mariadb/storage/ndb/include/ndbapi/NdbOperation.hpp
2006-03-09 13:27:58 +01:00

1264 lines
38 KiB
C++

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef NdbOperation_H
#define NdbOperation_H
#include <ndb_types.h>
#include "ndbapi_limits.h"
#include "NdbError.hpp"
#include "NdbReceiver.hpp"
#include "NdbDictionary.hpp"
#include "Ndb.hpp"
class Ndb;
class NdbApiSignal;
class NdbRecAttr;
class NdbOperation;
class NdbTransaction;
class NdbColumnImpl;
class NdbBlob;
/**
* @class NdbOperation
* @brief Class of operations for use in transactions.
*/
class NdbOperation
{
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
friend class Ndb;
friend class NdbTransaction;
friend class NdbScanOperation;
friend class NdbScanReceiver;
friend class NdbScanFilter;
friend class NdbScanFilterImpl;
friend class NdbReceiver;
friend class NdbBlob;
#endif
public:
/**
* @name Define Standard Operation Type
* @{
*/
/**
* Lock when performing read
*/
enum LockMode {
LM_Read ///< Read with shared lock
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
= 0
#endif
,LM_Exclusive ///< Read with exclusive lock
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
= 1
#endif
,LM_CommittedRead ///< Ignore locks, read last committed value
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
= 2,
LM_Dirty = 2
#endif
};
/**
* Define the NdbOperation to be a standard operation of type insertTuple.
* When calling NdbTransaction::execute, this operation
* adds a new tuple to the table.
*
* @return 0 if successful otherwise -1.
*/
virtual int insertTuple();
/**
* Define the NdbOperation to be a standard operation of type updateTuple.
* When calling NdbTransaction::execute, this operation
* updates a tuple in the table.
*
* @return 0 if successful otherwise -1.
*/
virtual int updateTuple();
/**
* Define the NdbOperation to be a standard operation of type writeTuple.
* When calling NdbTransaction::execute, this operation
* writes a tuple to the table.
* If the tuple exists, it updates it, otherwise an insert takes place.
*
* @return 0 if successful otherwise -1.
*/
virtual int writeTuple();
/**
* Define the NdbOperation to be a standard operation of type deleteTuple.
* When calling NdbTransaction::execute, this operation
* delete a tuple.
*
* @return 0 if successful otherwise -1.
*/
virtual int deleteTuple();
/**
* Define the NdbOperation to be a standard operation of type readTuple.
* When calling NdbTransaction::execute, this operation
* reads a tuple.
*
* @return 0 if successful otherwise -1.
*/
virtual int readTuple(LockMode);
#ifndef DOXYGEN_SHOULD_SKIP_DEPRECATED
/**
* Define the NdbOperation to be a standard operation of type readTuple.
* When calling NdbTransaction::execute, this operation
* reads a tuple.
*
* @return 0 if successful otherwise -1.
*/
virtual int readTuple();
/**
* Define the NdbOperation to be a standard operation of type
* readTupleExclusive.
* When calling NdbTransaction::execute, this operation
* read a tuple using an exclusive lock.
*
* @return 0 if successful otherwise -1.
*/
virtual int readTupleExclusive();
/**
* Define the NdbOperation to be a standard operation of type
* simpleRead.
* When calling NdbTransaction::execute, this operation
* reads an existing tuple (using shared read lock),
* but releases lock immediately after read.
*
* @note Using this operation twice in the same transaction
* may produce different results (e.g. if there is another
* transaction which updates the value between the
* simple reads).
*
* Note that simpleRead can read the value from any database node while
* standard read always read the value on the database node which is
* primary for the record.
*
* @return 0 if successful otherwise -1.
*/
virtual int simpleRead();
/**
* Define the NdbOperation to be a standard operation of type committedRead.
* When calling NdbTransaction::execute, this operation
* read latest committed value of the record.
*
* This means that if another transaction is updating the
* record, then the current transaction will not wait.
* It will instead use the latest committed value of the
* record.
* dirtyRead is a deprecated name for committedRead
*
* @return 0 if successful otherwise -1.
* @depricated
*/
virtual int dirtyRead();
/**
* Define the NdbOperation to be a standard operation of type committedRead.
* When calling NdbTransaction::execute, this operation
* read latest committed value of the record.
*
* This means that if another transaction is updating the
* record, then the current transaction will not wait.
