mariadb/myisam/rt_mbr.c
unknown 0b235009e6 Bug#17877 - Corrupted spatial index
CHECK TABLE could complain about a fully intact spatial index.
A wrong comparison operator was used for table checking. 
The result was that it checked for non-matching spatial keys. 
This succeeded if at least two different keys were present, 
but failed if only the matching key was present.

I fixed the key comparison.


myisam/mi_check.c:
  Bug#17877 - Corrupted spatial index
  Fixed the comparison operator for checking a spatial index.
  Using MBR_EQUAL | MBR_DATA to compare for equality and
  include the data pointer in the comparison. The latter
  finds the index entry that points to the current record.
  This is necessary for non-unique indexes.
  
  The old operator, SEARCH_SAME, is unknown to the rtree
  search functions and handled like MBR_DISJOINT.
myisam/mi_key.c:
  Bug#17877 - Corrupted spatial index
  Added a missing DBUG_RETURN.
myisam/rt_index.c:
  Bug#17877 - Corrupted spatial index
  Included the data pointer in the copy of the search key.
  This is necessary for searching the index entry that points
  to a specific record if the search_flag contains MBR_DATA.
myisam/rt_mbr.c:
  Bug#17877 - Corrupted spatial index
  Extended the RT_CMP() macro with an assert for an 
  unexpected comparison operator.
mysql-test/r/gis-rtree.result:
  Bug#17877 - Corrupted spatial index
  The test result.
mysql-test/t/gis-rtree.test:
  Bug#17877 - Corrupted spatial index
  The test case.
2006-06-28 14:27:37 +02:00

805 lines
21 KiB
C

/* Copyright (C) 2000 MySQL AB & Ramil Kalimullin & MySQL Finland AB
& TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "myisamdef.h"
#ifdef HAVE_RTREE_KEYS
#include "rt_index.h"
#include "rt_mbr.h"
#define INTERSECT_CMP(amin, amax, bmin, bmax) ((amin > bmax) || (bmin > amax))
#define CONTAIN_CMP(amin, amax, bmin, bmax) ((bmin > amin) || (bmax < amax))
#define WITHIN_CMP(amin, amax, bmin, bmax) ((amin > bmin) || (amax < bmax))
#define DISJOINT_CMP(amin, amax, bmin, bmax) ((amin <= bmax) && (bmin <= amax))
#define EQUAL_CMP(amin, amax, bmin, bmax) ((amin != bmin) || (amax != bmax))
#define FCMP(A, B) ((int)(A) - (int)(B))
#define p_inc(A, B, X) {A += X; B += X;}
#define RT_CMP(nextflag) \
if (nextflag & MBR_INTERSECT) \
{ \
if (INTERSECT_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_CONTAIN) \
{ \
if (CONTAIN_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_WITHIN) \
{ \
if (WITHIN_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_EQUAL) \
{ \
if (EQUAL_CMP(amin, amax, bmin, bmax)) \
return 1; \
} \
else if (nextflag & MBR_DISJOINT) \
{ \
if (DISJOINT_CMP(amin, amax, bmin, bmax)) \
return 1; \
}\
else /* if unknown comparison operator */ \
{ \
DBUG_ASSERT(0); \
}
#define RT_CMP_KORR(type, korr_func, len, nextflag) \
{ \
type amin, amax, bmin, bmax; \
amin = korr_func(a); \
bmin = korr_func(b); \
amax = korr_func(a+len); \
bmax = korr_func(b+len); \
RT_CMP(nextflag); \
}
#define RT_CMP_GET(type, get_func, len, nextflag) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
RT_CMP(nextflag); \
}
/*
Compares two keys a and b depending on nextflag
nextflag can contain these flags:
MBR_INTERSECT(a,b) a overlaps b
MBR_CONTAIN(a,b) a contains b
MBR_DISJOINT(a,b) a disjoint b
MBR_WITHIN(a,b) a within b
MBR_EQUAL(a,b) All coordinates of MBRs are equal
MBR_DATA(a,b) Data reference is the same
Returns 0 on success.
