mirror of
https://github.com/MariaDB/server.git
synced 2025-01-25 00:04:33 +01:00
1279 lines
31 KiB
C
1279 lines
31 KiB
C
/***************************************************************************//**
|
|
|
|
Copyright (c) 2007, 2010, Innobase Oy. All Rights Reserved.
|
|
|
|
Portions of this file contain modifications contributed and copyrighted by
|
|
Sun Microsystems, Inc. Those modifications are gratefully acknowledged and
|
|
are described briefly in the InnoDB documentation. The contributions by
|
|
Sun Microsystems are incorporated with their permission, and subject to the
|
|
conditions contained in the file COPYING.Sun_Microsystems.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
*****************************************************************************/
|
|
/********************************************************************//**
|
|
Red-Black tree implementation
|
|
|
|
(c) 2007 Oracle/Innobase Oy
|
|
|
|
Created 2007-03-20 Sunny Bains
|
|
***********************************************************************/
|
|
|
|
#include "ut0rbt.h"
|
|
|
|
/**********************************************************************//**
|
|
Definition of a red-black tree
|
|
==============================
|
|
|
|
A red-black tree is a binary search tree which has the following
|
|
red-black properties:
|
|
|
|
1. Every node is either red or black.
|
|
2. Every leaf (NULL - in our case tree->nil) is black.
|
|
3. If a node is red, then both its children are black.
|
|
4. Every simple path from a node to a descendant leaf contains the
|
|
same number of black nodes.
|
|
|
|
from (3) above, the implication is that on any path from the root
|
|
to a leaf, red nodes must not be adjacent.
|
|
|
|
However, any number of black nodes may appear in a sequence.
|
|
*/
|
|
|
|
#if defined(IB_RBT_TESTING)
|
|
#warning "Testing enabled!"
|
|
#endif
|
|
|
|
#define ROOT(t) (t->root->left)
|
|
|
|
/**********************************************************************//**
|
|
Print out the sub-tree recursively. */
|
|
static
|
|
void
|
|
rbt_print_subtree(
|
|
/*==============*/
|
|
const ib_rbt_t* tree, /*!< in: tree to traverse */
|
|
const ib_rbt_node_t* node, /*!< in: node to print */
|
|
ib_rbt_print_node print) /*!< in: print key function */
|
|
{
|
|
/* FIXME: Doesn't do anything yet */
|
|
if (node != tree->nil) {
|
|
print(node);
|
|
rbt_print_subtree(tree, node->left, print);
|
|
rbt_print_subtree(tree, node->right, print);
|
|
}
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Verify that the keys are in order.
|
|
@return TRUE of OK. FALSE if not ordered */
|
|
static
|
|
ibool
|
|
rbt_check_ordering(
|
|
/*===============*/
|
|
const ib_rbt_t* tree) /*!< in: tree to verfify */
|
|
{
|
|
const ib_rbt_node_t* node;
|
|
const ib_rbt_node_t* prev = NULL;
|
|
|
|
/* Iterate over all the nodes, comparing each node with the prev */
|
|
for (node = rbt_first(tree); node; node = rbt_next(tree, prev)) {
|
|
|
|
if (prev && tree->compare(prev->value, node->value) >= 0) {
|
|
return(FALSE);
|
|
}
|
|
|
|
prev = node;
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Check that every path from the root to the leaves has the same count.
|
|
Count is expressed in the number of black nodes.
|
|
@return 0 on failure else black height of the subtree */
|
|
static
|
|
ibool
|
|
rbt_count_black_nodes(
|
|
/*==================*/
|
|
const ib_rbt_t* tree, /*!< in: tree to verify */
|
|
const ib_rbt_node_t* node) /*!< in: start of sub-tree */
|
|
{
|
|
ulint result;
|
|
|
|
if (node != tree->nil) {
|
|
ulint left_height = rbt_count_black_nodes(tree, node->left);
|
|
|
|
ulint right_height = rbt_count_black_nodes(tree, node->right);
|
|
|
|
if (left_height == 0
|
|
|| right_height == 0
|
|
|| left_height != right_height) {
|
|
|
|
result = 0;
|
|
} else if (node->color == IB_RBT_RED) {
|
|
|
|
/* Case 3 */
|
|
if (node->left->color != IB_RBT_BLACK
|
|
|| node->right->color != IB_RBT_BLACK) {
|
|
|
|
result = 0;
|
|
} else {
|
|
result = left_height;
|
|
}
|
|
/* Check if it's anything other than RED or BLACK. */
|
|
} else if (node->color != IB_RBT_BLACK) {
|
|
|
|
result = 0;
|
|
} else {
|
|
|
|
result = right_height + 1;
|
|
}
|
|
} else {
|
|
result = 1;
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Turn the node's right child's left sub-tree into node's right sub-tree.
