mariadb/storage/innobase/gis/gis0rtree.cc
Marko Mäkelä a55b951e60 MDEV-26827 Make page flushing even faster
For more convenient monitoring of something that could greatly affect
the volume of page writes, we add the status variable
Innodb_buffer_pool_pages_split that was previously only available
via information_schema.innodb_metrics as "innodb_page_splits".
This was suggested by Axel Schwenke.

buf_flush_page_count: Replaced with buf_pool.stat.n_pages_written.
We protect buf_pool.stat (except n_page_gets) with buf_pool.mutex
and remove unnecessary export_vars indirection.

buf_pool.flush_list_bytes: Moved from buf_pool.stat.flush_list_bytes.
Protected by buf_pool.flush_list_mutex.

buf_pool_t::page_cleaner_status: Replaces buf_pool_t::n_flush_LRU_,
buf_pool_t::n_flush_list_, and buf_pool_t::page_cleaner_is_idle.
Protected by buf_pool.flush_list_mutex. We will exclusively broadcast
buf_pool.done_flush_list by the buf_flush_page_cleaner thread,
and only wait for it when communicating with buf_flush_page_cleaner.
There is no need to keep a count of pending writes by the
buf_pool.flush_list processing. A single flag suffices for that.

Waits for page write completion can be performed by
simply waiting on block->page.lock, or by invoking
buf_dblwr.wait_for_page_writes().

buf_LRU_block_free_non_file_page(): Broadcast buf_pool.done_free and
set buf_pool.try_LRU_scan when freeing a page. This would be
executed also as part of buf_page_write_complete().

buf_page_write_complete(): Do not broadcast buf_pool.done_flush_list,
and do not acquire buf_pool.mutex unless buf_pool.LRU eviction is needed.
Let buf_dblwr count all writes to persistent pages and broadcast a
condition variable when no outstanding writes remain.

buf_flush_page_cleaner(): Prioritize LRU flushing and eviction right after
"furious flushing" (lsn_limit). Simplify the conditions and reduce the
hold time of buf_pool.flush_list_mutex. Refuse to shut down
or sleep if buf_pool.ran_out(), that is, LRU eviction is needed.

buf_pool_t::page_cleaner_wakeup(): Add the optional parameter for_LRU.

buf_LRU_get_free_block(): Protect buf_lru_free_blocks_error_printed
with buf_pool.mutex. Invoke buf_pool.page_cleaner_wakeup(true) to
to ensure that buf_flush_page_cleaner() will process the LRU flush
request.

buf_do_LRU_batch(), buf_flush_list(), buf_flush_list_space():
Update buf_pool.stat.n_pages_written when submitting writes
(while holding buf_pool.mutex), not when completing them.

buf_page_t::flush(), buf_flush_discard_page(): Require that
the page U-latch be acquired upfront, and remove
buf_page_t::ready_for_flush().

buf_pool_t::delete_from_flush_list(): Remove the parameter "bool clear".

buf_flush_page(): Count pending page writes via buf_dblwr.

buf_flush_try_neighbors(): Take the block of page_id as a parameter.
If the tablespace is dropped before our page has been written out,
release the page U-latch.

buf_pool_invalidate(): Let the caller ensure that there are no
outstanding writes.

buf_flush_wait_batch_end(false),
buf_flush_wait_batch_end_acquiring_mutex(false):
Replaced with buf_dblwr.wait_for_page_writes().

buf_flush_wait_LRU_batch_end(): Replaces buf_flush_wait_batch_end(true).

buf_flush_list(): Remove some broadcast of buf_pool.done_flush_list.

buf_flush_buffer_pool(): Invoke also buf_dblwr.wait_for_page_writes().

buf_pool_t::io_pending(), buf_pool_t::n_flush_list(): Remove.
Outstanding writes are reflected by buf_dblwr.pending_writes().

buf_dblwr_t::init(): New function, to initialize the mutex and
the condition variables, but not the backing store.

buf_dblwr_t::is_created(): Replaces buf_dblwr_t::is_initialised().

buf_dblwr_t::pending_writes(), buf_dblwr_t::writes_pending:
Keeps track of writes of persistent data pages.

buf_flush_LRU(): Allow calls while LRU flushing may be in progress
in another thread.

Tested by Matthias Leich (correctness) and Axel Schwenke (performance)
2023-03-16 17:19:58 +02:00

