mariadb/storage/innobase/include/mach0data.ic
Jan Lindström 34eef269eb MDEV-11939: innochecksum mistakes a file for an encrypted one (page 0 invalid)
Always read full page 0 to determine does tablespace contain
encryption metadata. Tablespaces that are page compressed or
page compressed and encrypted do not compare checksum as
it does not exists. For encrypted tables use checksum
verification written for encrypted tables and normal tables
use normal method.

buf_page_is_checksum_valid_crc32
buf_page_is_checksum_valid_innodb
buf_page_is_checksum_valid_none
        Modify Innochecksum logging to file to avoid compilation
	warnings.

fil0crypt.cc fil0crypt.h
        Modify to be able to use in innochecksum compilation and
        move fil_space_verify_crypt_checksum to end of the file.
        Add innochecksum logging to file.

univ.i
        Add innochecksum strict_verify, log_file and cur_page_num
        variables as extern.

page_zip_verify_checksum
        Add innochecksum logging to file and remove unnecessary code.

innochecksum.cc
        Lot of changes most notable able to read encryption
        metadata from page 0 of the tablespace.

Added test case where we corrupt intentionally
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION (encryption key version)
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION+4 (post encryption checksum)
FIL_DATA+10 (data)
2017-08-08 09:41:09 +03:00

893 lines
21 KiB
Text

/*****************************************************************************
Copyright (c) 1995, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/******************************************************************//**
@file include/mach0data.ic
Utilities for converting data from the database file
to the machine format.
Created 11/28/1995 Heikki Tuuri
***********************************************************************/
#ifndef UNIV_INNOCHECKSUM
#include "mtr0types.h"
/*******************************************************//**
The following function is used to store data in one byte. */
UNIV_INLINE
void
mach_write_to_1(
/*============*/
byte* b, /*!< in: pointer to byte where to store */
ulint n) /*!< in: ulint integer to be stored, >= 0, < 256 */
{
ut_ad((n & ~0xFFUL) == 0);
b[0] = (byte) n;
}
#endif /* !UNIV_INNOCHECKSUM */
/*******************************************************//**
The following function is used to store data in two consecutive
bytes. We store the most significant byte to the lowest address. */
UNIV_INLINE
void
mach_write_to_2(
/*============*/
byte* b, /*!< in: pointer to two bytes where to store */
ulint n) /*!< in: ulint integer to be stored */
{
ut_ad((n & ~0xFFFFUL) == 0);
b[0] = (byte)(n >> 8);
b[1] = (byte)(n);
}
/** The following function is used to fetch data from one byte.
@param[in] b pointer to a byte to read
@return ulint integer, >= 0, < 256 */
UNIV_INLINE
uint8_t
mach_read_from_1(
const byte* b)
{
return(uint8_t(*b));
}
/** The following function is used to fetch data from 2 consecutive
bytes. The most significant byte is at the lowest address.
@param[in] b pointer to 2 bytes to read
@return 2-byte integer, >= 0, < 64k */
UNIV_INLINE
uint16_t
mach_read_from_2(
const byte* b)
{
return(uint16_t(uint16_t(b[0]) << 8 | b[1]));
}
#ifndef UNIV_INNOCHECKSUM
/********************************************************//**
The following function is used to convert a 16-bit data item
to the canonical format, for fast bytewise equality test
against memory.
@return 16-bit integer in canonical format */
UNIV_INLINE
uint16
mach_encode_2(
/*==========*/
ulint n) /*!< in: integer in machine-dependent format */
{
uint16 ret;
ut_ad(2 == sizeof ret);
mach_write_to_2((byte*) &ret, n);
return(ret);
}
/********************************************************//**
The following function is used to convert a 16-bit data item
from the canonical format, for fast bytewise equality test
against memory.
@return integer in machine-dependent format */
UNIV_INLINE
ulint
mach_decode_2(
/*==========*/
uint16 n) /*!< in: 16-bit integer in canonical format */
{
ut_ad(2 == sizeof n);
return(mach_read_from_2((const byte*) &n));
}
/*******************************************************//**
The following function is used to store data in 3 consecutive
bytes. We store the most significant byte to the lowest address. */
UNIV_INLINE
void
mach_write_to_3(
/*============*/
byte* b, /*!< in: pointer to 3 bytes where to store */
ulint n) /*!< in: ulint integer to be stored */
{
ut_ad((n & ~0xFFFFFFUL) == 0);
b[0] = (byte)(n >> 16);
b[1] = (byte)(n >> 8);
b[2] = (byte)(n);
}
/** The following function is used to fetch data from 3 consecutive
bytes. The most significant byte is at the lowest address.
