mariadb/storage/innobase/row/row0row.cc
Marko Mäkelä de4030e4d4 MDEV-30400 Assertion height == btr_page_get_level(...) on INSERT
This also fixes part of MDEV-29835 Partial server freeze
which is caused by violations of the latching order that was
defined in https://dev.mysql.com/worklog/task/?id=6326
(WL#6326: InnoDB: fix index->lock contention). Unless the
current thread is holding an exclusive dict_index_t::lock,
it must acquire page latches in a strict parent-to-child,
left-to-right order. Not all cases of MDEV-29835 are fixed yet.
Failure to follow the correct latching order will cause deadlocks
of threads due to lock order inversion.

As part of these changes, the BTR_MODIFY_TREE mode is modified
so that an Update latch (U a.k.a. SX) will be acquired on the
root page, and eXclusive latches (X) will be acquired on all pages
leading to the leaf page, as well as any left and right siblings
of the pages along the path. The DEBUG_SYNC test innodb.innodb_wl6326
will be removed, because at the time the DEBUG_SYNC point is hit,
the thread is actually holding several page latches that will be
blocking a concurrent SELECT statement.

We also remove double bookkeeping that was caused due to excessive
information hiding in mtr_t::m_memo. We simply let mtr_t::m_memo
store information of latched pages, and ensure that
mtr_memo_slot_t::object is never a null pointer.
The tree_blocks[] and tree_savepoints[] were redundant.

buf_page_get_low(): If innodb_change_buffering_debug=1, to avoid
a hang, do not try to evict blocks if we are holding a latch on
a modified page. The test innodb.innodb-change-buffer-recovery
will be removed, because change buffering may no longer be forced
by debug injection when the change buffer comprises multiple pages.
Remove a debug assertion that could fail when
innodb_change_buffering_debug=1 fails to evict a page.
For other cases, the assertion is redundant, because we already
checked that right after the got_block: label. The test
innodb.innodb-change-buffering-recovery will be removed, because
due to this change, we will be unable to evict the desired page.

mtr_t::lock_register(): Register a change of a page latch
on an unmodified buffer-fixed block.

mtr_t::x_latch_at_savepoint(), mtr_t::sx_latch_at_savepoint():
Replaced by the use of mtr_t::upgrade_buffer_fix(), which now
also handles RW_S_LATCH.

mtr_t::set_modified(): For temporary tables, invoke
buf_page_t::set_modified() here and not in mtr_t::commit().
We will never set the MTR_MEMO_MODIFY flag on other than
persistent data pages, nor set mtr_t::m_modifications when
temporary data pages are modified.

mtr_t::commit(): Only invoke the buf_flush_note_modification() loop
if persistent data pages were modified.

mtr_t::get_already_latched(): Look up a latched page in mtr_t::m_memo.
This avoids many redundant entries in mtr_t::m_memo, as well as
redundant calls to buf_page_get_gen() for blocks that had already
been looked up in a mini-transaction.

btr_get_latched_root(): Return a pointer to an already latched root page.
This replaces btr_root_block_get() in cases where the mini-transaction
has already latched the root page.

btr_page_get_parent(): Fetch a parent page that was already latched
in BTR_MODIFY_TREE, by invoking mtr_t::get_already_latched().
If needed, upgrade the root page U latch to X.
This avoids bloating mtr_t::m_memo as well as performing redundant
buf_pool.page_hash lookups. For non-QUICK CHECK TABLE as well as for
B-tree defragmentation, we will invoke btr_cur_search_to_nth_level().

btr_cur_search_to_nth_level(): This will only be used for non-leaf
(level>0) B-tree searches that were formerly named BTR_CONT_SEARCH_TREE
or BTR_CONT_MODIFY_TREE. In MDEV-29835, this function could be
removed altogether, or retained for the case of
CHECK TABLE without QUICK.

btr_cur_t::left_block: Remove. btr_pcur_move_backward_from_page()
can retrieve the left sibling from the end of mtr_t::m_memo.

btr_cur_t::open_leaf(): Some clean-up.

btr_cur_t::search_leaf(): Replaces btr_cur_search_to_nth_level()
for searches to level=0 (the leaf level). We will never release
parent page latches before acquiring leaf page latches. If we need to
temporarily release the level=1 page latch in the BTR_SEARCH_PREV or
BTR_MODIFY_PREV latch_mode, we will reposition the cursor on the
child node pointer so that we will land on the correct leaf page.

btr_cur_t::pessimistic_search_leaf(): Implement new BTR_MODIFY_TREE
latching logic in the case that page splits or merges will be needed.
The parent pages (and their siblings) should already be latched on
the first dive to the leaf and be present in mtr_t::m_memo; there
should be no need for BTR_CONT_MODIFY_TREE. This pre-latching almost
suffices; it must be revised in MDEV-29835 and work-arounds removed
for cases where mtr_t::get_already_latched() fails to find a block.

rtr_search_to_nth_level(): A SPATIAL INDEX version of
btr_search_to_nth_level() that can search to any level
(including the leaf level).

rtr_search_leaf(), rtr_insert_leaf(): Wrappers for
rtr_search_to_nth_level().

rtr_search(): Replaces rtr_pcur_open().

rtr_latch_leaves(): Replaces btr_cur_latch_leaves(). Note that unlike
in the B-tree code, there is no error handling in case the sibling
pages are corrupted.

rtr_cur_restore_position(): Remove an unused constant parameter.

btr_pcur_open_on_user_rec(): Remove the constant parameter
mode=PAGE_CUR_GE.

row_ins_clust_index_entry_low(): Use a new
mode=BTR_MODIFY_ROOT_AND_LEAF to gain access to the root page
when mode!=BTR_MODIFY_TREE, to write the PAGE_ROOT_AUTO_INC.

BTR_SEARCH_TREE, BTR_CONT_SEARCH_TREE: Remove.

BTR_CONT_MODIFY_TREE: Note that this is only used by
rtr_search_to_nth_level().

btr_pcur_optimistic_latch_leaves(): Replaces
btr_cur_optimistic_latch_leaves().

ibuf_delete_rec(): Acquire exclusive ibuf.index->lock in order
to avoid a deadlock with ibuf_insert_low(BTR_MODIFY_PREV).

btr_blob_log_check_t(): Acquire a U latch on the root page,
so that btr_page_alloc() in btr_store_big_rec_extern_fields()
will avoid a deadlock.

btr_store_big_rec_extern_fields(): Assert that the root page latch
is being held.