* It will instead use the latest committed value of the
* record.
*
* @return 0 if successful otherwise -1.
*/
virtual int committedRead();
/**
* Define the NdbOperation to be a standard operation of type dirtyUpdate.
* When calling NdbTransaction::execute, this operation
* updates without two-phase commit.
*
* @return 0 if successful otherwise -1.
*/
virtual int dirtyUpdate();
/**
* Define the NdbOperation to be a standard operation of type dirtyWrite.
* When calling NdbTransaction::execute, this operation
* writes without two-phase commit.
*
* @return 0 if successful otherwise -1.
*/
virtual int dirtyWrite();
#endif
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
/** @} *********************************************************************/
/**
* @name Define Interpreted Program Operation Type
* @{
*/
/**
* Update a tuple using an interpreted program.
*
* @return 0 if successful otherwise -1.
*/
virtual int interpretedUpdateTuple();
/**
* Delete a tuple using an interpreted program.
*
* @return 0 if successful otherwise -1.
*/
virtual int interpretedDeleteTuple();
#endif
/** @} *********************************************************************/
/**
* @name Specify Search Conditions
* @{
*/
/**
* Define a search condition with equality.
* The condition is true if the attribute has the given value.
* To set search conditions on multiple attributes,
* use several equals (then all of them must be satisfied for the
* tuple to be selected).
*
* @note For insertTuple() it is also allowed to define the
* search key by using setValue().
*
* @note There are 10 versions of equal() with
* slightly different parameters.
*
* @note If attribute has fixed size, value must include all bytes.
* In particular a Char must be native-blank padded.
* If attribute has variable size, value must start with
* 1 or 2 little-endian length bytes (2 if Long*).
*
* @param anAttrName Attribute name
* @param aValue Attribute value.
* @return -1 if unsuccessful.
*/
#ifndef DOXYGEN_SHOULD_SKIP_DEPRECATED
int equal(const char* anAttrName, const char* aValue, Uint32 len);
#endif
int equal(const char* anAttrName, const char* aValue);
int equal(const char* anAttrName, Int32 aValue);
int equal(const char* anAttrName, Uint32 aValue);
int equal(const char* anAttrName, Int64 aValue);
int equal(const char* anAttrName, Uint64 aValue);
#ifndef DOXYGEN_SHOULD_SKIP_DEPRECATED
int equal(Uint32 anAttrId, const char* aValue, Uint32 len);
#endif
int equal(Uint32 anAttrId, const char* aValue);
int equal(Uint32 anAttrId, Int32 aValue);
int equal(Uint32 anAttrId, Uint32 aValue);
int equal(Uint32 anAttrId, Int64 aValue);
int equal(Uint32 anAttrId, Uint64 aValue);
/** @} *********************************************************************/
/**
* @name Specify Attribute Actions for Operations
* @{
*/
/**
* Defines a retrieval operation of an attribute value.
* The NDB API allocate memory for the NdbRecAttr object that
* will hold the returned attribute value.
*
* @note Note that it is the applications responsibility
* to allocate enough memory for aValue (if non-NULL).
* The buffer aValue supplied by the application must be
* aligned appropriately. The buffer is used directly
* (avoiding a copy penalty) only if it is aligned on a
* 4-byte boundary and the attribute size in bytes
* (i.e. NdbRecAttr::attrSize times NdbRecAttr::arraySize is
* a multiple of 4).
*
* @note There are two versions of NdbOperation::getValue with
* slightly different parameters.
*
* @note This method does not fetch the attribute value from
* the database! The NdbRecAttr object returned by this method
* is <em>not</em> readable/printable before the
* transaction has been executed with NdbTransaction::execute.
*
* @param anAttrName Attribute name
* @param aValue If this is non-NULL, then the attribute value
* will be returned in this parameter.<br>
* If NULL, then the attribute value will only
* be stored in the returned NdbRecAttr object.
* @return An NdbRecAttr object to hold the value of
* the attribute, or a NULL pointer
* (indicating error).
*/
NdbRecAttr* getValue(const char* anAttrName, char* aValue = 0);
NdbRecAttr* getValue(Uint32 anAttrId, char* aValue = 0);
NdbRecAttr* getValue(const NdbDictionary::Column*, char* val = 0);
/**
* Define an attribute to set or update in query.