@param[in] b pointer to 3 bytes to read
@return uint32_t integer */
UNIV_INLINE
uint32_t
mach_read_from_3(
const byte* b)
{
return( (static_cast<uint32_t>(b[0]) << 16)
| (static_cast<uint32_t>(b[1]) << 8)
| static_cast<uint32_t>(b[2])
);
}
#endif /* !UNIV_INNOCHECKSUM */
/*******************************************************//**
The following function is used to store data in four consecutive
bytes. We store the most significant byte to the lowest address. */
UNIV_INLINE
void
mach_write_to_4(
/*============*/
byte* b, /*!< in: pointer to four bytes where to store */
ulint n) /*!< in: ulint integer to be stored */
{
b[0] = (byte)(n >> 24);
b[1] = (byte)(n >> 16);
b[2] = (byte)(n >> 8);
b[3] = (byte) n;
}
/** The following function is used to fetch data from 4 consecutive
bytes. The most significant byte is at the lowest address.
@param[in] b pointer to 4 bytes to read
@return 32 bit integer */
UNIV_INLINE
uint32_t
mach_read_from_4(
const byte* b)
{
return( (static_cast<uint32_t>(b[0]) << 24)
| (static_cast<uint32_t>(b[1]) << 16)
| (static_cast<uint32_t>(b[2]) << 8)
| static_cast<uint32_t>(b[3])
);
}
#ifndef UNIV_INNOCHECKSUM
/*********************************************************//**
Writes a ulint in a compressed form where the first byte codes the
length of the stored ulint. We look at the most significant bits of
the byte. If the most significant bit is zero, it means 1-byte storage,
else if the 2nd bit is 0, it means 2-byte storage, else if 3rd is 0,
it means 3-byte storage, else if 4th is 0, it means 4-byte storage,
else the storage is 5-byte.
@return compressed size in bytes */
UNIV_INLINE
ulint
mach_write_compressed(
/*==================*/
byte* b, /*!< in: pointer to memory where to store */
ulint n) /*!< in: ulint integer (< 2^32) to be stored */
{
if (n < 0x80) {
/* 0nnnnnnn (7 bits) */
mach_write_to_1(b, n);
return(1);
} else if (n < 0x4000) {
/* 10nnnnnn nnnnnnnn (14 bits) */
mach_write_to_2(b, n | 0x8000);
return(2);
} else if (n < 0x200000) {
/* 110nnnnn nnnnnnnn nnnnnnnn (21 bits) */
mach_write_to_3(b, n | 0xC00000);
return(3);
} else if (n < 0x10000000) {
/* 1110nnnn nnnnnnnn nnnnnnnn nnnnnnnn (28 bits) */
mach_write_to_4(b, n | 0xE0000000);
return(4);
} else {
/* 11110000 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn (32 bits) */
mach_write_to_1(b, 0xF0);
mach_write_to_4(b + 1, n);
return(5);
}
}
/*********************************************************//**
Returns the size of a ulint when written in the compressed form.
@return compressed size in bytes */
UNIV_INLINE
ulint
mach_get_compressed_size(
/*=====================*/
ulint n) /*!< in: ulint integer (< 2^32) to be stored */
{
if (n < 0x80) {
/* 0nnnnnnn (7 bits) */
return(1);
} else if (n < 0x4000) {
/* 10nnnnnn nnnnnnnn (14 bits) */
return(2);
} else if (n < 0x200000) {
/* 110nnnnn nnnnnnnn nnnnnnnn (21 bits) */
return(3);
} else if (n < 0x10000000) {
/* 1110nnnn nnnnnnnn nnnnnnnn nnnnnnnn (28 bits) */
return(4);
} else {
/* 11110000 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn (32 bits) */
return(5);
}
}
/*********************************************************//**
Reads a ulint in a compressed form.