|
|
This will also make node's right child it's parent. */
|
|
static
|
|
void
|
|
rbt_rotate_left(
|
|
/*============*/
|
|
const ib_rbt_node_t* nil, /*!< in: nil node of the tree */
|
|
ib_rbt_node_t* node) /*!< in: node to rotate */
|
|
{
|
|
ib_rbt_node_t* right = node->right;
|
|
|
|
node->right = right->left;
|
|
|
|
if (right->left != nil) {
|
|
right->left->parent = node;
|
|
}
|
|
|
|
/* Right's new parent was node's parent. */
|
|
right->parent = node->parent;
|
|
|
|
/* Since root's parent is tree->nil and root->parent->left points
|
|
back to root, we can avoid the check. */
|
|
if (node == node->parent->left) {
|
|
/* Node was on the left of its parent. */
|
|
node->parent->left = right;
|
|
} else {
|
|
/* Node must have been on the right. */
|
|
node->parent->right = right;
|
|
}
|
|
|
|
/* Finally, put node on right's left. */
|
|
right->left = node;
|
|
node->parent = right;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Turn the node's left child's right sub-tree into node's left sub-tree.
|
|
This also make node's left child it's parent. */
|
|
static
|
|
void
|
|
rbt_rotate_right(
|
|
/*=============*/
|
|
const ib_rbt_node_t* nil, /*!< in: nil node of tree */
|
|
ib_rbt_node_t* node) /*!< in: node to rotate */
|
|
{
|
|
ib_rbt_node_t* left = node->left;
|
|
|
|
node->left = left->right;
|
|
|
|
if (left->right != nil) {
|
|
left->right->parent = node;
|
|
}
|
|
|
|
/* Left's new parent was node's parent. */
|
|
left->parent = node->parent;
|
|
|
|
/* Since root's parent is tree->nil and root->parent->left points
|
|
back to root, we can avoid the check. */
|
|
if (node == node->parent->right) {
|
|
/* Node was on the left of its parent. */
|
|
node->parent->right = left;
|
|
} else {
|
|
/* Node must have been on the left. */
|
|
node->parent->left = left;
|
|
}
|
|
|
|
/* Finally, put node on left's right. */
|
|
left->right = node;
|
|
node->parent = left;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Append a node to the tree. */
|
|
static
|
|
ib_rbt_node_t*
|
|
rbt_tree_add_child(
|
|
/*===============*/
|
|
const ib_rbt_t* tree,
|
|
ib_rbt_bound_t* parent,
|
|
ib_rbt_node_t* node)
|
|
{
|
|
/* Cast away the const. */
|
|
ib_rbt_node_t* last = (ib_rbt_node_t*) parent->last;
|
|
|
|
if (last == tree->root || parent->result < 0) {
|
|
last->left = node;
|
|
} else {
|
|
/* FIXME: We don't handle duplicates (yet)! */
|
|
ut_a(parent->result != 0);
|
|
|
|
last->right = node;
|
|
}
|
|
|
|
node->parent = last;
|
|
|
|
return(node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Generic binary tree insert */
|
|
static
|
|
ib_rbt_node_t*
|
|
rbt_tree_insert(
|
|
/*============*/
|
|
ib_rbt_t* tree,
|
|
const void* key,
|
|
ib_rbt_node_t* node)
|
|
{
|
|
ib_rbt_bound_t parent;
|
|
ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
parent.result = 0;
|
|
parent.last = tree->root;
|
|
|
|
/* Regular binary search. */
|
|
while (current != tree->nil) {
|
|
|
|
parent.last = current;
|
|
parent.result = tree->compare(key, current->value);
|
|
|
|
if (parent.result < 0) {
|
|
current = current->left;
|
|
} else {
|
|
current = current->right;
|
|
}
|
|
}
|
|
|
|
ut_a(current == tree->nil);
|
|
|
|
rbt_tree_add_child(tree, &parent, node);
|
|
|
|
return(node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Balance a tree after inserting a node. */
|
|
static
|
|
void
|
|
rbt_balance_tree(
|
|
/*=============*/
|
|
const ib_rbt_t* tree, /*!< in: tree to balance */
|
|
ib_rbt_node_t* node) /*!< in: node that was inserted */
|
|
{
|
|
const ib_rbt_node_t* nil = tree->nil;
|
|
ib_rbt_node_t* parent = node->parent;
|
|
|
|
/* Restore the red-black property. */
|
|
node->color = IB_RBT_RED;
|
|
|
|
while (node != ROOT(tree) && parent->color == IB_RBT_RED) {
|
|
ib_rbt_node_t* grand_parent = parent->parent;
|
|
|
|
if (parent == grand_parent->left) {
|
|
ib_rbt_node_t* uncle = grand_parent->right;
|
|
|
|
if (uncle->color == IB_RBT_RED) {
|
|
|
|
/* Case 1 - change the colors. */
|
|
uncle->color = IB_RBT_BLACK;
|
|
parent->color = IB_RBT_BLACK;
|
|
grand_parent->color = IB_RBT_RED;
|
|
|
|
/* Move node up the tree. */
|
|
node = grand_parent;
|
|
|
|
} else {
|
|
|
|
if (node == parent->right) {
|
|
/* Right is a black node and node is
|
|
to the right, case 2 - move node
|
|
up and rotate. */
|
|
node = parent;
|
|
rbt_rotate_left(nil, node);
|
|
}
|
|
|
|
grand_parent = node->parent->parent;
|
|
|
|
/* Case 3. */
|
|
node->parent->color = IB_RBT_BLACK;
|
|
grand_parent->color = IB_RBT_RED;
|
|
|
|
rbt_rotate_right(nil, grand_parent);
|