*/
int rtree_key_cmp(HA_KEYSEG *keyseg, uchar *b, uchar *a, uint key_length,
uint nextflag)
{
for (; (int) key_length > 0; keyseg += 2 )
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_CMP_KORR(int8, mi_sint1korr, 1, nextflag);
break;
case HA_KEYTYPE_BINARY:
RT_CMP_KORR(uint8, mi_uint1korr, 1, nextflag);
break;
case HA_KEYTYPE_SHORT_INT:
RT_CMP_KORR(int16, mi_sint2korr, 2, nextflag);
break;
case HA_KEYTYPE_USHORT_INT:
RT_CMP_KORR(uint16, mi_uint2korr, 2, nextflag);
break;
case HA_KEYTYPE_INT24:
RT_CMP_KORR(int32, mi_sint3korr, 3, nextflag);
break;
case HA_KEYTYPE_UINT24:
RT_CMP_KORR(uint32, mi_uint3korr, 3, nextflag);
break;
case HA_KEYTYPE_LONG_INT:
RT_CMP_KORR(int32, mi_sint4korr, 4, nextflag);
break;
case HA_KEYTYPE_ULONG_INT:
RT_CMP_KORR(uint32, mi_uint4korr, 4, nextflag);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_CMP_KORR(longlong, mi_sint8korr, 8, nextflag)
break;
case HA_KEYTYPE_ULONGLONG:
RT_CMP_KORR(ulonglong, mi_uint8korr, 8, nextflag)
break;
#endif
case HA_KEYTYPE_FLOAT:
/* The following should be safe, even if we compare doubles */
RT_CMP_GET(float, mi_float4get, 4, nextflag);
break;
case HA_KEYTYPE_DOUBLE:
RT_CMP_GET(double, mi_float8get, 8, nextflag);
break;
case HA_KEYTYPE_END:
goto end;
default:
return 1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
end:
if (nextflag & MBR_DATA)
{
uchar *end = a + keyseg->length;
do
{
if (*a++ != *b++)
return FCMP(a[-1], b[-1]);
} while (a != end);
}
return 0;
}
#define RT_VOL_KORR(type, korr_func, len, cast) \
{ \
type amin, amax; \
amin = korr_func(a); \
amax = korr_func(a+len); \
res *= (cast(amax) - cast(amin)); \
}
#define RT_VOL_GET(type, get_func, len, cast) \
{ \
type amin, amax; \
get_func(amin, a); \
get_func(amax, a+len); \
res *= (cast(amax) - cast(amin)); \
}
/*
Calculates rectangle volume
*/
double rtree_rect_volume(HA_KEYSEG *keyseg, uchar *a, uint key_length)
{
double res = 1;
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_VOL_KORR(int8, mi_sint1korr, 1, (double));
break;
case HA_KEYTYPE_BINARY:
RT_VOL_KORR(uint8, mi_uint1korr, 1, (double));
break;
case HA_KEYTYPE_SHORT_INT:
RT_VOL_KORR(int16, mi_sint2korr, 2, (double));
break;
case HA_KEYTYPE_USHORT_INT:
RT_VOL_KORR(uint16, mi_uint2korr, 2, (double));
break;
case HA_KEYTYPE_INT24:
RT_VOL_KORR(int32, mi_sint3korr, 3, (double));
break;
case HA_KEYTYPE_UINT24:
RT_VOL_KORR(uint32, mi_uint3korr, 3, (double));
break;
case HA_KEYTYPE_LONG_INT:
RT_VOL_KORR(int32, mi_sint4korr, 4, (double));
break;
case HA_KEYTYPE_ULONG_INT:
RT_VOL_KORR(uint32, mi_uint4korr, 4, (double));
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_VOL_KORR(longlong, mi_sint8korr, 8, (double));
break;
case HA_KEYTYPE_ULONGLONG:
RT_VOL_KORR(longlong, mi_sint8korr, 8, ulonglong2double);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_VOL_GET(float, mi_float4get, 4, (double));
break;
case HA_KEYTYPE_DOUBLE:
RT_VOL_GET(double, mi_float8get, 8, (double));
break;
case HA_KEYTYPE_END:
key_length = 0;
break;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
}
return res;
}
#define RT_D_MBR_KORR(type, korr_func, len, cast) \
{ \
type amin, amax; \
amin = korr_func(a); \
amax = korr_func(a+len); \
*res++ = cast(amin); \
*res++ = cast(amax); \
}
#define RT_D_MBR_GET(type, get_func, len, cast) \
{ \
type amin, amax; \
get_func(amin, a); \
get_func(amax, a+len); \
*res++ = cast(amin); \
*res++ = cast(amax); \
}
/*
Creates an MBR as an array of doubles.