*
* To set a NULL value, use the following construct:
* @code
* setValue("ATTR_NAME", (char*)NULL);
* @endcode
*
* There are a number of NdbOperation::setValue methods that
* take a certain type as input
* (pass by value rather than passing a pointer).
* As the interface is currently implemented it is the responsibility
* of the application programmer to use the correct types.
*
* The NDB API will however check that the application sends
* a correct length to the interface as given in the length parameter.
* The passing of char* as the value can contain any type or
* any type of array.
* If length is not provided or set to zero,
* then the API will assume that the pointer
* is correct and not bother with checking it.
*
* @note For insertTuple() the NDB API will automatically detect that
* it is supposed to use equal() instead.
*
* @note For insertTuple() it is not necessary to use
* setValue() on key attributes before other attributes.
*
* @note There are 14 versions of NdbOperation::setValue with
* slightly different parameters.
*
* @note See note under equal() about value format and length.
*
* @param anAttrName Name (or Id) of attribute.
* @param aValue Attribute value to set.
* @return -1 if unsuccessful.
*/
#ifndef DOXYGEN_SHOULD_SKIP_DEPRECATED
int setValue(const char* anAttrName, const char* aValue, Uint32 len);
#endif
int setValue(const char* anAttrName, const char* aValue);
int setValue(const char* anAttrName, Int32 aValue);
int setValue(const char* anAttrName, Uint32 aValue);
int setValue(const char* anAttrName, Int64 aValue);
int setValue(const char* anAttrName, Uint64 aValue);
int setValue(const char* anAttrName, float aValue);
int setValue(const char* anAttrName, double aValue);
#ifndef DOXYGEN_SHOULD_SKIP_DEPRECATED
int setValue(Uint32 anAttrId, const char* aValue, Uint32 len);
#endif
int setValue(Uint32 anAttrId, const char* aValue);
int setValue(Uint32 anAttrId, Int32 aValue);
int setValue(Uint32 anAttrId, Uint32 aValue);
int setValue(Uint32 anAttrId, Int64 aValue);
int setValue(Uint32 anAttrId, Uint64 aValue);
int setValue(Uint32 anAttrId, float aValue);
int setValue(Uint32 anAttrId, double aValue);
/**
* This method replaces getValue/setValue for blobs. It creates
* a blob handle NdbBlob. A second call with same argument returns
* the previously created handle. The handle is linked to the
* operation and is maintained automatically.
*
* See NdbBlob for details.
*/
virtual NdbBlob* getBlobHandle(const char* anAttrName);
virtual NdbBlob* getBlobHandle(Uint32 anAttrId);
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
/** @} *********************************************************************/
/**
* @name Specify Interpreted Program Instructions
* @{
*/
/**
* Interpreted program instruction: Add a value to an attribute.
*
* @note Destroys the contents of registers 6 and 7.
* (The instruction uses these registers for its operation.)
*
* @note There are four versions of NdbOperation::incValue with
* slightly different parameters.
*
* @param anAttrName Attribute name.
* @param aValue Value to add.
* @return -1 if unsuccessful.
*/
int incValue(const char* anAttrName, Uint32 aValue);
int incValue(const char* anAttrName, Uint64 aValue);
int incValue(Uint32 anAttrId, Uint32 aValue);
int incValue(Uint32 anAttrId, Uint64 aValue);
/**
* Interpreted program instruction:
* Subtract a value from an attribute in an interpreted operation.
*
* @note Destroys the contents of registers 6 and 7.
* (The instruction uses these registers for its operation.)
*
* @note There are four versions of NdbOperation::subValue with
* slightly different parameters.
*
* @param anAttrName Attribute name.
* @param aValue Value to subtract.
* @return -1 if unsuccessful.
*/
int subValue(const char* anAttrName, Uint32 aValue);
int subValue(const char* anAttrName, Uint64 aValue);
int subValue(Uint32 anAttrId, Uint32 aValue);
int subValue(Uint32 anAttrId, Uint64 aValue);
/**
* Interpreted program instruction:
* Define a jump label in an interpreted operation.
*
* @note The labels are automatically numbered starting with 0.
* The parameter used by NdbOperation::def_label should
* match the automatic numbering to make it easier to
* debug the interpreted program.
*
* @param labelNumber Label number.
* @return -1 if unsuccessful.
*/
int def_label(int labelNumber);
/**
* Interpreted program instruction:
* Add two registers into a third.
*
* @param RegSource1 First register.
