mariadb/bdb/db/db_cam.c
unknown 155e78f014 BDB 4.1.24
BitKeeper/deleted/.del-ex_access.wpj~3df6ae8c99bf7c5f:
  Delete: bdb/build_vxworks/ex_access/ex_access.wpj
BitKeeper/deleted/.del-ex_btrec.wpj~a7622f1c6f432dc6:
  Delete: bdb/build_vxworks/ex_btrec/ex_btrec.wpj
BitKeeper/deleted/.del-ex_dbclient.wpj~7345440f3b204cdd:
  Delete: bdb/build_vxworks/ex_dbclient/ex_dbclient.wpj
BitKeeper/deleted/.del-ex_env.wpj~fbe1ab10b04e8b74:
  Delete: bdb/build_vxworks/ex_env/ex_env.wpj
BitKeeper/deleted/.del-ex_mpool.wpj~4479cfd5c45f327d:
  Delete: bdb/build_vxworks/ex_mpool/ex_mpool.wpj
BitKeeper/deleted/.del-ex_tpcb.wpj~f78093006e14bf41:
  Delete: bdb/build_vxworks/ex_tpcb/ex_tpcb.wpj
BitKeeper/deleted/.del-db_buildall.dsp~bd749ff6da11682:
  Delete: bdb/build_win32/db_buildall.dsp
BitKeeper/deleted/.del-cxx_app.cpp~ad8df8e0791011ed:
  Delete: bdb/cxx/cxx_app.cpp
BitKeeper/deleted/.del-cxx_log.cpp~a50ff3118fe06952:
  Delete: bdb/cxx/cxx_log.cpp
BitKeeper/deleted/.del-cxx_table.cpp~ecd751e79b055556:
  Delete: bdb/cxx/cxx_table.cpp
BitKeeper/deleted/.del-namemap.txt~796a3acd3885d8fd:
  Delete: bdb/cxx/namemap.txt
BitKeeper/deleted/.del-Design.fileop~3ca4da68f1727373:
  Delete: bdb/db/Design.fileop
BitKeeper/deleted/.del-db185_int.h~61bee3736e7959ef:
  Delete: bdb/db185/db185_int.h
BitKeeper/deleted/.del-acconfig.h~411e8854d67ad8b5:
  Delete: bdb/dist/acconfig.h
BitKeeper/deleted/.del-mutex.m4~a13383cde18a64e1:
  Delete: bdb/dist/aclocal/mutex.m4
BitKeeper/deleted/.del-options.m4~b9d0ca637213750a:
  Delete: bdb/dist/aclocal/options.m4
BitKeeper/deleted/.del-programs.m4~3ce7890b47732b30:
  Delete: bdb/dist/aclocal/programs.m4
BitKeeper/deleted/.del-tcl.m4~f944e2db93c3b6db:
  Delete: bdb/dist/aclocal/tcl.m4
BitKeeper/deleted/.del-types.m4~59cae158c9a32cff:
  Delete: bdb/dist/aclocal/types.m4
BitKeeper/deleted/.del-script~d38f6d3a4f159cb4:
  Delete: bdb/dist/build/script
BitKeeper/deleted/.del-configure.in~ac795a92c8fe049c:
  Delete: bdb/dist/configure.in
BitKeeper/deleted/.del-ltconfig~66bbd007d8024af:
  Delete: bdb/dist/ltconfig
BitKeeper/deleted/.del-rec_ctemp~a28554362534f00a:
  Delete: bdb/dist/rec_ctemp
BitKeeper/deleted/.del-s_tcl~2ffe4326459fcd9f:
  Delete: bdb/dist/s_tcl
BitKeeper/deleted/.del-.IGNORE_ME~d8148b08fa7d5d15:
  Delete: bdb/dist/template/.IGNORE_ME
BitKeeper/deleted/.del-btree.h~179f2aefec1753d:
  Delete: bdb/include/btree.h
BitKeeper/deleted/.del-cxx_int.h~6b649c04766508f8:
  Delete: bdb/include/cxx_int.h
BitKeeper/deleted/.del-db.src~6b433ae615b16a8d:
  Delete: bdb/include/db.src
BitKeeper/deleted/.del-db_185.h~ad8b373d9391d35c:
  Delete: bdb/include/db_185.h
BitKeeper/deleted/.del-db_am.h~a714912b6b75932f:
  Delete: bdb/include/db_am.h
BitKeeper/deleted/.del-db_cxx.h~fcafadf45f5d19e9:
  Delete: bdb/include/db_cxx.h
BitKeeper/deleted/.del-db_dispatch.h~6844f20f7eb46904:
  Delete: bdb/include/db_dispatch.h
