToType<ByteOrder, BigEndianOrder> BigEndian;
#ifndef BIG_ENDIAN_ORDER
typedef LittleEndian HostByteOrder;
#else
typedef BigEndian HostByteOrder;
#endif
inline ByteOrder GetHostByteOrder()
{
return HostByteOrder::ToEnum();
}
inline bool HostByteOrderIs(ByteOrder order)
{
return order == GetHostByteOrder();
}
void xorbuf(byte*, const byte*, unsigned int);
template <class T>
inline bool IsPowerOf2(T n)
{
return n > 0 && (n & (n-1)) == 0;
}
template <class T1, class T2>
inline T2 ModPowerOf2(T1 a, T2 b)
{
assert(IsPowerOf2(b));
return T2(a) & (b-1);
}
template <class T>
inline T RoundDownToMultipleOf(T n, T m)
{
return n - (IsPowerOf2(m) ? ModPowerOf2(n, m) : (n%m));
}
template <class T>
inline T RoundUpToMultipleOf(T n, T m)
{
return RoundDownToMultipleOf(n+m-1, m);
}
template <class T>
inline unsigned int GetAlignment(T* dummy = 0) // VC60 workaround
{
#if (_MSC_VER >= 1300)
return __alignof(T);
#elif defined(__GNUC__)
return __alignof__(T);
#else
return sizeof(T);
#endif
}
inline bool IsAlignedOn(const void* p, unsigned int alignment)
{
return IsPowerOf2(alignment) ? ModPowerOf2((size_t)p, alignment) == 0
: (size_t)p % alignment == 0;
}
template <class T>
inline bool IsAligned(const void* p, T* dummy = 0) // VC60 workaround
{
return IsAlignedOn(p, GetAlignment<T>());
}
template <class T> inline T rotlFixed(T x, unsigned int y)
{
assert(y < sizeof(T)*8);
return (x<<y) | (x>>(sizeof(T)*8-y));
}
template <class T> inline T rotrFixed(T x, unsigned int y)
{
assert(y < sizeof(T)*8);
return (x>>y) | (x<<(sizeof(T)*8-y));
}
#ifdef INTEL_INTRINSICS
#pragma intrinsic(_lrotl, _lrotr)
template<> inline word32 rotlFixed(word32 x, word32 y)
{
assert(y < 32);
return y ? _lrotl(x, y) : x;
}
template<> inline word32 rotrFixed(word32 x, word32 y)
{
assert(y < 32);
return y ? _lrotr(x, y) : x;
}
#endif // INTEL_INTRINSICS
#ifdef min
#undef min
#endif
inline word32 min(word32 a, word32 b)
{
return a < b ? a : b;
}
inline word32 ByteReverse(word32 value)
{
#ifdef PPC_INTRINSICS
// PPC: load reverse indexed instruction
return (word32)__lwbrx(&value,0);
#elif defined(FAST_ROTATE)
// 5 instructions with rotate instruction, 9 without
return (rotrFixed(value, 8U) & 0xff00ff00) |
(rotlFixed(value, 8U) & 0x00ff00ff);
#else
// 6 instructions with rotate instruction, 8 without
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
return rotlFixed(value, 16U);
#endif
}
template <typename T>
inline void ByteReverse(T* out, const T* in, word32 byteCount)
{
assert(byteCount % sizeof(T) == 0);
word32 count = byteCount/sizeof(T);
for (word32 i=0; i<count; i++)
out[i] = ByteReverse(in[i]);
}
inline void ByteReverse(byte* out, const byte* in, word32 byteCount)
{
word32* o = reinterpret_cast<word32*>(out);
const word32* i = reinterpret_cast<const word32*>(in);
ByteReverse(o, i, byteCount);
}
template <class T>
inline T ByteReverseIf(T value, ByteOrder order)
{
return HostByteOrderIs(order) ? value : ByteReverse(value);
}
template <typename T>
inline void ByteReverseIf(T* out, const T* in, word32 bc, ByteOrder order)
{
if (!HostByteOrderIs(order))
ByteReverse(out, in, bc);
else if (out != in)
memcpy(out, in, bc);
}
// do Asm Reverse is host is Little and x86asm
#ifdef LITTLE_ENDIAN_ORDER
#ifdef TAOCRYPT_X86ASM_AVAILABLE
#define LittleReverse AsmReverse
#else
#define LittleReverse ByteReverse
#endif
#else
#define LittleReverse
#endif
// do Asm Reverse is host is Big and x86asm