Tested by: Matthias Leich
Reviewed by: Vladislav Lesin
2023-01-24 14:09:21 +02:00

1720 lines
48 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2018, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2018, 2023, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file row/row0row.cc
General row routines
Created 4/20/1996 Heikki Tuuri
*******************************************************/
#include "row0row.h"
#include "data0type.h"
#include "dict0dict.h"
#include "dict0boot.h"
#include "btr0btr.h"
#include "mach0data.h"
#include "trx0rseg.h"
#include "trx0trx.h"
#include "trx0roll.h"
#include "trx0undo.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "que0que.h"
#include "row0ext.h"
#include "row0upd.h"
#include "rem0cmp.h"
#include "ut0mem.h"
#include "gis0geo.h"
#include "row0mysql.h"
/** Build a spatial index key.
@param[in] index spatial index
@param[in] ext externally stored column prefixes, or NULL
@param[in,out] dfield field of the tuple to be copied
@param[in] dfield2 field of the tuple to copy
@param[in] flag ROW_BUILD_NORMAL, ROW_BUILD_FOR_PURGE or
ROW_BUILD_FOR_UNDO
@param[in,out] heap memory heap from which the memory
of the field entry is allocated.
@retval false if undo log is logged before spatial index creation. */
static bool row_build_spatial_index_key(
const dict_index_t* index,
const row_ext_t* ext,
dfield_t* dfield,
const dfield_t* dfield2,
ulint flag,
mem_heap_t* heap)
{
if (dfield2->type.mtype == DATA_MISSING) {
return false;
}
double* mbr;
dfield_copy(dfield, dfield2);
dfield->type.prtype |= DATA_GIS_MBR;
/* Allocate memory for mbr field */
mbr = static_cast<double*>(mem_heap_alloc(heap, DATA_MBR_LEN));
/* Set mbr field data. */
dfield_set_data(dfield, mbr, DATA_MBR_LEN);
const fil_space_t* space = index->table->space;
if (UNIV_UNLIKELY(!dfield2->data || !space)) {
/* FIXME: dfield contains uninitialized data,
but row_build_index_entry_low() will not return NULL.
This bug is inherited from MySQL 5.7.5
commit b66ad511b61fffe75c58d0a607cdb837c6e6c821. */
return true;
}
const byte* dptr = NULL;
ulint dlen = 0;
ulint flen = 0;
double tmp_mbr[SPDIMS * 2];
mem_heap_t* temp_heap = NULL;
if (!dfield_is_ext(dfield2)) {
dptr = static_cast<const byte*>(dfield_get_data(dfield2));
dlen = dfield_get_len(dfield2);
ut_ad(dptr != &data_error);
goto write_mbr;
}
if (flag == ROW_BUILD_FOR_PURGE) {
const byte* ptr = static_cast<const byte*>(
dfield_get_data(dfield2));
switch (dfield_get_spatial_status(dfield2)) {
case SPATIAL_ONLY:
ut_ad(dfield_get_len(dfield2) == DATA_MBR_LEN);
break;
case SPATIAL_MIXED:
ptr += dfield_get_len(dfield2);
break;
case SPATIAL_UNKNOWN:
ut_ad(0);
/* fall through */
case SPATIAL_NONE:
/* Undo record is logged before
spatial index is created.*/
return false;
}
memcpy(mbr, ptr, DATA_MBR_LEN);
return true;
}
if (flag == ROW_BUILD_FOR_UNDO
&& dict_table_has_atomic_blobs(index->table)) {
/* For ROW_FORMAT=DYNAMIC or COMPRESSED, a prefix of
off-page records is stored in the undo log record (for
any column prefix indexes). For SPATIAL INDEX, we
must ignore this prefix. The full column value is
stored in the BLOB. For non-spatial index, we would
have already fetched a necessary prefix of the BLOB,
available in the "ext" parameter.
Here, for SPATIAL INDEX, we are fetching the full
column, which is potentially wasting a lot of I/O,
memory, and possibly involving a concurrency problem,
similar to ones that existed before the introduction
of row_ext_t.
MDEV-11657 FIXME: write the MBR directly to the undo
log record, and avoid recomputing it here! */
flen = BTR_EXTERN_FIELD_REF_SIZE;
ut_ad(dfield_get_len(dfield2) >= BTR_EXTERN_FIELD_REF_SIZE);
dptr = static_cast<const byte*>(dfield_get_data(dfield2))
+ dfield_get_len(dfield2)
- BTR_EXTERN_FIELD_REF_SIZE;
} else {
flen = dfield_get_len(dfield2);
dptr = static_cast<const byte*>(dfield_get_data(dfield2));
}
temp_heap = mem_heap_create(1000);
dptr = btr_copy_externally_stored_field(
&dlen, dptr, ext ? ext->zip_size : space->zip_size(),
flen, temp_heap);
write_mbr:
if (dlen <= GEO_DATA_HEADER_SIZE) {
for (uint i = 0; i < SPDIMS; i += 2) {
tmp_mbr[i] = DBL_MAX;
tmp_mbr[i + 1] = -DBL_MAX;
}
} else {
rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
uint(dlen - GEO_DATA_HEADER_SIZE),
SPDIMS, tmp_mbr);
}
dfield_write_mbr(dfield, tmp_mbr);
if (temp_heap) {
mem_heap_free(temp_heap);
}
return true;
}
/*****************************************************************//**
When an insert or purge to a table is performed, this function builds
the entry to be inserted into or purged from an index on the table.
@return index entry which should be inserted or purged
@retval NULL if the externally stored columns in the clustered index record
are unavailable and ext != NULL, or row is missing some needed columns. */
dtuple_t*
row_build_index_entry_low(
/*======================*/
const dtuple_t* row, /*!< in: row which should be
inserted or purged */
const row_ext_t* ext, /*!< in: externally stored column
prefixes, or NULL */
const dict_index_t* index, /*!< in: index on the table */
mem_heap_t* heap, /*!< in,out: memory heap from which
the memory for the index entry
is allocated */
ulint flag) /*!< in: ROW_BUILD_NORMAL,
ROW_BUILD_FOR_PURGE
or ROW_BUILD_FOR_UNDO */
{
dtuple_t* entry;
ulint entry_len;
ulint i = 0;
ulint num_v = 0;
entry_len = dict_index_get_n_fields(index);
if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) {
num_v = dict_table_get_n_v_cols(index->table);
entry = dtuple_create_with_vcol(heap, entry_len, num_v);
} else {
entry = dtuple_create(heap, entry_len);
}
if (dict_index_is_ibuf(index)) {
dtuple_set_n_fields_cmp(entry, entry_len);
/* There may only be externally stored columns
in a clustered index B-tree of a user table. */
ut_a(!ext);
} else {
dtuple_set_n_fields_cmp(
entry, dict_index_get_n_unique_in_tree(index));
if (dict_index_is_spatial(index)) {
/* Set the MBR field */
if (!row_build_spatial_index_key(
index, ext,
dtuple_get_nth_field(entry, 0),
dtuple_get_nth_field(
row,
dict_index_get_nth_field(index, i)
->col->ind), flag, heap)) {
return NULL;
}
i = 1;
}
}
for (; i < entry_len; i++) {
const dict_field_t& f = index->fields[i];
dfield_t* dfield = dtuple_get_nth_field(entry, i);