*/
int rtree_d_mbr(HA_KEYSEG *keyseg, uchar *a, uint key_length, double *res)
{
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_D_MBR_KORR(int8, mi_sint1korr, 1, (double));
break;
case HA_KEYTYPE_BINARY:
RT_D_MBR_KORR(uint8, mi_uint1korr, 1, (double));
break;
case HA_KEYTYPE_SHORT_INT:
RT_D_MBR_KORR(int16, mi_sint2korr, 2, (double));
break;
case HA_KEYTYPE_USHORT_INT:
RT_D_MBR_KORR(uint16, mi_uint2korr, 2, (double));
break;
case HA_KEYTYPE_INT24:
RT_D_MBR_KORR(int32, mi_sint3korr, 3, (double));
break;
case HA_KEYTYPE_UINT24:
RT_D_MBR_KORR(uint32, mi_uint3korr, 3, (double));
break;
case HA_KEYTYPE_LONG_INT:
RT_D_MBR_KORR(int32, mi_sint4korr, 4, (double));
break;
case HA_KEYTYPE_ULONG_INT:
RT_D_MBR_KORR(uint32, mi_uint4korr, 4, (double));
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_D_MBR_KORR(longlong, mi_sint8korr, 8, (double));
break;
case HA_KEYTYPE_ULONGLONG:
RT_D_MBR_KORR(longlong, mi_sint8korr, 8, ulonglong2double);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_D_MBR_GET(float, mi_float4get, 4, (double));
break;
case HA_KEYTYPE_DOUBLE:
RT_D_MBR_GET(double, mi_float8get, 8, (double));
break;
case HA_KEYTYPE_END:
key_length = 0;
break;
default:
return 1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
}
return 0;
}
#define RT_COMB_KORR(type, korr_func, store_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin = korr_func(a); \
bmin = korr_func(b); \
amax = korr_func(a+len); \
bmax = korr_func(b+len); \
amin = min(amin, bmin); \
amax = max(amax, bmax); \
store_func(c, amin); \
store_func(c+len, amax); \
}
#define RT_COMB_GET(type, get_func, store_func, len) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
amin = min(amin, bmin); \
amax = max(amax, bmax); \
store_func(c, amin); \
store_func(c+len, amax); \
}
/*
Creates common minimal bounding rectungle
for two input rectagnles a and b
Result is written to c
*/
int rtree_combine_rect(HA_KEYSEG *keyseg, uchar* a, uchar* b, uchar* c,
uint key_length)
{
for ( ; (int) key_length > 0 ; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_COMB_KORR(int8, mi_sint1korr, mi_int1store, 1);
break;
case HA_KEYTYPE_BINARY:
RT_COMB_KORR(uint8, mi_uint1korr, mi_int1store, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_COMB_KORR(int16, mi_sint2korr, mi_int2store, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_COMB_KORR(uint16, mi_uint2korr, mi_int2store, 2);
break;
case HA_KEYTYPE_INT24:
RT_COMB_KORR(int32, mi_sint3korr, mi_int3store, 3);
break;
case HA_KEYTYPE_UINT24:
RT_COMB_KORR(uint32, mi_uint3korr, mi_int3store, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_COMB_KORR(int32, mi_sint4korr, mi_int4store, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_COMB_KORR(uint32, mi_uint4korr, mi_int4store, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_COMB_KORR(longlong, mi_sint8korr, mi_int8store, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_COMB_KORR(ulonglong, mi_uint8korr, mi_int8store, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_COMB_GET(float, mi_float4get, mi_float4store, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_COMB_GET(double, mi_float8get, mi_float8store, 8);
break;
case HA_KEYTYPE_END:
return 0;
default:
return 1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
c+= keyseg_length;
}
return 0;
}
#define RT_OVL_AREA_KORR(type, korr_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin = korr_func(a); \
bmin = korr_func(b); \
amax = korr_func(a+len); \
bmax = korr_func(b+len); \
amin = max(amin, bmin); \
amax = min(amax, bmax); \
if (amin >= amax) \
return 0; \
res *= amax - amin; \
}
#define RT_OVL_AREA_GET(type, get_func, len) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
amin = max(amin, bmin); \
amax = min(amax, bmax); \
if (amin >= amax) \
return 0; \
res *= amax - amin; \
}
/*
Calculates overlapping area of two MBRs a & b
*/
double rtree_overlapping_area(HA_KEYSEG *keyseg, uchar* a, uchar* b,