1934 lines
52 KiB
C++

/*****************************************************************************
Copyright (c) 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2018, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file gis/gis0rtree.cc
InnoDB R-tree interfaces
Created 2013/03/27 Allen Lai and Jimmy Yang
***********************************************************************/
#include "fsp0fsp.h"
#include "page0page.h"
#include "page0cur.h"
#include "page0zip.h"
#include "gis0rtree.h"
#include "btr0cur.h"
#include "btr0sea.h"
#include "btr0pcur.h"
#include "rem0cmp.h"
#include "lock0lock.h"
#include "ibuf0ibuf.h"
#include "trx0undo.h"
#include "srv0mon.h"
#include "gis0geo.h"
#include <cmath>
/*************************************************************//**
Initial split nodes info for R-tree split.
@return initialized split nodes array */
static
rtr_split_node_t*
rtr_page_split_initialize_nodes(
/*============================*/
mem_heap_t* heap, /*!< in: pointer to memory heap, or NULL */
btr_cur_t* cursor, /*!< in: cursor at which to insert; when the
function returns, the cursor is positioned
on the predecessor of the inserted record */
rec_offs** offsets,/*!< in: offsets on inserted record */
const dtuple_t* tuple, /*!< in: tuple to insert */
double** buf_pos)/*!< in/out: current buffer position */
{
rtr_split_node_t* split_node_array;
double* buf;
ulint n_recs;
rtr_split_node_t* task;
rtr_split_node_t* stop;
rtr_split_node_t* cur;
rec_t* rec;
buf_block_t* block;
page_t* page;
ulint n_uniq;
ulint len;
const byte* source_cur;
block = btr_cur_get_block(cursor);
page = buf_block_get_frame(block);
n_uniq = dict_index_get_n_unique_in_tree(cursor->index());
n_recs = ulint(page_get_n_recs(page)) + 1;
/*We reserve 2 MBRs memory space for temp result of split
algrithm. And plus the new mbr that need to insert, we
need (n_recs + 3)*MBR size for storing all MBRs.*/
buf = static_cast<double*>(mem_heap_alloc(
heap, DATA_MBR_LEN * (n_recs + 3)
+ sizeof(rtr_split_node_t) * (n_recs + 1)));
split_node_array = (rtr_split_node_t*)(buf + SPDIMS * 2 * (n_recs + 3));
task = split_node_array;
*buf_pos = buf;
stop = task + n_recs;
rec = page_rec_get_next(page_get_infimum_rec(page));
const ulint n_core = page_is_leaf(page)
? cursor->index()->n_core_fields : 0;
*offsets = rec_get_offsets(rec, cursor->index(), *offsets, n_core,
n_uniq, &heap);
source_cur = rec_get_nth_field(rec, *offsets, 0, &len);
for (cur = task; cur < stop - 1; ++cur) {
cur->coords = reserve_coords(buf_pos, SPDIMS);
cur->key = rec;
memcpy(cur->coords, source_cur, DATA_MBR_LEN);
rec = page_rec_get_next(rec);
*offsets = rec_get_offsets(rec, cursor->index(), *offsets,
n_core, n_uniq, &heap);
source_cur = rec_get_nth_field(rec, *offsets, 0, &len);
}
/* Put the insert key to node list */
source_cur = static_cast<const byte*>(dfield_get_data(
dtuple_get_nth_field(tuple, 0)));
cur->coords = reserve_coords(buf_pos, SPDIMS);
rec = (byte*) mem_heap_alloc(
heap, rec_get_converted_size(cursor->index(), tuple, 0));
rec = rec_convert_dtuple_to_rec(rec, cursor->index(), tuple, 0);
cur->key = rec;
memcpy(cur->coords, source_cur, DATA_MBR_LEN);
return split_node_array;
}
/**********************************************************************//**
Builds a Rtree node pointer out of a physical record and a page number.
Note: For Rtree, we just keep the mbr and page no field in non-leaf level
page. It's different with Btree, Btree still keeps PK fields so far.
@return own: node pointer */
dtuple_t*
rtr_index_build_node_ptr(
/*=====================*/
const dict_index_t* index, /*!< in: index */
const rtr_mbr_t* mbr, /*!< in: mbr of lower page */
const rec_t* rec, /*!< in: record for which to build node
pointer */
ulint page_no,/*!< in: page number to put in node
pointer */
mem_heap_t* heap) /*!< in: memory heap where pointer
created */
{
dtuple_t* tuple;
dfield_t* field;
byte* buf;
ulint n_unique;
ulint info_bits;
ut_ad(dict_index_is_spatial(index));
n_unique = DICT_INDEX_SPATIAL_NODEPTR_SIZE;
tuple = dtuple_create(heap, n_unique + 1);
/* For rtree internal node, we need to compare page number
fields. */
dtuple_set_n_fields_cmp(tuple, n_unique + 1);
dict_index_copy_types(tuple, index, n_unique);
/* Write page no field */
buf = static_cast<byte*>(mem_heap_alloc(heap, 4));
mach_write_to_4(buf, page_no);
field = dtuple_get_nth_field(tuple, n_unique);
dfield_set_data(field, buf, 4);
dtype_set(dfield_get_type(field), DATA_SYS_CHILD, DATA_NOT_NULL, 4);
/* Set info bits. */
info_bits = rec_get_info_bits(rec, dict_table_is_comp(index->table));
dtuple_set_info_bits(tuple, info_bits | REC_STATUS_NODE_PTR);
/* Set mbr as index entry data */
field = dtuple_get_nth_field(tuple, 0);
buf = static_cast<byte*>(mem_heap_alloc(heap, DATA_MBR_LEN));
rtr_write_mbr(buf, mbr);
dfield_set_data(field, buf, DATA_MBR_LEN);
ut_ad(dtuple_check_typed(tuple));
return(tuple);
}
/**************************************************************//**
Update the mbr field of a spatial index row. */
void
rtr_update_mbr_field(
/*=================*/
btr_cur_t* cursor, /*!< in/out: cursor pointed to rec.*/
rec_offs* offsets, /*!< in/out: offsets on rec. */
btr_cur_t* cursor2, /*!< in/out: cursor pointed to rec
that should be deleted.
this cursor is for btr_compress to
delete the merged page's father rec.*/
page_t* child_page, /*!< in: child page. */
rtr_mbr_t* mbr, /*!< in: the new mbr. */
rec_t* new_rec, /*!< in: rec to use */
mtr_t* mtr) /*!< in: mtr */
{
dict_index_t* index = cursor->index();
mem_heap_t* heap;
page_t* page;
rec_t* rec;
constexpr ulint flags = BTR_NO_UNDO_LOG_FLAG
| BTR_NO_LOCKING_FLAG
| BTR_KEEP_SYS_FLAG;
dberr_t err;
big_rec_t* dummy_big_rec;
buf_block_t* block;
rec_t* child_rec;
ulint up_match = 0;
ulint low_match = 0;
ulint child;
ulint rec_info;
bool ins_suc = true;
ulint cur2_pos = 0;
ulint del_page_no = 0;
rec_offs* offsets2;
rec = btr_cur_get_rec(cursor);
page = page_align(rec);
rec_info = rec_get_info_bits(rec, rec_offs_comp(offsets));
heap = mem_heap_create(100);
block = btr_cur_get_block(cursor);
ut_ad(page == buf_block_get_frame(block));
child = btr_node_ptr_get_child_page_no(rec, offsets);
const ulint n_core = page_is_leaf(block->page.frame)
? index->n_core_fields : 0;
if (new_rec) {
child_rec = new_rec;
} else {
child_rec = page_rec_get_next(page_get_infimum_rec(child_page));
}
dtuple_t* node_ptr = rtr_index_build_node_ptr(
index, mbr, child_rec, child, heap);
/* We need to remember the child page no of cursor2, since page could be
reorganized or insert a new rec before it. */
if (cursor2) {
ut_ad(cursor2->index() == index);
rec_t* del_rec = btr_cur_get_rec(cursor2);
offsets2 = rec_get_offsets(btr_cur_get_rec(cursor2),
index, NULL, 0,
ULINT_UNDEFINED, &heap);
del_page_no = btr_node_ptr_get_child_page_no(del_rec, offsets2);
cur2_pos = page_rec_get_n_recs_before(btr_cur_get_rec(cursor2));
}
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(rec_offs_base(offsets)[0 + 1] == DATA_MBR_LEN);