if (f.col->is_dropped()) {
ut_ad(index->is_primary());
ut_ad(index->is_instant());
ut_ad(!f.col->is_virtual());
dict_col_copy_type(f.col, &dfield->type);
if (f.col->is_nullable()) {
dfield_set_null(dfield);
} else {
dfield_set_data(dfield, field_ref_zero,
f.fixed_len);
}
continue;
}
const dfield_t* dfield2;
if (f.col->is_virtual()) {
const dict_v_col_t* v_col
= reinterpret_cast<const dict_v_col_t*>(f.col);
ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos);
ut_ad(dfield_is_null(dfield2) ||
dfield_get_len(dfield2) == 0 || dfield2->data);
ut_ad(!dfield_is_ext(dfield2));
if (UNIV_UNLIKELY(dfield2->type.mtype
== DATA_MISSING)) {
ut_ad(flag == ROW_BUILD_FOR_PURGE);
return(NULL);
}
} else {
dfield2 = dtuple_get_nth_field(row, f.col->ind);
if (UNIV_UNLIKELY(dfield2->type.mtype
== DATA_MISSING)) {
/* The field has not been initialized in
the row. This should be from
trx_undo_rec_get_partial_row(). */
return(NULL);
}
ut_ad(!(dfield2->type.prtype & DATA_VIRTUAL));
}
compile_time_assert(DATA_MISSING == 0);
*dfield = *dfield2;
if (dfield_is_null(dfield)) {
continue;
}
ut_ad(!(index->type & DICT_FTS));
ulint len = dfield_get_len(dfield);
if (f.prefix_len == 0
&& (!dfield_is_ext(dfield)
|| dict_index_is_clust(index))) {
/* The *dfield = *dfield2 above suffices for
columns that are stored in-page, or for
clustered index record columns that are not
part of a column prefix in the PRIMARY KEY. */
continue;
}
/* If the column is stored externally (off-page) in
the clustered index, it must be an ordering field in
the secondary index. If !atomic_blobs, the only way
we may have a secondary index pointing to a clustered
index record with an off-page column is when it is a
column prefix index. If atomic_blobs, also fully
indexed long columns may be stored off-page. */
ut_ad(f.col->ord_part);
if (ext && !f.col->is_virtual()) {
/* See if the column is stored externally. */
const byte* buf = row_ext_lookup(ext, f.col->ind,
&len);
if (UNIV_LIKELY_NULL(buf)) {
if (UNIV_UNLIKELY(buf == field_ref_zero)) {
return(NULL);
}
dfield_set_data(dfield, buf, len);
}
if (f.prefix_len == 0) {
/* If ROW_FORMAT=DYNAMIC or
ROW_FORMAT=COMPRESSED, we can have a
secondary index on an entire column
that is stored off-page in the
clustered index. As this is not a
prefix index (prefix_len == 0),
include the entire off-page column in
the secondary index record. */
continue;
}
} else if (dfield_is_ext(dfield)) {
/* This table is either in
(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
or a purge record where the ordered part of
the field is not external.
In ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT,
the maximum column prefix
index length is 767 bytes, and the clustered
index record contains a 768-byte prefix of
each off-page column. */
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
len -= BTR_EXTERN_FIELD_REF_SIZE;
dfield_set_len(dfield, len);
}
/* If a column prefix index, take only the prefix. */
if (f.prefix_len) {
len = dtype_get_at_most_n_mbchars(
f.col->prtype,
f.col->mbminlen, f.col->mbmaxlen,
f.prefix_len, len,
static_cast<char*>(dfield_get_data(dfield)));
dfield_set_len(dfield, len);
}
}
for (i = num_v; i--; ) {
ut_ad(index->is_primary());
ut_ad(flag == ROW_BUILD_FOR_INSERT);
dfield_t* dfield = dtuple_get_nth_v_field(entry, i);
const dict_v_col_t* v_col = dict_table_get_nth_v_col(
index->table, i);
ut_ad(!v_col->m_col.is_dropped());
ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
const dfield_t* dfield2 = dtuple_get_nth_v_field(
row, v_col->v_pos);
ut_ad(dfield_is_null(dfield2) ||
dfield_get_len(dfield2) == 0 || dfield2->data);
ut_ad(dfield2->type.mtype != DATA_MISSING);
*dfield = *dfield2;
}
return entry;
}
/** An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index, with possible indexing on ongoing
addition of new virtual columns.
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
@param[in] index clustered index
@param[in] rec record in the clustered index
@param[in] offsets rec_get_offsets(rec,index) or NULL
@param[in] col_table table, to check which
externally stored columns
occur in the ordering columns
of an index, or NULL if
index->table should be
consulted instead
@param[in] defaults default values of added/changed columns, or NULL
@param[in] add_v new virtual columns added
along with new indexes
@param[in] col_map mapping of old column
numbers to new ones, or NULL
@param[in] ext cache of externally stored column
prefixes, or NULL
@param[in] heap memory heap from which
the memory needed is allocated
@return own: row built; */
static inline
dtuple_t*
row_build_low(
ulint type,
const dict_index_t* index,
const rec_t* rec,
const rec_offs* offsets,
const dict_table_t* col_table,
const dtuple_t* defaults,
const dict_add_v_col_t* add_v,
const ulint* col_map,
row_ext_t** ext,
mem_heap_t* heap)
{
const byte* copy;
dtuple_t* row;
ulint n_ext_cols;
ulint* ext_cols = NULL; /* remove warning */
ulint len;
byte* buf;
ulint j;
mem_heap_t* tmp_heap = NULL;
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
ut_ad(index != NULL);
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(dict_index_is_clust(index));
ut_ad(!col_map || col_table);
if (!offsets) {
offsets = rec_get_offsets(rec, index, offsets_,
index->n_core_fields,
ULINT_UNDEFINED, &tmp_heap);
} else {
ut_ad(rec_offs_validate(rec, index, offsets));
}
#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
/* Some blob refs can be NULL during crash recovery before
trx_rollback_active() has completed execution, or when a concurrently
executing insert or update has committed the B-tree mini-transaction
but has not yet managed to restore the cursor position for writing
the big_rec. Note that the mini-transaction can be committed multiple
times, and the cursor restore can happen multiple times for single
insert or update statement. */
ut_a(!rec_offs_any_null_extern(rec, offsets)
|| trx_sys.is_registered(current_trx(),
row_get_rec_trx_id(rec, index,
offsets)));
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */
if (type != ROW_COPY_POINTERS) {
/* Take a copy of rec to heap */
buf = static_cast<byte*>(
mem_heap_alloc(heap, rec_offs_size(offsets)));
copy = rec_copy(buf, rec, offsets);