* @param RegSource2 Second register.
* @param RegDest Destination register where the result will be stored.
* @return -1 if unsuccessful.
*/
int add_reg(Uint32 RegSource1, Uint32 RegSource2, Uint32 RegDest);
/**
* Interpreted program instruction:
* Substract RegSource1 from RegSource2 and put the result in RegDest.
*
* @param RegSource1 First register.
* @param RegSource2 Second register.
* @param RegDest Destination register where the result will be stored.
* @return -1 if unsuccessful.
*/
int sub_reg(Uint32 RegSource1, Uint32 RegSource2, Uint32 RegDest);
/**
* Interpreted program instruction:
* Load a constant into a register.
*
* @param RegDest Destination register.
* @param Constant Value to load.
* @return -1 if unsuccessful.
*/
int load_const_u32(Uint32 RegDest, Uint32 Constant);
int load_const_u64(Uint32 RegDest, Uint64 Constant);
/**
* Interpreted program instruction:
* Load NULL value into a register.
*
* @param RegDest Destination register.
* @return -1 if unsuccessful.
*/
int load_const_null(Uint32 RegDest);
/**
* Interpreted program instruction:
* Read an attribute into a register.
*
* @param anAttrName Attribute name.
* @param RegDest Destination register.
* @return -1 if unsuccessful.
*/
int read_attr(const char* anAttrName, Uint32 RegDest);
/**
* Interpreted program instruction:
* Write an attribute from a register.
*
* @param anAttrName Attribute name.
* @param RegSource Source register.
* @return -1 if unsuccessful.
*/
int write_attr(const char* anAttrName, Uint32 RegSource);
/**
* Interpreted program instruction:
* Read an attribute into a register.
*
* @param anAttrId the attribute id.
* @param RegDest the destination register.
* @return -1 if unsuccessful.
*/
int read_attr(Uint32 anAttrId, Uint32 RegDest);
/**
* Interpreted program instruction:
* Write an attribute from a register.
*
* @param anAttrId the attribute id.
* @param RegSource the source register.
* @return -1 if unsuccessful.
*/
int write_attr(Uint32 anAttrId, Uint32 RegSource);
/**
* Interpreted program instruction:
* Define a search condition. Last two letters in the function name
* describes the search condition.
* The condition compares RegR with RegL and therefore appears
* to be reversed.
*
* - ge RegR >= RegL
* - gt RegR > RegL
* - le RegR <= RegL
* - lt RegR < RegL
* - eq RegR = RegL
* - ne RegR <> RegL
*
* @param RegLvalue left value.
* @param RegRvalue right value.
* @param Label the label to jump to.
* @return -1 if unsuccessful.
*/
int branch_ge(Uint32 RegLvalue, Uint32 RegRvalue, Uint32 Label);
int branch_gt(Uint32 RegLvalue, Uint32 RegRvalue, Uint32 Label);
int branch_le(Uint32 RegLvalue, Uint32 RegRvalue, Uint32 Label);
int branch_lt(Uint32 RegLvalue, Uint32 RegRvalue, Uint32 Label);
int branch_eq(Uint32 RegLvalue, Uint32 RegRvalue, Uint32 Label);
int branch_ne(Uint32 RegLvalue, Uint32 RegRvalue, Uint32 Label);
/**
* Interpreted program instruction:
* Jump to Label if RegLvalue is not NULL.
*
* @param RegLvalue the value to check.
* @param Label the label to jump to.
* @return -1 if unsuccessful.
*/
int branch_ne_null(Uint32 RegLvalue, Uint32 Label);
/**
* Interpreted program instruction:
* Jump to Label if RegLvalue is equal to NULL.
*
* @param RegLvalue Value to check.
* @param Label Label to jump to.
* @return -1 if unsuccessful.
*/
int branch_eq_null(Uint32 RegLvalue, Uint32 Label);
/**
* Interpreted program instruction:
* Jump to Label.
*
* @param Label Label to jump to.
* @return -1 if unsuccessful.
