mariadb/mysys/queues.c
Davi Arnaut f56dd32bf7 Bug#34043: Server loops excessively in _checkchunk() when safemalloc is enabled
Essentially, the problem is that safemalloc is excruciatingly
slow as it checks all allocated blocks for overrun at each
memory management primitive, yielding a almost exponential
slowdown for the memory management functions (malloc, realloc,
free). The overrun check basically consists of verifying some
bytes of a block for certain magic keys, which catches some
simple forms of overrun. Another minor problem is violation
of aliasing rules and that its own internal list of blocks
is prone to corruption.

Another issue with safemalloc is rather the maintenance cost
as the tool has a significant impact on the server code.
Given the magnitude of memory debuggers available nowadays,
especially those that are provided with the platform malloc
implementation, maintenance of a in-house and largely obsolete
memory debugger becomes a burden that is not worth the effort
due to its slowness and lack of support for detecting more
common forms of heap corruption.

Since there are third-party tools that can provide the same
functionality at a lower or comparable performance cost, the
solution is to simply remove safemalloc. Third-party tools
can provide the same functionality at a lower or comparable
performance cost. 

The removal of safemalloc also allows a simplification of the
malloc wrappers, removing quite a bit of kludge: redefinition
of my_malloc, my_free and the removal of the unused second
argument of my_free. Since free() always check whether the
supplied pointer is null, redudant checks are also removed.

Also, this patch adds unit testing for my_malloc and moves
my_realloc implementation into the same file as the other
memory allocation primitives.

client/mysqldump.c:
  Pass my_free directly as its signature is compatible with the
  callback type -- which wasn't the case for free_table_ent.
2010-07-08 18:20:08 -03:00