uint key_length)
{
double res = 1;
for (; (int) key_length > 0 ; keyseg += 2)
{
uint32 keyseg_length;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_OVL_AREA_KORR(int8, mi_sint1korr, 1);
break;
case HA_KEYTYPE_BINARY:
RT_OVL_AREA_KORR(uint8, mi_uint1korr, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_OVL_AREA_KORR(int16, mi_sint2korr, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_OVL_AREA_KORR(uint16, mi_uint2korr, 2);
break;
case HA_KEYTYPE_INT24:
RT_OVL_AREA_KORR(int32, mi_sint3korr, 3);
break;
case HA_KEYTYPE_UINT24:
RT_OVL_AREA_KORR(uint32, mi_uint3korr, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_OVL_AREA_KORR(int32, mi_sint4korr, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_OVL_AREA_KORR(uint32, mi_uint4korr, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_OVL_AREA_GET(float, mi_float4get, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_OVL_AREA_GET(double, mi_float8get, 8);
break;
case HA_KEYTYPE_END:
return res;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
return res;
}
#define RT_AREA_INC_KORR(type, korr_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin = korr_func(a); \
bmin = korr_func(b); \
amax = korr_func(a+len); \
bmax = korr_func(b+len); \
a_area *= (((double)amax) - ((double)amin)); \
loc_ab_area *= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
#define RT_AREA_INC_GET(type, get_func, len)\
{\
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
a_area *= (((double)amax) - ((double)amin)); \
loc_ab_area *= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
/*
Calculates MBR_AREA(a+b) - MBR_AREA(a)
*/
double rtree_area_increase(HA_KEYSEG *keyseg, uchar* a, uchar* b,
uint key_length, double *ab_area)
{
double a_area= 1.0;
double loc_ab_area= 1.0;
*ab_area= 1.0;
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
if (keyseg->null_bit) /* Handle NULL part */
return -1;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_AREA_INC_KORR(int8, mi_sint1korr, 1);
break;
case HA_KEYTYPE_BINARY:
RT_AREA_INC_KORR(uint8, mi_uint1korr, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_AREA_INC_KORR(int16, mi_sint2korr, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_AREA_INC_KORR(uint16, mi_uint2korr, 2);
break;
case HA_KEYTYPE_INT24:
RT_AREA_INC_KORR(int32, mi_sint3korr, 3);
break;
case HA_KEYTYPE_UINT24:
RT_AREA_INC_KORR(int32, mi_uint3korr, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_AREA_INC_KORR(int32, mi_sint4korr, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_AREA_INC_KORR(uint32, mi_uint4korr, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_AREA_INC_KORR(longlong, mi_sint8korr, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_AREA_INC_KORR(longlong, mi_sint8korr, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_AREA_INC_GET(float, mi_float4get, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_AREA_INC_GET(double, mi_float8get, 8);
break;
case HA_KEYTYPE_END:
goto safe_end;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
safe_end:
*ab_area= loc_ab_area;
return loc_ab_area - a_area;
}
#define RT_PERIM_INC_KORR(type, korr_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin = korr_func(a); \
bmin = korr_func(b); \
amax = korr_func(a+len); \
bmax = korr_func(b+len); \
a_perim+= (((double)amax) - ((double)amin)); \
*ab_perim+= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
#define RT_PERIM_INC_GET(type, get_func, len)\
{\
type amin, amax, bmin, bmax; \
get_func(amin, a); \
get_func(bmin, b); \
get_func(amax, a+len); \
get_func(bmax, b+len); \
a_perim+= (((double)amax) - ((double)amin)); \
*ab_perim+= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
}
/*
Calculates MBR_PERIMETER(a+b) - MBR_PERIMETER(a)
*/
double rtree_perimeter_increase(HA_KEYSEG *keyseg, uchar* a, uchar* b,
uint key_length, double *ab_perim)
{
double a_perim = 0.0;
*ab_perim= 0.0;