} else {
copy = rec;
}
n_ext_cols = rec_offs_n_extern(offsets);
if (n_ext_cols) {
ext_cols = static_cast<ulint*>(
mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols));
}
/* Avoid a debug assertion in rec_offs_validate(). */
rec_offs_make_valid(copy, index, true, const_cast<rec_offs*>(offsets));
if (!col_table) {
ut_ad(!col_map);
ut_ad(!defaults);
col_table = index->table;
}
if (defaults) {
ut_ad(col_map);
row = dtuple_copy(defaults, heap);
/* dict_table_copy_types() would set the fields to NULL */
for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) {
dict_col_copy_type(
dict_table_get_nth_col(col_table, i),
dfield_get_type(dtuple_get_nth_field(row, i)));
}
} else if (add_v != NULL) {
row = dtuple_create_with_vcol(
heap, dict_table_get_n_cols(col_table),
dict_table_get_n_v_cols(col_table) + add_v->n_v_col);
dict_table_copy_types(row, col_table);
for (ulint i = 0; i < add_v->n_v_col; i++) {
dict_col_copy_type(
&add_v->v_col[i].m_col,
dfield_get_type(dtuple_get_nth_v_field(
row, i + col_table->n_v_def)));
}
} else {
row = dtuple_create_with_vcol(
heap, dict_table_get_n_cols(col_table),
dict_table_get_n_v_cols(col_table));
dict_table_copy_types(row, col_table);
}
dtuple_set_info_bits(row, rec_get_info_bits(
copy, rec_offs_comp(offsets)));
j = 0;
const dict_field_t* ind_field = index->fields;
for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
if (i == index->first_user_field()
&& rec_is_alter_metadata(rec, *index)) {
ut_ad(rec_offs_nth_extern(offsets, i));
ut_d(ulint len);
ut_d(rec_get_nth_field_offs(offsets, i, &len));
ut_ad(len == FIELD_REF_SIZE);
continue;
}
if (UNIV_UNLIKELY(ind_field
>= &index->fields[index->n_fields])) {
ut_ad(rec_is_metadata(rec, *index));
continue;
}
const dict_col_t* col = dict_field_get_col(ind_field);
if ((ind_field++)->prefix_len) {
/* Column prefixes can only occur in key
fields, which cannot be stored externally. For
a column prefix, there should also be the full
field in the clustered index tuple. The row
tuple comprises full fields, not prefixes. */
ut_ad(!rec_offs_nth_extern(offsets, i));
continue;
}
if (col->is_dropped()) {
continue;
}
ulint col_no = dict_col_get_no(col);
if (col_map) {
col_no = col_map[col_no];
if (col_no == ULINT_UNDEFINED) {
/* dropped column */
continue;
}
}
dfield_t* dfield = dtuple_get_nth_field(row, col_no);
const void* field = rec_get_nth_field(
copy, offsets, i, &len);
if (len == UNIV_SQL_DEFAULT) {
field = index->instant_field_value(i, &len);
if (field && type != ROW_COPY_POINTERS) {
field = mem_heap_dup(heap, field, len);
}
}
dfield_set_data(dfield, field, len);
if (rec_offs_nth_extern(offsets, i)) {
dfield_set_ext(dfield);
col = dict_table_get_nth_col(col_table, col_no);
if (col->ord_part) {
/* We will have to fetch prefixes of
externally stored columns that are
referenced by column prefixes. */
ext_cols[j++] = col_no;
}
}
}
rec_offs_make_valid(rec, index, true, const_cast<rec_offs*>(offsets));
ut_ad(dtuple_check_typed(row));
if (!ext) {
/* REDUNDANT and COMPACT formats store a local
768-byte prefix of each externally stored
column. No cache is needed.
During online table rebuild,
row_log_table_apply_delete_low()
may use a cache that was set up by
row_log_table_delete(). */
} else if (j) {
*ext = row_ext_create(j, ext_cols, *index->table, row,
heap);
} else {
*ext = NULL;
}
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
return(row);
}
/*******************************************************************//**
An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index.
@return own: row built; see the NOTE below! */
dtuple_t*
row_build(
/*======*/
ulint type, /*!< in: ROW_COPY_POINTERS or
ROW_COPY_DATA; the latter
copies also the data fields to
heap while the first only
places pointers to data fields
on the index page, and thus is
more efficient */
const dict_index_t* index, /*!< in: clustered index */
const rec_t* rec, /*!< in: record in the clustered
index; NOTE: in the case
ROW_COPY_POINTERS the data
fields in the row will point
directly into this record,
therefore, the buffer page of
this record must be at least
s-latched and the latch held
as long as the row dtuple is used! */
const rec_offs* offsets,/*!< in: rec_get_offsets(rec,index)
or NULL, in which case this function
will invoke rec_get_offsets() */
const dict_table_t* col_table,
/*!< in: table, to check which
externally stored columns
occur in the ordering columns
of an index, or NULL if
index->table should be
consulted instead */
const dtuple_t* defaults,
/*!< in: default values of
added and changed columns, or NULL */
const ulint* col_map,/*!< in: mapping of old column
numbers to new ones, or NULL */
row_ext_t** ext, /*!< out, own: cache of
externally stored column
prefixes, or NULL */
mem_heap_t* heap) /*!< in: memory heap from which
the memory needed is allocated */
{
return(row_build_low(type, index, rec, offsets, col_table,
defaults, NULL, col_map, ext, heap));
}
/** An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index, with possible indexing on ongoing
addition of new virtual columns.
@param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA;
@param[in] index clustered index
@param[in] rec record in the clustered index
@param[in] offsets rec_get_offsets(rec,index) or NULL
@param[in] col_table table, to check which
externally stored columns
occur in the ordering columns
of an index, or NULL if
index->table should be
consulted instead
@param[in] defaults default values of added, changed columns, or NULL
@param[in] add_v new virtual columns added
along with new indexes
@param[in] col_map mapping of old column
numbers to new ones, or NULL
@param[in] ext cache of externally stored column
prefixes, or NULL
@param[in] heap memory heap from which
the memory needed is allocated
@return own: row built; */
dtuple_t*
row_build_w_add_vcol(
ulint type,
const dict_index_t* index,
const rec_t* rec,
const rec_offs* offsets,
const dict_table_t* col_table,
const dtuple_t* defaults,
const dict_add_v_col_t* add_v,
const ulint* col_map,
row_ext_t** ext,
mem_heap_t* heap)
{
return(row_build_low(type, index, rec, offsets, col_table,
defaults, add_v, col_map, ext, heap));
}
/** Convert an index record to a data tuple.