687 lines
16 KiB
C

/* Copyright (C) 2000, 2005 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
Code for generell handling of priority Queues.
Implemention of queues from "Algoritms in C" by Robert Sedgewick.
An optimisation of _downheap suggested in Exercise 7.51 in "Data
Structures & Algorithms in C++" by Mark Allen Weiss, Second Edition
was implemented by Mikael Ronstrom 2005. Also the O(N) algorithm
of queue_fix was implemented.
*/
#include "mysys_priv.h"
#include "mysys_err.h"
#include <queues.h>
/*
Init queue
SYNOPSIS
init_queue()
queue Queue to initialise
max_elements Max elements that will be put in queue
offset_to_key Offset to key in element stored in queue
Used when sending pointers to compare function
max_at_top Set to 1 if you want biggest element on top.
compare Compare function for elements, takes 3 arguments.
first_cmp_arg First argument to compare function
NOTES
Will allocate max_element pointers for queue array
RETURN
0 ok
1 Could not allocate memory
*/
int init_queue(QUEUE *queue, uint max_elements, uint offset_to_key,
pbool max_at_top, int (*compare) (void *, uchar *, uchar *),
void *first_cmp_arg)
{
DBUG_ENTER("init_queue");
if ((queue->root= (uchar **) my_malloc((max_elements+1)*sizeof(void*),
MYF(MY_WME))) == 0)
DBUG_RETURN(1);
queue->elements=0;
queue->compare=compare;
queue->first_cmp_arg=first_cmp_arg;
queue->max_elements=max_elements;
queue->offset_to_key=offset_to_key;
queue_set_max_at_top(queue, max_at_top);
DBUG_RETURN(0);
}
/*
Init queue, uses init_queue internally for init work but also accepts
auto_extent as parameter
SYNOPSIS
init_queue_ex()
queue Queue to initialise
max_elements Max elements that will be put in queue
offset_to_key Offset to key in element stored in queue
Used when sending pointers to compare function
max_at_top Set to 1 if you want biggest element on top.
compare Compare function for elements, takes 3 arguments.
first_cmp_arg First argument to compare function
auto_extent When the queue is full and there is insert operation
extend the queue.
NOTES
Will allocate max_element pointers for queue array
RETURN
0 ok
1 Could not allocate memory
*/
int init_queue_ex(QUEUE *queue, uint max_elements, uint offset_to_key,
pbool max_at_top, int (*compare) (void *, uchar *, uchar *),
void *first_cmp_arg, uint auto_extent)
{
int ret;
DBUG_ENTER("init_queue_ex");
if ((ret= init_queue(queue, max_elements, offset_to_key, max_at_top, compare,
first_cmp_arg)))
DBUG_RETURN(ret);
queue->auto_extent= auto_extent;
DBUG_RETURN(0);
}
/*
Reinitialize queue for other usage
SYNOPSIS
reinit_queue()
queue Queue to initialise
max_elements Max elements that will be put in queue
offset_to_key Offset to key in element stored in queue
Used when sending pointers to compare function
max_at_top Set to 1 if you want biggest element on top.
compare Compare function for elements, takes 3 arguments.
first_cmp_arg First argument to compare function
NOTES
This will delete all elements from the queue. If you don't want this,
use resize_queue() instead.
RETURN
0 ok
EE_OUTOFMEMORY Wrong max_elements
*/
int reinit_queue(QUEUE *queue, uint max_elements, uint offset_to_key,
pbool max_at_top, int (*compare) (void *, uchar *, uchar *),
void *first_cmp_arg)
{
DBUG_ENTER("reinit_queue");
queue->elements=0;
queue->compare=compare;
queue->first_cmp_arg=first_cmp_arg;
queue->offset_to_key=offset_to_key;
queue_set_max_at_top(queue, max_at_top);
resize_queue(queue, max_elements);
DBUG_RETURN(0);
}
/*
Resize queue
SYNOPSIS
resize_queue()
queue Queue
max_elements New max size for queue
NOTES
If you resize queue to be less than the elements you have in it,
the extra elements will be deleted
RETURN
0 ok
1 Error. In this case the queue is unchanged
*/
int resize_queue(QUEUE *queue, uint max_elements)
{
uchar **new_root;
DBUG_ENTER("resize_queue");
if (queue->max_elements == max_elements)
DBUG_RETURN(0);
if ((new_root= (uchar **) my_realloc((void *)queue->root,
(max_elements+1)*sizeof(void*),
MYF(MY_WME))) == 0)
DBUG_RETURN(1);
set_if_smaller(queue->elements, max_elements);
queue->max_elements= max_elements;
queue->root= new_root;
DBUG_RETURN(0);
}
/*
Delete queue
SYNOPSIS
delete_queue()
queue Queue to delete
IMPLEMENTATION
Just free allocated memory.
NOTES
Can be called safely multiple times
*/
void delete_queue(QUEUE *queue)
{
DBUG_ENTER("delete_queue");
my_free(queue->root);
queue->root= NULL;
DBUG_VOID_RETURN;
}
/* Code for insert, search and delete of elements */
void queue_insert(register QUEUE *queue, uchar *element)
{
reg2 uint idx, next;
DBUG_ASSERT(queue->elements < queue->max_elements);
