mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 09:14:17 +01:00
345 lines
9.3 KiB
C++
345 lines
9.3 KiB
C++
/* Copyright (c) 2008, 2023, Oracle and/or its affiliates.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License, version 2.0,
|
|
as published by the Free Software Foundation.
|
|
|
|
This program is also distributed with certain software (including
|
|
but not limited to OpenSSL) that is licensed under separate terms,
|
|
as designated in a particular file or component or in included license
|
|
documentation. The authors of MySQL hereby grant you an additional
|
|
permission to link the program and your derivative works with the
|
|
separately licensed software that they have included with MySQL.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License, version 2.0, for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
/**
|
|
@file storage/perfschema/pfs_timer.cc
|
|
Performance schema timers (implementation).
|
|
*/
|
|
|
|
#include "my_global.h"
|
|
#include "pfs_timer.h"
|
|
#include "my_rdtsc.h"
|
|
|
|
enum_timer_name idle_timer= TIMER_NAME_MICROSEC;
|
|
enum_timer_name wait_timer= TIMER_NAME_CYCLE;
|
|
enum_timer_name stage_timer= TIMER_NAME_NANOSEC;
|
|
enum_timer_name statement_timer= TIMER_NAME_NANOSEC;
|
|
enum_timer_name transaction_timer= TIMER_NAME_NANOSEC;
|
|
|
|
static ulonglong cycle_v0;
|
|
static ulonglong nanosec_v0;
|
|
static ulonglong microsec_v0;
|
|
static ulonglong millisec_v0;
|
|
static ulonglong tick_v0;
|
|
|
|
static ulong cycle_to_pico; /* 1000 at 1 GHz, 333 at 3GHz, 250 at 4GHz */
|
|
static ulong nanosec_to_pico; /* In theory, 1 000 */
|
|
static ulong microsec_to_pico; /* In theory, 1 000 000 */
|
|
static ulong millisec_to_pico; /* In theory, 1 000 000 000, fits in uint32 */
|
|
static ulonglong tick_to_pico; /* 1e10 at 100 Hz, 1.666e10 at 60 Hz */
|
|
|
|
/* Indexed by enum enum_timer_name */
|
|
static struct time_normalizer to_pico_data[FIRST_TIMER_NAME + COUNT_TIMER_NAME]=
|
|
{
|
|
{ 0, 0}, /* unused */
|
|
{ 0, 0}, /* cycle */
|
|
{ 0, 0}, /* nanosec */
|
|
{ 0, 0}, /* microsec */
|
|
{ 0, 0}, /* millisec */
|
|
{ 0, 0} /* tick */
|
|
};
|
|
|
|
static inline ulong round_to_ulong(double value)
|
|
{
|
|
return (ulong) (value + 0.5);
|
|
}
|
|
|
|
static inline ulonglong round_to_ulonglong(double value)
|
|
{
|
|
return (ulonglong) (value + 0.5);
|
|
}
|
|
|
|
void init_timers(void)
|
|
{
|
|
double pico_frequency= 1.0e12;
|
|
|
|
cycle_v0= my_timer_cycles();
|
|
nanosec_v0= my_timer_nanoseconds();
|
|
microsec_v0= my_timer_microseconds();
|
|
millisec_v0= my_timer_milliseconds();
|
|
tick_v0= my_timer_ticks();
|
|
|
|
if (sys_timer_info.cycles.frequency > 0)
|
|
cycle_to_pico= round_to_ulong(pico_frequency/
|
|
(double)sys_timer_info.cycles.frequency);
|
|
else
|
|
cycle_to_pico= 0;
|
|
|
|
if (sys_timer_info.nanoseconds.frequency > 0)
|
|
nanosec_to_pico= round_to_ulong(pico_frequency/
|
|
(double)sys_timer_info.nanoseconds.frequency);
|
|
else
|
|
nanosec_to_pico= 0;
|
|
|
|
if (sys_timer_info.microseconds.frequency > 0)
|
|
microsec_to_pico= round_to_ulong(pico_frequency/
|
|
(double)sys_timer_info.microseconds.frequency);
|
|
else
|
|
microsec_to_pico= 0;
|
|
|
|
if (sys_timer_info.milliseconds.frequency > 0)
|
|
millisec_to_pico= round_to_ulong(pico_frequency/
|
|
(double)sys_timer_info.milliseconds.frequency);
|
|
else
|
|
millisec_to_pico= 0;
|
|
|
|
if (sys_timer_info.ticks.frequency > 0)
|
|
tick_to_pico= round_to_ulonglong(pico_frequency/
|
|
(double)sys_timer_info.ticks.frequency);
|
|
else
|
|
tick_to_pico= 0;
|
|
|
|
to_pico_data[TIMER_NAME_CYCLE].m_v0= cycle_v0;
|
|
to_pico_data[TIMER_NAME_CYCLE].m_factor= cycle_to_pico;
|
|
|
|
to_pico_data[TIMER_NAME_NANOSEC].m_v0= nanosec_v0;
|
|
to_pico_data[TIMER_NAME_NANOSEC].m_factor= nanosec_to_pico;
|
|
|
|
to_pico_data[TIMER_NAME_MICROSEC].m_v0= microsec_v0;
|
|
to_pico_data[TIMER_NAME_MICROSEC].m_factor= microsec_to_pico;
|
|
|
|
to_pico_data[TIMER_NAME_MILLISEC].m_v0= millisec_v0;
|
|
to_pico_data[TIMER_NAME_MILLISEC].m_factor= millisec_to_pico;
|
|
|
|
to_pico_data[TIMER_NAME_TICK].m_v0= tick_v0;
|
|
to_pico_data[TIMER_NAME_TICK].m_factor= tick_to_pico;
|
|
|
|
/*
|
|
Depending on the platform and build options,
|
|
some timers may not be available.