|
}
|
|
|
|
} else {
|
|
ib_rbt_node_t* uncle = grand_parent->left;
|
|
|
|
if (uncle->color == IB_RBT_RED) {
|
|
|
|
/* Case 1 - change the colors. */
|
|
uncle->color = IB_RBT_BLACK;
|
|
parent->color = IB_RBT_BLACK;
|
|
grand_parent->color = IB_RBT_RED;
|
|
|
|
/* Move node up the tree. */
|
|
node = grand_parent;
|
|
|
|
} else {
|
|
|
|
if (node == parent->left) {
|
|
/* Left is a black node and node is to
|
|
the right, case 2 - move node up and
|
|
rotate. */
|
|
node = parent;
|
|
rbt_rotate_right(nil, node);
|
|
}
|
|
|
|
grand_parent = node->parent->parent;
|
|
|
|
/* Case 3. */
|
|
node->parent->color = IB_RBT_BLACK;
|
|
grand_parent->color = IB_RBT_RED;
|
|
|
|
rbt_rotate_left(nil, grand_parent);
|
|
}
|
|
}
|
|
|
|
parent = node->parent;
|
|
}
|
|
|
|
/* Color the root black. */
|
|
ROOT(tree)->color = IB_RBT_BLACK;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Find the given node's successor.
|
|
@return successor node or NULL if no successor */
|
|
static
|
|
ib_rbt_node_t*
|
|
rbt_find_successor(
|
|
/*===============*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
const ib_rbt_node_t* current) /*!< in: this is declared const
|
|
because it can be called via
|
|
rbt_next() */
|
|
{
|
|
const ib_rbt_node_t* nil = tree->nil;
|
|
ib_rbt_node_t* next = current->right;
|
|
|
|
/* Is there a sub-tree to the right that we can follow. */
|
|
if (next != nil) {
|
|
|
|
/* Follow the left most links of the current right child. */
|
|
while (next->left != nil) {
|
|
next = next->left;
|
|
}
|
|
|
|
} else { /* We will have to go up the tree to find the successor. */
|
|
ib_rbt_node_t* parent = current->parent;
|
|
|
|
/* Cast away the const. */
|
|
next = (ib_rbt_node_t*) current;
|
|
|
|
while (parent != tree->root && next == parent->right) {
|
|
next = parent;
|
|
parent = next->parent;
|
|
}
|
|
|
|
next = (parent == tree->root) ? NULL : parent;
|
|
}
|
|
|
|
return(next);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Find the given node's precedecessor.
|
|
@return predecessor node or NULL if no predecesor */
|
|
static
|
|
ib_rbt_node_t*
|
|
rbt_find_predecessor(
|
|
/*=================*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
const ib_rbt_node_t* current) /*!< in: this is declared const
|
|
because it can be called via
|
|
rbt_prev() */
|
|
{
|
|
const ib_rbt_node_t* nil = tree->nil;
|
|
ib_rbt_node_t* prev = current->left;
|
|
|
|
/* Is there a sub-tree to the left that we can follow. */
|
|
if (prev != nil) {
|
|
|
|
/* Follow the right most links of the current left child. */
|
|
while (prev->right != nil) {
|
|
prev = prev->right;
|
|
}
|
|
|
|
} else { /* We will have to go up the tree to find the precedecessor. */
|
|
ib_rbt_node_t* parent = current->parent;
|
|
|
|
/* Cast away the const. */
|
|
prev = (ib_rbt_node_t*)current;
|
|
|
|
while (parent != tree->root && prev == parent->left) {
|
|
prev = parent;
|
|
parent = prev->parent;
|
|
}
|
|
|
|
prev = (parent == tree->root) ? NULL : parent;
|
|
}
|
|
|
|
return(prev);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Replace node with child. After applying transformations eject becomes
|
|
an orphan. */
|
|
static
|
|
void
|
|
rbt_eject_node(
|
|
/*===========*/
|
|
ib_rbt_node_t* eject, /*!< in: node to eject */
|
|
ib_rbt_node_t* node) /*!< in: node to replace with */
|
|
{
|
|
/* Update the to be ejected node's parent's child pointers. */
|
|
if (eject->parent->left == eject) {
|
|
eject->parent->left = node;
|
|
} else if (eject->parent->right == eject) {
|
|
eject->parent->right = node;
|
|
} else {
|
|
ut_a(0);
|
|
}
|
|
/* eject is now an orphan but otherwise its pointers
|
|
and color are left intact. */
|
|
|
|
node->parent = eject->parent;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Replace a node with another node. */
|
|
static
|
|
void
|
|
rbt_replace_node(
|
|
/*=============*/
|
|
ib_rbt_node_t* replace, /*!< in: node to replace */
|
|
ib_rbt_node_t* node) /*!< in: node to replace with */
|
|
{
|
|
ib_rbt_color_t color = node->color;
|
|
|
|
/* Update the node pointers. */
|
|
node->left = replace->left;
|
|
node->right = replace->right;
|
|
|
|
/* Update the child node pointers. */
|
|
node->left->parent = node;
|
|
node->right->parent = node;
|
|
|
|
/* Make the parent of replace point to node. */
|
|
rbt_eject_node(replace, node);
|
|
|
|
/* Swap the colors. */
|
|
node->color = replace->color;
|
|
replace->color = color;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Detach node from the tree replacing it with one of it's children.