@tparam metadata whether the index->instant_field_value() needs to be accessed
@tparam mblob 1 if rec_is_alter_metadata();
2 if we want converted metadata corresponding to info_bits
@param[in] rec index record
@param[in] index index
@param[in] offsets rec_get_offsets(rec, index)
@param[out] n_ext number of externally stored columns
@param[in,out] heap memory heap for allocations
@param[in] info_bits (only used if mblob=2)
@param[in] pad (only used if mblob=2)
@return index entry built; does not set info_bits, and the data fields
in the entry will point directly to rec */
template<bool metadata, int mblob = 0>
static inline
dtuple_t*
row_rec_to_index_entry_impl(
const rec_t* rec,
const dict_index_t* index,
const rec_offs* offsets,
mem_heap_t* heap,
ulint info_bits = 0,
bool pad = false)
{
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(index != NULL);
ut_ad(!mblob || index->is_primary());
ut_ad(!mblob || !index->table->is_temporary());
ut_ad(!mblob || !dict_index_is_spatial(index));
compile_time_assert(!mblob || metadata);
compile_time_assert(mblob <= 2);
/* Because this function may be invoked by row0merge.cc
on a record whose header is in different format, the check
rec_offs_validate(rec, index, offsets) must be avoided here. */
const bool got = mblob == 2 && rec_is_alter_metadata(rec, *index);
ulint rec_len = rec_offs_n_fields(offsets);
if (mblob == 2) {
ut_ad(info_bits == REC_INFO_METADATA_ALTER
|| info_bits == REC_INFO_METADATA_ADD);
if (pad) {
ut_ad(rec_len <= ulint(index->n_fields + got));
rec_len = ulint(index->n_fields)
+ (info_bits == REC_INFO_METADATA_ALTER);
} else if (got) {
rec_len = std::min(rec_len,
ulint(index->n_fields + got));
} else if (info_bits == REC_INFO_METADATA_ALTER) {
ut_ad(rec_len <= index->n_fields);
rec_len++;
}
} else {
ut_ad(info_bits == 0);
ut_ad(!pad);
}
dtuple_t* entry = dtuple_create(heap, rec_len);
dfield_t* dfield = entry->fields;
dtuple_set_n_fields_cmp(entry,
dict_index_get_n_unique_in_tree(index));
ut_ad(mblob == 2
|| rec_len == dict_index_get_n_fields(index) + uint(mblob == 1)
/* a record for older SYS_INDEXES table
(missing merge_threshold column) is acceptable. */
|| (!index->table->is_temporary()
&& index->table->id == DICT_INDEXES_ID
&& rec_len + 1 == dict_index_get_n_fields(index)));
ulint i;
for (i = 0; i < (mblob ? index->first_user_field() : rec_len);
i++, dfield++) {
dict_col_copy_type(dict_index_get_nth_col(index, i),
&dfield->type);
if (!mblob
&& dict_index_is_spatial(index)
&& DATA_GEOMETRY_MTYPE(dfield->type.mtype)) {
dfield->type.prtype |= DATA_GIS_MBR;
}
ulint len;
const byte* field = metadata
? rec_get_nth_cfield(rec, index, offsets, i, &len)
: rec_get_nth_field(rec, offsets, i, &len);
dfield_set_data(dfield, field, len);
if (rec_offs_nth_extern(offsets, i)) {
dfield_set_ext(dfield);
}
}
if (mblob) {
ulint len;
const byte* field;
ulint j = i;
if (mblob == 2) {
const bool want = info_bits == REC_INFO_METADATA_ALTER;
if (got == want) {
if (got) {
goto copy_metadata;
}
} else {
if (want) {
/* Allocate a placeholder for
adding metadata in an update. */
len = FIELD_REF_SIZE;
field = static_cast<byte*>(
mem_heap_zalloc(heap, len));
/* In reality there is one fewer
field present in the record. */
rec_len--;
goto init_metadata;
}
/* Skip the undesired metadata blob
(for example, when rolling back an
instant ALTER TABLE). */
i++;
}
goto copy_user_fields;
}
copy_metadata:
ut_ad(rec_offs_nth_extern(offsets, i));
field = rec_get_nth_field(rec, offsets, i++, &len);
init_metadata:
dfield->type.metadata_blob_init();
ut_ad(len == FIELD_REF_SIZE);
dfield_set_data(dfield, field, len);
dfield_set_ext(dfield++);
copy_user_fields:
for (; i < rec_len; i++, dfield++) {
dict_col_copy_type(dict_index_get_nth_col(index, j++),
&dfield->type);
if (mblob == 2 && pad
&& i >= rec_offs_n_fields(offsets)) {
field = index->instant_field_value(j - 1,
&len);
dfield_set_data(dfield, field, len);
continue;
}
field = rec_get_nth_field(rec, offsets, i, &len);
dfield_set_data(dfield, field, len);
if (rec_offs_nth_extern(offsets, i)) {
dfield_set_ext(dfield);
}
}
}
if (mblob == 2) {
ulint n_fields = ulint(dfield - entry->fields);
ut_ad(entry->n_fields >= n_fields);
entry->n_fields = n_fields;
}
ut_ad(dfield == entry->fields + entry->n_fields);
ut_ad(dtuple_check_typed(entry));
return entry;
}
/** Convert an index record to a data tuple.
@param[in] rec index record
@param[in] index index
@param[in] offsets rec_get_offsets(rec, index)
@param[in,out] heap memory heap for allocations */
dtuple_t*
row_rec_to_index_entry_low(
const rec_t* rec,
const dict_index_t* index,
const rec_offs* offsets,
mem_heap_t* heap)
{
return row_rec_to_index_entry_impl<false>(rec, index, offsets, heap);
}
/*******************************************************************//**
Converts an index record to a typed data tuple. NOTE that externally
stored (often big) fields are NOT copied to heap.
@return own: index entry built */
dtuple_t*
row_rec_to_index_entry(
/*===================*/
const rec_t* rec, /*!< in: record in the index */
const dict_index_t* index, /*!< in: index */
const rec_offs* offsets,/*!< in: rec_get_offsets(rec) */
mem_heap_t* heap) /*!< in: memory heap from which
the memory needed is allocated */
{
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(index != NULL);
ut_ad(rec_offs_validate(rec, index, offsets));
/* Take a copy of rec to heap */
const rec_t* copy_rec = rec_copy(
static_cast<byte*>(mem_heap_alloc(heap,
rec_offs_size(offsets))),
rec, offsets);
rec_offs_make_valid(copy_rec, index, true,
const_cast<rec_offs*>(offsets));
dtuple_t* entry = rec_is_alter_metadata(copy_rec, *index)
? row_rec_to_index_entry_impl<true,1>(
copy_rec, index, offsets, heap)
: row_rec_to_index_entry_impl<true>(
copy_rec, index, offsets, heap);
rec_offs_make_valid(rec, index, true,
const_cast<rec_offs*>(offsets));
dtuple_set_info_bits(entry,
rec_get_info_bits(rec, rec_offs_comp(offsets)));
return(entry);
}
/** Convert a metadata record to a data tuple.
@param[in] rec metadata record
@param[in] index clustered index after instant ALTER TABLE
@param[in] offsets rec_get_offsets(rec)
@param[in,out] heap memory heap for allocations
@param[in] info_bits the info_bits after an update