@return read integer (< 2^32) */
UNIV_INLINE
ulint
mach_read_compressed(
/*=================*/
const byte* b) /*!< in: pointer to memory from where to read */
{
ulint val;
val = mach_read_from_1(b);
if (val < 0x80) {
/* 0nnnnnnn (7 bits) */
} else if (val < 0xC0) {
/* 10nnnnnn nnnnnnnn (14 bits) */
val = mach_read_from_2(b) & 0x3FFF;
ut_ad(val > 0x7F);
} else if (val < 0xE0) {
/* 110nnnnn nnnnnnnn nnnnnnnn (21 bits) */
val = mach_read_from_3(b) & 0x1FFFFF;
ut_ad(val > 0x3FFF);
} else if (val < 0xF0) {
/* 1110nnnn nnnnnnnn nnnnnnnn nnnnnnnn (28 bits) */
val = mach_read_from_4(b) & 0xFFFFFFF;
ut_ad(val > 0x1FFFFF);
} else {
/* 11110000 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn (32 bits) */
ut_ad(val == 0xF0);
val = mach_read_from_4(b + 1);
ut_ad(val > 0xFFFFFFF);
}
return(val);
}
/** Read a 32-bit integer in a compressed form.
@param[in,out] b pointer to memory where to read;
advanced by the number of bytes consumed
@return unsigned value */
UNIV_INLINE
ib_uint32_t
mach_read_next_compressed(
const byte** b)
{
ulint val = mach_read_from_1(*b);
if (val < 0x80) {
/* 0nnnnnnn (7 bits) */
++*b;
} else if (val < 0xC0) {
/* 10nnnnnn nnnnnnnn (14 bits) */
val = mach_read_from_2(*b) & 0x3FFF;
ut_ad(val > 0x7F);
*b += 2;
} else if (val < 0xE0) {
/* 110nnnnn nnnnnnnn nnnnnnnn (21 bits) */
val = mach_read_from_3(*b) & 0x1FFFFF;
ut_ad(val > 0x3FFF);
*b += 3;
} else if (val < 0xF0) {
/* 1110nnnn nnnnnnnn nnnnnnnn nnnnnnnn (28 bits) */
val = mach_read_from_4(*b) & 0xFFFFFFF;
ut_ad(val > 0x1FFFFF);
*b += 4;
} else {
/* 11110000 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn (32 bits) */
ut_ad(val == 0xF0);
val = mach_read_from_4(*b + 1);
ut_ad(val > 0xFFFFFFF);
*b += 5;
}
return(static_cast<ib_uint32_t>(val));
}
/*******************************************************//**
The following function is used to store data in 8 consecutive
bytes. We store the most significant byte to the lowest address. */
UNIV_INLINE
void
mach_write_to_8(
/*============*/
void* b, /*!< in: pointer to 8 bytes where to store */
ib_uint64_t n) /*!< in: 64-bit integer to be stored */
{
mach_write_to_4(static_cast<byte*>(b), (ulint) (n >> 32));
mach_write_to_4(static_cast<byte*>(b) + 4, (ulint) n);
}
#endif /* !UNIV_INNOCHECKSUM */
/********************************************************//**
The following function is used to fetch data from 8 consecutive
bytes. The most significant byte is at the lowest address.
@return 64-bit integer */
UNIV_INLINE
ib_uint64_t
mach_read_from_8(
/*=============*/
const byte* b) /*!< in: pointer to 8 bytes */
{
ib_uint64_t u64;
u64 = mach_read_from_4(b);
u64 <<= 32;
u64 |= mach_read_from_4(b + 4);
return(u64);
}
#ifndef UNIV_INNOCHECKSUM
/*******************************************************//**
The following function is used to store data in 7 consecutive
bytes. We store the most significant byte to the lowest address. */
UNIV_INLINE
void
mach_write_to_7(
/*============*/
byte* b, /*!< in: pointer to 7 bytes where to store */
ib_uint64_t n) /*!< in: 56-bit integer */
{
mach_write_to_3(b, (ulint) (n >> 32));
mach_write_to_4(b + 3, (ulint) n);
}
/********************************************************//**
The following function is used to fetch data from 7 consecutive
bytes. The most significant byte is at the lowest address.