queue->root[0]= element;
idx= ++queue->elements;
/* max_at_top swaps the comparison if we want to order by desc */
while ((queue->compare(queue->first_cmp_arg,
element + queue->offset_to_key,
queue->root[(next= idx >> 1)] +
queue->offset_to_key) * queue->max_at_top) < 0)
{
queue->root[idx]= queue->root[next];
idx= next;
}
queue->root[idx]= element;
}
/*
Does safe insert. If no more space left on the queue resize it.
Return codes:
0 - OK
1 - Cannot allocate more memory
2 - auto_extend is 0, the operation would
*/
int queue_insert_safe(register QUEUE *queue, uchar *element)
{
if (queue->elements == queue->max_elements)
{
if (!queue->auto_extent)
return 2;
else if (resize_queue(queue, queue->max_elements + queue->auto_extent))
return 1;
}
queue_insert(queue, element);
return 0;
}
/* Remove item from queue */
/* Returns pointer to removed element */
uchar *queue_remove(register QUEUE *queue, uint idx)
{
uchar *element;
DBUG_ASSERT(idx < queue->max_elements);
element= queue->root[++idx]; /* Intern index starts from 1 */
queue->root[idx]= queue->root[queue->elements--];
_downheap(queue, idx);
return element;
}
/* Fix when element on top has been replaced */
#ifndef queue_replaced
void queue_replaced(QUEUE *queue)
{
_downheap(queue,1);
}
#endif
#ifndef OLD_VERSION
void _downheap(register QUEUE *queue, uint idx)
{
uchar *element;
uint elements,half_queue,offset_to_key, next_index;
my_bool first= TRUE;
uint start_idx= idx;
offset_to_key=queue->offset_to_key;
element=queue->root[idx];
half_queue=(elements=queue->elements) >> 1;
while (idx <= half_queue)
{
next_index=idx+idx;
if (next_index < elements &&
(queue->compare(queue->first_cmp_arg,
queue->root[next_index]+offset_to_key,
queue->root[next_index+1]+offset_to_key) *
queue->max_at_top) > 0)
next_index++;
if (first &&
(((queue->compare(queue->first_cmp_arg,
queue->root[next_index]+offset_to_key,
element+offset_to_key) * queue->max_at_top) >= 0)))
{
queue->root[idx]= element;
return;
}
queue->root[idx]=queue->root[next_index];
idx=next_index;
first= FALSE;
}
next_index= idx >> 1;
while (next_index > start_idx)
{
if ((queue->compare(queue->first_cmp_arg,
queue->root[next_index]+offset_to_key,
element+offset_to_key) *
queue->max_at_top) < 0)
break;
queue->root[idx]=queue->root[next_index];
idx=next_index;
next_index= idx >> 1;
}
queue->root[idx]=element;
}
#else
/*
The old _downheap version is kept for comparisons with the benchmark
suit or new benchmarks anyone wants to run for comparisons.
*/
/* Fix heap when index have changed */
void _downheap(register QUEUE *queue, uint idx)
{
uchar *element;
uint elements,half_queue,next_index,offset_to_key;
offset_to_key=queue->offset_to_key;
element=queue->root[idx];
half_queue=(elements=queue->elements) >> 1;
while (idx <= half_queue)
{
next_index=idx+idx;
if (next_index < elements &&
(queue->compare(queue->first_cmp_arg,
queue->root[next_index]+offset_to_key,
queue->root[next_index+1]+offset_to_key) *
queue->max_at_top) > 0)
next_index++;
if ((queue->compare(queue->first_cmp_arg,
queue->root[next_index]+offset_to_key,
element+offset_to_key) * queue->max_at_top) >= 0)
break;
queue->root[idx]=queue->root[next_index];
idx=next_index;
}
queue->root[idx]=element;
}
#endif
/*
Fix heap when every element was changed.
*/
void queue_fix(QUEUE *queue)
{
uint i;
for (i= queue->elements >> 1; i > 0; i--)
_downheap(queue, i);
}
#ifdef MAIN
/*
A test program for the priority queue implementation.
It can also be used to benchmark changes of the implementation
Build by doing the following in the directory mysys
make test_priority_queue
./test_priority_queue
Written by Mikael Ronström, 2005
*/
static uint num_array[1025];
static uint tot_no_parts= 0;
static uint tot_no_loops= 0;
static uint expected_part= 0;
static uint expected_num= 0;
static bool max_ind= 0;
static bool fix_used= 0;
static ulonglong start_time= 0;
static bool is_divisible_by(uint num, uint divisor)
{
uint quotient= num / divisor;
if (quotient * divisor == num)
return TRUE;
return FALSE;
}
void calculate_next()
{
uint part= expected_part, num= expected_num;
uint no_parts= tot_no_parts;
if (max_ind)
{
do
{
while (++part <= no_parts)
{
if (is_divisible_by(num, part) &&
(num <= ((1 << 21) + part)))
{
expected_part= part;
expected_num= num;
return;
}
}
part= 0;
} while (--num);
}
else
{
do
{
while (--part > 0)
{
if (is_divisible_by(num, part))
{
expected_part= part;
expected_num= num;
return;
}
}
part= no_parts + 1;
} while (++num);
}
}
void calculate_end_next(uint part)
{
uint no_parts= tot_no_parts, num;
num_array[part]= 0;
if (max_ind)
{
expected_num= 0;
for (part= no_parts; part > 0 ; part--)