@param[in] pad whether to pad to index->n_fields */
dtuple_t*
row_metadata_to_tuple(
const rec_t* rec,
const dict_index_t* index,
const rec_offs* offsets,
mem_heap_t* heap,
ulint info_bits,
bool pad)
{
ut_ad(info_bits == REC_INFO_METADATA_ALTER
|| info_bits == REC_INFO_METADATA_ADD);
ut_ad(rec_is_metadata(rec, *index));
ut_ad(rec_offs_validate(rec, index, offsets));
const rec_t* copy_rec = rec_copy(
static_cast<byte*>(mem_heap_alloc(heap,
rec_offs_size(offsets))),
rec, offsets);
rec_offs_make_valid(copy_rec, index, true,
const_cast<rec_offs*>(offsets));
dtuple_t* entry = info_bits == REC_INFO_METADATA_ALTER
|| rec_is_alter_metadata(copy_rec, *index)
? row_rec_to_index_entry_impl<true,2>(
copy_rec, index, offsets, heap, info_bits, pad)
: row_rec_to_index_entry_impl<true>(
copy_rec, index, offsets, heap);
rec_offs_make_valid(rec, index, true,
const_cast<rec_offs*>(offsets));
dtuple_set_info_bits(entry, info_bits);
return entry;
}
/*******************************************************************//**
Builds from a secondary index record a row reference with which we can
search the clustered index record.
@return own: row reference built; see the NOTE below! */
dtuple_t*
row_build_row_ref(
/*==============*/
ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
the former copies also the data fields to
heap, whereas the latter only places pointers
to data fields on the index page */
dict_index_t* index, /*!< in: secondary index */
const rec_t* rec, /*!< in: record in the index;
NOTE: in the case ROW_COPY_POINTERS
the data fields in the row will point
directly into this record, therefore,
the buffer page of this record must be
at least s-latched and the latch held
as long as the row reference is used! */
mem_heap_t* heap) /*!< in: memory heap from which the memory
needed is allocated */
{
dict_table_t* table;
dict_index_t* clust_index;
dfield_t* dfield;
dtuple_t* ref;
const byte* field;
ulint len;
ulint ref_len;
ulint pos;
byte* buf;
ulint clust_col_prefix_len;
ulint i;
mem_heap_t* tmp_heap = NULL;
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets = offsets_;
rec_offs_init(offsets_);
ut_ad(index != NULL);
ut_ad(rec != NULL);
ut_ad(heap != NULL);
ut_ad(!dict_index_is_clust(index));
offsets = rec_get_offsets(rec, index, offsets, index->n_core_fields,
ULINT_UNDEFINED, &tmp_heap);
/* Secondary indexes must not contain externally stored columns. */
ut_ad(!rec_offs_any_extern(offsets));
if (type == ROW_COPY_DATA) {
/* Take a copy of rec to heap */
buf = static_cast<byte*>(
mem_heap_alloc(heap, rec_offs_size(offsets)));
rec = rec_copy(buf, rec, offsets);
rec_offs_make_valid(rec, index, true, offsets);
}
table = index->table;
clust_index = dict_table_get_first_index(table);
ref_len = dict_index_get_n_unique(clust_index);
ref = dtuple_create(heap, ref_len);
dict_index_copy_types(ref, clust_index, ref_len);
for (i = 0; i < ref_len; i++) {
dfield = dtuple_get_nth_field(ref, i);
pos = dict_index_get_nth_field_pos(index, clust_index, i);
ut_a(pos != ULINT_UNDEFINED);
ut_ad(!rec_offs_nth_default(offsets, pos));
field = rec_get_nth_field(rec, offsets, pos, &len);
dfield_set_data(dfield, field, len);
/* If the primary key contains a column prefix, then the
secondary index may contain a longer prefix of the same
column, or the full column, and we must adjust the length
accordingly. */
clust_col_prefix_len = dict_index_get_nth_field(
clust_index, i)->prefix_len;
if (clust_col_prefix_len > 0) {
if (len != UNIV_SQL_NULL) {
const dtype_t* dtype
= dfield_get_type(dfield);
dfield_set_len(dfield,
dtype_get_at_most_n_mbchars(
dtype->prtype,
dtype->mbminlen,
dtype->mbmaxlen,
clust_col_prefix_len,
len, (char*) field));
}
}
}
ut_ad(dtuple_check_typed(ref));
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
return(ref);
}
/*******************************************************************//**
Builds from a secondary index record a row reference with which we can
search the clustered index record. */
void
row_build_row_ref_in_tuple(
/*=======================*/
dtuple_t* ref, /*!< in/out: row reference built;
see the NOTE below! */
const rec_t* rec, /*!< in: record in the index;
NOTE: the data fields in ref
will point directly into this
record, therefore, the buffer
page of this record must be at
least s-latched and the latch
held as long as the row
reference is used! */
const dict_index_t* index, /*!< in: secondary index */
rec_offs* offsets)/*!< in: rec_get_offsets(rec, index)
or NULL */
{
const dict_index_t* clust_index;
dfield_t* dfield;
const byte* field;
ulint len;
ulint ref_len;
ulint pos;
ulint clust_col_prefix_len;
ulint i;
mem_heap_t* heap = NULL;
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets_);
ut_ad(!dict_index_is_clust(index));
ut_a(index->table);
clust_index = dict_table_get_first_index(index->table);
ut_ad(clust_index);
if (!offsets) {
offsets = rec_get_offsets(rec, index, offsets_,
index->n_core_fields,
ULINT_UNDEFINED, &heap);
} else {
ut_ad(rec_offs_validate(rec, index, offsets));
}
/* Secondary indexes must not contain externally stored columns. */
ut_ad(!rec_offs_any_extern(offsets));
ref_len = dict_index_get_n_unique(clust_index);
ut_ad(ref_len == dtuple_get_n_fields(ref));
dict_index_copy_types(ref, clust_index, ref_len);
for (i = 0; i < ref_len; i++) {
dfield = dtuple_get_nth_field(ref, i);
pos = dict_index_get_nth_field_pos(index, clust_index, i);
ut_a(pos != ULINT_UNDEFINED);
ut_ad(!rec_offs_nth_default(offsets, pos));
field = rec_get_nth_field(rec, offsets, pos, &len);
dfield_set_data(dfield, field, len);
/* If the primary key contains a column prefix, then the
secondary index may contain a longer prefix of the same
column, or the full column, and we must adjust the length
accordingly. */
clust_col_prefix_len = dict_index_get_nth_field(
clust_index, i)->prefix_len;
if (clust_col_prefix_len > 0) {
if (len != UNIV_SQL_NULL) {
const dtype_t* dtype
= dfield_get_type(dfield);
dfield_set_len(dfield,
dtype_get_at_most_n_mbchars(
dtype->prtype,
dtype->mbminlen,
dtype->mbmaxlen,
clust_col_prefix_len,
len, (char*) field));
}
}
}
ut_ad(dtuple_check_typed(ref));
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