|
|
Pick best replacements.
|
|
*/
|
|
|
|
/*
|
|
For WAIT, the cycle timer is used by default. However, it is not available
|
|
on all architectures. Fall back to the nanosecond timer in this case. It is
|
|
unlikely that neither cycle nor nanosecond are available, but we continue
|
|
probing less resolution timers anyway for consistency with other events.
|
|
*/
|
|
|
|
if (cycle_to_pico != 0)
|
|
{
|
|
/* Normal case. */
|
|
wait_timer= TIMER_NAME_CYCLE;
|
|
}
|
|
else if (nanosec_to_pico != 0)
|
|
{
|
|
/* Robustness, no known cases. */
|
|
wait_timer= TIMER_NAME_NANOSEC;
|
|
}
|
|
else if (microsec_to_pico != 0)
|
|
{
|
|
/* Robustness, no known cases. */
|
|
wait_timer= TIMER_NAME_MICROSEC;
|
|
}
|
|
else if (millisec_to_pico != 0)
|
|
{
|
|
/* Robustness, no known cases. */
|
|
wait_timer= TIMER_NAME_MILLISEC;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Will never be reached on any architecture, but must provide a default if
|
|
no other timers are available.
|
|
*/
|
|
wait_timer= TIMER_NAME_TICK;
|
|
}
|
|
|
|
/*
|
|
For STAGE and STATEMENT, a timer with a fixed frequency is better.
|
|
The preferred timer is nanosecond, or lower resolutions.
|
|
*/
|
|
|
|
if (nanosec_to_pico != 0)
|
|
{
|
|
/* Normal case. */
|
|
stage_timer= TIMER_NAME_NANOSEC;
|
|
statement_timer= TIMER_NAME_NANOSEC;
|
|
transaction_timer= TIMER_NAME_NANOSEC;
|
|
}
|
|
else if (microsec_to_pico != 0)
|
|
{
|
|
/* Windows. */
|
|
stage_timer= TIMER_NAME_MICROSEC;
|
|
statement_timer= TIMER_NAME_MICROSEC;
|
|
transaction_timer= TIMER_NAME_MICROSEC;
|
|
}
|
|
else if (millisec_to_pico != 0)
|
|
{
|
|
/* Robustness, no known cases. */
|
|
stage_timer= TIMER_NAME_MILLISEC;
|
|
statement_timer= TIMER_NAME_MILLISEC;
|
|
transaction_timer= TIMER_NAME_MILLISEC;
|
|
}
|
|
else if (tick_to_pico != 0)
|
|
{
|
|
/* Robustness, no known cases. */
|
|
stage_timer= TIMER_NAME_TICK;
|
|
statement_timer= TIMER_NAME_TICK;
|
|
transaction_timer= TIMER_NAME_TICK;
|
|
}
|
|
else
|
|
{
|
|
/* Robustness, no known cases. */
|
|
stage_timer= TIMER_NAME_CYCLE;
|
|
statement_timer= TIMER_NAME_CYCLE;
|
|
transaction_timer= TIMER_NAME_CYCLE;
|
|
}
|
|
|
|
/*
|
|
For IDLE, a timer with a fixed frequency is critical,
|
|
as the CPU clock may slow down a lot if the server is completely idle.
|
|
The preferred timer is microsecond, or lower resolutions.