#ifdef BIG_ENDIAN_ORDER
#ifdef TAOCRYPT_X86ASM_AVAILABLE
#define BigReverse AsmReverse
#else
#define BigReverse ByteReverse
#endif
#else
#define BigReverse
#endif
#ifdef TAOCRYPT_X86ASM_AVAILABLE
// faster than rotate, use bswap
inline word32 AsmReverse(word32 wd)
{
#ifdef __GNUC__
__asm__
(
"bswap %1"
: "=r"(wd)
: "0"(wd)
);
#else
__asm
{
mov eax, wd
bswap eax
mov wd, eax
}
#endif
return wd;
}
#endif
template <class T>
inline void GetUserKey(ByteOrder order, T* out, word32 outlen, const byte* in,
word32 inlen)
{
const unsigned int U = sizeof(T);
assert(inlen <= outlen*U);
memcpy(out, in, inlen);
memset((byte *)out+inlen, 0, outlen*U-inlen);
ByteReverseIf(out, out, RoundUpToMultipleOf(inlen, U), order);
}
#ifdef _MSC_VER
// disable conversion warning
#pragma warning(disable:4244)
#endif
inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block,
byte*)
{
return block[0];
}
inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte* block,
word16*)
{
return (order == BigEndianOrder)
? block[1] | (block[0] << 8)
: block[0] | (block[1] << 8);
}
inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte* block,
word32*)
{
return (order == BigEndianOrder)
? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16)
| (word32(block[0]) << 24)
: word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16)
| (word32(block[3]) << 24);
}
template <class T>
inline T UnalignedGetWord(ByteOrder order, const byte *block, T* dummy = 0)
{
return UnalignedGetWordNonTemplate(order, block, dummy);
}
inline void UnalignedPutWord(ByteOrder order, byte *block, byte value,
const byte *xorBlock = 0)
{
block[0] = xorBlock ? (value ^ xorBlock[0]) : value;
}
#define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y)))
inline void UnalignedPutWord(ByteOrder order, byte *block, word16 value,
const byte *xorBlock = 0)
{
if (order == BigEndianOrder)
{
block[0] = GETBYTE(value, 1);
block[1] = GETBYTE(value, 0);
}
else
{
block[0] = GETBYTE(value, 0);
block[1] = GETBYTE(value, 1);
}
if (xorBlock)
{
block[0] ^= xorBlock[0];
block[1] ^= xorBlock[1];
}
}
inline void UnalignedPutWord(ByteOrder order, byte* block, word32 value,
const byte* xorBlock = 0)
{
if (order == BigEndianOrder)
{
block[0] = GETBYTE(value, 3);
block[1] = GETBYTE(value, 2);
block[2] = GETBYTE(value, 1);
block[3] = GETBYTE(value, 0);
}
else
{
block[0] = GETBYTE(value, 0);
block[1] = GETBYTE(value, 1);
block[2] = GETBYTE(value, 2);
block[3] = GETBYTE(value, 3);
}
if (xorBlock)
{
block[0] ^= xorBlock[0];
block[1] ^= xorBlock[1];
block[2] ^= xorBlock[2];
block[3] ^= xorBlock[3];
}
}
template <class T>
inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block)
{
if (assumeAligned)
{
assert(IsAligned<T>(block));
return ByteReverseIf(*reinterpret_cast<const T *>(block), order);
}
else
return UnalignedGetWord<T>(order, block);
}
template <class T>
inline void GetWord(bool assumeAligned, ByteOrder order, T &result,
const byte *block)
{
result = GetWord<T>(assumeAligned, order, block);
}
template <class T>
inline void PutWord(bool assumeAligned, ByteOrder order, byte* block, T value,
const byte *xorBlock = 0)
{
if (assumeAligned)
{
assert(IsAligned<T>(block));
if (xorBlock)
*reinterpret_cast<T *>(block) = ByteReverseIf(value, order)
^ *reinterpret_cast<const T *>(xorBlock);
else
*reinterpret_cast<T *>(block) = ByteReverseIf(value, order);
}
else