*/
int branch_label(Uint32 Label);
/**
* Interpreted program instruction: branch after memcmp
* @param ColId Column to check
* @param Label Label to jump to
* @return -1 if unsuccessful
*/
int branch_col_eq_null(Uint32 ColId, Uint32 Label);
int branch_col_ne_null(Uint32 ColId, Uint32 Label);
/**
* Interpreted program instruction: branch after memcmp
* @param ColId column to check
* @param val search value
* @param len length of search value
* @param nopad force non-padded comparison for a Char column
* @param Label label to jump to
* @return -1 if unsuccessful
*/
int branch_col_eq(Uint32 ColId, const void * val, Uint32 len,
bool nopad, Uint32 Label);
int branch_col_ne(Uint32 ColId, const void * val, Uint32 len,
bool nopad, Uint32 Label);
int branch_col_lt(Uint32 ColId, const void * val, Uint32 len,
bool nopad, Uint32 Label);
int branch_col_le(Uint32 ColId, const void * val, Uint32 len,
bool nopad, Uint32 Label);
int branch_col_gt(Uint32 ColId, const void * val, Uint32 len,
bool nopad, Uint32 Label);
int branch_col_ge(Uint32 ColId, const void * val, Uint32 len,
bool nopad, Uint32 Label);
int branch_col_like(Uint32 ColId, const void *, Uint32 len,
bool nopad, Uint32 Label);
int branch_col_notlike(Uint32 ColId, const void *, Uint32 len,
bool nopad, Uint32 Label);
/**
* Interpreted program instruction: Exit with Ok
*
* For scanning transactions,
* end interpreted operation and return the row to the application.
*
* For non-scanning transactions,
* exit interpreted program.
*
* @return -1 if unsuccessful.
*/
int interpret_exit_ok();
/**
* Interpreted program instruction: Exit with Not Ok
*
* For scanning transactions,
* continue with the next row without returning the current row.
*
* For non-scanning transactions,
* abort the whole transaction.
*
* @note A method also exists without the error parameter.
*
* @param ErrorCode An error code given by the application programmer.
* @return -1 if unsuccessful.
*/
int interpret_exit_nok(Uint32 ErrorCode);
int interpret_exit_nok();
/**
* Interpreted program instruction:
*
* For scanning transactions,
* return this row, but no more from this fragment
*
* For non-scanning transactions,
* abort the whole transaction.
*
* @return -1 if unsuccessful.
*/
int interpret_exit_last_row();
/**
* Interpreted program instruction:
* Define a subroutine in an interpreted operation.
*
* @param SubroutineNumber the subroutine number.
* @return -1 if unsuccessful.
*/
int def_subroutine(int SubroutineNumber);
/**
* Interpreted program instruction:
* Call a subroutine.
*
* @param Subroutine the subroutine to call.
* @return -1 if unsuccessful.
*/
int call_sub(Uint32 Subroutine);
/**
* Interpreted program instruction:
* End a subroutine.
*
* @return -1 if unsuccessful.
*/
int ret_sub();
#endif
/** @} *********************************************************************/
/**
* @name Error Handling
* @{
*/
/**
* Get the latest error code.
*
* @return error code.
*/
const NdbError & getNdbError() const;
/**
* Get the method number where the error occured.
*
* @return method number where the error occured.
*/
int getNdbErrorLine();
/**
* Get table name of this operation.
*/
const char* getTableName() const;
/**
* Get table object for this operation
*/
const NdbDictionary::Table * getTable() const;
/** @} *********************************************************************/
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
/**
* Type of operation
*/
enum OperationType {
ReadRequest = 0, ///< Read operation
UpdateRequest = 1, ///< Update Operation
InsertRequest = 2, ///< Insert Operation
DeleteRequest = 3, ///< Delete Operation
WriteRequest = 4, ///< Write Operation
ReadExclusive = 5, ///< Read exclusive
OpenScanRequest, ///< Scan Operation
OpenRangeScanRequest, ///< Range scan operation
NotDefined2, ///< Internal for debugging
NotDefined ///< Internal for debugging
};
#endif
/**
* Return lock mode for operation
*/
LockMode getLockMode() const { return theLockMode; }
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
void setAbortOption(Int8 ao) { m_abortOption = ao; }
/**
* Set/get partition key
*/
void setPartitionId(Uint32 id);
void setPartitionHash(Uint32 key);
void setPartitionHash(const Uint64 *, Uint32 len);
Uint32 getPartitionId() const;
#endif
protected:
int handle_distribution_key(const Uint64 *, Uint32 len);
protected:
/******************************************************************************
* These are the methods used to create and delete the NdbOperation objects.
*****************************************************************************/
bool needReply();
/******************************************************************************
* These methods are service routines used by the other NDB API classes.