BitKeeper/deleted/.del-db_int.src~419a3f48b6a01da7:
  Delete: bdb/include/db_int.src
BitKeeper/deleted/.del-db_join.h~76f9747a42c3399a:
  Delete: bdb/include/db_join.h
BitKeeper/deleted/.del-db_page.h~e302ca3a4db3abdc:
  Delete: bdb/include/db_page.h
BitKeeper/deleted/.del-db_server_int.h~e1d20b6ba3bca1ab:
  Delete: bdb/include/db_server_int.h
BitKeeper/deleted/.del-db_shash.h~5fbf2d696fac90f3:
  Delete: bdb/include/db_shash.h
BitKeeper/deleted/.del-db_swap.h~1e60887550864a59:
  Delete: bdb/include/db_swap.h
BitKeeper/deleted/.del-db_upgrade.h~c644eee73701fc8d:
  Delete: bdb/include/db_upgrade.h
BitKeeper/deleted/.del-db_verify.h~b8d6c297c61f342e:
  Delete: bdb/include/db_verify.h
BitKeeper/deleted/.del-debug.h~dc2b4f2cf27ccebc:
  Delete: bdb/include/debug.h
BitKeeper/deleted/.del-hash.h~2aaa548b28882dfb:
  Delete: bdb/include/hash.h
BitKeeper/deleted/.del-lock.h~a761c1b7de57b77f:
  Delete: bdb/include/lock.h
BitKeeper/deleted/.del-log.h~ff20184238e35e4d:
  Delete: bdb/include/log.h
BitKeeper/deleted/.del-mp.h~7e317597622f3411:
  Delete: bdb/include/mp.h
BitKeeper/deleted/.del-mutex.h~d3ae7a2977a68137:
  Delete: bdb/include/mutex.h
BitKeeper/deleted/.del-os.h~91867cc8757cd0e3:
  Delete: bdb/include/os.h
BitKeeper/deleted/.del-os_jump.h~e1b939fa5151d4be:
  Delete: bdb/include/os_jump.h
BitKeeper/deleted/.del-qam.h~6fad0c1b5723d597:
  Delete: bdb/include/qam.h
BitKeeper/deleted/.del-queue.h~4c72c0826c123d5:
  Delete: bdb/include/queue.h
BitKeeper/deleted/.del-region.h~513fe04d977ca0fc:
  Delete: bdb/include/region.h
BitKeeper/deleted/.del-shqueue.h~525fc3e6c2025c36:
  Delete: bdb/include/shqueue.h
BitKeeper/deleted/.del-tcl_db.h~c536fd61a844f23f:
  Delete: bdb/include/tcl_db.h
BitKeeper/deleted/.del-txn.h~c8d94b221ec147e4:
  Delete: bdb/include/txn.h
BitKeeper/deleted/.del-xa.h~ecc466493aae9d9a:
  Delete: bdb/include/xa.h
BitKeeper/deleted/.del-DbRecoveryInit.java~756b52601a0b9023:
  Delete: bdb/java/src/com/sleepycat/db/DbRecoveryInit.java
BitKeeper/deleted/.del-DbTxnRecover.java~74607cba7ab89d6d:
  Delete: bdb/java/src/com/sleepycat/db/DbTxnRecover.java
BitKeeper/deleted/.del-lock_conflict.c~fc5e0f14cf597a2b:
  Delete: bdb/lock/lock_conflict.c
BitKeeper/deleted/.del-log.src~53ac9e7b5cb023f2:
  Delete: bdb/log/log.src
BitKeeper/deleted/.del-log_findckp.c~24287f008916e81f:
  Delete: bdb/log/log_findckp.c
BitKeeper/deleted/.del-log_rec.c~d51711f2cac09297:
  Delete: bdb/log/log_rec.c
BitKeeper/deleted/.del-log_register.c~b40bb4efac75ca15:
  Delete: bdb/log/log_register.c
BitKeeper/deleted/.del-Design~b3d0f179f2767b:
  Delete: bdb/mp/Design
BitKeeper/deleted/.del-os_finit.c~95dbefc6fe79b26c:
  Delete: bdb/os/os_finit.c
BitKeeper/deleted/.del-os_abs.c~df95d1e7db81924:
  Delete: bdb/os_vxworks/os_abs.c
BitKeeper/deleted/.del-os_finit.c~803b484bdb9d0122:
  Delete: bdb/os_vxworks/os_finit.c