|
|
*/
|
|
|
|
if (microsec_to_pico != 0)
|
|
{
|
|
/* Normal case. */
|
|
idle_timer= TIMER_NAME_MICROSEC;
|
|
}
|
|
else if (millisec_to_pico != 0)
|
|
{
|
|
/* Robustness, no known cases. */
|
|
wait_timer= TIMER_NAME_MILLISEC;
|
|
}
|
|
else if (tick_to_pico != 0)
|
|
{
|
|
/* Robustness, no known cases. */
|
|
idle_timer= TIMER_NAME_TICK;
|
|
}
|
|
else
|
|
{
|
|
/* Robustness, no known cases. */
|
|
idle_timer= TIMER_NAME_CYCLE;
|
|
}
|
|
}
|
|
|
|
ulonglong get_timer_raw_value(enum_timer_name timer_name)
|
|
{
|
|
switch (timer_name)
|
|
{
|
|
case TIMER_NAME_CYCLE:
|
|
return my_timer_cycles();
|
|
case TIMER_NAME_NANOSEC:
|
|
return my_timer_nanoseconds();
|
|
case TIMER_NAME_MICROSEC:
|
|
return my_timer_microseconds();
|
|
case TIMER_NAME_MILLISEC:
|
|
return my_timer_milliseconds();
|
|
case TIMER_NAME_TICK:
|
|
return my_timer_ticks();
|
|
default:
|
|
assert(false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ulonglong get_timer_raw_value_and_function(enum_timer_name timer_name, timer_fct_t *fct)
|
|
{
|
|
switch (timer_name)
|
|
{
|
|
case TIMER_NAME_CYCLE:
|
|
*fct= my_timer_cycles;
|
|
return my_timer_cycles();
|
|
case TIMER_NAME_NANOSEC:
|
|
*fct= my_timer_nanoseconds;
|
|
return my_timer_nanoseconds();
|
|
case TIMER_NAME_MICROSEC:
|
|
*fct= my_timer_microseconds;
|
|
return my_timer_microseconds();
|
|
case TIMER_NAME_MILLISEC:
|
|
*fct= my_timer_milliseconds;
|
|
return my_timer_milliseconds();
|
|
case TIMER_NAME_TICK:
|
|
*fct= my_timer_ticks;
|
|
return my_timer_ticks();
|
|
default:
|
|
*fct= NULL;
|
|
assert(false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ulonglong get_timer_pico_value(enum_timer_name timer_name)
|
|
{
|
|
ulonglong result;
|
|
|
|
switch (timer_name)
|
|
{
|
|
case TIMER_NAME_CYCLE:
|
|
result= (my_timer_cycles() - cycle_v0) * cycle_to_pico;
|
|
break;
|
|
case TIMER_NAME_NANOSEC:
|
|
result= (my_timer_nanoseconds() - nanosec_v0) * nanosec_to_pico;
|
|
break;
|
|
case TIMER_NAME_MICROSEC:
|
|
result= (my_timer_microseconds() - microsec_v0) * microsec_to_pico;
|
|
break;
|
|
case TIMER_NAME_MILLISEC:
|
|
result= (my_timer_milliseconds() - millisec_v0) * millisec_to_pico;
|
|
break;
|
|
case TIMER_NAME_TICK:
|
|
result= (my_timer_ticks() - tick_v0) * tick_to_pico;
|
|
break;
|
|
default:
|
|
result= 0;
|
|
assert(false);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
time_normalizer* time_normalizer::get(enum_timer_name timer_name)
|
|
{
|
|
uint index= static_cast<uint> (timer_name);
|
|
|
|
assert(index >= FIRST_TIMER_NAME);
|
|
assert(index <= LAST_TIMER_NAME);
|
|
|
|
return & to_pico_data[index];
|
|
}
|
|
|
|
void time_normalizer::to_pico(ulonglong start, ulonglong end,
|
|
ulonglong *pico_start, ulonglong *pico_end, ulonglong *pico_wait)
|
|
{
|
|
if (start == 0)
|
|
{
|
|
*pico_start= 0;
|
|
*pico_end= 0;
|
|
*pico_wait= 0;
|
|
}
|
|
else
|
|
{
|
|
*pico_start= (start - m_v0) * m_factor;
|
|
if (end == 0)
|
|
{
|
|
*pico_end= 0;
|
|
*pico_wait= 0;
|
|
}
|
|
else
|
|
{
|
|
*pico_end= (end - m_v0) * m_factor;
|
|
*pico_wait= (end - start) * m_factor;
|
|
}
|
|
}
|
|
}
|
|
|