*****************************************************************************/
//--------------------------------------------------------------
// Initialise after allocating operation to a transaction
//--------------------------------------------------------------
int init(const class NdbTableImpl*, NdbTransaction* aCon);
void initInterpreter();
NdbOperation(Ndb* aNdb);
virtual ~NdbOperation();
void next(NdbOperation*); // Set next pointer
NdbOperation* next(); // Get next pointer
public:
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
const NdbOperation* next() const;
const NdbRecAttr* getFirstRecAttr() const;
#endif
protected:
enum OperationStatus
{
Init,
OperationDefined,
TupleKeyDefined,
GetValue,
SetValue,
ExecInterpretedValue,
SetValueInterpreted,
FinalGetValue,
SubroutineExec,
SubroutineEnd,
WaitResponse,
WaitCommitResponse,
Finished,
ReceiveFinished
};
OperationStatus Status(); // Read the status information
void Status(OperationStatus); // Set the status information
void NdbCon(NdbTransaction*); // Set reference to connection
// object.
virtual void release(); // Release all operations
// connected to
// the operations object.
void setStartIndicator();
/******************************************************************************
* The methods below is the execution part of the NdbOperation
* class. This is where the NDB signals are sent and received. The
* operation can send TC[KEY/INDX]REQ, [INDX]ATTRINFO.
* It can receive TC[KEY/INDX]CONF, TC[KEY/INDX]REF, [INDX]ATTRINFO.
* When an operation is received in its fulness or a refuse message
* was sent, then the connection object is told about this situation.
*****************************************************************************/
int doSend(int ProcessorId, Uint32 lastFlag);
virtual int prepareSend(Uint32 TC_ConnectPtr,
Uint64 TransactionId);
virtual void setLastFlag(NdbApiSignal* signal, Uint32 lastFlag);
int prepareSendInterpreted(); // Help routine to prepare*
int receiveTCKEYREF(NdbApiSignal*);
int checkMagicNumber(bool b = true); // Verify correct object
int checkState_TransId(NdbApiSignal* aSignal);
/******************************************************************************
* These are support methods only used locally in this class.
******************************************************************************/
virtual int equal_impl(const NdbColumnImpl*,const char* aValue);
virtual NdbRecAttr* getValue_impl(const NdbColumnImpl*, char* aValue = 0);
int setValue(const NdbColumnImpl* anAttrObject, const char* aValue);
NdbBlob* getBlobHandle(NdbTransaction* aCon, const NdbColumnImpl* anAttrObject);
int incValue(const NdbColumnImpl* anAttrObject, Uint32 aValue);
int incValue(const NdbColumnImpl* anAttrObject, Uint64 aValue);
int subValue(const NdbColumnImpl* anAttrObject, Uint32 aValue);
int subValue(const NdbColumnImpl* anAttrObject, Uint64 aValue);
int read_attr(const NdbColumnImpl* anAttrObject, Uint32 RegDest);
int write_attr(const NdbColumnImpl* anAttrObject, Uint32 RegSource);
int branch_reg_reg(Uint32 type, Uint32, Uint32, Uint32);
int branch_col(Uint32 type, Uint32, const void *, Uint32, bool, Uint32 Label);
int branch_col_null(Uint32 type, Uint32 col, Uint32 Label);
// Handle ATTRINFO signals
int insertATTRINFO(Uint32 aData);
int insertATTRINFOloop(const Uint32* aDataPtr, Uint32 aLength);
int insertKEYINFO(const char* aValue,
Uint32 aStartPosition,
Uint32 aKeyLenInByte);
void reorderKEYINFO();
virtual void setErrorCode(int aErrorCode);
virtual void setErrorCodeAbort(int aErrorCode);
void handleFailedAI_ElemLen(); // When not all attribute data
// were received
int incCheck(const NdbColumnImpl* anAttrObject);
int initial_interpreterCheck();
int intermediate_interpreterCheck();
int read_attrCheck(const NdbColumnImpl* anAttrObject);
int write_attrCheck(const NdbColumnImpl* anAttrObject);
int labelCheck();
int insertCall(Uint32 aCall);
int insertBranch(Uint32 aBranch);
Uint32 ptr2int() { return theReceiver.getId(); };
// get table or index key from prepared signals
int getKeyFromTCREQ(Uint32* data, Uint32 & size);
/******************************************************************************
* These are the private variables that are defined in the operation objects.