|
|
@return the child node that now occupies the position of the detached node */
|
|
static
|
|
ib_rbt_node_t*
|
|
rbt_detach_node(
|
|
/*============*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
ib_rbt_node_t* node) /*!< in: node to detach */
|
|
{
|
|
ib_rbt_node_t* child;
|
|
const ib_rbt_node_t* nil = tree->nil;
|
|
|
|
if (node->left != nil && node->right != nil) {
|
|
/* Case where the node to be deleted has two children. */
|
|
ib_rbt_node_t* successor = rbt_find_successor(tree, node);
|
|
|
|
ut_a(successor != nil);
|
|
ut_a(successor->parent != nil);
|
|
ut_a(successor->left == nil);
|
|
|
|
child = successor->right;
|
|
|
|
/* Remove the successor node and replace with its child. */
|
|
rbt_eject_node(successor, child);
|
|
|
|
/* Replace the node to delete with its successor node. */
|
|
rbt_replace_node(node, successor);
|
|
} else {
|
|
ut_a(node->left == nil || node->right == nil);
|
|
|
|
child = (node->left != nil) ? node->left : node->right;
|
|
|
|
/* Replace the node to delete with one of it's children. */
|
|
rbt_eject_node(node, child);
|
|
}
|
|
|
|
/* Reset the node links. */
|
|
node->parent = node->right = node->left = tree->nil;
|
|
|
|
return(child);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Rebalance the right sub-tree after deletion.
|
|
@return node to rebalance if more rebalancing required else NULL */
|
|
static
|
|
ib_rbt_node_t*
|
|
rbt_balance_right(
|
|
/*==============*/
|
|
const ib_rbt_node_t* nil, /*!< in: rb tree nil node */
|
|
ib_rbt_node_t* parent, /*!< in: parent node */
|
|
ib_rbt_node_t* sibling) /*!< in: sibling node */
|
|
{
|
|
ib_rbt_node_t* node = NULL;
|
|
|
|
ut_a(sibling != nil);
|
|
|
|
/* Case 3. */
|
|
if (sibling->color == IB_RBT_RED) {
|
|
|
|
parent->color = IB_RBT_RED;
|
|
sibling->color = IB_RBT_BLACK;
|
|
|
|
rbt_rotate_left(nil, parent);
|
|
|
|
sibling = parent->right;
|
|
|
|
ut_a(sibling != nil);
|
|
}
|
|
|
|
/* Since this will violate case 3 because of the change above. */
|
|
if (sibling->left->color == IB_RBT_BLACK
|
|
&& sibling->right->color == IB_RBT_BLACK) {
|
|
|
|
node = parent; /* Parent needs to be rebalanced too. */
|
|
sibling->color = IB_RBT_RED;
|
|
|
|
} else {
|
|
if (sibling->right->color == IB_RBT_BLACK) {
|
|
|
|
ut_a(sibling->left->color == IB_RBT_RED);
|
|
|
|
sibling->color = IB_RBT_RED;
|
|
sibling->left->color = IB_RBT_BLACK;
|
|
|
|
rbt_rotate_right(nil, sibling);
|
|
|
|
sibling = parent->right;
|
|
ut_a(sibling != nil);
|
|
}
|
|
|
|
sibling->color = parent->color;
|
|
sibling->right->color = IB_RBT_BLACK;
|
|
|
|
parent->color = IB_RBT_BLACK;
|
|
|
|
rbt_rotate_left(nil, parent);
|
|
}
|
|
|
|
return(node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Rebalance the left sub-tree after deletion.