ut_ad(node_ptr->fields[0].len == DATA_MBR_LEN);
if (rec_info & REC_INFO_MIN_REC_FLAG) {
/* When the rec is minimal rec in this level, we do
in-place update for avoiding it move to other place. */
page_zip_des_t* page_zip = buf_block_get_page_zip(block);
if (UNIV_LIKELY_NULL(page_zip)) {
/* Check if there's enough space for in-place
update the zip page. */
if (!btr_cur_update_alloc_zip(
page_zip,
btr_cur_get_page_cur(cursor),
offsets,
rec_offs_size(offsets),
false, mtr)) {
/* If there's not enought space for
inplace update zip page, we do delete
insert. */
ins_suc = false;
/* Since btr_cur_update_alloc_zip could
reorganize the page, we need to repositon
cursor2. */
if (cursor2) {
cursor2->page_cur.rec =
page_rec_get_nth(page,
cur2_pos);
}
goto update_mbr;
}
/* Record could be repositioned */
rec = btr_cur_get_rec(cursor);
#ifdef UNIV_DEBUG
/* Make sure it is still the first record */
rec_info = rec_get_info_bits(
rec, rec_offs_comp(offsets));
ut_ad(rec_info & REC_INFO_MIN_REC_FLAG);
#endif /* UNIV_DEBUG */
memcpy(rec, node_ptr->fields[0].data, DATA_MBR_LEN);
page_zip_write_rec(block, rec, index, offsets, 0, mtr);
} else {
mtr->memcpy<mtr_t::MAYBE_NOP>(*block, rec,
node_ptr->fields[0].data,
DATA_MBR_LEN);
}
if (cursor2) {
rec_offs* offsets2;
if (UNIV_LIKELY_NULL(page_zip)) {
cursor2->page_cur.rec
= page_rec_get_nth(page, cur2_pos);
}
offsets2 = rec_get_offsets(btr_cur_get_rec(cursor2),
index, NULL, 0,
ULINT_UNDEFINED, &heap);
ut_ad(del_page_no == btr_node_ptr_get_child_page_no(
cursor2->page_cur.rec,
offsets2));
page_cur_delete_rec(btr_cur_get_page_cur(cursor2),
offsets2, mtr);
}
} else if (page_get_n_recs(page) == 1) {
/* When there's only one rec in the page, we do insert/delete to
avoid page merge. */
page_cur_t page_cur;
rec_t* insert_rec;
rec_offs* insert_offsets = NULL;
ulint old_pos;
rec_t* old_rec;
ut_ad(cursor2 == NULL);
/* Insert the new mbr rec. */
old_pos = page_rec_get_n_recs_before(rec);
err = btr_cur_optimistic_insert(
flags,
cursor, &insert_offsets, &heap,
node_ptr, &insert_rec, &dummy_big_rec, 0, NULL, mtr);
ut_ad(err == DB_SUCCESS);
btr_cur_position(index, insert_rec, block, cursor);
/* Delete the old mbr rec. */
old_rec = page_rec_get_nth(page, old_pos);
ut_ad(old_rec != insert_rec);
page_cur_position(old_rec, block, &page_cur);
page_cur.index = index;
offsets2 = rec_get_offsets(old_rec, index, NULL, n_core,
ULINT_UNDEFINED, &heap);
page_cur_delete_rec(&page_cur, offsets2, mtr);
} else {
update_mbr:
/* When there're not only 1 rec in the page, we do delete/insert
to avoid page split. */
rec_t* insert_rec;
rec_offs* insert_offsets = NULL;
rec_t* next_rec;
/* Delete the rec which cursor point to. */
next_rec = page_rec_get_next(rec);
page_cur_delete_rec(&cursor->page_cur, offsets, mtr);
if (!ins_suc) {
ut_ad(rec_info & REC_INFO_MIN_REC_FLAG);
btr_set_min_rec_mark(next_rec, *block, mtr);
}
/* If there's more than 1 rec left in the page, delete
the rec which cursor2 point to. Otherwise, delete it later.*/
if (cursor2 && page_get_n_recs(page) > 1) {
ulint cur2_rec_info;
rec_t* cur2_rec;
cur2_rec = cursor2->page_cur.rec;
offsets2 = rec_get_offsets(cur2_rec, index, NULL,
n_core,
ULINT_UNDEFINED, &heap);
cur2_rec_info = rec_get_info_bits(cur2_rec,
rec_offs_comp(offsets2));
if (cur2_rec_info & REC_INFO_MIN_REC_FLAG) {
/* If we delete the leftmost node
pointer on a non-leaf level, we must
mark the new leftmost node pointer as
the predefined minimum record */
rec_t* next_rec = page_rec_get_next(cur2_rec);
btr_set_min_rec_mark(next_rec, *block, mtr);
}
ut_ad(del_page_no
== btr_node_ptr_get_child_page_no(cur2_rec,
offsets2));
page_cur_delete_rec(btr_cur_get_page_cur(cursor2),
offsets2, mtr);
cursor2 = NULL;
}
/* Insert the new rec. */
if (page_cur_search_with_match(node_ptr, PAGE_CUR_LE,
&up_match, &low_match,
btr_cur_get_page_cur(cursor),
NULL)) {
goto err_exit;
}
err = btr_cur_optimistic_insert(flags, cursor, &insert_offsets,
&heap, node_ptr, &insert_rec,
&dummy_big_rec, 0, NULL, mtr);
/* If optimistic insert fail, try reorganize the page
and insert again. */
if (err == DB_SUCCESS) {
ins_suc = true;
} else if (ins_suc) {
ut_ad(err == DB_FAIL);
err = btr_page_reorganize(btr_cur_get_page_cur(cursor),
mtr);
if (err == DB_SUCCESS) {
err = btr_cur_optimistic_insert(
flags, cursor, &insert_offsets, &heap,
node_ptr, &insert_rec, &dummy_big_rec,
0, NULL, mtr);
}
/* Will do pessimistic insert */
if (err != DB_SUCCESS) {
ut_ad(err == DB_FAIL);
ins_suc = false;
}
}
/* Insert succeed, position cursor the inserted rec.*/
if (ins_suc) {
btr_cur_position(index, insert_rec, block, cursor);
offsets = rec_get_offsets(insert_rec,
index, offsets, n_core,
ULINT_UNDEFINED, &heap);
}
/* Delete the rec which cursor2 point to. */
if (cursor2) {
ulint cur2_pno;
rec_t* cur2_rec;
cursor2->page_cur.rec = page_rec_get_nth(page,
cur2_pos);
cur2_rec = btr_cur_get_rec(cursor2);
offsets2 = rec_get_offsets(cur2_rec, index, NULL,
n_core,
ULINT_UNDEFINED, &heap);
/* If the cursor2 position is on a wrong rec, we
need to reposition it. */
cur2_pno = btr_node_ptr_get_child_page_no(cur2_rec, offsets2);
if ((del_page_no != cur2_pno)
|| (cur2_rec == insert_rec)) {
cur2_rec = page_get_infimum_rec(page);
while ((cur2_rec
= page_rec_get_next(cur2_rec))) {
if (page_rec_is_supremum(cur2_rec)) {
break;
}
offsets2 = rec_get_offsets(cur2_rec, index,
NULL,
n_core,
ULINT_UNDEFINED,
&heap);
cur2_pno = btr_node_ptr_get_child_page_no(
cur2_rec, offsets2);
if (cur2_pno == del_page_no) {
if (insert_rec != cur2_rec) {
cursor2->page_cur.rec =
cur2_rec;
break;
}
}
}
}
rec_info = rec_get_info_bits(cur2_rec,
rec_offs_comp(offsets2));
if (rec_info & REC_INFO_MIN_REC_FLAG) {
/* If we delete the leftmost node
pointer on a non-leaf level, we must
mark the new leftmost node pointer as
the predefined minimum record */
rec_t* next_rec = page_rec_get_next(cur2_rec);
btr_set_min_rec_mark(next_rec, *block, mtr);
}
ut_ad(cur2_pno == del_page_no && cur2_rec != insert_rec);
page_cur_delete_rec(btr_cur_get_page_cur(cursor2),
offsets2, mtr);
}
if (!ins_suc) {
mem_heap_t* new_heap = NULL;
err = btr_cur_pessimistic_insert(
flags,
cursor, &insert_offsets, &new_heap,
node_ptr, &insert_rec, &dummy_big_rec,
0, NULL, mtr);
ut_ad(err == DB_SUCCESS);
if (new_heap) {
mem_heap_free(new_heap);
}
}
if (cursor2) {
btr_cur_compress_if_useful(cursor, FALSE, mtr);
}
}
ut_ad(page_has_prev(page)
|| (REC_INFO_MIN_REC_FLAG & rec_get_info_bits(
page_rec_get_next(page_get_infimum_rec(page)),
page_is_comp(page))));
err_exit:
mem_heap_free(heap);
}
MY_ATTRIBUTE((nonnull, warn_unused_result))
/**************************************************************//**
Update parent page's MBR and Predicate lock information during a split */
static
dberr_t
rtr_adjust_upper_level(
/*===================*/
btr_cur_t* sea_cur, /*!< in: search cursor */
ulint flags, /*!< in: undo logging and
locking flags */
buf_block_t* block, /*!< in/out: page to be split */
buf_block_t* new_block, /*!< in/out: the new half page */