*****************************************************************************/
NdbReceiver theReceiver;
NdbError theError; // Errorcode
int theErrorLine; // Error line
Ndb* theNdb; // Point back to the Ndb object.
NdbTransaction* theNdbCon; // Point back to the connection object.
NdbOperation* theNext; // Next pointer to operation.
union {
NdbApiSignal* theTCREQ; // The TC[KEY/INDX]REQ signal object
NdbApiSignal* theSCAN_TABREQ;
};
NdbApiSignal* theFirstATTRINFO; // The first ATTRINFO signal object
NdbApiSignal* theCurrentATTRINFO; // The current ATTRINFO signal object
Uint32 theTotalCurrAI_Len; // The total number of attribute info
// words currently defined
Uint32 theAI_LenInCurrAI; // The number of words defined in the
// current ATTRINFO signal
NdbApiSignal* theLastKEYINFO; // The first KEYINFO signal object
class NdbLabel* theFirstLabel;
class NdbLabel* theLastLabel;
class NdbBranch* theFirstBranch;
class NdbBranch* theLastBranch;
class NdbCall* theFirstCall;
class NdbCall* theLastCall;
class NdbSubroutine* theFirstSubroutine;
class NdbSubroutine* theLastSubroutine;
Uint32 theNoOfLabels;
Uint32 theNoOfSubroutines;
Uint32* theKEYINFOptr; // Pointer to where to write KEYINFO
Uint32* theATTRINFOptr; // Pointer to where to write ATTRINFO
const class NdbTableImpl* m_currentTable; // The current table
const class NdbTableImpl* m_accessTable; // Index table (== current for pk)
// Set to TRUE when a tuple key attribute has been defined.
Uint32 theTupleKeyDefined[NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY][3];
Uint32 theTotalNrOfKeyWordInSignal; // The total number of
// keyword in signal.
Uint32 theTupKeyLen; // Length of the tuple key in words
// left until done
Uint8 theNoOfTupKeyLeft; // The number of tuple key attributes
OperationType theOperationType; // Read Request, Update Req......
LockMode theLockMode; // Can be set to WRITE if read operation
OperationStatus theStatus; // The status of the operation.
Uint32 theMagicNumber; // Magic number to verify that object
// is correct
Uint32 theScanInfo; // Scan info bits (take over flag etc)
Uint32 theDistributionKey; // Distribution Key size if used
Uint32 theSubroutineSize; // Size of subroutines for interpretation
Uint32 theInitialReadSize; // Size of initial reads for interpretation
Uint32 theInterpretedSize; // Size of interpretation
Uint32 theFinalUpdateSize; // Size of final updates for interpretation
Uint32 theFinalReadSize; // Size of final reads for interpretation
Uint8 theStartIndicator; // Indicator of whether start operation
Uint8 theCommitIndicator; // Indicator of whether commit operation
Uint8 theSimpleIndicator; // Indicator of whether simple operation
Uint8 theDirtyIndicator; // Indicator of whether dirty operation
Uint8 theInterpretIndicator; // Indicator of whether interpreted operation
Int8 theDistrKeyIndicator_; // Indicates whether distr. key is used
Uint8 m_no_disk_flag;
Uint16 m_tcReqGSN;
Uint16 m_keyInfoGSN;
Uint16 m_attrInfoGSN;
// Blobs in this operation
NdbBlob* theBlobList;
/*
* Abort option per operation, used by blobs. Default -1. If set,
* overrides abort option on connection level. If set to IgnoreError,
* does not cause execute() to return failure. This is different from
* IgnoreError on connection level.
*/
Int8 m_abortOption;
friend struct Ndb_free_list_t<NdbOperation>;
};
#ifdef NDB_NO_DROPPED_SIGNAL
#include <stdlib.h>
#endif
#ifndef DOXYGEN_SHOULD_SKIP_INTERNAL
inline
int
NdbOperation::checkMagicNumber(bool b)
{
if (theMagicNumber != 0xABCDEF01){
#ifdef NDB_NO_DROPPED_SIGNAL
if(b) abort();
#endif
return -1;
}
return 0;
}
inline
void
NdbOperation::setStartIndicator()
{
theStartIndicator = 1;
}
inline
int
NdbOperation::getNdbErrorLine()
{
return theErrorLine;
}
/******************************************************************************
void next(NdbOperation* aNdbOperation);
Parameters: aNdbOperation: Pointers to the NdbOperation object.