BitKeeper/deleted/.del-os_map.c~3a6d7926398b76d3:
  Delete: bdb/os_vxworks/os_map.c
BitKeeper/deleted/.del-os_finit.c~19a227c6d3c78ad:
  Delete: bdb/os_win32/os_finit.c
BitKeeper/deleted/.del-log-corruption.patch~1cf2ecc7c6408d5d:
  Delete: bdb/patches/log-corruption.patch
BitKeeper/deleted/.del-Btree.pm~af6d0c5eaed4a98e:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB/Btree.pm
BitKeeper/deleted/.del-BerkeleyDB.pm~7244036d4482643:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.pm
BitKeeper/deleted/.del-BerkeleyDB.pod~e7b18fd6132448e3:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.pod
BitKeeper/deleted/.del-Hash.pm~10292a26c06a5c95:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB/Hash.pm
BitKeeper/deleted/.del-BerkeleyDB.pod.P~79f76a1495eda203:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.pod.P
BitKeeper/deleted/.del-BerkeleyDB.xs~80c99afbd98e392c:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.xs
BitKeeper/deleted/.del-Changes~729c1891efa60de9:
  Delete: bdb/perl.BerkeleyDB/Changes
BitKeeper/deleted/.del-MANIFEST~63a1e34aecf157a0:
  Delete: bdb/perl.BerkeleyDB/MANIFEST
BitKeeper/deleted/.del-Makefile.PL~c68797707d8df87a:
  Delete: bdb/perl.BerkeleyDB/Makefile.PL
BitKeeper/deleted/.del-README~5f2f579b1a241407:
  Delete: bdb/perl.BerkeleyDB/README
BitKeeper/deleted/.del-Todo~dca3c66c193adda9:
  Delete: bdb/perl.BerkeleyDB/Todo
BitKeeper/deleted/.del-config.in~ae81681e450e0999:
  Delete: bdb/perl.BerkeleyDB/config.in
BitKeeper/deleted/.del-dbinfo~28ad67d83be4f68e:
  Delete: bdb/perl.BerkeleyDB/dbinfo
BitKeeper/deleted/.del-mkconsts~543ab60669c7a04e:
  Delete: bdb/perl.BerkeleyDB/mkconsts
BitKeeper/deleted/.del-mkpod~182c0ca54e439afb:
  Delete: bdb/perl.BerkeleyDB/mkpod
BitKeeper/deleted/.del-5.004~e008cb5a48805543:
  Delete: bdb/perl.BerkeleyDB/patches/5.004
BitKeeper/deleted/.del-irix_6_5.pl~61662bb08afcdec8:
  Delete: bdb/perl.BerkeleyDB/hints/irix_6_5.pl
BitKeeper/deleted/.del-solaris.pl~6771e7182394e152:
  Delete: bdb/perl.BerkeleyDB/hints/solaris.pl
BitKeeper/deleted/.del-typemap~783b8f5295b05f3d:
  Delete: bdb/perl.BerkeleyDB/typemap
BitKeeper/deleted/.del-5.004_01~6081ce2fff7b0bc:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_01
BitKeeper/deleted/.del-5.004_02~87214eac35ad9e6:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_02
BitKeeper/deleted/.del-5.004_03~9a672becec7cb40f:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_03
BitKeeper/deleted/.del-5.004_04~e326cb51af09d154:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_04
BitKeeper/deleted/.del-5.004_05~7ab457a1e41a92fe:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_05
BitKeeper/deleted/.del-5.005~f9e2d59b5964cd4b:
  Delete: bdb/perl.BerkeleyDB/patches/5.005
BitKeeper/deleted/.del-5.005_01~3eb9fb7b5842ea8e:
  Delete: bdb/perl.BerkeleyDB/patches/5.005_01
BitKeeper/deleted/.del-5.005_02~67477ce0bef717cb:
