mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 03:52:35 +01:00
66de4fef76
- wait notification, tpool_wait_begin/tpool_wait_end - to notify the threadpool that current thread is going to wait Use it to wait for IOs to complete and also when purge waits for workers.
341 lines
6.9 KiB
C++
341 lines
6.9 KiB
C++
/* Copyright(C) 2019 MariaDB Corporation
|
|
|
|
This program is free software; you can redistribute itand /or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111 - 1301 USA*/
|
|
|
|
#pragma once
|
|
#include <vector>
|
|
#include <stack>
|
|
#include <mutex>
|
|
#include <condition_variable>
|
|
#include <assert.h>
|
|
#include <algorithm>
|
|
|
|
namespace tpool
|
|
{
|
|
|
|
enum cache_notification_mode
|
|
{
|
|
NOTIFY_ONE,
|
|
NOTIFY_ALL
|
|
};
|
|
|
|
/**
|
|
Generic "pointer" cache of a fixed size
|
|
with fast put/get operations.
|
|
|
|
Compared to STL containers, is faster/does not
|
|
do allocations. However, put() operation will wait
|
|
if there is no free items.
|
|
*/
|
|
template<typename T> class cache
|
|
{
|
|
std::mutex m_mtx;
|
|
std::condition_variable m_cv;
|
|
std::vector<T> m_base;
|
|
std::vector<T*> m_cache;
|
|
cache_notification_mode m_notification_mode;
|
|
int m_waiters;
|
|
|
|
bool is_full()
|
|
{
|
|
return m_cache.size() == m_base.size();
|
|
}
|
|
|
|
public:
|
|
cache(size_t count, cache_notification_mode mode= tpool::cache_notification_mode::NOTIFY_ALL):
|
|
m_mtx(), m_cv(), m_base(count),m_cache(count), m_notification_mode(mode),m_waiters()
|
|
{
|
|
for(size_t i = 0 ; i < count; i++)
|
|
m_cache[i]=&m_base[i];
|
|
}
|
|
|
|
T* get(bool blocking=true)
|
|
{
|
|
std::unique_lock<std::mutex> lk(m_mtx);
|
|
if (blocking)
|
|
{
|
|
while(m_cache.empty())
|
|
m_cv.wait(lk);
|
|
}
|
|
else
|
|
{
|
|
if(m_cache.empty())
|
|
return nullptr;
|
|
}
|
|
T* ret = m_cache.back();
|
|
m_cache.pop_back();
|
|
return ret;
|
|
}
|
|
|
|
|
|
void put(T *ele)
|
|
{
|
|
std::unique_lock<std::mutex> lk(m_mtx);
|
|
m_cache.push_back(ele);
|
|
if (m_notification_mode == NOTIFY_ONE)
|
|
m_cv.notify_one();
|
|
else if(m_cache.size() == 1)
|
|
m_cv.notify_all(); // Signal cache is not empty
|
|
else if(m_waiters && is_full())
|
|
m_cv.notify_all(); // Signal cache is full
|
|
}
|
|
|
|
bool contains(T* ele)
|
|
{
|
|
return ele >= &m_base[0] && ele <= &m_base[m_base.size() -1];
|
|
}
|
|
|
|
/* Wait until cache is full.*/
|
|
void wait()
|
|
{
|
|
std::unique_lock<std::mutex> lk(m_mtx);
|
|
m_waiters++;
|
|
while(!is_full())
|
|
m_cv.wait(lk);
|
|
m_waiters--;
|
|
}
|
|
|
|
size_t size()
|
|
{
|
|
return m_cache.size();
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
Circular, fixed size queue
|
|
used for the task queue.