@return 56-bit integer */
UNIV_INLINE
ib_uint64_t
mach_read_from_7(
/*=============*/
const byte* b) /*!< in: pointer to 7 bytes */
{
return(ut_ull_create(mach_read_from_3(b), mach_read_from_4(b + 3)));
}
/*******************************************************//**
The following function is used to store data in 6 consecutive
bytes. We store the most significant byte to the lowest address. */
UNIV_INLINE
void
mach_write_to_6(
/*============*/
byte* b, /*!< in: pointer to 6 bytes where to store */
ib_uint64_t n) /*!< in: 48-bit integer */
{
mach_write_to_2(b, (ulint) (n >> 32));
mach_write_to_4(b + 2, (ulint) n);
}
/********************************************************//**
The following function is used to fetch data from 6 consecutive
bytes. The most significant byte is at the lowest address.
@return 48-bit integer */
UNIV_INLINE
ib_uint64_t
mach_read_from_6(
/*=============*/
const byte* b) /*!< in: pointer to 6 bytes */
{
return(ut_ull_create(mach_read_from_2(b), mach_read_from_4(b + 2)));
}
/*********************************************************//**
Writes a 64-bit integer in a compressed form (5..9 bytes).
@return size in bytes */
UNIV_INLINE
ulint
mach_u64_write_compressed(
/*======================*/
byte* b, /*!< in: pointer to memory where to store */
ib_uint64_t n) /*!< in: 64-bit integer to be stored */
{
ulint size = mach_write_compressed(b, (ulint) (n >> 32));
mach_write_to_4(b + size, (ulint) n);
return(size + 4);
}
/** Read a 64-bit integer in a compressed form.
@param[in,out] b pointer to memory where to read;
advanced by the number of bytes consumed
@return unsigned value */
UNIV_INLINE
ib_uint64_t
mach_u64_read_next_compressed(
const byte** b)
{
ib_uint64_t val;
val = mach_read_next_compressed(b);
val <<= 32;
val |= mach_read_from_4(*b);
*b += 4;
return(val);
}
/*********************************************************//**
Writes a 64-bit integer in a compressed form (1..11 bytes).
@return size in bytes */
UNIV_INLINE
ulint
mach_u64_write_much_compressed(
/*===========================*/
byte* b, /*!< in: pointer to memory where to store */
ib_uint64_t n) /*!< in: 64-bit integer to be stored */
{
ulint size;
if (!(n >> 32)) {
return(mach_write_compressed(b, (ulint) n));
}
*b = (byte)0xFF;
size = 1 + mach_write_compressed(b + 1, (ulint) (n >> 32));
size += mach_write_compressed(b + size, (ulint) n & 0xFFFFFFFF);
return(size);
}
/*********************************************************//**
Reads a 64-bit integer in a compressed form.
@return the value read */
UNIV_INLINE
ib_uint64_t
mach_u64_read_much_compressed(
/*==========================*/
const byte* b) /*!< in: pointer to memory from where to read */
{
ib_uint64_t n;
if (*b != 0xFF) {
return(mach_read_compressed(b));
}
b++;
n = mach_read_next_compressed(&b);
n <<= 32;
n |= mach_read_compressed(b);
return(n);
}
/** Read a 64-bit integer in a compressed form.
@param[in,out] b pointer to memory where to read;
advanced by the number of bytes consumed
@return unsigned value */
UNIV_INLINE
ib_uint64_t
mach_read_next_much_compressed(
const byte** b)
{
ib_uint64_t val = mach_read_from_1(*b);
if (val < 0x80) {
/* 0nnnnnnn (7 bits) */
++*b;
} else if (val < 0xC0) {
/* 10nnnnnn nnnnnnnn (14 bits) */
val = mach_read_from_2(*b) & 0x3FFF;
ut_ad(val > 0x7F);
*b += 2;
} else if (val < 0xE0) {
/* 110nnnnn nnnnnnnn nnnnnnnn (21 bits) */
val = mach_read_from_3(*b) & 0x1FFFFF;
ut_ad(val > 0x3FFF);
*b += 3;
} else if (val < 0xF0) {
/* 1110nnnn nnnnnnnn nnnnnnnn nnnnnnnn (28 bits) */
val = mach_read_from_4(*b) & 0xFFFFFFF;
ut_ad(val > 0x1FFFFF);
*b += 4;
} else if (val == 0xF0) {
/* 11110000 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn (32 bits) */
val = mach_read_from_4(*b + 1);
ut_ad(val > 0xFFFFFFF);
*b += 5;
} else {
/* 11111111 followed by up to 64 bits */
ut_ad(val == 0xFF);
++*b;
val = mach_read_next_compressed(b);
ut_ad(val > 0);
val <<= 32;
val |= mach_read_next_compressed(b);
}
return(val);
}
/** Read a 64-bit integer in a compressed form.
@param[in,out] ptr pointer to memory where to read;
advanced by the number of bytes consumed, or set NULL if out of space
@param[in] end_ptr end of the buffer
@return unsigned value */
UNIV_INLINE
ib_uint64_t
mach_u64_parse_compressed(
const byte** ptr,
const byte* end_ptr)
{
ib_uint64_t val = 0;
if (end_ptr < *ptr + 5) {
*ptr = NULL;
return(val);
}
val = mach_read_next_compressed(ptr);
if (end_ptr < *ptr + 4) {
*ptr = NULL;
return(val);
}
val <<= 32;
val |= mach_read_from_4(*ptr);
*ptr += 4;
return(val);
}
/*********************************************************//**
Reads a double. It is stored in a little-endian format.
@return double read */
UNIV_INLINE
double
mach_double_read(
/*=============*/
const byte* b) /*!< in: pointer to memory from where to read */
{
double d;
ulint i;
byte* ptr;
ptr = (byte*) &d;
for (i = 0; i < sizeof(double); i++) {
#ifdef WORDS_BIGENDIAN
ptr[sizeof(double) - i - 1] = b[i];
#else
ptr[i] = b[i];
#endif
}
return(d);
}
/*********************************************************//**
Writes a double. It is stored in a little-endian format. */
UNIV_INLINE
void
mach_double_write(
/*==============*/
byte* b, /*!< in: pointer to memory where to write */
double d) /*!< in: double */
{
ulint i;
byte* ptr;
ptr = (byte*) &d;
for (i = 0; i < sizeof(double); i++) {
#ifdef WORDS_BIGENDIAN
b[i] = ptr[sizeof(double) - i - 1];
#else
b[i] = ptr[i];
#endif
}
}
/*********************************************************//**
Reads a float. It is stored in a little-endian format.
@return float read */
UNIV_INLINE
float
mach_float_read(
/*============*/
const byte* b) /*!< in: pointer to memory from where to read */
{
float d;
ulint i;
byte* ptr;
ptr = (byte*) &d;
for (i = 0; i < sizeof(float); i++) {
#ifdef WORDS_BIGENDIAN
ptr[sizeof(float) - i - 1] = b[i];
#else
ptr[i] = b[i];
#endif
}
return(d);
}
/*********************************************************//**
Writes a float. It is stored in a little-endian format. */
UNIV_INLINE
void
mach_float_write(
/*=============*/
byte* b, /*!< in: pointer to memory where to write */
float d) /*!< in: float */
{
ulint i;
byte* ptr;
ptr = (byte*) &d;
for (i = 0; i < sizeof(float); i++) {
#ifdef WORDS_BIGENDIAN
b[i] = ptr[sizeof(float) - i - 1];
#else
b[i] = ptr[i];
#endif
}
}
/*********************************************************//**
Reads a ulint stored in the little-endian format.
@return unsigned long int */
UNIV_INLINE
ulint
mach_read_from_n_little_endian(
/*===========================*/
const byte* buf, /*!< in: from where to read */
ulint buf_size) /*!< in: from how many bytes to read */
{
ulint n = 0;
const byte* ptr;
ut_ad(buf_size > 0);
ptr = buf + buf_size;
for (;;) {
ptr--;
n = n << 8;
n += (ulint)(*ptr);
if (ptr == buf) {
break;
}
}
return(n);
}
/*********************************************************//**
Writes a ulint in the little-endian format. */
UNIV_INLINE
void
mach_write_to_n_little_endian(
/*==========================*/
byte* dest, /*!< in: where to write */
ulint dest_size, /*!< in: into how many bytes to write */
ulint n) /*!< in: unsigned long int to write */
{
byte* end;
ut_ad(dest_size <= sizeof(ulint));
ut_ad(dest_size > 0);
end = dest + dest_size;
for (;;) {
*dest = (byte)(n & 0xFF);
n = n >> 8;
dest++;
if (dest == end) {
break;
}
}
ut_ad(n == 0);
}
/*********************************************************//**
Reads a ulint stored in the little-endian format.