rtr_mbr_t* mbr, /*!< in: MBR on the old page */
rtr_mbr_t* new_mbr, /*!< in: MBR on the new page */
mtr_t* mtr) /*!< in: mtr */
{
ulint page_no;
ulint new_page_no;
btr_cur_t cursor;
rec_offs* offsets;
mem_heap_t* heap;
ulint level;
dtuple_t* node_ptr_upper = nullptr;
page_cur_t* page_cursor;
lock_prdt_t prdt;
lock_prdt_t new_prdt;
big_rec_t* dummy_big_rec;
rec_t* rec;
/* Create a memory heap where the data tuple is stored */
heap = mem_heap_create(1024);
cursor.thr = sea_cur->thr;
cursor.page_cur.index = sea_cur->index();
cursor.page_cur.block = block;
/* Get the level of the split pages */
level = btr_page_get_level(buf_block_get_frame(block));
ut_ad(level == btr_page_get_level(buf_block_get_frame(new_block)));
page_no = block->page.id().page_no();
new_page_no = new_block->page.id().page_no();
/* Set new mbr for the old page on the upper level. */
/* Look up the index for the node pointer to page */
offsets = rtr_page_get_father_block(NULL, heap, mtr, sea_cur, &cursor);
page_cursor = btr_cur_get_page_cur(&cursor);
rtr_update_mbr_field(&cursor, offsets, nullptr, block->page.frame, mbr,
nullptr, mtr);
/* Already updated parent MBR, reset in our path */
if (sea_cur->rtr_info) {
node_visit_t* node_visit = rtr_get_parent_node(
sea_cur, level + 1, true);
if (node_visit) {
node_visit->mbr_inc = 0;
}
}
dberr_t err;
if (const rec_t* first = page_rec_get_next_const(
page_get_infimum_rec(new_block->page.frame))) {
/* Insert the node for the new page. */
node_ptr_upper = rtr_index_build_node_ptr(
sea_cur->index(), new_mbr, first, new_page_no, heap);
ulint up_match = 0, low_match = 0;
err = page_cur_search_with_match(node_ptr_upper,
PAGE_CUR_LE,
&up_match, &low_match,
btr_cur_get_page_cur(&cursor),
NULL)
? DB_CORRUPTION
: btr_cur_optimistic_insert(flags
| BTR_NO_LOCKING_FLAG
| BTR_KEEP_SYS_FLAG
| BTR_NO_UNDO_LOG_FLAG,
&cursor, &offsets, &heap,
node_ptr_upper, &rec,
&dummy_big_rec, 0, NULL,
mtr);
} else {
err = DB_CORRUPTION;
}
if (err == DB_FAIL) {
cursor.rtr_info = sea_cur->rtr_info;
cursor.tree_height = sea_cur->tree_height;
/* Recreate a memory heap as input parameter for
btr_cur_pessimistic_insert(), because the heap may be
emptied in btr_cur_pessimistic_insert(). */
mem_heap_t* new_heap = mem_heap_create(1024);
err = btr_cur_pessimistic_insert(flags
| BTR_NO_LOCKING_FLAG
| BTR_KEEP_SYS_FLAG
| BTR_NO_UNDO_LOG_FLAG,
&cursor, &offsets, &new_heap,
node_ptr_upper, &rec,
&dummy_big_rec, 0, NULL, mtr);
cursor.rtr_info = NULL;
mem_heap_free(new_heap);
}
if (err == DB_SUCCESS) {
prdt.data = static_cast<void*>(mbr);
prdt.op = 0;
new_prdt.data = static_cast<void*>(new_mbr);
new_prdt.op = 0;
lock_prdt_update_parent(block, new_block, &prdt, &new_prdt,
page_cursor->block->page.id());
}
mem_heap_free(heap);
ut_ad(block->zip_size() == sea_cur->index()->table->space->zip_size());
if (err != DB_SUCCESS) {
return err;
}
const uint32_t next_page_no = btr_page_get_next(block->page.frame);
if (next_page_no == FIL_NULL) {
} else if (buf_block_t* next_block =
btr_block_get(*sea_cur->index(), next_page_no, RW_X_LATCH,
false, mtr, &err)) {
if (UNIV_UNLIKELY(memcmp_aligned<4>(next_block->page.frame
+ FIL_PAGE_PREV,
block->page.frame
+ FIL_PAGE_OFFSET, 4))) {
return DB_CORRUPTION;
}
btr_page_set_prev(next_block, new_page_no, mtr);
} else {
return err;
}
btr_page_set_next(block, new_page_no, mtr);
btr_page_set_prev(new_block, page_no, mtr);
btr_page_set_next(new_block, next_page_no, mtr);
return DB_SUCCESS;
}
/*************************************************************//**
Moves record list to another page for rtree splitting.
IMPORTANT: The caller will have to update IBUF_BITMAP_FREE
if new_block is a compressed leaf page in a secondary index.
This has to be done either within the same mini-transaction,
or by invoking ibuf_reset_free_bits() before mtr_commit().
@return error code
@retval DB_FAIL on ROW_FORMAT=COMPRESSED compression failure */
static
dberr_t
rtr_split_page_move_rec_list(
/*=========================*/
rtr_split_node_t* node_array, /*!< in: split node array. */
int first_rec_group,/*!< in: group number of the
first rec. */
buf_block_t* new_block, /*!< in/out: index page
where to move */
buf_block_t* block, /*!< in/out: page containing
split_rec */
rec_t* first_rec, /*!< in: first record not to
move */
dict_index_t* index, /*!< in: record descriptor */
mem_heap_t* heap, /*!< in: pointer to memory
heap, or NULL */
mtr_t* mtr) /*!< in: mtr */
{
rtr_split_node_t* cur_split_node;
rtr_split_node_t* end_split_node;
page_cur_t page_cursor;
page_cur_t new_page_cursor;
page_t* page;
page_t* new_page;
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets = offsets_;
page_zip_des_t* new_page_zip
= buf_block_get_page_zip(new_block);
rec_t* rec;
ulint moved = 0;
ulint max_to_move = 0;
rtr_rec_move_t* rec_move = NULL;
ut_ad(!dict_index_is_ibuf(index));
ut_ad(dict_index_is_spatial(index));
rec_offs_init(offsets_);
page_cur_set_before_first(block, &page_cursor);
page_cur_set_before_first(new_block, &new_page_cursor);
page_cursor.index = new_page_cursor.index = index;
page = buf_block_get_frame(block);
new_page = buf_block_get_frame(new_block);
end_split_node = node_array + page_get_n_recs(page);
mtr_log_t log_mode = MTR_LOG_NONE;
if (new_page_zip) {
log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE);
}
max_to_move = page_get_n_recs(buf_block_get_frame(block));
rec_move = static_cast<rtr_rec_move_t*>(mem_heap_alloc(
heap,
sizeof (*rec_move) * max_to_move));
const ulint n_core = page_is_leaf(page)
? index->n_core_fields : 0;
/* Insert the recs in group 2 to new page. */
for (cur_split_node = node_array;
cur_split_node < end_split_node; ++cur_split_node) {
if (cur_split_node->n_node != first_rec_group) {
lock_rec_store_on_page_infimum(
block, cur_split_node->key);
offsets = rec_get_offsets(cur_split_node->key,
index, offsets, n_core,
ULINT_UNDEFINED, &heap);
ut_ad(!n_core || cur_split_node->key != first_rec);
rec = page_cur_insert_rec_low(
&new_page_cursor,
cur_split_node->key, offsets, mtr);
if (UNIV_UNLIKELY
(!rec
|| !page_cur_move_to_next(&new_page_cursor))) {
return DB_CORRUPTION;
}
lock_rec_restore_from_page_infimum(
*new_block, rec, block->page.id());
rec_move[moved].new_rec = rec;
rec_move[moved].old_rec = cur_split_node->key;
rec_move[moved].moved = false;
moved++;
if (moved > max_to_move) {
ut_ad(0);
break;
}
}
}
/* Update PAGE_MAX_TRX_ID on the uncompressed page.
Modifications will be redo logged and copied to the compressed
page in page_zip_compress() or page_zip_reorganize() below.
Multiple transactions cannot simultaneously operate on the
same temp-table in parallel.
max_trx_id is ignored for temp tables because it not required
for MVCC. */
if (n_core && !index->table->is_temporary()) {
page_update_max_trx_id(new_block, NULL,
page_get_max_trx_id(page),
mtr);
}
if (new_page_zip) {
mtr_set_log_mode(mtr, log_mode);
if (!page_zip_compress(new_block, index,
page_zip_level, mtr)) {
if (dberr_t err =
page_zip_reorganize(new_block, index,