|
|
|
|
Compared to STL queue, this one is
|
|
faster, and does not do memory allocations
|
|
*/
|
|
template <typename T> class circular_queue
|
|
{
|
|
|
|
public:
|
|
circular_queue(size_t N = 16)
|
|
: m_capacity(N + 1), m_buffer(m_capacity), m_head(), m_tail()
|
|
{
|
|
}
|
|
bool empty() { return m_head == m_tail; }
|
|
bool full() { return (m_head + 1) % m_capacity == m_tail; }
|
|
void clear() { m_head = m_tail = 0; }
|
|
void resize(size_t new_size)
|
|
{
|
|
auto current_size = size();
|
|
if (new_size <= current_size)
|
|
return;
|
|
size_t new_capacity = new_size - 1;
|
|
std::vector<T> new_buffer(new_capacity);
|
|
/* Figure out faster way to copy*/
|
|
size_t i = 0;
|
|
while (!empty())
|
|
{
|
|
T& ele = front();
|
|
pop();
|
|
new_buffer[i++] = ele;
|
|
}
|
|
m_buffer = new_buffer;
|
|
m_capacity = new_capacity;
|
|
m_tail = 0;
|
|
m_head = current_size;
|
|
}
|
|
void push(T ele)
|
|
{
|
|
if (full())
|
|
{
|
|
assert(size() == m_capacity - 1);
|
|
resize(size() + 1024);
|
|
}
|
|
m_buffer[m_head] = ele;
|
|
m_head = (m_head + 1) % m_capacity;
|
|
}
|
|
void push_front(T ele)
|
|
{
|
|
if (full())
|
|
{
|
|
resize(size() + 1024);
|
|
}
|
|
if (m_tail == 0)
|
|
m_tail = m_capacity - 1;
|
|
else
|
|
m_tail--;
|
|
m_buffer[m_tail] = ele;
|
|
}
|
|
T& front()
|
|
{
|
|
assert(!empty());
|
|
return m_buffer[m_tail];
|
|
}
|
|
void pop()
|
|
{
|
|
assert(!empty());
|
|
m_tail = (m_tail + 1) % m_capacity;
|
|
}
|
|
size_t size()
|
|
{
|
|
if (m_head < m_tail)
|
|
{
|
|
return m_capacity - m_tail + m_head;
|
|
}
|
|
else
|
|
{
|
|
return m_head - m_tail;
|
|
}
|
|
}
|
|
|
|
/*Iterator over elements in queue.*/
|
|
class iterator
|
|
{
|
|
size_t m_pos;
|
|
circular_queue<T>* m_queue;
|
|
public:
|
|
explicit iterator(size_t pos , circular_queue<T>* q) : m_pos(pos), m_queue(q) {}
|
|
iterator& operator++()
|
|
{
|
|
m_pos= (m_pos + 1) % m_queue->m_capacity;
|
|
return *this;
|
|
}
|
|
iterator operator++(int)
|
|
{
|
|
iterator retval= *this;
|
|
++*this;
|
|
return retval;
|
|
}
|
|
bool operator==(iterator other) const { return m_pos == other.m_pos; }
|
|
bool operator!=(iterator other) const { return !(*this == other); }
|
|
T& operator*() const { return m_queue->m_buffer[m_pos]; }
|
|
};
|
|
|
|
iterator begin() { return iterator(m_tail, this); }
|
|
iterator end() { return iterator(m_head, this); }
|
|
private:
|
|
size_t m_capacity;
|
|
std::vector<T> m_buffer;
|
|
size_t m_head;
|
|
size_t m_tail;
|
|
};
|
|
|
|
/* Doubly linked list. Intrusive,
|
|
requires element to have m_next and m_prev pointers.
|
|
*/
|
|
template<typename T> class doubly_linked_list
|
|
{
|
|
public:
|
|
T* m_first;
|
|
T* m_last;
|
|
size_t m_count;
|
|
doubly_linked_list():m_first(),m_last(),m_count()
|
|
{}
|
|
void check()
|
|
{
|
|
assert(!m_first || !m_first->m_prev);
|
|
assert(!m_last || !m_last->m_next);
|
|
assert((!m_first && !m_last && m_count == 0)
|
|
|| (m_first != 0 && m_last != 0 && m_count > 0));
|
|
T* current = m_first;
|
|
for(size_t i=1; i< m_count;i++)
|
|
{
|
|
current = current->m_next;
|
|
}
|
|
assert(current == m_last);
|
|
current = m_last;
|
|
for (size_t i = 1; i < m_count; i++)
|
|
{
|
|
current = current->m_prev;
|
|
}
|
|
assert(current == m_first);
|
|
}
|
|
T* front()
|
|
{
|
|
return m_first;
|
|
}
|
|
size_t size()
|
|
{
|
|
return m_count;
|
|
}
|
|
void push_back(T* ele)
|
|
{
|
|
ele->m_prev = m_last;
|
|
if (m_last)
|
|
m_last->m_next = ele;
|
|
|
|
ele->m_next = 0;
|
|
m_last = ele;
|
|
if (!m_first)
|
|
m_first = m_last;
|
|
|
|
m_count++;
|
|
}
|
|
T* back()
|
|
{
|
|
return m_last;
|
|
}
|
|
bool empty()
|
|
{
|
|
return m_count == 0;
|
|
}
|
|
void pop_back()
|
|
{
|
|
m_last = m_last->m_prev;
|
|
if (m_last)
|
|
m_last->m_next = 0;
|
|
else
|
|
m_first = 0;
|
|
m_count--;
|
|
}
|
|
bool contains(T* ele)
|
|
{
|
|
if (!ele)
|
|
return false;
|
|
T* current = m_first;
|
|
while(current)
|
|
{
|
|
if(current == ele)
|
|
return true;
|
|
current = current->m_next;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void erase(T* ele)
|
|
{
|
|
assert(contains(ele));
|
|
|
|
if (ele == m_first)
|
|
{
|
|
m_first = ele->m_next;
|
|
if (m_first)
|
|
m_first->m_prev = 0;
|
|
else
|
|
m_last = 0;
|
|
}
|
|
else if (ele == m_last)
|
|
{
|
|
assert(ele->m_prev);
|
|
m_last = ele->m_prev;
|
|
m_last->m_next = 0;
|
|
}
|
|
else
|
|
{
|
|
assert(ele->m_next);
|
|
assert(ele->m_prev);
|
|
ele->m_next->m_prev = ele->m_prev;
|
|
ele->m_prev->m_next = ele->m_next;
|
|
}
|
|
m_count--;
|
|
}
|
|
};
|
|
|
|
}
|