@return unsigned long int */
UNIV_INLINE
ulint
mach_read_from_2_little_endian(
/*===========================*/
const byte* buf) /*!< in: from where to read */
{
return((ulint)(buf[0]) | ((ulint)(buf[1]) << 8));
}
/*********************************************************//**
Writes a ulint in the little-endian format. */
UNIV_INLINE
void
mach_write_to_2_little_endian(
/*==========================*/
byte* dest, /*!< in: where to write */
ulint n) /*!< in: unsigned long int to write */
{
ut_ad(n < 256 * 256);
*dest = (byte)(n & 0xFFUL);
n = n >> 8;
dest++;
*dest = (byte)(n & 0xFFUL);
}
/*********************************************************//**
Convert integral type from storage byte order (big endian) to
host byte order.
@return integer value */
UNIV_INLINE
ib_uint64_t
mach_read_int_type(
/*===============*/
const byte* src, /*!< in: where to read from */
ulint len, /*!< in: length of src */
ibool unsigned_type) /*!< in: signed or unsigned flag */
{
/* XXX this can be optimized on big-endian machines */
uintmax_t ret;
uint i;
if (unsigned_type || (src[0] & 0x80)) {
ret = 0x0000000000000000ULL;
} else {
ret = 0xFFFFFFFFFFFFFF00ULL;
}
if (unsigned_type) {
ret |= src[0];
} else {
ret |= src[0] ^ 0x80;
}
for (i = 1; i < len; i++) {
ret <<= 8;
ret |= src[i];
}
return(ret);
}
/*********************************************************//**
Swap byte ordering. */
UNIV_INLINE
void
mach_swap_byte_order(
/*=================*/
byte* dest, /*!< out: where to write */
const byte* from, /*!< in: where to read from */
ulint len) /*!< in: length of src */
{
ut_ad(len > 0);
ut_ad(len <= 8);
dest += len;
switch (len & 0x7) {
case 0: *--dest = *from++; /* fall through */
case 7: *--dest = *from++; /* fall through */
case 6: *--dest = *from++; /* fall through */
case 5: *--dest = *from++; /* fall through */
case 4: *--dest = *from++; /* fall through */
case 3: *--dest = *from++; /* fall through */
case 2: *--dest = *from++; /* fall through */
case 1: *--dest = *from;
}
}
/*************************************************************
Convert a ulonglong integer from host byte order to (big-endian)
storage byte order. */
UNIV_INLINE
void
mach_write_ulonglong(
/*=================*/
byte* dest, /*!< in: where to write */
ulonglong src, /*!< in: where to read from */
ulint len, /*!< in: length of dest */
bool usign) /*!< in: signed or unsigned flag */
{
byte* ptr = reinterpret_cast<byte*>(&src);
ut_ad(len <= sizeof(ulonglong));
#ifdef WORDS_BIGENDIAN
memcpy(dest, ptr + (sizeof(src) - len), len);
#else
mach_swap_byte_order(dest, reinterpret_cast<byte*>(ptr), len);
#endif /* WORDS_BIGENDIAN */
if (!usign) {
*dest ^= 0x80;
}
}
#endif /* !UNIV_INNOCHECKSUM */
/** Read 1 to 4 bytes from a file page buffered in the buffer pool.
@param[in] ptr pointer where to read
@param[in] type MLOG_1BYTE, MLOG_2BYTES, or MLOG_4BYTES
@return value read */
UNIV_INLINE
ulint
mach_read_ulint(
const byte* ptr,
mlog_id_t type)
{
switch (type) {
case MLOG_1BYTE:
return(mach_read_from_1(ptr));
case MLOG_2BYTES:
return(mach_read_from_2(ptr));
case MLOG_4BYTES:
return(mach_read_from_4(ptr));
default:
break;
}
ut_error;
return(0);
}