  Delete: bdb/perl.BerkeleyDB/patches/5.005_02
BitKeeper/deleted/.del-5.005_03~c4c29a1fb21e290a:
  Delete: bdb/perl.BerkeleyDB/patches/5.005_03
BitKeeper/deleted/.del-5.6.0~e1fb9897d124ee22:
  Delete: bdb/perl.BerkeleyDB/patches/5.6.0
BitKeeper/deleted/.del-btree.t~e4a1a3c675ddc406:
  Delete: bdb/perl.BerkeleyDB/t/btree.t
BitKeeper/deleted/.del-db-3.0.t~d2c60991d84558f2:
  Delete: bdb/perl.BerkeleyDB/t/db-3.0.t
BitKeeper/deleted/.del-db-3.1.t~6ee88cd13f55e018:
  Delete: bdb/perl.BerkeleyDB/t/db-3.1.t
BitKeeper/deleted/.del-db-3.2.t~f73b6461f98fd1cf:
  Delete: bdb/perl.BerkeleyDB/t/db-3.2.t
BitKeeper/deleted/.del-destroy.t~cc6a2ae1980a2ecd:
  Delete: bdb/perl.BerkeleyDB/t/destroy.t
BitKeeper/deleted/.del-env.t~a8604a4499c4bd07:
  Delete: bdb/perl.BerkeleyDB/t/env.t
BitKeeper/deleted/.del-examples.t~2571b77c3cc75574:
  Delete: bdb/perl.BerkeleyDB/t/examples.t
BitKeeper/deleted/.del-examples.t.T~8228bdd75ac78b88:
  Delete: bdb/perl.BerkeleyDB/t/examples.t.T
BitKeeper/deleted/.del-examples3.t.T~66a186897a87026d:
  Delete: bdb/perl.BerkeleyDB/t/examples3.t.T
BitKeeper/deleted/.del-examples3.t~fe3822ba2f2d7f83:
  Delete: bdb/perl.BerkeleyDB/t/examples3.t
BitKeeper/deleted/.del-filter.t~f87b045c1b708637:
  Delete: bdb/perl.BerkeleyDB/t/filter.t
BitKeeper/deleted/.del-hash.t~616bfb4d644de3a3:
  Delete: bdb/perl.BerkeleyDB/t/hash.t
BitKeeper/deleted/.del-join.t~29fc39f74a83ca22:
  Delete: bdb/perl.BerkeleyDB/t/join.t
BitKeeper/deleted/.del-mldbm.t~31f5015341eea040:
  Delete: bdb/perl.BerkeleyDB/t/mldbm.t
BitKeeper/deleted/.del-queue.t~8f338034ce44a641:
  Delete: bdb/perl.BerkeleyDB/t/queue.t
BitKeeper/deleted/.del-recno.t~d4ddbd3743add63e:
  Delete: bdb/perl.BerkeleyDB/t/recno.t
BitKeeper/deleted/.del-strict.t~6885cdd2ea71ca2d:
  Delete: bdb/perl.BerkeleyDB/t/strict.t
BitKeeper/deleted/.del-subdb.t~aab62a5d5864c603:
  Delete: bdb/perl.BerkeleyDB/t/subdb.t
BitKeeper/deleted/.del-txn.t~65033b8558ae1216:
  Delete: bdb/perl.BerkeleyDB/t/txn.t
BitKeeper/deleted/.del-unknown.t~f3710458682665e1:
  Delete: bdb/perl.BerkeleyDB/t/unknown.t
BitKeeper/deleted/.del-Changes~436f74a5c414c65b:
  Delete: bdb/perl.DB_File/Changes
BitKeeper/deleted/.del-DB_File.pm~ae0951c6c7665a82:
  Delete: bdb/perl.DB_File/DB_File.pm
BitKeeper/deleted/.del-DB_File.xs~89e49a0b5556f1d8:
  Delete: bdb/perl.DB_File/DB_File.xs
BitKeeper/deleted/.del-DB_File_BS~290fad5dbbb87069:
  Delete: bdb/perl.DB_File/DB_File_BS
BitKeeper/deleted/.del-MANIFEST~90ee581572bdd4ac:
  Delete: bdb/perl.DB_File/MANIFEST
BitKeeper/deleted/.del-Makefile.PL~ac0567bb5a377e38:
  Delete: bdb/perl.DB_File/Makefile.PL
BitKeeper/deleted/.del-README~77e924a5a9bae6b3:
  Delete: bdb/perl.DB_File/README
BitKeeper/deleted/.del-config.in~ab4c2792b86a810b:
  Delete: bdb/perl.DB_File/config.in
BitKeeper/deleted/.del-dbinfo~461c43b30fab2cb:
  Delete: bdb/perl.DB_File/dbinfo