Remark: Set the next variable of the operation object.
******************************************************************************/
inline
void
NdbOperation::next(NdbOperation* aNdbOperation)
{
theNext = aNdbOperation;
}
/******************************************************************************
NdbOperation* next();
Return Value: Return next pointer to NdbOperation object.
Remark: Get the next variable of the operation object.
******************************************************************************/
inline
NdbOperation*
NdbOperation::next()
{
return theNext;
}
inline
const NdbOperation*
NdbOperation::next() const
{
return theNext;
}
inline
const NdbRecAttr*
NdbOperation::getFirstRecAttr() const
{
return theReceiver.theFirstRecAttr;
}
/******************************************************************************
OperationStatus Status();
Return Value Return the OperationStatus.
Parameters: aStatus: The status.
Remark: Sets Operation status.
******************************************************************************/
inline
NdbOperation::OperationStatus
NdbOperation::Status()
{
return theStatus;
}
/******************************************************************************
void Status(OperationStatus aStatus);
Parameters: aStatus: The status.
Remark: Sets Operation
status.
******************************************************************************/
inline
void
NdbOperation::Status( OperationStatus aStatus )
{
theStatus = aStatus;
}
/******************************************************************************
void NdbCon(NdbTransaction* aNdbCon);
Parameters: aNdbCon: Pointers to NdbTransaction object.
Remark: Set the reference to the connection in the operation object.
******************************************************************************/
inline
void
NdbOperation::NdbCon(NdbTransaction* aNdbCon)
{
theNdbCon = aNdbCon;
}
inline
int
NdbOperation::equal(const char* anAttrName, const char* aValue, Uint32 len)
{
return equal(anAttrName, aValue);
}
inline
int
NdbOperation::equal(const char* anAttrName, Int32 aPar)
{
return equal(anAttrName, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::equal(const char* anAttrName, Uint32 aPar)
{
return equal(anAttrName, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::equal(const char* anAttrName, Int64 aPar)
{
return equal(anAttrName, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::equal(const char* anAttrName, Uint64 aPar)
{
return equal(anAttrName, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::equal(Uint32 anAttrId, const char* aValue, Uint32 len)
{
return equal(anAttrId, aValue);
}
inline
int
NdbOperation::equal(Uint32 anAttrId, Int32 aPar)
{
return equal(anAttrId, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::equal(Uint32 anAttrId, Uint32 aPar)
{
return equal(anAttrId, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::equal(Uint32 anAttrId, Int64 aPar)
{
return equal(anAttrId, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::equal(Uint32 anAttrId, Uint64 aPar)
{
return equal(anAttrId, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::setValue(const char* anAttrName, const char* aValue, Uint32 len)
{
return setValue(anAttrName, aValue);
}
inline
int
NdbOperation::setValue(const char* anAttrName, Int32 aPar)
{
return setValue(anAttrName, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::setValue(const char* anAttrName, Uint32 aPar)
{
return setValue(anAttrName, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::setValue(const char* anAttrName, Int64 aPar)
{
return setValue(anAttrName, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::setValue(const char* anAttrName, Uint64 aPar)
{
return setValue(anAttrName, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::setValue(const char* anAttrName, float aPar)
{
return setValue(anAttrName, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::setValue(const char* anAttrName, double aPar)
{
return setValue(anAttrName, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::setValue(Uint32 anAttrId, const char* aValue, Uint32 len)
{
return setValue(anAttrId, aValue);
}
inline
int
NdbOperation::setValue(Uint32 anAttrId, Int32 aPar)
{
return setValue(anAttrId, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::setValue(Uint32 anAttrId, Uint32 aPar)
{
return setValue(anAttrId, (const char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::setValue(Uint32 anAttrId, Int64 aPar)
{
return setValue(anAttrId, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::setValue(Uint32 anAttrId, Uint64 aPar)
{
return setValue(anAttrId, (const char*)&aPar, (Uint32)8);
}
inline
int
NdbOperation::setValue(Uint32 anAttrId, float aPar)
{
return setValue(anAttrId, (char*)&aPar, (Uint32)4);
}
inline
int
NdbOperation::setValue(Uint32 anAttrId, double aPar)
{
return setValue(anAttrId, (const char*)&aPar, (Uint32)8);
}
#endif // doxygen
#endif