page_zip_level, mtr)) {
if (err == DB_FAIL) {
ut_a(page_zip_decompress(new_page_zip,
new_page,
FALSE));
}
return err;
}
}
}
/* Update the lock table */
lock_rtr_move_rec_list(new_block, block, rec_move, moved);
/* Delete recs in second group from the old page. */
for (cur_split_node = node_array;
cur_split_node < end_split_node; ++cur_split_node) {
if (cur_split_node->n_node != first_rec_group) {
page_cur_position(cur_split_node->key,
block, &page_cursor);
offsets = rec_get_offsets(
page_cur_get_rec(&page_cursor), index,
offsets, n_core, ULINT_UNDEFINED,
&heap);
page_cur_delete_rec(&page_cursor, offsets, mtr);
}
}
return DB_SUCCESS;
}
/*************************************************************//**
Splits an R-tree index page to halves and inserts the tuple. It is assumed
that mtr holds an x-latch to the index tree. NOTE: the tree x-latch is
released within this function! NOTE that the operation of this
function must always succeed, we cannot reverse it: therefore enough
free disk space (2 pages) must be guaranteed to be available before
this function is called.
@return inserted record */
rec_t*
rtr_page_split_and_insert(
/*======================*/
ulint flags, /*!< in: undo logging and locking flags */
btr_cur_t* cursor, /*!< in/out: cursor at which to insert; when the
function returns, the cursor is positioned
on the predecessor of the inserted record */
rec_offs** offsets,/*!< out: offsets on inserted record */
mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */
const dtuple_t* tuple, /*!< in: tuple to insert */
ulint n_ext, /*!< in: number of externally stored columns */
mtr_t* mtr, /*!< in: mtr */
dberr_t* err) /*!< out: error code */
{
buf_block_t* block;
page_t* page;
page_t* new_page;
buf_block_t* new_block;
page_zip_des_t* page_zip;
page_zip_des_t* new_page_zip;
page_cur_t* page_cursor;
rec_t* rec = 0;
ulint n_recs;
ulint total_data;
ulint insert_size;
rtr_split_node_t* rtr_split_node_array;
rtr_split_node_t* cur_split_node;
rtr_split_node_t* end_split_node;
double* buf_pos;
node_seq_t current_ssn;
node_seq_t next_ssn;
buf_block_t* root_block;
rtr_mbr_t mbr;
rtr_mbr_t new_mbr;
lock_prdt_t prdt;
lock_prdt_t new_prdt;
rec_t* first_rec = NULL;
int first_rec_group = 1;
IF_DBUG(bool iterated = false,);
if (!*heap) {
*heap = mem_heap_create(1024);
}
func_start:
mem_heap_empty(*heap);
*offsets = NULL;
ut_ad(mtr->memo_contains_flagged(&cursor->index()->lock,
MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK));
ut_ad(!dict_index_is_online_ddl(cursor->index()));
ut_ad(cursor->index()->lock.have_u_or_x());
block = btr_cur_get_block(cursor);
page = buf_block_get_frame(block);
page_zip = buf_block_get_page_zip(block);
current_ssn = page_get_ssn_id(page);
ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX));
ut_ad(page_get_n_recs(page) >= 1);
const page_id_t page_id(block->page.id());
if (!page_has_prev(page) && !page_is_leaf(page)) {
first_rec = page_rec_get_next(
page_get_infimum_rec(buf_block_get_frame(block)));
if (UNIV_UNLIKELY(!first_rec)) {
corrupted:
*err = DB_CORRUPTION;
return nullptr;
}
}
/* Initial split nodes array. */
rtr_split_node_array = rtr_page_split_initialize_nodes(
*heap, cursor, offsets, tuple, &buf_pos);
/* Divide all mbrs to two groups. */
n_recs = ulint(page_get_n_recs(page)) + 1;
end_split_node = rtr_split_node_array + n_recs;
#ifdef UNIV_GIS_DEBUG
fprintf(stderr, "Before split a page:\n");
for (cur_split_node = rtr_split_node_array;
cur_split_node < end_split_node; ++cur_split_node) {
for (int i = 0; i < SPDIMS * 2; i++) {
fprintf(stderr, "%.2lf ",
*(cur_split_node->coords + i));
}
fprintf(stderr, "\n");
}
#endif
insert_size = rec_get_converted_size(cursor->index(), tuple, n_ext);
total_data = page_get_data_size(page) + insert_size;
first_rec_group = split_rtree_node(rtr_split_node_array,
static_cast<int>(n_recs),
static_cast<int>(total_data),
static_cast<int>(insert_size),
0, 2, 2, &buf_pos, SPDIMS,
static_cast<uchar*>(first_rec));
/* Allocate a new page to the index */
const uint16_t page_level = btr_page_get_level(page);
new_block = btr_page_alloc(cursor->index(), page_id.page_no() + 1,
FSP_UP, page_level, mtr, mtr, err);
if (UNIV_UNLIKELY(!new_block)) {
return nullptr;
}
new_page_zip = buf_block_get_page_zip(new_block);
if (page_level && UNIV_LIKELY_NULL(new_page_zip)) {
/* ROW_FORMAT=COMPRESSED non-leaf pages are not expected
to contain FIL_NULL in FIL_PAGE_PREV at this stage. */
memset_aligned<4>(new_block->page.frame + FIL_PAGE_PREV, 0, 4);
}
btr_page_create(new_block, new_page_zip, cursor->index(),
page_level, mtr);
new_page = buf_block_get_frame(new_block);
ut_ad(page_get_ssn_id(new_page) == 0);
/* Set new ssn to the new page and page. */
page_set_ssn_id(new_block, new_page_zip, current_ssn, mtr);
next_ssn = rtr_get_new_ssn_id(cursor->index());
page_set_ssn_id(block, page_zip, next_ssn, mtr);
/* Keep recs in first group to the old page, move recs in second
groups to the new page. */
if (0
#ifdef UNIV_ZIP_COPY
|| page_zip
#endif
|| (*err = rtr_split_page_move_rec_list(rtr_split_node_array,
first_rec_group,
new_block, block,
first_rec, cursor->index(),
*heap, mtr))) {
if (*err != DB_FAIL) {
return nullptr;
}
*err = DB_SUCCESS;
ulint n = 0;
rec_t* rec;
ulint moved = 0;
ulint max_to_move = 0;
rtr_rec_move_t* rec_move = NULL;
ulint pos;
/* For some reason, compressing new_page failed,
even though it should contain fewer records than
the original page. Copy the page byte for byte
and then delete the records from both pages
as appropriate. Deleting will always succeed. */
ut_a(new_page_zip);
page_zip_copy_recs(new_block,
page_zip, page, cursor->index(), mtr);
page_cursor = btr_cur_get_page_cur(cursor);
/* Move locks on recs. */
max_to_move = page_get_n_recs(page);
rec_move = static_cast<rtr_rec_move_t*>(mem_heap_alloc(
*heap,
sizeof (*rec_move) * max_to_move));
/* Init the rec_move array for moving lock on recs. */
for (cur_split_node = rtr_split_node_array;
cur_split_node < end_split_node - 1; ++cur_split_node) {
if (cur_split_node->n_node != first_rec_group) {
pos = page_rec_get_n_recs_before(
cur_split_node->key);
rec = page_rec_get_nth(new_page, pos);
ut_a(rec);
rec_move[moved].new_rec = rec;
rec_move[moved].old_rec = cur_split_node->key;
rec_move[moved].moved = false;
moved++;
if (moved > max_to_move) {
ut_ad(0);
break;
}
}
}
/* Update the lock table */
lock_rtr_move_rec_list(new_block, block, rec_move, moved);
const ulint n_core = page_level
? 0 : cursor->index()->n_core_fields;
/* Delete recs in first group from the new page. */
for (cur_split_node = rtr_split_node_array;
cur_split_node < end_split_node - 1; ++cur_split_node) {
if (cur_split_node->n_node == first_rec_group) {
ulint pos;
pos = page_rec_get_n_recs_before(
cur_split_node->key);
ut_a(pos > 0);
rec_t* new_rec = page_rec_get_nth(new_page,
pos - n);
ut_a(new_rec && page_rec_is_user_rec(new_rec));
page_cur_position(new_rec, new_block,
page_cursor);
*offsets = rec_get_offsets(
page_cur_get_rec(page_cursor),