for (; (int)key_length > 0; keyseg += 2)
{
uint32 keyseg_length;
if (keyseg->null_bit) /* Handle NULL part */
return -1;
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_PERIM_INC_KORR(int8, mi_sint1korr, 1);
break;
case HA_KEYTYPE_BINARY:
RT_PERIM_INC_KORR(uint8, mi_uint1korr, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_PERIM_INC_KORR(int16, mi_sint2korr, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_PERIM_INC_KORR(uint16, mi_uint2korr, 2);
break;
case HA_KEYTYPE_INT24:
RT_PERIM_INC_KORR(int32, mi_sint3korr, 3);
break;
case HA_KEYTYPE_UINT24:
RT_PERIM_INC_KORR(int32, mi_uint3korr, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_PERIM_INC_KORR(int32, mi_sint4korr, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_PERIM_INC_KORR(uint32, mi_uint4korr, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_PERIM_INC_GET(float, mi_float4get, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_PERIM_INC_GET(double, mi_float8get, 8);
break;
case HA_KEYTYPE_END:
return *ab_perim - a_perim;
default:
return -1;
}
keyseg_length= keyseg->length * 2;
key_length-= keyseg_length;
a+= keyseg_length;
b+= keyseg_length;
}
return *ab_perim - a_perim;
}
#define RT_PAGE_MBR_KORR(type, korr_func, store_func, len) \
{ \
type amin, amax, bmin, bmax; \
amin = korr_func(k + inc); \
amax = korr_func(k + inc + len); \
k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); \
for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) \
{ \
bmin = korr_func(k + inc); \
bmax = korr_func(k + inc + len); \
if (amin > bmin) \
amin = bmin; \
if (amax < bmax) \
amax = bmax; \
} \
store_func(c, amin); \
c += len; \
store_func(c, amax); \
c += len; \
inc += 2 * len; \
}
#define RT_PAGE_MBR_GET(type, get_func, store_func, len) \
{ \
type amin, amax, bmin, bmax; \
get_func(amin, k + inc); \
get_func(amax, k + inc + len); \
k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); \
for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) \
{ \
get_func(bmin, k + inc); \
get_func(bmax, k + inc + len); \
if (amin > bmin) \
amin = bmin; \
if (amax < bmax) \
amax = bmax; \
} \
store_func(c, amin); \
c += len; \
store_func(c, amax); \
c += len; \
inc += 2 * len; \
}
/*
Calculates key page total MBR = MBR(key1) + MBR(key2) + ...
*/
int rtree_page_mbr(MI_INFO *info, HA_KEYSEG *keyseg, uchar *page_buf,
uchar *c, uint key_length)
{
uint inc = 0;
uint k_len = key_length;
uint nod_flag = mi_test_if_nod(page_buf);
uchar *k;
uchar *last = rt_PAGE_END(page_buf);
for (; (int)key_length > 0; keyseg += 2)
{
key_length -= keyseg->length * 2;
/* Handle NULL part */
if (keyseg->null_bit)
{
return 1;
}
k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
switch ((enum ha_base_keytype) keyseg->type) {
case HA_KEYTYPE_INT8:
RT_PAGE_MBR_KORR(int8, mi_sint1korr, mi_int1store, 1);
break;
case HA_KEYTYPE_BINARY:
RT_PAGE_MBR_KORR(uint8, mi_uint1korr, mi_int1store, 1);
break;
case HA_KEYTYPE_SHORT_INT:
RT_PAGE_MBR_KORR(int16, mi_sint2korr, mi_int2store, 2);
break;
case HA_KEYTYPE_USHORT_INT:
RT_PAGE_MBR_KORR(uint16, mi_uint2korr, mi_int2store, 2);
break;
case HA_KEYTYPE_INT24:
RT_PAGE_MBR_KORR(int32, mi_sint3korr, mi_int3store, 3);
break;
case HA_KEYTYPE_UINT24:
RT_PAGE_MBR_KORR(uint32, mi_uint3korr, mi_int3store, 3);
break;
case HA_KEYTYPE_LONG_INT:
RT_PAGE_MBR_KORR(int32, mi_sint4korr, mi_int4store, 4);
break;
case HA_KEYTYPE_ULONG_INT:
RT_PAGE_MBR_KORR(uint32, mi_uint4korr, mi_int4store, 4);
break;
#ifdef HAVE_LONG_LONG
case HA_KEYTYPE_LONGLONG:
RT_PAGE_MBR_KORR(longlong, mi_sint8korr, mi_int8store, 8);
break;
case HA_KEYTYPE_ULONGLONG:
RT_PAGE_MBR_KORR(ulonglong, mi_uint8korr, mi_int8store, 8);
break;
#endif
case HA_KEYTYPE_FLOAT:
RT_PAGE_MBR_GET(float, mi_float4get, mi_float4store, 4);
break;
case HA_KEYTYPE_DOUBLE:
RT_PAGE_MBR_GET(double, mi_float8get, mi_float8store, 8);
break;
case HA_KEYTYPE_END:
return 0;
default:
return 1;
}
}
return 0;
}
#endif /*HAVE_RTREE_KEYS*/