UnalignedPutWord(order, block, value, xorBlock);
}
template <class T, class B, bool A=true>
class GetBlock
{
public:
GetBlock(const void *block)
: m_block((const byte *)block) {}
template <class U>
inline GetBlock<T, B, A> & operator()(U &x)
{
TAOCRYPT_COMPILE_ASSERT(sizeof(U) >= sizeof(T));
x = GetWord<T>(A, B::ToEnum(), m_block);
m_block += sizeof(T);
return *this;
}
private:
const byte *m_block;
};
template <class T, class B, bool A = true>
class PutBlock
{
public:
PutBlock(const void *xorBlock, void *block)
: m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {}
template <class U>
inline PutBlock<T, B, A> & operator()(U x)
{
PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock);
m_block += sizeof(T);
if (m_xorBlock)
m_xorBlock += sizeof(T);
return *this;
}
private:
const byte *m_xorBlock;
byte *m_block;
};
template <class T, class B, bool A=true>
struct BlockGetAndPut
{
// function needed because of C++ grammatical ambiguity between
// expression-statements and declarations
static inline GetBlock<T, B, A> Get(const void *block)
{return GetBlock<T, B, A>(block);}
typedef PutBlock<T, B, A> Put;
};
template <bool overflow> struct SafeShifter;
template<> struct SafeShifter<true>
{
template <class T>
static inline T RightShift(T value, unsigned int bits)
{
return 0;
}
template <class T>
static inline T LeftShift(T value, unsigned int bits)
{
return 0;
}
};
template<> struct SafeShifter<false>
{
template <class T>
static inline T RightShift(T value, unsigned int bits)
{
return value >> bits;
}
template <class T>
static inline T LeftShift(T value, unsigned int bits)
{
return value << bits;
}
};
template <unsigned int bits, class T>
inline T SafeRightShift(T value)
{
return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits);
}
template <unsigned int bits, class T>
inline T SafeLeftShift(T value)
{
return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits);
}
inline
word ShiftWordsLeftByBits(word* r, unsigned int n, unsigned int shiftBits)
{
assert (shiftBits<WORD_BITS);
word u, carry=0;
if (shiftBits)
for (unsigned int i=0; i<n; i++)
{
u = r[i];
r[i] = (u << shiftBits) | carry;
carry = u >> (WORD_BITS-shiftBits);
}
return carry;
}
inline
word ShiftWordsRightByBits(word* r, unsigned int n, unsigned int shiftBits)
{
assert (shiftBits<WORD_BITS);
word u, carry=0;
if (shiftBits)
for (int i=n-1; i>=0; i--)
{
u = r[i];
r[i] = (u >> shiftBits) | carry;
carry = u << (WORD_BITS-shiftBits);
}
return carry;
}
inline
void ShiftWordsLeftByWords(word* r, unsigned int n, unsigned int shiftWords)
{
shiftWords = min(shiftWords, n);
if (shiftWords)
{
for (unsigned int i=n-1; i>=shiftWords; i--)
r[i] = r[i-shiftWords];
SetWords(r, 0, shiftWords);
}
}
inline
void ShiftWordsRightByWords(word* r, unsigned int n, unsigned int shiftWords)
{
shiftWords = min(shiftWords, n);
if (shiftWords)
{
for (unsigned int i=0; i+shiftWords<n; i++)
r[i] = r[i+shiftWords];
SetWords(r+n-shiftWords, 0, shiftWords);
}
}
template <class T1, class T2>
inline T1 SaturatingSubtract(T1 a, T2 b)
{
TAOCRYPT_COMPILE_ASSERT_INSTANCE(T1(-1)>0, 0); // T1 is unsigned type
TAOCRYPT_COMPILE_ASSERT_INSTANCE(T2(-1)>0, 1); // T2 is unsigned type
return T1((a > b) ? (a - b) : 0);
}
// declares
unsigned int BytePrecision(unsigned long value);
unsigned int BitPrecision(unsigned long);
unsigned long Crop(unsigned long value, unsigned int size);
} // namespace
#endif // TAO_CRYPT_MISC_HPP