cursor->index(), *offsets, n_core,
ULINT_UNDEFINED, heap);
page_cur_delete_rec(page_cursor,
*offsets, mtr);
n++;
}
}
/* Delete recs in second group from the old page. */
for (cur_split_node = rtr_split_node_array;
cur_split_node < end_split_node - 1; ++cur_split_node) {
if (cur_split_node->n_node != first_rec_group) {
page_cur_position(cur_split_node->key,
block, page_cursor);
*offsets = rec_get_offsets(
page_cur_get_rec(page_cursor),
page_cursor->index, *offsets, n_core,
ULINT_UNDEFINED, heap);
page_cur_delete_rec(page_cursor, *offsets,
mtr);
}
}
#ifdef UNIV_GIS_DEBUG
ut_ad(page_validate(new_page, cursor->index()));
ut_ad(page_validate(page, cursor->index()));
#endif
}
/* Insert the new rec to the proper page. */
cur_split_node = end_split_node - 1;
/* Reposition the cursor for insert and try insertion */
page_cursor = btr_cur_get_page_cur(cursor);
page_cursor->block = cur_split_node->n_node != first_rec_group
? new_block : block;
ulint up_match = 0, low_match = 0;
if (page_cur_search_with_match(tuple,
PAGE_CUR_LE, &up_match, &low_match,
page_cursor, nullptr)) {
goto corrupted;
}
/* It's possible that the new record is too big to be inserted into
the page, and it'll need the second round split in this case.
We test this scenario here*/
DBUG_EXECUTE_IF("rtr_page_need_second_split",
if (!iterated) {
rec = NULL;
goto after_insert; }
);
rec = page_cur_tuple_insert(page_cursor, tuple,
offsets, heap, n_ext, mtr);
/* If insert did not fit, try page reorganization.
For compressed pages, page_cur_tuple_insert() will have
attempted this already. */
if (rec == NULL) {
if (!is_page_cur_get_page_zip(page_cursor)
&& btr_page_reorganize(page_cursor, mtr)) {
rec = page_cur_tuple_insert(page_cursor, tuple,
offsets,
heap, n_ext, mtr);
}
/* If insert fail, we will try to split the block again. */
}
#ifdef UNIV_DEBUG
after_insert:
#endif
/* Calculate the mbr on the upper half-page, and the mbr on
original page. */
rtr_page_cal_mbr(cursor->index(), block, &mbr, *heap);
rtr_page_cal_mbr(cursor->index(), new_block, &new_mbr, *heap);
prdt.data = &mbr;
new_prdt.data = &new_mbr;
/* Check any predicate locks need to be moved/copied to the
new page */
lock_prdt_update_split(new_block, &prdt, &new_prdt, page_id);
/* Adjust the upper level. */
*err = rtr_adjust_upper_level(cursor, flags, block, new_block,
&mbr, &new_mbr, mtr);
if (UNIV_UNLIKELY(*err != DB_SUCCESS)) {
return nullptr;
}
/* Save the new ssn to the root page, since we need to reinit
the first ssn value from it after restart server. */
root_block = btr_root_block_get(cursor->index(), RW_SX_LATCH,
mtr, err);
if (UNIV_UNLIKELY(!root_block)) {
return nullptr;
}
page_zip = buf_block_get_page_zip(root_block);
page_set_ssn_id(root_block, page_zip, next_ssn, mtr);
/* If the new res insert fail, we need to do another split
again. */
if (!rec) {
/* We play safe and reset the free bits for new_page */
if (!dict_index_is_clust(cursor->index())
&& !cursor->index()->table->is_temporary()) {
ibuf_reset_free_bits(new_block);
ibuf_reset_free_bits(block);
}
/* We need to clean the parent path here and search father
node later, otherwise, it's possible that find a wrong
parent. */
rtr_clean_rtr_info(cursor->rtr_info, true);
cursor->rtr_info = NULL;
IF_DBUG(iterated=true,);
rec_t* i_rec = page_rec_get_next(page_get_infimum_rec(
buf_block_get_frame(block)));
if (UNIV_UNLIKELY(!i_rec)) {
goto corrupted;
}
btr_cur_position(cursor->index(), i_rec, block, cursor);
goto func_start;
}
#ifdef UNIV_GIS_DEBUG
ut_ad(page_validate(buf_block_get_frame(block), cursor->index()));
ut_ad(page_validate(buf_block_get_frame(new_block), cursor->index()));
ut_ad(!rec || rec_offs_validate(rec, cursor->index(), *offsets));
#endif
return(rec);
}
/****************************************************************//**
Following the right link to find the proper block for insert.
@return the proper block.*/
dberr_t
rtr_ins_enlarge_mbr(
/*================*/
btr_cur_t* btr_cur, /*!< in: btr cursor */
mtr_t* mtr) /*!< in: mtr */
{
dberr_t err = DB_SUCCESS;
rtr_mbr_t new_mbr;
buf_block_t* block;
mem_heap_t* heap;
page_cur_t* page_cursor;
rec_offs* offsets;
node_visit_t* node_visit;
btr_cur_t cursor;
page_t* page;
ut_ad(btr_cur->index()->is_spatial());
/* If no rtr_info or rtree is one level tree, return. */
if (!btr_cur->rtr_info || btr_cur->tree_height == 1) {
return(err);
}
/* Check path info is not empty. */
ut_ad(!btr_cur->rtr_info->parent_path->empty());
/* Create a memory heap. */
heap = mem_heap_create(1024);
/* Leaf level page is stored in cursor */
page_cursor = btr_cur_get_page_cur(btr_cur);
block = page_cur_get_block(page_cursor);
for (ulint i = 1; i < btr_cur->tree_height; i++) {
node_visit = rtr_get_parent_node(btr_cur, i, true);
ut_ad(node_visit != NULL);
/* If there's no mbr enlarge, return.*/
if (node_visit->mbr_inc == 0) {
block = btr_pcur_get_block(node_visit->cursor);
continue;
}
/* Calculate the mbr of the child page. */
rtr_page_cal_mbr(page_cursor->index, block, &new_mbr, heap);
/* Get father block. */
cursor.page_cur.index = page_cursor->index;
cursor.page_cur.block = block;
offsets = rtr_page_get_father_block(
NULL, heap, mtr, btr_cur, &cursor);
page = buf_block_get_frame(block);
/* Update the mbr field of the rec. */
rtr_update_mbr_field(&cursor, offsets, NULL, page,
&new_mbr, NULL, mtr);
block = btr_cur_get_block(&cursor);
}
mem_heap_free(heap);
return(err);
}
/*************************************************************//**
Copy recs from a page to new_block of rtree.
@return error code */
dberr_t
rtr_page_copy_rec_list_end_no_locks(
/*================================*/
buf_block_t* new_block, /*!< in: index page to copy to */
buf_block_t* block, /*!< in: index page of rec */
rec_t* rec, /*!< in: record on page */
dict_index_t* index, /*!< in: record descriptor */
mem_heap_t* heap, /*!< in/out: heap memory */
rtr_rec_move_t* rec_move, /*!< in: recording records moved */
ulint max_move, /*!< in: num of rec to move */
ulint* num_moved, /*!< out: num of rec to move */
mtr_t* mtr) /*!< in: mtr */
{
page_t* new_page = buf_block_get_frame(new_block);
page_cur_t page_cur;
page_cur_t cur1;
rec_t* cur_rec;
rec_offs offsets_1[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets1 = offsets_1;
rec_offs offsets_2[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets2 = offsets_2;
ulint moved = 0;
const ulint n_core = page_is_leaf(new_page)
? index->n_core_fields : 0;
rec_offs_init(offsets_1);
rec_offs_init(offsets_2);
page_cur_position(rec, block, &cur1);
if (page_cur_is_before_first(&cur1) && !page_cur_move_to_next(&cur1)) {
return DB_CORRUPTION;
}
ut_a(page_is_comp(new_page) == page_rec_is_comp(rec));
ut_a(mach_read_from_2(new_page + srv_page_size - 10) == (ulint)
(page_is_comp(new_page) ? PAGE_NEW_INFIMUM : PAGE_OLD_INFIMUM));
cur_rec = page_rec_get_next(
page_get_infimum_rec(buf_block_get_frame(new_block)));
if (UNIV_UNLIKELY(!cur_rec)) {
return DB_CORRUPTION;
}
page_cur_position(cur_rec, new_block, &page_cur);