/***************************************************************//**
Searches the clustered index record for a row, if we have the row reference.
@return TRUE if found */
bool
row_search_on_row_ref(
/*==================*/
btr_pcur_t* pcur, /*!< out: persistent cursor, which must
be closed by the caller */
btr_latch_mode mode, /*!< in: BTR_MODIFY_LEAF, ... */
const dict_table_t* table, /*!< in: table */
const dtuple_t* ref, /*!< in: row reference */
mtr_t* mtr) /*!< in/out: mtr */
{
ut_ad(dtuple_check_typed(ref));
dict_index_t *index = dict_table_get_first_index(table);
btr_pcur_init(pcur);
pcur->btr_cur.page_cur.index = index;
if (UNIV_UNLIKELY(ref->info_bits != 0)) {
ut_ad(ref->is_metadata());
ut_ad(ref->n_fields <= index->n_uniq);
if (pcur->open_leaf(true, index, mode, mtr) != DB_SUCCESS
|| !btr_pcur_move_to_next_user_rec(pcur, mtr)) {
return false;
}
/* We do not necessarily have index->is_instant() here,
because we could be executing a rollback of an
instant ADD COLUMN operation. The function
rec_is_metadata() asserts index->is_instant();
we do not want to call it here. */
return rec_get_info_bits(btr_pcur_get_rec(pcur),
dict_table_is_comp(index->table))
& REC_INFO_MIN_REC_FLAG;
} else {
ut_a(ref->n_fields == index->n_uniq);
if (btr_pcur_open(ref, PAGE_CUR_LE, mode, pcur, mtr)
!= DB_SUCCESS) {
return false;
}
}
return !page_rec_is_infimum(btr_pcur_get_rec(pcur))
&& btr_pcur_get_low_match(pcur) == dtuple_get_n_fields(ref);
}
/*********************************************************************//**
Fetches the clustered index record for a secondary index record. The latches
on the secondary index record are preserved.
@return record or NULL, if no record found */
rec_t*
row_get_clust_rec(
/*==============*/
btr_latch_mode mode, /*!< in: BTR_MODIFY_LEAF, ... */
const rec_t* rec, /*!< in: record in a secondary index */
dict_index_t* index, /*!< in: secondary index */
dict_index_t** clust_index,/*!< out: clustered index */
mtr_t* mtr) /*!< in: mtr */
{
mem_heap_t* heap;
dtuple_t* ref;
dict_table_t* table;
btr_pcur_t pcur;
ut_ad(!dict_index_is_clust(index));
table = index->table;
heap = mem_heap_create(256);
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);
auto found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);
mem_heap_free(heap);
*clust_index = dict_table_get_first_index(table);
return found ? btr_pcur_get_rec(&pcur) : nullptr;
}
/***************************************************************//**
Searches an index record.
@return whether the record was found or buffered */
enum row_search_result
row_search_index_entry(
/*===================*/
const dtuple_t* entry, /*!< in: index entry */
btr_latch_mode mode, /*!< in: BTR_MODIFY_LEAF, ... */
btr_pcur_t* pcur, /*!< in/out: persistent cursor, which must
be closed by the caller */
mtr_t* mtr) /*!< in: mtr */
{
ulint n_fields;
ulint low_match;
rec_t* rec;
ut_ad(dtuple_check_typed(entry));
if (btr_pcur_open(entry, PAGE_CUR_LE, mode, pcur, mtr) != DB_SUCCESS) {
return ROW_NOT_FOUND;
}
switch (btr_pcur_get_btr_cur(pcur)->flag) {
case BTR_CUR_DELETE_REF:
ut_ad(!(~mode & BTR_DELETE));
return(ROW_NOT_DELETED_REF);
case BTR_CUR_DEL_MARK_IBUF:
case BTR_CUR_DELETE_IBUF:
case BTR_CUR_INSERT_TO_IBUF:
return(ROW_BUFFERED);
case BTR_CUR_HASH:
case BTR_CUR_HASH_FAIL:
case BTR_CUR_BINARY:
break;
}
low_match = btr_pcur_get_low_match(pcur);
rec = btr_pcur_get_rec(pcur);
n_fields = dtuple_get_n_fields(entry);
if (page_rec_is_infimum(rec)) {
return(ROW_NOT_FOUND);
} else if (low_match != n_fields) {
return(ROW_NOT_FOUND);
}
return(ROW_FOUND);
}
/*******************************************************************//**
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_INT using "prtype" and writes the result to "buf".
If the data is in unknown format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0').
@return number of bytes that were written */
static
ulint
row_raw_format_int(
/*===============*/
const char* data, /*!< in: raw data */
ulint data_len, /*!< in: raw data length
in bytes */
ulint prtype, /*!< in: precise type */
char* buf, /*!< out: output buffer */
ulint buf_size, /*!< in: output buffer size
in bytes */
ibool* format_in_hex) /*!< out: should the data be
formatted in hex */
{
ulint ret;
if (data_len <= sizeof(ib_uint64_t)) {
ib_uint64_t value;
ibool unsigned_type = prtype & DATA_UNSIGNED;
value = mach_read_int_type(
(const byte*) data, data_len, unsigned_type);
ret = (ulint) snprintf(
buf, buf_size,
unsigned_type ? "%llu" : "%lld", (longlong) value)+1;
} else {
*format_in_hex = TRUE;
ret = 0;
}
return(ut_min(ret, buf_size));
}
/*******************************************************************//**
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
result to "buf".
If the data is in binary format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0').
@return number of bytes that were written */
static
ulint
row_raw_format_str(
/*===============*/
const char* data, /*!< in: raw data */
ulint data_len, /*!< in: raw data length
in bytes */
ulint prtype, /*!< in: precise type */
char* buf, /*!< out: output buffer */
ulint buf_size, /*!< in: output buffer size
in bytes */
ibool* format_in_hex) /*!< out: should the data be
formatted in hex */
{
ulint charset_coll;
if (buf_size == 0) {
return(0);
}
/* we assume system_charset_info is UTF-8 */
charset_coll = dtype_get_charset_coll(prtype);
if (UNIV_LIKELY(dtype_is_utf8(prtype))) {
return(ut_str_sql_format(data, data_len, buf, buf_size));
}
/* else */
if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {
*format_in_hex = TRUE;
return(0);
}
/* else */
return(innobase_raw_format(data, data_len, charset_coll,
buf, buf_size));
}
/*******************************************************************//**
Formats the raw data in "data" (in InnoDB on-disk format) using
"dict_field" and writes the result to "buf".
Not more than "buf_size" bytes are written to "buf".
The result is always NUL-terminated (provided buf_size is positive) and the
number of bytes that were written to "buf" is returned (including the
terminating NUL).
@return number of bytes that were written */
ulint
row_raw_format(
/*===========*/
const char* data, /*!< in: raw data */