|
|
@return node to rebalance if more rebalancing required else NULL */
|
|
static
|
|
ib_rbt_node_t*
|
|
rbt_balance_left(
|
|
/*=============*/
|
|
const ib_rbt_node_t* nil, /*!< in: rb tree nil node */
|
|
ib_rbt_node_t* parent, /*!< in: parent node */
|
|
ib_rbt_node_t* sibling) /*!< in: sibling node */
|
|
{
|
|
ib_rbt_node_t* node = NULL;
|
|
|
|
ut_a(sibling != nil);
|
|
|
|
/* Case 3. */
|
|
if (sibling->color == IB_RBT_RED) {
|
|
|
|
parent->color = IB_RBT_RED;
|
|
sibling->color = IB_RBT_BLACK;
|
|
|
|
rbt_rotate_right(nil, parent);
|
|
sibling = parent->left;
|
|
|
|
ut_a(sibling != nil);
|
|
}
|
|
|
|
/* Since this will violate case 3 because of the change above. */
|
|
if (sibling->right->color == IB_RBT_BLACK
|
|
&& sibling->left->color == IB_RBT_BLACK) {
|
|
|
|
node = parent; /* Parent needs to be rebalanced too. */
|
|
sibling->color = IB_RBT_RED;
|
|
|
|
} else {
|
|
if (sibling->left->color == IB_RBT_BLACK) {
|
|
|
|
ut_a(sibling->right->color == IB_RBT_RED);
|
|
|
|
sibling->color = IB_RBT_RED;
|
|
sibling->right->color = IB_RBT_BLACK;
|
|
|
|
rbt_rotate_left(nil, sibling);
|
|
|
|
sibling = parent->left;
|
|
|
|
ut_a(sibling != nil);
|
|
}
|
|
|
|
sibling->color = parent->color;
|
|
sibling->left->color = IB_RBT_BLACK;
|
|
|
|
parent->color = IB_RBT_BLACK;
|
|
|
|
rbt_rotate_right(nil, parent);
|
|
}
|
|
|
|
return(node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Delete the node and rebalance the tree if necessary */
|
|
static
|
|
void
|
|
rbt_remove_node_and_rebalance(
|
|
/*==========================*/
|
|
ib_rbt_t* tree, /*!< in: rb tree */
|
|
ib_rbt_node_t* node) /*!< in: node to remove */
|
|
{
|
|
/* Detach node and get the node that will be used
|
|
as rebalance start. */
|
|
ib_rbt_node_t* child = rbt_detach_node(tree, node);
|
|
|
|
if (node->color == IB_RBT_BLACK) {
|
|
ib_rbt_node_t* last = child;
|
|
|
|
ROOT(tree)->color = IB_RBT_RED;
|
|
|
|
while (child && child->color == IB_RBT_BLACK) {
|
|
ib_rbt_node_t* parent = child->parent;
|
|
|
|
/* Did the deletion cause an imbalance in the
|
|
parents left sub-tree. */
|
|
if (parent->left == child) {
|
|
|
|
child = rbt_balance_right(
|
|
tree->nil, parent, parent->right);
|
|
|
|
} else if (parent->right == child) {
|
|
|
|
child = rbt_balance_left(
|
|
tree->nil, parent, parent->left);
|
|
|
|
} else {
|
|
ut_error;
|
|
}
|
|
|
|
if (child) {
|
|
last = child;
|
|
}
|
|
}
|
|
|
|
ut_a(last);
|
|
|
|
last->color = IB_RBT_BLACK;
|
|
ROOT(tree)->color = IB_RBT_BLACK;
|
|
}
|
|
|
|
/* Note that we have removed a node from the tree. */
|
|
--tree->n_nodes;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Recursively free the nodes. */
|
|
static
|
|
void
|
|
rbt_free_node(
|
|
/*==========*/
|
|
ib_rbt_node_t* node, /*!< in: node to free */
|
|
ib_rbt_node_t* nil) /*!< in: rb tree nil node */
|
|
{
|
|
if (node != nil) {
|
|
rbt_free_node(node->left, nil);
|
|
rbt_free_node(node->right, nil);
|
|
|
|
ut_free(node);
|
|
}
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Free all the nodes and free the tree. */
|
|
UNIV_INTERN
|
|
void
|
|
rbt_free(
|
|
/*=====*/
|
|
ib_rbt_t* tree) /*!< in: rb tree to free */
|
|
{
|
|
rbt_free_node(tree->root, tree->nil);
|
|
ut_free(tree->nil);
|
|
ut_free(tree);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Create an instance of a red black tree.
|
|
@return an empty rb tree */
|
|
UNIV_INTERN
|
|
ib_rbt_t*
|
|
rbt_create(
|
|
/*=======*/
|
|
size_t sizeof_value, /*!< in: sizeof data item */
|
|
ib_rbt_compare compare) /*!< in: fn to compare items */
|
|
{
|
|
ib_rbt_t* tree;
|
|
ib_rbt_node_t* node;
|
|
|
|
tree = (ib_rbt_t*) ut_malloc(sizeof(*tree));
|
|
memset(tree, 0, sizeof(*tree));
|
|
|
|
tree->sizeof_value = sizeof_value;
|
|
|
|
/* Create the sentinel (NIL) node. */
|
|
node = tree->nil = (ib_rbt_node_t*) ut_malloc(sizeof(*node));
|
|
memset(node, 0, sizeof(*node));
|
|
|
|
node->color = IB_RBT_BLACK;
|
|
node->parent = node->left = node->right = node;
|
|
|
|
/* Create the "fake" root, the real root node will be the
|
|
left child of this node. */
|
|
node = tree->root = (ib_rbt_node_t*) ut_malloc(sizeof(*node));
|
|
memset(node, 0, sizeof(*node));
|
|
|
|
node->color = IB_RBT_BLACK;
|
|
node->parent = node->left = node->right = tree->nil;
|
|
|
|
tree->compare = compare;
|
|
|
|
return(tree);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Generic insert of a value in the rb tree.
|
|
@return inserted node */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_insert(
|
|
/*=======*/
|
|
ib_rbt_t* tree, /*!< in: rb tree */
|
|
const void* key, /*!< in: key for ordering */
|
|
const void* value) /*!< in: value of key, this value
|
|
is copied to the node */
|
|
{
|
|
ib_rbt_node_t* node;
|
|
|
|
/* Create the node that will hold the value data. */
|
|
node = (ib_rbt_node_t*) ut_malloc(SIZEOF_NODE(tree));
|
|
|
|
memcpy(node->value, value, tree->sizeof_value);
|
|
node->parent = node->left = node->right = tree->nil;
|
|
|
|
/* Insert in the tree in the usual way. */
|
|
rbt_tree_insert(tree, key, node);
|
|
rbt_balance_tree(tree, node);
|
|
|
|
++tree->n_nodes;
|
|
|
|
return(node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Add a new node to the tree, useful for data that is pre-sorted.
|
|
@return appended node */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_add_node(
|
|
/*=========*/
|
|
ib_rbt_t* tree, /*!< in: rb tree */
|
|
ib_rbt_bound_t* parent, /*!< in: bounds */
|
|
const void* value) /*!< in: this value is copied
|
|
to the node */
|
|
{
|
|
ib_rbt_node_t* node;
|
|
|
|
/* Create the node that will hold the value data */
|
|
node = (ib_rbt_node_t*) ut_malloc(SIZEOF_NODE(tree));
|
|
|
|
memcpy(node->value, value, tree->sizeof_value);
|
|
return(rbt_add_preallocated_node(tree, parent, node));
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Add a new caller-provided node to tree at the specified position.
|
|
The node must have its key fields initialized correctly.
|
|
@return added node */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_add_preallocated_node(
|
|
/*======================*/
|
|
ib_rbt_t* tree, /*!< in: rb tree */
|
|
ib_rbt_bound_t* parent, /*!< in: parent */
|
|
ib_rbt_node_t* node) /*!< in: node */
|
|
{
|
|
node->parent = node->left = node->right = tree->nil;
|
|
|
|
/* If tree is empty */
|
|
if (parent->last == NULL) {
|
|
parent->last = tree->root;
|
|
}
|
|
|
|
/* Append the node, the hope here is that the caller knows
|
|
what s/he is doing. */
|
|
rbt_tree_add_child(tree, parent, node);
|
|
rbt_balance_tree(tree, node);
|
|
|
|
++tree->n_nodes;
|
|
|
|
#if defined(IB_RBT_TESTING)
|
|
ut_a(rbt_validate(tree));
|
|
#endif
|
|
return(node);
|
|
}
|
|
|
|
|
|
/**********************************************************************//**
|
|
Find a matching node in the rb tree.
|
|
@return NULL if not found else the node where key was found */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_lookup(
|
|
/*=======*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
const void* key) /*!< in: key to use for search */
|
|
{
|
|
const ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
/* Regular binary search. */
|
|
while (current != tree->nil) {
|
|
int result = tree->compare(key, current->value);
|
|
|
|
if (result < 0) {
|
|
current = current->left;
|
|
} else if (result > 0) {
|
|
current = current->right;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(current != tree->nil ? current : NULL);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Delete a node indentified by key.
|
|
@return TRUE if success FALSE if not found */
|
|
UNIV_INTERN
|
|
ibool
|
|
rbt_delete(
|
|
/*=======*/
|
|
ib_rbt_t* tree, /*!< in: rb tree */
|
|
const void* key) /*!< in: key to delete */
|
|
{
|
|
ibool deleted = FALSE;
|
|
ib_rbt_node_t* node = (ib_rbt_node_t*) rbt_lookup(tree, key);
|
|
|
|
if (node) {
|
|
rbt_remove_node_and_rebalance(tree, node);
|
|
|
|
ut_free(node);
|
|
deleted = TRUE;
|
|
}
|
|
|
|
return(deleted);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Remove a node from the rb tree, the node is not free'd, that is the
|
|
callers responsibility.
|
|
@return deleted node but without the const */
|
|
UNIV_INTERN
|
|
ib_rbt_node_t*
|
|
rbt_remove_node(
|
|
/*============*/
|
|
ib_rbt_t* tree, /*!< in: rb tree */
|
|
const ib_rbt_node_t* const_node) /*!< in: node to delete, this
|
|
is a fudge and declared const
|
|
because the caller can access
|
|
only const nodes */
|
|
{
|
|
/* Cast away the const. */
|
|
rbt_remove_node_and_rebalance(tree, (ib_rbt_node_t*) const_node);
|
|
|
|
/* This is to make it easier to do something like this:
|
|
ut_free(rbt_remove_node(node));
|
|
*/
|
|
|
|
return((ib_rbt_node_t*) const_node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Find the node that has the lowest key that is >= key.
|
|
@return node satisfying the lower bound constraint or NULL */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_lower_bound(
|
|
/*============*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
const void* key) /*!< in: key to search */
|
|
{
|
|
ib_rbt_node_t* lb_node = NULL;
|
|
ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
while (current != tree->nil) {
|
|
int result = tree->compare(key, current->value);
|
|
|
|
if (result > 0) {
|
|
|
|
current = current->right;
|
|
|
|
} else if (result < 0) {
|
|
|
|
lb_node = current;
|
|
current = current->left;
|
|
|
|
} else {
|
|
lb_node = current;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(lb_node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Find the node that has the greatest key that is <= key.
|
|
@return node satisfying the upper bound constraint or NULL */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_upper_bound(
|
|
/*============*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
const void* key) /*!< in: key to search */
|
|
{
|
|
ib_rbt_node_t* ub_node = NULL;
|
|
ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
while (current != tree->nil) {
|
|
int result = tree->compare(key, current->value);
|
|
|
|
if (result > 0) {
|
|
|
|
ub_node = current;
|
|
current = current->right;
|
|
|
|
} else if (result < 0) {
|
|
|
|
current = current->left;
|
|
|
|
} else {
|
|
ub_node = current;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(ub_node);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Find the node that has the greatest key that is <= key.
|
|
@return value of result */
|
|
UNIV_INTERN
|
|
int
|
|
rbt_search(
|
|
/*=======*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
ib_rbt_bound_t* parent, /*!< in: search bounds */
|
|
const void* key) /*!< in: key to search */
|
|
{
|
|
ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
/* Every thing is greater than the NULL root. */
|
|
parent->result = 1;
|
|
parent->last = NULL;
|
|
|
|
while (current != tree->nil) {
|
|
|
|
parent->last = current;
|
|
parent->result = tree->compare(key, current->value);
|
|
|
|
if (parent->result > 0) {
|
|
current = current->right;
|
|
} else if (parent->result < 0) {
|
|
current = current->left;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(parent->result);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Find the node that has the greatest key that is <= key. But use the
|
|
supplied comparison function.
|
|
@return value of result */
|
|
UNIV_INTERN
|
|
int
|
|
rbt_search_cmp(
|
|
/*===========*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
ib_rbt_bound_t* parent, /*!< in: search bounds */
|
|
const void* key, /*!< in: key to search */
|
|
ib_rbt_compare compare) /*!< in: fn to compare items */
|
|
{
|
|
ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
/* Every thing is greater than the NULL root. */
|
|
parent->result = 1;
|
|
parent->last = NULL;
|
|
|
|
while (current != tree->nil) {
|
|
|
|
parent->last = current;
|
|
parent->result = compare(key, current->value);
|
|
|
|
if (parent->result > 0) {
|
|
current = current->right;
|
|
} else if (parent->result < 0) {
|
|
current = current->left;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(parent->result);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Return the left most node in the tree. */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_first(
|
|
/*======*/
|
|
/* out leftmost node or NULL */
|
|
const ib_rbt_t* tree) /* in: rb tree */
|
|
{
|
|
ib_rbt_node_t* first = NULL;
|
|
ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
while (current != tree->nil) {
|
|
first = current;
|
|
current = current->left;
|
|
}
|
|
|
|
return(first);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Return the right most node in the tree.
|
|
@return the rightmost node or NULL */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_last(
|
|
/*=====*/
|
|
const ib_rbt_t* tree) /*!< in: rb tree */
|
|
{
|
|
ib_rbt_node_t* last = NULL;
|
|
ib_rbt_node_t* current = ROOT(tree);
|
|
|
|
while (current != tree->nil) {
|
|
last = current;
|
|
current = current->right;
|
|
}
|
|
|
|
return(last);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Return the next node.
|
|
@return node next from current */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_next(
|
|
/*=====*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
const ib_rbt_node_t* current) /*!< in: current node */
|
|
{
|
|
return(current ? rbt_find_successor(tree, current) : NULL);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Return the previous node.
|
|
@return node prev from current */
|
|
UNIV_INTERN
|
|
const ib_rbt_node_t*
|
|
rbt_prev(
|
|
/*=====*/
|
|
const ib_rbt_t* tree, /*!< in: rb tree */
|
|
const ib_rbt_node_t* current) /*!< in: current node */
|
|
{
|
|
return(current ? rbt_find_predecessor(tree, current) : NULL);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Reset the tree. Delete all the nodes. */
|
|
UNIV_INTERN
|
|
void
|
|
rbt_clear(
|
|
/*======*/
|
|
ib_rbt_t* tree) /*!< in: rb tree */
|
|
{
|
|
rbt_free_node(ROOT(tree), tree->nil);
|
|
rbt_reset(tree);
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Clear the tree without deleting and freeing its nodes. */
|
|
UNIV_INTERN
|
|
void
|
|
rbt_reset(
|
|
/*======*/
|
|
ib_rbt_t* tree) /*!< in: rb tree */
|
|
{
|
|
tree->n_nodes = 0;
|
|
tree->root->left = tree->root->right = tree->nil;
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Merge the node from dst into src. Return the number of nodes merged.
|
|
@return no. of recs merged */
|
|
UNIV_INTERN
|
|
ulint
|
|
rbt_merge_uniq(
|
|
/*===========*/
|
|
ib_rbt_t* dst, /*!< in: dst rb tree */
|
|
const ib_rbt_t* src) /*!< in: src rb tree */
|
|
{
|
|
ib_rbt_bound_t parent;
|
|
ulint n_merged = 0;
|
|
const ib_rbt_node_t* src_node = rbt_first(src);
|
|
|
|
if (rbt_empty(src) || dst == src) {
|
|
return(0);
|
|
}
|
|
|
|
for (/* No op */; src_node; src_node = rbt_next(src, src_node)) {
|
|
|
|
if (rbt_search(dst, &parent, src_node->value) != 0) {
|
|
rbt_add_node(dst, &parent, src_node->value);
|
|
++n_merged;
|
|
}
|
|
}
|
|
|
|
return(n_merged);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Merge the node from dst into src. Return the number of nodes merged.
|
|
Delete the nodes from src after copying node to dst. As a side effect
|
|
the duplicates will be left untouched in the src.
|
|
@return no. of recs merged */
|
|
UNIV_INTERN
|
|
ulint
|
|
rbt_merge_uniq_destructive(
|
|
/*=======================*/
|
|
ib_rbt_t* dst, /*!< in: dst rb tree */
|
|
ib_rbt_t* src) /*!< in: src rb tree */
|
|
{
|
|
ib_rbt_bound_t parent;
|
|
ib_rbt_node_t* src_node;
|
|
ulint old_size = rbt_size(dst);
|
|
|
|
if (rbt_empty(src) || dst == src) {
|
|
return(0);
|
|
}
|
|
|
|
for (src_node = (ib_rbt_node_t*) rbt_first(src); src_node; /* */) {
|
|
ib_rbt_node_t* prev = src_node;
|
|
|
|
src_node = (ib_rbt_node_t*)rbt_next(src, prev);
|
|
|
|
/* Skip duplicates. */
|
|
if (rbt_search(dst, &parent, prev->value) != 0) {
|
|
|
|
/* Remove and reset the node but preserve
|
|
the node (data) value. */
|
|
rbt_remove_node_and_rebalance(src, prev);
|
|
|
|
/* The nil should be taken from the dst tree. */
|
|
prev->parent = prev->left = prev->right = dst->nil;
|
|
rbt_tree_add_child(dst, &parent, prev);
|
|
rbt_balance_tree(dst, prev);
|
|
|
|
++dst->n_nodes;
|
|
}
|
|
}
|
|
|
|
#if defined(IB_RBT_TESTING)
|
|
ut_a(rbt_validate(dst));
|
|
ut_a(rbt_validate(src));
|
|
#endif
|
|
return(rbt_size(dst) - old_size);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Check that every path from the root to the leaves has the same count and
|
|
the tree nodes are in order.
|
|
@return TRUE if OK FALSE otherwise */
|
|
UNIV_INTERN
|
|
ibool
|
|
rbt_validate(
|
|
/*=========*/
|
|
const ib_rbt_t* tree) /*!< in: RB tree to validate */
|
|
{
|
|
if (rbt_count_black_nodes(tree, ROOT(tree)) > 0) {
|
|
return(rbt_check_ordering(tree));
|
|
}
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Iterate over the tree in depth first order. */
|
|
UNIV_INTERN
|
|
void
|
|
rbt_print(
|
|
/*======*/
|
|
const ib_rbt_t* tree, /*!< in: tree to traverse */
|
|
ib_rbt_print_node print) /*!< in: print function */
|
|
{
|
|
rbt_print_subtree(tree, ROOT(tree), print);
|
|
}
|