page_cur.index = index;
/* Copy records from the original page to the new page */
while (!page_cur_is_after_last(&cur1)) {
rec_t* cur1_rec = page_cur_get_rec(&cur1);
rec_t* ins_rec;
if (page_rec_is_infimum(cur_rec)) {
cur_rec = page_rec_get_next(cur_rec);
if (UNIV_UNLIKELY(!cur_rec)) {
return DB_CORRUPTION;
}
}
offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core,
ULINT_UNDEFINED, &heap);
while (!page_rec_is_supremum(cur_rec)) {
ulint cur_matched_fields = 0;
int cmp;
offsets2 = rec_get_offsets(cur_rec, index, offsets2,
n_core,
ULINT_UNDEFINED, &heap);
cmp = cmp_rec_rec(cur1_rec, cur_rec,
offsets1, offsets2, index, false,
&cur_matched_fields);
if (cmp < 0) {
goto move_to_prev;
} else if (cmp > 0) {
/* Skip small recs. */
cur_rec = page_cur_move_to_next(&page_cur);
} else if (n_core) {
if (rec_get_deleted_flag(cur1_rec,
dict_table_is_comp(index->table))) {
goto next;
} else {
/* We have two identical leaf records,
skip copying the undeleted one, and
unmark deleted on the current page */
btr_rec_set_deleted<false>(
new_block, cur_rec, mtr);
goto next;
}
}
}
/* If position is on suprenum rec, need to move to
previous rec. */
if (page_rec_is_supremum(cur_rec)) {
move_to_prev:
cur_rec = page_cur_move_to_prev(&page_cur);
} else {
cur_rec = page_cur_get_rec(&page_cur);
}
if (UNIV_UNLIKELY(!cur_rec)) {
return DB_CORRUPTION;
}
offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core,
ULINT_UNDEFINED, &heap);
ins_rec = page_cur_insert_rec_low(&page_cur,
cur1_rec, offsets1, mtr);
if (UNIV_UNLIKELY(!ins_rec || moved >= max_move)) {
return DB_CORRUPTION;
}
rec_move[moved].new_rec = ins_rec;
rec_move[moved].old_rec = cur1_rec;
rec_move[moved].moved = false;
moved++;
next:
if (UNIV_UNLIKELY(!page_cur_move_to_next(&cur1))) {
return DB_CORRUPTION;
}
}
*num_moved = moved;
return DB_SUCCESS;
}
/*************************************************************//**
Copy recs till a specified rec from a page to new_block of rtree.
@return error code */
dberr_t
rtr_page_copy_rec_list_start_no_locks(
/*==================================*/
buf_block_t* new_block, /*!< in: index page to copy to */
buf_block_t* block, /*!< in: index page of rec */
rec_t* rec, /*!< in: record on page */
dict_index_t* index, /*!< in: record descriptor */
mem_heap_t* heap, /*!< in/out: heap memory */
rtr_rec_move_t* rec_move, /*!< in: recording records moved */
ulint max_move, /*!< in: num of rec to move */
ulint* num_moved, /*!< out: num of rec to move */
mtr_t* mtr) /*!< in: mtr */
{
page_cur_t cur1;
rec_t* cur_rec;
rec_offs offsets_1[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets1 = offsets_1;
rec_offs offsets_2[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets2 = offsets_2;
page_cur_t page_cur;
ulint moved = 0;
const ulint n_core = page_is_leaf(buf_block_get_frame(block))
? index->n_core_fields : 0;
rec_offs_init(offsets_1);
rec_offs_init(offsets_2);
page_cur_set_before_first(block, &cur1);
if (UNIV_UNLIKELY(!page_cur_move_to_next(&cur1))) {
return DB_CORRUPTION;
}
cur_rec = page_rec_get_next(
page_get_infimum_rec(buf_block_get_frame(new_block)));
if (UNIV_UNLIKELY(!cur_rec)) {
return DB_CORRUPTION;
}
page_cur_position(cur_rec, new_block, &page_cur);
page_cur.index = index;
while (page_cur_get_rec(&cur1) != rec) {
rec_t* cur1_rec = page_cur_get_rec(&cur1);
rec_t* ins_rec;
if (page_rec_is_infimum(cur_rec)) {
cur_rec = page_rec_get_next(cur_rec);
if (UNIV_UNLIKELY(!cur_rec)) {
return DB_CORRUPTION;
}
}
offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core,
ULINT_UNDEFINED, &heap);
while (!page_rec_is_supremum(cur_rec)) {
ulint cur_matched_fields = 0;
offsets2 = rec_get_offsets(cur_rec, index, offsets2,
n_core,
ULINT_UNDEFINED, &heap);
int cmp = cmp_rec_rec(cur1_rec, cur_rec,
offsets1, offsets2, index, false,
&cur_matched_fields);
if (cmp < 0) {
goto move_to_prev;
} else if (cmp > 0) {
/* Skip small recs. */
cur_rec = page_cur_move_to_next(&page_cur);
} else if (n_core) {
if (rec_get_deleted_flag(
cur1_rec,
dict_table_is_comp(index->table))) {
goto next;
} else {
/* We have two identical leaf records,
skip copying the undeleted one, and
unmark deleted on the current page */
btr_rec_set_deleted<false>(
new_block, cur_rec, mtr);
goto next;
}
}
}
/* If position is on suprenum rec, need to move to
previous rec. */
if (page_rec_is_supremum(cur_rec)) {
move_to_prev:
cur_rec = page_cur_move_to_prev(&page_cur);
} else {
cur_rec = page_cur_get_rec(&page_cur);
}
if (UNIV_UNLIKELY(!cur_rec)) {
return DB_CORRUPTION;
}
offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core,
ULINT_UNDEFINED, &heap);
ins_rec = page_cur_insert_rec_low(&page_cur,
cur1_rec, offsets1, mtr);
if (UNIV_UNLIKELY(!ins_rec || moved >= max_move)) {
return DB_CORRUPTION;
}
rec_move[moved].new_rec = ins_rec;
rec_move[moved].old_rec = cur1_rec;
rec_move[moved].moved = false;
moved++;
next:
if (UNIV_UNLIKELY(!page_cur_move_to_next(&cur1))) {
return DB_CORRUPTION;
}
}
*num_moved = moved;
return DB_SUCCESS;
}
/****************************************************************//**
Check two MBRs are identical or need to be merged */
bool
rtr_merge_mbr_changed(
/*==================*/
btr_cur_t* cursor, /*!< in/out: cursor */
btr_cur_t* cursor2, /*!< in: the other cursor */
rec_offs* offsets, /*!< in: rec offsets */
rec_offs* offsets2, /*!< in: rec offsets */
rtr_mbr_t* new_mbr) /*!< out: MBR to update */
{
double* mbr;
double mbr1[SPDIMS * 2];
double mbr2[SPDIMS * 2];
rec_t* rec;
ulint len;
bool changed = false;
ut_ad(cursor->index()->is_spatial());
rec = btr_cur_get_rec(cursor);
rtr_read_mbr(rec_get_nth_field(rec, offsets, 0, &len),
reinterpret_cast<rtr_mbr_t*>(mbr1));
rec = btr_cur_get_rec(cursor2);
rtr_read_mbr(rec_get_nth_field(rec, offsets2, 0, &len),
reinterpret_cast<rtr_mbr_t*>(mbr2));
mbr = reinterpret_cast<double*>(new_mbr);
for (int i = 0; i < SPDIMS * 2; i += 2) {
changed = (changed || mbr1[i] != mbr2[i]);
*mbr = mbr1[i] < mbr2[i] ? mbr1[i] : mbr2[i];
mbr++;
changed = (changed || mbr1[i + 1] != mbr2 [i + 1]);
*mbr = mbr1[i + 1] > mbr2[i + 1] ? mbr1[i + 1] : mbr2[i + 1];
mbr++;
}
return(changed);
}
/****************************************************************//**
Merge 2 mbrs and update the the mbr that cursor is on. */
void
rtr_merge_and_update_mbr(
/*=====================*/
btr_cur_t* cursor, /*!< in/out: cursor */
btr_cur_t* cursor2, /*!< in: the other cursor */
rec_offs* offsets, /*!< in: rec offsets */
rec_offs* offsets2, /*!< in: rec offsets */
page_t* child_page, /*!< in: the page. */
mtr_t* mtr) /*!< in: mtr */
{
rtr_mbr_t new_mbr;
if (rtr_merge_mbr_changed(cursor, cursor2, offsets, offsets2,
&new_mbr)) {
rtr_update_mbr_field(cursor, offsets, cursor2, child_page,
&new_mbr, NULL, mtr);
} else {
rtr_node_ptr_delete(cursor2, mtr);
}
}
/*************************************************************//**
Deletes on the upper level the node pointer to a page. */
void
rtr_node_ptr_delete(
/*================*/
btr_cur_t* cursor, /*!< in: search cursor, contains information
about parent nodes in search */
mtr_t* mtr) /*!< in: mtr */
{
ibool compressed;
dberr_t err;
compressed = btr_cur_pessimistic_delete(&err, TRUE, cursor,
BTR_CREATE_FLAG, false, mtr);
ut_a(err == DB_SUCCESS);
if (!compressed) {
btr_cur_compress_if_useful(cursor, FALSE, mtr);
}
}
/**************************************************************//**
Check whether a Rtree page is child of a parent page
@return true if there is child/parent relationship */
bool
rtr_check_same_block(
/*================*/
dict_index_t* index, /*!< in: index tree */
btr_cur_t* cursor, /*!< in/out: position at the parent entry
pointing to the child if successful */
buf_block_t* parentb,/*!< in: parent page to check */
mem_heap_t* heap) /*!< in: memory heap */
{
const uint32_t page_no =
btr_cur_get_block(cursor)->page.id().page_no();
rec_offs* offsets;
rec_t* rec = page_get_infimum_rec(parentb->page.frame);
while ((rec = page_rec_get_next(rec)) && !page_rec_is_supremum(rec)) {
offsets = rec_get_offsets(
rec, index, NULL, 0, ULINT_UNDEFINED, &heap);
if (btr_node_ptr_get_child_page_no(rec, offsets) == page_no) {
btr_cur_position(index, rec, parentb, cursor);
return(true);
}
}
return(false);
}
/*************************************************************//**
Calculates MBR_AREA(a+b) - MBR_AREA(a)
Note: when 'a' and 'b' objects are far from each other,
the area increase can be really big, so this function
can return 'inf' as a result.
Return the area increaed. */
static double
rtree_area_increase(
const uchar* a, /*!< in: original mbr. */
const uchar* b, /*!< in: new mbr. */
double* ab_area) /*!< out: increased area. */
{
double a_area = 1.0;
double loc_ab_area = 1.0;
double amin, amax, bmin, bmax;
double data_round = 1.0;
static_assert(DATA_MBR_LEN == SPDIMS * 2 * sizeof(double),
"compatibility");
for (auto i = SPDIMS; i--; ) {
double area;
amin = mach_double_read(a);
bmin = mach_double_read(b);
amax = mach_double_read(a + sizeof(double));
bmax = mach_double_read(b + sizeof(double));
a += 2 * sizeof(double);
b += 2 * sizeof(double);
area = amax - amin;
if (area == 0) {
a_area *= LINE_MBR_WEIGHTS;
} else {
a_area *= area;
}
area = (double)std::max(amax, bmax) -
(double)std::min(amin, bmin);
if (area == 0) {
loc_ab_area *= LINE_MBR_WEIGHTS;
} else {
loc_ab_area *= area;
}
/* Value of amax or bmin can be so large that small difference
are ignored. For example: 3.2884281489988079e+284 - 100 =
3.2884281489988079e+284. This results some area difference
are not detected */
if (loc_ab_area == a_area) {
if (bmin < amin || bmax > amax) {
data_round *= ((double)std::max(amax, bmax)
- amax
+ (amin - (double)std::min(
amin, bmin)));
} else {
data_round *= area;
}
}
}
*ab_area = loc_ab_area;
if (loc_ab_area == a_area && data_round != 1.0) {
return(data_round);
}
return(loc_ab_area - a_area);
}
/** Calculates overlapping area
@param[in] a mbr a
@param[in] b mbr b
@return overlapping area */
static double rtree_area_overlapping(const byte *a, const byte *b)
{
double area = 1.0;
double amin;
double amax;
double bmin;
double bmax;
static_assert(DATA_MBR_LEN == SPDIMS * 2 * sizeof(double),
"compatibility");
for (auto i = SPDIMS; i--; ) {
amin = mach_double_read(a);
bmin = mach_double_read(b);
amax = mach_double_read(a + sizeof(double));
bmax = mach_double_read(b + sizeof(double));
a += 2 * sizeof(double);
b += 2 * sizeof(double);
amin = std::max(amin, bmin);
amax = std::min(amax, bmax);
if (amin > amax) {
return(0);
} else {
area *= (amax - amin);
}
}
return(area);
}
/****************************************************************//**
Calculate the area increased for a new record
@return area increased */
double
rtr_rec_cal_increase(
/*=================*/
const dtuple_t* dtuple, /*!< in: data tuple to insert, which
cause area increase */
const rec_t* rec, /*!< in: physical record which differs from
dtuple in some of the common fields, or which
has an equal number or more fields than
dtuple */
double* area) /*!< out: increased area */
{
const dfield_t* dtuple_field;
ut_ad(!page_rec_is_supremum(rec));
ut_ad(!page_rec_is_infimum(rec));
dtuple_field = dtuple_get_nth_field(dtuple, 0);
ut_ad(dfield_get_len(dtuple_field) == DATA_MBR_LEN);
return rtree_area_increase(rec,
static_cast<const byte*>(
dfield_get_data(dtuple_field)),
area);
}
/** Estimates the number of rows in a given area.
@param[in] index index
@param[in] tuple range tuple containing mbr, may also be empty tuple
@param[in] mode search mode
@return estimated number of rows */
ha_rows
rtr_estimate_n_rows_in_range(
dict_index_t* index,
const dtuple_t* tuple,
page_cur_mode_t mode)
{
ut_ad(dict_index_is_spatial(index));
/* Check tuple & mode */
if (tuple->n_fields == 0) {
return(HA_POS_ERROR);
}
switch (mode) {
case PAGE_CUR_DISJOINT:
case PAGE_CUR_CONTAIN:
case PAGE_CUR_INTERSECT:
case PAGE_CUR_WITHIN:
case PAGE_CUR_MBR_EQUAL:
break;
default:
return(HA_POS_ERROR);
}
DBUG_EXECUTE_IF("rtr_pcur_move_to_next_return",
return(2);
);
/* Read mbr from tuple. */
rtr_mbr_t range_mbr;
double range_area;
const dfield_t* dtuple_field = dtuple_get_nth_field(tuple, 0);
ut_ad(dfield_get_len(dtuple_field) >= DATA_MBR_LEN);
const byte* range_mbr_ptr = reinterpret_cast<const byte*>(
dfield_get_data(dtuple_field));
rtr_read_mbr(range_mbr_ptr, &range_mbr);
range_area = (range_mbr.xmax - range_mbr.xmin)
* (range_mbr.ymax - range_mbr.ymin);
/* Get index root page. */
mtr_t mtr;
mtr.start();
index->set_modified(mtr);
mtr_s_lock_index(index, &mtr);
dberr_t err;
buf_block_t* block = btr_root_block_get(index, RW_S_LATCH, &mtr, &err);
if (!block) {
err_exit:
mtr.commit();
return HA_POS_ERROR;
}
const page_t* page = buf_block_get_frame(block);
const unsigned n_recs = page_header_get_field(page, PAGE_N_RECS);
if (n_recs == 0) {
goto err_exit;
}
/* Scan records in root page and calculate area. */
double area = 0;
for (const rec_t* rec = page_rec_get_next_const(
page_get_infimum_rec(block->page.frame));
rec && !page_rec_is_supremum(rec);
rec = page_rec_get_next_const(rec)) {
rtr_mbr_t mbr;
double rec_area;
rtr_read_mbr(rec, &mbr);
rec_area = (mbr.xmax - mbr.xmin) * (mbr.ymax - mbr.ymin);
if (rec_area == 0) {
switch (mode) {
case PAGE_CUR_CONTAIN:
case PAGE_CUR_INTERSECT:
area += 1;
break;
case PAGE_CUR_DISJOINT:
break;
case PAGE_CUR_WITHIN:
case PAGE_CUR_MBR_EQUAL:
if (!rtree_key_cmp(
PAGE_CUR_WITHIN, range_mbr_ptr,
rec)) {
area += 1;
}
break;
default:
ut_error;
}
} else {
switch (mode) {
case PAGE_CUR_CONTAIN:
case PAGE_CUR_INTERSECT:
area += rtree_area_overlapping(
range_mbr_ptr, rec)
/ rec_area;
break;
case PAGE_CUR_DISJOINT:
area += 1;
area -= rtree_area_overlapping(
range_mbr_ptr, rec)
/ rec_area;
break;
case PAGE_CUR_WITHIN:
case PAGE_CUR_MBR_EQUAL:
if (!rtree_key_cmp(
PAGE_CUR_WITHIN, range_mbr_ptr,
rec)) {
area += range_area / rec_area;
}
break;
default:
ut_error;
}
}
}
mtr.commit();
if (!std::isfinite(area)) {
return(HA_POS_ERROR);
}
area /= n_recs;
return ha_rows(static_cast<double>(dict_table_get_n_rows(index->table))
* area);
}