{
if (num_array[part])
{
num= num_array[part] & 0x3FFFFF;
if (num >= expected_num)
{
expected_num= num;
expected_part= part;
}
}
}
if (expected_num == 0)
expected_part= 0;
}
else
{
expected_num= 0xFFFFFFFF;
for (part= 1; part <= no_parts; part++)
{
if (num_array[part])
{
num= num_array[part] & 0x3FFFFF;
if (num <= expected_num)
{
expected_num= num;
expected_part= part;
}
}
}
if (expected_num == 0xFFFFFFFF)
expected_part= 0;
}
return;
}
static int test_compare(void *null_arg, uchar *a, uchar *b)
{
uint a_num= (*(uint*)a) & 0x3FFFFF;
uint b_num= (*(uint*)b) & 0x3FFFFF;
uint a_part, b_part;
if (a_num > b_num)
return +1;
if (a_num < b_num)
return -1;
a_part= (*(uint*)a) >> 22;
b_part= (*(uint*)b) >> 22;
if (a_part < b_part)
return +1;
if (a_part > b_part)
return -1;
return 0;
}
bool check_num(uint num_part)
{
uint part= num_part >> 22;
uint num= num_part & 0x3FFFFF;
if (part == expected_part)
if (num == expected_num)
return FALSE;
printf("Expect part %u Expect num 0x%x got part %u num 0x%x max_ind %u fix_used %u \n",
expected_part, expected_num, part, num, max_ind, fix_used);
return TRUE;
}
void perform_insert(QUEUE *queue)
{
uint i= 1, no_parts= tot_no_parts;
uint backward_start= 0;
expected_part= 1;
expected_num= 1;
if (max_ind)
backward_start= 1 << 21;
do
{
uint num= (i + backward_start);
if (max_ind)
{
while (!is_divisible_by(num, i))
num--;
if (max_ind && (num > expected_num ||
(num == expected_num && i < expected_part)))
{
expected_num= num;
expected_part= i;
}
}
num_array[i]= num + (i << 22);
if (fix_used)
queue_element(queue, i-1)= (uchar*)&num_array[i];
else
queue_insert(queue, (uchar*)&num_array[i]);
} while (++i <= no_parts);
if (fix_used)
{
queue->elements= no_parts;
queue_fix(queue);
}
}
bool perform_ins_del(QUEUE *queue, bool max_ind)
{
uint i= 0, no_loops= tot_no_loops, j= tot_no_parts;
do
{
uint num_part= *(uint*)queue_top(queue);
uint part= num_part >> 22;
if (check_num(num_part))
return TRUE;
if (j++ >= no_loops)
{
calculate_end_next(part);
queue_remove(queue, (uint) 0);
}
else
{
calculate_next();
if (max_ind)
num_array[part]-= part;
else
num_array[part]+= part;
queue_top(queue)= (uchar*)&num_array[part];
queue_replaced(queue);
}
} while (++i < no_loops);
return FALSE;
}
bool do_test(uint no_parts, uint l_max_ind, bool l_fix_used)
{
QUEUE queue;
bool result;
max_ind= l_max_ind;
fix_used= l_fix_used;
init_queue(&queue, no_parts, 0, max_ind, test_compare, NULL);
tot_no_parts= no_parts;
tot_no_loops= 1024;
perform_insert(&queue);
if ((result= perform_ins_del(&queue, max_ind)))
delete_queue(&queue);
if (result)
{
printf("Error\n");
return TRUE;
}
return FALSE;
}
static void start_measurement()
{
start_time= my_getsystime();
}
static void stop_measurement()
{
ulonglong stop_time= my_getsystime();
uint time_in_micros;
stop_time-= start_time;
stop_time/= 10; /* Convert to microseconds */
time_in_micros= (uint)stop_time;
printf("Time expired is %u microseconds \n", time_in_micros);
}
static void benchmark_test()
{
QUEUE queue_real;
QUEUE *queue= &queue_real;
uint i, add;
fix_used= TRUE;
max_ind= FALSE;
tot_no_parts= 1024;
init_queue(queue, tot_no_parts, 0, max_ind, test_compare, NULL);
/*
First benchmark whether queue_fix is faster than using queue_insert
for sizes of 16 partitions.
*/
for (tot_no_parts= 2, add=2; tot_no_parts < 128;
tot_no_parts+= add, add++)
{
printf("Start benchmark queue_fix, tot_no_parts= %u \n", tot_no_parts);
start_measurement();
for (i= 0; i < 128; i++)
{
perform_insert(queue);
queue_remove_all(queue);
}
stop_measurement();
fix_used= FALSE;
printf("Start benchmark queue_insert\n");
start_measurement();
for (i= 0; i < 128; i++)
{
perform_insert(queue);
queue_remove_all(queue);
}
stop_measurement();
}
/*
Now benchmark insertion and deletion of 16400 elements.
Used in consecutive runs this shows whether the optimised _downheap
is faster than the standard implementation.
*/
printf("Start benchmarking _downheap \n");
start_measurement();
perform_insert(queue);
for (i= 0; i < 65536; i++)
{
uint num, part;
num= *(uint*)queue_top(queue);
num+= 16;
part= num >> 22;
num_array[part]= num;
queue_top(queue)= (uchar*)&num_array[part];
queue_replaced(queue);
}
for (i= 0; i < 16; i++)
queue_remove(queue, (uint) 0);
queue_remove_all(queue);
stop_measurement();
}
int main()
{
int i, add= 1;
for (i= 1; i < 1024; i+=add, add++)
{
printf("Start test for priority queue of size %u\n", i);
if (do_test(i, 0, 1))
return -1;
if (do_test(i, 1, 1))
return -1;
if (do_test(i, 0, 0))
return -1;
if (do_test(i, 1, 0))
return -1;
}
benchmark_test();
printf("OK\n");
return 0;
}
#endif