ulint data_len, /*!< in: raw data length
in bytes */
const dict_field_t* dict_field, /*!< in: index field */
char* buf, /*!< out: output buffer */
ulint buf_size) /*!< in: output buffer size
in bytes */
{
ulint mtype;
ulint prtype;
ulint ret;
ibool format_in_hex;
ut_ad(data_len != UNIV_SQL_DEFAULT);
if (buf_size == 0) {
return(0);
}
if (data_len == UNIV_SQL_NULL) {
ret = snprintf((char*) buf, buf_size, "NULL") + 1;
return(ut_min(ret, buf_size));
}
mtype = dict_field->col->mtype;
prtype = dict_field->col->prtype;
format_in_hex = FALSE;
switch (mtype) {
case DATA_INT:
ret = row_raw_format_int(data, data_len, prtype,
buf, buf_size, &format_in_hex);
if (format_in_hex) {
goto format_in_hex;
}
break;
case DATA_CHAR:
case DATA_VARCHAR:
case DATA_MYSQL:
case DATA_VARMYSQL:
ret = row_raw_format_str(data, data_len, prtype,
buf, buf_size, &format_in_hex);
if (format_in_hex) {
goto format_in_hex;
}
break;
/* XXX support more data types */
default:
format_in_hex:
if (UNIV_LIKELY(buf_size > 2)) {
memcpy(buf, "0x", 2);
buf += 2;
buf_size -= 2;
ret = 2 + ut_raw_to_hex(data, data_len,
buf, buf_size);
} else {
buf[0] = '\0';
ret = 1;
}
}
return(ret);
}
#ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT
#ifdef HAVE_UT_CHRONO_T
void
test_row_raw_format_int()
{
ulint ret;
char buf[128];
ibool format_in_hex;
ulint i;
#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\
ret_expected, buf_expected, format_in_hex_expected)\
do {\
ibool ok = TRUE;\
ulint i;\
memset(buf, 'x', 10);\
buf[10] = '\0';\
format_in_hex = FALSE;\
fprintf(stderr, "TESTING \"\\x");\
for (i = 0; i < data_len; i++) {\
fprintf(stderr, "%02hhX", data[i]);\
}\
fprintf(stderr, "\", %lu, %lu, %lu\n",\
(ulint) data_len, (ulint) prtype,\
(ulint) buf_size);\
ret = row_raw_format_int(data, data_len, prtype,\
buf, buf_size, &format_in_hex);\
if (ret != ret_expected) {\
fprintf(stderr, "expected ret %lu, got %lu\n",\
(ulint) ret_expected, ret);\
ok = FALSE;\
}\
if (strcmp((char*) buf, buf_expected) != 0) {\
fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\
buf_expected, buf);\
ok = FALSE;\
}\
if (format_in_hex != format_in_hex_expected) {\
fprintf(stderr, "expected format_in_hex %d, got %d\n",\
(int) format_in_hex_expected,\
(int) format_in_hex);\
ok = FALSE;\
}\
if (ok) {\
fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\
(ulint) ret, buf, (int) format_in_hex);\
} else {\
return;\
}\
} while (0)
#if 1
/* min values for signed 1-8 byte integers */
CALL_AND_TEST("\x00", 1, 0,
buf, sizeof(buf), 5, "-128", 0);
CALL_AND_TEST("\x00\x00", 2, 0,
buf, sizeof(buf), 7, "-32768", 0);
CALL_AND_TEST("\x00\x00\x00", 3, 0,
buf, sizeof(buf), 9, "-8388608", 0);
CALL_AND_TEST("\x00\x00\x00\x00", 4, 0,
buf, sizeof(buf), 12, "-2147483648", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0,
buf, sizeof(buf), 14, "-549755813888", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0,
buf, sizeof(buf), 17, "-140737488355328", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0,
buf, sizeof(buf), 19, "-36028797018963968", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0,
buf, sizeof(buf), 21, "-9223372036854775808", 0);
/* min values for unsigned 1-8 byte integers */
CALL_AND_TEST("\x00", 1, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED,
buf, sizeof(buf), 2, "0", 0);
/* max values for signed 1-8 byte integers */
CALL_AND_TEST("\xFF", 1, 0,
buf, sizeof(buf), 4, "127", 0);
CALL_AND_TEST("\xFF\xFF", 2, 0,
buf, sizeof(buf), 6, "32767", 0);
CALL_AND_TEST("\xFF\xFF\xFF", 3, 0,
buf, sizeof(buf), 8, "8388607", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0,
buf, sizeof(buf), 11, "2147483647", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0,
buf, sizeof(buf), 13, "549755813887", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0,
buf, sizeof(buf), 16, "140737488355327", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0,
buf, sizeof(buf), 18, "36028797018963967", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0,
buf, sizeof(buf), 20, "9223372036854775807", 0);
/* max values for unsigned 1-8 byte integers */
CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED,
buf, sizeof(buf), 4, "255", 0);
CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED,
buf, sizeof(buf), 6, "65535", 0);
CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED,
buf, sizeof(buf), 9, "16777215", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED,
buf, sizeof(buf), 11, "4294967295", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED,
buf, sizeof(buf), 14, "1099511627775", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED,
buf, sizeof(buf), 16, "281474976710655", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED,
buf, sizeof(buf), 18, "72057594037927935", 0);
CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED,
buf, sizeof(buf), 21, "18446744073709551615", 0);
/* some random values */
CALL_AND_TEST("\x52", 1, 0,
buf, sizeof(buf), 4, "-46", 0);
CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED,
buf, sizeof(buf), 3, "14", 0);
CALL_AND_TEST("\x62\xCE", 2, 0,
buf, sizeof(buf), 6, "-7474", 0);
CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED,
buf, sizeof(buf), 6, "10710", 0);
CALL_AND_TEST("\x7F\xFF\x90", 3, 0,
buf, sizeof(buf), 5, "-112", 0);
CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED,
buf, sizeof(buf), 6, "41238", 0);
CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0,
buf, sizeof(buf), 3, "-9", 0);
CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED,
buf, sizeof(buf), 3, "92", 0);
CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0,
buf, sizeof(buf), 6, "-9117", 0);
CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
buf, sizeof(buf), 6, "91234", 0);
#endif
/* speed test */
ut_chrono_t ch(__func__);
for (i = 0; i < 1000000; i++) {
row_raw_format_int("\x23", 1,
0, buf, sizeof(buf),
&format_in_hex);
row_raw_format_int("\x23", 1,
DATA_UNSIGNED, buf, sizeof(buf),
&format_in_hex);
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
0, buf, sizeof(buf),
&format_in_hex);
row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
DATA_UNSIGNED, buf, sizeof(buf),
&format_in_hex);
}
}
#endif /* HAVE_UT_CHRONO_T */
#endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */