mariadb/newbrt/pma.c
Bradley C. Kuszmaul bb3f65d84e pma_cursor_next almost works
git-svn-id: file:///svn/tokudb@20 c7de825b-a66e-492c-adef-691d508d4ae1
2007-07-20 12:41:23 +00:00

561 lines
16 KiB
C

/* An in-memory Packed Memory Array dictionary.
The keys and values are arrays of bytes, but are not necessarily kept in scan order.
Only the pointers are kept.
*/
#include "pma-internal.h"
#include "key.h"
#include "memory.h"
#include "myassert.h"
#include "../include/ydb-constants.h"
#include <stdio.h>
#include <errno.h>
/* Only needed for testing. */
#include <string.h>
int pma_n_entries (PMA pma) {
return pma->n_pairs_present;
}
int pma_index_limit (PMA pma) {
return pma->N;
}
int pmanode_valid (PMA pma, int i) {
assert(0<=i); assert(i<pma_index_limit(pma));
return pma->pairs[i].key!=0;
}
bytevec pmanode_key (PMA pma, int i) {
assert(0<=i); assert(i<pma_index_limit(pma));
return pma->pairs[i].key;
}
ITEMLEN pmanode_keylen (PMA pma, int i) {
assert(0<=i); assert(i<pma_index_limit(pma));
return pma->pairs[i].keylen;
}
bytevec pmanode_val (PMA pma, int i) {
assert(0<=i); assert(i<pma_index_limit(pma));
return pma->pairs[i].val;
}
ITEMLEN pmanode_vallen (PMA pma, int i) {
assert(0<=i); assert(i<pma_index_limit(pma));
return pma->pairs[i].vallen;
}
/* Could pick the same one every time if we wanted. */
int pma_random_pick(PMA pma, bytevec *key, ITEMLEN *keylen, bytevec *val, ITEMLEN *vallen) {
#if 1
int i;
/* For now a simple implementation where we simply start at the beginning and look. */
for (i=0; i<pma_index_limit(pma); i++) {
if (pma->pairs[i].key) {
*key = pmanode_key(pma,i);
*keylen = pmanode_keylen(pma,i);
*val = pmanode_val(pma,i);
*vallen = pmanode_vallen(pma,i);
return 0;
}
}
return DB_NOTFOUND;
#else
/* Maybe we should pick a random item to remove in order to reduce the unbalancing. */
int i;
int l = pma_index_limit(pma);
int r = random()%l;
/* For now a simple implementation where we simply start at the beginning and look. */
for (i=0; i<l; i++) {
int ir=(i+r)%l;
if (pma->pairs[ir].key) {
*key = pmanode_key(pma,ir);
*keylen = pmanode_keylen(pma,ir);
*val = pmanode_val(pma,ir);
*vallen = pmanode_vallen(pma,ir);
return 0;
}
}
return DB_NOTFOUND;
#endif
}
static int pma_count_finds=0;
static int pma_count_divides=0;
static int pma_count_scans=0;
void pma_show_stats (void) {
printf("%d finds, %d divides, %d scans\n", pma_count_finds, pma_count_divides, pma_count_scans);
}
// Return the smallest index such that no lower index contains a larger key.
// This will be in the range 0 (inclusive) to pma_index_limit(pma) (inclusive).
// Thus the returned index may not be a valid index into the array if it is == pma_index_limit(pma)
// For example: if the array is empty, that means we return 0.
// For example: if the array is full of small keys, that means we return pma_index_limit(pma), which is off the end of teh array.
// For example: if the array is full of large keys, then we return 0.
int pmainternal_find (PMA pma, bytevec key, int keylen) {
int lo=0, hi=pma_index_limit(pma);
/* lo and hi are the minimum and maximum values (inclusive) that we could possibly return. */
pma_count_finds++;
while (lo<hi) {
int mid;
// Scan forward looking for a non-null value.
for (mid=(lo+hi)/2; mid<hi; mid++) {
if (pma->pairs[mid].key!=0) {
// Found one.
int cmp = keycompare(key,keylen, pma->pairs[mid].key, pma->pairs[mid].keylen);
if (cmp==0) return mid;
else if (cmp<0) {
/* key is smaller than the midpoint, so look in the low half. */
hi = (lo+hi)/2; /* recalculate the midpoint, since mid is no necessarily the midpoint now. */
pma_count_divides++;
goto next_range;
} else {
/* key is larger than the midpoint. So look in the high half. */
lo = mid+1; /* The smallest value we could want to return is lo. */
pma_count_divides++;
goto next_range;
}
/* Not reached */
}
pma_count_scans++;
}
/* If we got here, all from mid to hi were null, so adjust hi to the midpoint. */
/* If the whole array is null, we'll end up returning index 0, which is good. */
hi = (lo+hi)/2;
pma_count_divides++;
next_range: ; /* We have adjusted lo and hi, so look again. */
}
assert(0<=lo);
assert(lo==hi);
assert(hi <= pma_index_limit(pma));
/* If lo points at something, the something should not be smaller than key. */
if (lo>0 && lo < pma_index_limit(pma) && pma->pairs[lo].key) {
//printf("lo=%d\n", lo);
assert(0 >= keycompare(key, keylen, pma->pairs[lo].key, pma->pairs[lo].keylen));
}
return lo;
}
//int min (int i, int j) { if (i<j) return i; else return j; }
//int max (int i, int j) { if (i<j) return j; else return i; }
//double lg (int n) { return log((double)n)/log(2.0); }
int pmainternal_printpairs (struct pair *pairs, int N) {
int count=0;
int i;
printf("{");
for (i=0; i<N; i++) {
if (i!=0) printf(" ");
if (pairs[i].key) {
printf("%s", (char*)pairs[i].key);
count++;
}
else printf("_");
}
printf("}");
return count;
}
void print_pma (PMA pma) {
int count;
printf("N=%d n_present=%d ", pma_index_limit(pma), pma->n_pairs_present);
count=pmainternal_printpairs(pma->pairs, pma_index_limit(pma));
printf("\n");
assert(count==pma->n_pairs_present);
}
/* Smooth the data, and return the location of the null. */
int distribute_data (struct pair *destpairs, int dcount,
struct pair *sourcepairs, int scount) {
assert(scount<=dcount);
if (scount==0) {
return -1;
}
if (scount==1) {
*destpairs=*sourcepairs;
if (destpairs->key==0) return 0;
else return -1;
} else {
int r1 = distribute_data(destpairs, dcount/2,
sourcepairs, scount/2);
int r2 = distribute_data(destpairs +dcount/2, dcount-dcount/2,
sourcepairs+scount/2, scount-scount/2);
assert(r1==-1 || r2==-1);
if (r1!=-1) return r1;
else if (r2!=-1) return r2+dcount/2;
else return -1;
}
}
/* spread the non-empty pairs around. There are n of them. Create an empty slot just before the IDXth
element, and return that slot's index in the smoothed array. */
int pmainternal_smooth_region (struct pair *pairs, int n, int idx) {
int i;
int n_present=0;
for (i=0; i<n; i++) {
if (pairs[i].key) n_present++;
}
n_present++; // Save one for the blank guy.
{
struct pair *MALLOC_N(n_present,tmppairs);
int n_saved=0;
int r;
for (i=0; i<n; i++) {
if (i==idx) {
tmppairs[n_saved++].key = 0;
}
if (pairs[i].key) {
tmppairs[n_saved++] = pairs[i];
}
pairs[i].key = 0;
pairs[i].keylen = 0;
pairs[i].val = 0;
pairs[i].vallen = 0;
}
if (idx==n) {
tmppairs[n_saved++].key = 0;
}
//printf(" temp="); printpairs(tmppairs, n_saved);
assert(n_saved==n_present);
/* Now the tricky part. Distribute the data. */
r=distribute_data (pairs, n,
tmppairs, n_saved);
my_free(tmppairs);
return r;
}
}
int lg (int n) {
int result=0;
int two_to_result = 1;
while (two_to_result<n) {
result++;
two_to_result*=2;
}
return result;
}
void pmainternal_calculate_parameters (PMA pma)
/* Calculate densitystep and uplgN, given N. */
{
int N = pma_index_limit(pma);
int lgN = lg(N);
int n_divisions=0;
//printf("N=%d lgN=%d\n", N, lgN);
while (N/2>=lgN) {
n_divisions++;
N/=2;
}
pma->uplgN=N;
//printf("uplgN = %d n_divisions=%d\n", pma->uplgN, n_divisions);
assert(n_divisions>0);
pma->densitystep = 0.5/n_divisions;
}
int pmainternal_count_region (struct pair *pairs, int lo, int hi) {
int n=0;
while (lo<hi) {
if (pairs[lo].key) n++;
lo++;
}
return n;
}
int pma_create (PMA *pma) {
TAGMALLOC(PMA, result);
int i;
if (result==0) return -1;
result->N = 4;
result->n_pairs_present = 0;
MALLOC_N((1+result->N),result->pairs);
result->pairs[result->N].key = (void*)0xdeadbeef;
//printf("pairs=%p (size=%d)\n", result->pairs,result->N*sizeof(*result->pairs));
if (result->pairs==0) {
my_free(result);
return -1;
}
for (i=0; i<result->N; i++) {
result->pairs[i].key = 0;
result->pairs[i].keylen = 0;
result->pairs[i].val = 0;
result->pairs[i].vallen = 0;
}
pmainternal_calculate_parameters(result);
result->cursors_head = result->cursors_tail = 0;
*pma = result;
assert((unsigned long)result->pairs[result->N].key==0xdeadbeefL);
return 0;
}
int pma_cursor (PMA pma, PMA_CURSOR *cursp) {
PMA_CURSOR MALLOC(curs);
if (errno!=0) return errno;
assert(curs!=0);
curs->position=-1; /* undefined */
if (pma->cursors_head) {
pma->cursors_head->prev = curs;
} else {
pma->cursors_tail = curs;
}
curs->next = pma->cursors_head;
curs->prev = 0;
curs->pma = pma;
curs->skey = 0;
curs->sval=0;
pma->cursors_head = curs;
*cursp=curs;
return 0;
}
int pma_cursor_set_position_last (PMA_CURSOR c)
{
PMA pma = c->pma;
c->position=pma->N-1;
while (c->pma->pairs[c->position].key==0) {
if (c->position>0) c->position--;
else return DB_NOTFOUND;
}
return 0;
}
int pma_cursor_set_position_first (PMA_CURSOR c)
{
PMA pma = c->pma;
c->position=0;
while (c->pma->pairs[c->position].key==0) {
if (c->position+1<pma->N) c->position++;
else return DB_NOTFOUND;
}
return 0;
}
int pma_cursor_set_position_next (PMA_CURSOR c)
{
PMA pma = c->pma;
int old_position=c->position;
c->position++;
while (c->position<pma->N) {
if (c->pma->pairs[c->position].key!=0) return 0;
c->position++;
}
c->position=old_position;
return DB_NOTFOUND;
}
int pma_cget_current (PMA_CURSOR c, DBT *key, DBT *val) {
PMA pma = c->pma;
if (pma->pairs[c->position].key==0) return BRT_KEYEMPTY;
ybt_set_value(key, pma->pairs[c->position].key, pma->pairs[c->position].keylen, &c->skey);
ybt_set_value(val, pma->pairs[c->position].val, pma->pairs[c->position].vallen, &c->sval);
return 0;
}
#if 0
int pma_cget_first (PMA_CURSOR c, YBT *key, YBT *val) {
PMA pma=c->pma;
c->position=0;
if (pma->n_pairs_present==0) return DB_NOTFOUND;
while (pma->pairs[c->position].key==0 && c->position<pma->N) {
c->position++;
}
assert(c->position<pma->N && pma->pairs[c->position].key!=0);
ybt_set_value(key, pma->pairs[c->position].key, pma->pairs[c->position].keylen, &c->skey);
ybt_set_value(val, pma->pairs[c->position].val, pma->pairs[c->position].vallen, &c->sval);
return 0;
}
#endif
int pma_cursor_free (PMA_CURSOR *cursp) {
PMA_CURSOR curs=*cursp;
PMA pma = curs->pma;
if (curs->prev==0) {
assert(pma->cursors_head==curs);
pma->cursors_head = curs->next;
} else {
curs->prev->next = curs->next;
}
if (curs->next==0) {
assert(pma->cursors_tail==curs);
pma->cursors_tail = curs->prev;
} else {
curs->next->prev = curs->prev;
}
if (curs->skey) my_free(curs->skey);
if (curs->sval) my_free(curs->sval);
my_free(curs);
*cursp=0;
return 0;
}
/* Make some space for a key to go at idx (the thing currently at idx should end up at to the right.) */
/* Return the new index. (Making space may involve moving things around, including the hole at index.) */
int pmainternal_make_space_at (PMA pma, int idx) {
/* Within a range LO to HI we have a limit of how much packing we will tolerate.
* We allow the entire array to be 50% full.
* We allow a region of size lgN to be full.
* At sizes in between, we interpolate.
*/
int size=pma->uplgN;
int lo=idx;
int hi=idx;
double density=1.0;
while (1) {
/* set hi-lo equal size, make sure it is a supserset of (hi,lo). */
lo=idx-size/2;
hi=idx+size/2;
//printf("lo=%d hi=%d\n", lo, hi);
if (lo<0) { hi-=lo; lo=0; }
else if (hi>pma_index_limit(pma)) { lo-=(hi-pma_index_limit(pma)); hi=pma_index_limit(pma); }
else { ; /* nothing */ }
//printf("lo=%d hi=%d\n", lo, hi);
assert(0<=lo); assert(lo<hi); assert(hi<=pma_index_limit(pma)); assert(hi-lo==size); // separate into separate assertions so that gcov doesn't see branches not taken.
assert(density>0.499); assert(density<=1);
if (density<0.5001) { assert(lo==0); assert(hi==pma_index_limit(pma)); }
{
int count = (1+ /* Don't forget space for the new guy. */
pmainternal_count_region(pma->pairs, lo, hi));
if (count/(double)(hi-lo) <= density) break;
if (lo==0 && hi==pma_index_limit(pma)) {
/* The array needs to be doubled in size. */
int i;
assert(size==pma_index_limit(pma));
size*=2;
//printf("realloc %p to %d\n", pma->pairs, size*sizeof(*pma->pairs));
pma->pairs = my_realloc(pma->pairs, (1+size)*sizeof(*pma->pairs));
for (i=hi; i<size; i++) pma->pairs[i].key=0;
pma->pairs[size].key = (void*)0xdeadbeefL;
pma->N=size;
pmainternal_calculate_parameters(pma);
hi=size;
//printf("doubled N\n");
break;
}
}
density-=pma->densitystep;
size*=2;
}
//printf("%s:%d Smoothing from %d to %d to density %f\n", __FILE__, __LINE__, lo, hi, density);
{
int new_index = pmainternal_smooth_region(pma->pairs+lo, hi-lo, idx-lo);
return new_index+lo;
}
}
/* Exposes internals of the PMA by returning a pointer to the guts.
* Don't modify the returned data. Don't free it. */
enum pma_errors pma_lookup (PMA pma, bytevec key, ITEMLEN keylen, bytevec*val, ITEMLEN *vallen) {
int l = pmainternal_find(pma, key, keylen);
assert(0<=l ); assert(l<=pma_index_limit(pma));
if (l==pma_index_limit(pma)) return DB_NOTFOUND;
if (keycompare(key,keylen,pma->pairs[l].key,pma->pairs[l].keylen)==0) {
*val = pma->pairs[l].val;
*vallen = pma->pairs[l].vallen;
return BRT_OK;
} else {
return DB_NOTFOUND;
}
}
void maybe_free (const void *p) {
if (p) my_free((void*)p);
}
/* returns 0 if OK.
* You must have freed all the cursors, otherwise returns nonzero and does nothing. */
int pma_free (PMA *pmap) {
int i;
PMA pma=*pmap;
if (pma->cursors_head) return -1;
for (i=0; i<pma_index_limit(pma); i++) {
if (pma->pairs[i].key) {
maybe_free(pma->pairs[i].key);
maybe_free(pma->pairs[i].val);
pma->pairs[i].key=0;
pma->pairs[i].val=0;
}
}
my_free(pma->pairs);
my_free(pma);
*pmap=0;
return 0;
}
/* Copies keylen and datalen */
int pma_insert (PMA pma, bytevec key, ITEMLEN keylen, bytevec data, ITEMLEN datalen) {
int idx = pmainternal_find(pma, key, keylen);
if (idx < pma_index_limit(pma) && pma->pairs[idx].key) {
if (0==keycompare(key, keylen, pma->pairs[idx].key, pma->pairs[idx].keylen)) {
return BRT_ALREADY_THERE; /* It is already here. Return an error. */
}
}
if (pma->pairs[idx].key) {
idx = pmainternal_make_space_at (pma, idx); /* returns the new idx. */
}
assert(!pma->pairs[idx].key);
pma->pairs[idx].key = memdup(key, keylen);
pma->pairs[idx].keylen = keylen;
pma->pairs[idx].val = memdup(data, datalen);
pma->pairs[idx].vallen = datalen;
pma->n_pairs_present++;
return BRT_OK;
}
#if 0
void smooth_after_delete (PMA pma, int idx) {
int size=pma->uplgN;
int lo=idx;
int hi=idx;
double density=0.1;
while (1) {
lo=idx-size/2;
hi=idx+size/2;
if (lo<0) { hi-=lo; lo=0; }
else if (hi>pma_index_limit(pma)) { lo-=(hi-pma_index_limit(pma)); hi=pma_index_limit(pma); }
else { ; /* nothing */ }
assert(density<0.25);
{
int count=pmainternal_count_region(pma->pairs, lo, hi);
if (count/(double)(hi-lo) >= density) break;
if (lo==0 && hi==pma_index_limit(pma)) {
/* The array needs to be shrunk */
}
#endif
int pma_delete (PMA pma, bytevec key, ITEMLEN keylen) {
int l = pmainternal_find(pma, key, keylen);
if (pma->pairs[l].key==0) {
printf("%s:%d l=%d r=%d\n", __FILE__, __LINE__, l, DB_NOTFOUND);
return DB_NOTFOUND;
}
assert(pma->pairs[l].val!=0);
my_free((void*)pma->pairs[l].key);
my_free((void*)pma->pairs[l].val);
pma->pairs[l].key = 0;
pma->pairs[l].val = 0;
pma->pairs[l].keylen = 0;
pma->pairs[l].vallen = 0;
pma->n_pairs_present--;
// Need to rebalance
// smooth_after_delete(pma,l);
return BRT_OK;
}
void pma_iterate (PMA pma, void(*f)(bytevec,ITEMLEN,bytevec,ITEMLEN, void*), void*v) {
int i;
for (i=0; i<pma_index_limit(pma); i++) {
if (pma->pairs[i].key) {
f(pma->pairs[i].key, pma->pairs[i].keylen,
pma->pairs[i].val, pma->pairs[i].vallen,
v);
}
}
}