BitKeeper/deleted/.del-dynixptx.pl~50dcddfae25d17e9:
  Delete: bdb/perl.DB_File/hints/dynixptx.pl
BitKeeper/deleted/.del-typemap~55cffb3288a9e587:
  Delete: bdb/perl.DB_File/typemap
BitKeeper/deleted/.del-version.c~a4df0e646f8b3975:
  Delete: bdb/perl.DB_File/version.c
BitKeeper/deleted/.del-5.004_01~d6830d0082702af7:
  Delete: bdb/perl.DB_File/patches/5.004_01
BitKeeper/deleted/.del-5.004_02~78b082dc80c91031:
  Delete: bdb/perl.DB_File/patches/5.004_02
BitKeeper/deleted/.del-5.004~4411ec2e3c9e008b:
  Delete: bdb/perl.DB_File/patches/5.004
BitKeeper/deleted/.del-sco.pl~1e795fe14fe4dcfe:
  Delete: bdb/perl.DB_File/hints/sco.pl
BitKeeper/deleted/.del-5.004_03~33f274648b160d95:
  Delete: bdb/perl.DB_File/patches/5.004_03
BitKeeper/deleted/.del-5.004_04~8f3d1b3cf18bb20a:
  Delete: bdb/perl.DB_File/patches/5.004_04
BitKeeper/deleted/.del-5.004_05~9c0f02e7331e142:
  Delete: bdb/perl.DB_File/patches/5.004_05
BitKeeper/deleted/.del-5.005~c2108cb2e3c8d951:
  Delete: bdb/perl.DB_File/patches/5.005
BitKeeper/deleted/.del-5.005_01~3b45e9673afc4cfa:
  Delete: bdb/perl.DB_File/patches/5.005_01
BitKeeper/deleted/.del-5.005_02~9fe5766bb02a4522:
  Delete: bdb/perl.DB_File/patches/5.005_02
BitKeeper/deleted/.del-5.005_03~ffa1c38c19ae72ea:
  Delete: bdb/perl.DB_File/patches/5.005_03
BitKeeper/deleted/.del-5.6.0~373be3a5ce47be85:
  Delete: bdb/perl.DB_File/patches/5.6.0
BitKeeper/deleted/.del-db-btree.t~3231595a1c241eb3:
  Delete: bdb/perl.DB_File/t/db-btree.t
BitKeeper/deleted/.del-db-hash.t~7c4ad0c795c7fad2:
  Delete: bdb/perl.DB_File/t/db-hash.t
BitKeeper/deleted/.del-db-recno.t~6c2d3d80b9ba4a50:
  Delete: bdb/perl.DB_File/t/db-recno.t
BitKeeper/deleted/.del-db_server.sed~cdb00ebcd48a64e2:
  Delete: bdb/rpc_server/db_server.sed
BitKeeper/deleted/.del-db_server_proc.c~d46c8f409c3747f4:
  Delete: bdb/rpc_server/db_server_proc.c
BitKeeper/deleted/.del-db_server_svc.sed~3f5e59f334fa4607:
  Delete: bdb/rpc_server/db_server_svc.sed
BitKeeper/deleted/.del-db_server_util.c~a809f3a4629acda:
  Delete: bdb/rpc_server/db_server_util.c
BitKeeper/deleted/.del-log.tcl~ff1b41f1355b97d7:
  Delete: bdb/test/log.tcl
BitKeeper/deleted/.del-mpool.tcl~b0df4dc1b04db26c:
  Delete: bdb/test/mpool.tcl
BitKeeper/deleted/.del-mutex.tcl~52fd5c73a150565:
  Delete: bdb/test/mutex.tcl
BitKeeper/deleted/.del-txn.tcl~c4ff071550b5446e:
  Delete: bdb/test/txn.tcl
BitKeeper/deleted/.del-README~e800a12a5392010a:
  Delete: bdb/test/upgrade/README
BitKeeper/deleted/.del-pack-2.6.6.pl~89d5076d758d3e98:
  Delete: bdb/test/upgrade/generate-2.X/pack-2.6.6.pl
BitKeeper/deleted/.del-test-2.6.patch~4a52dc83d447547b:
  Delete: bdb/test/upgrade/generate-2.X/test-2.6.patch
2002-10-30 15:57:05 +04:00

2286 lines
63 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 2000-2002
* Sleepycat Software. All rights reserved.
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: db_cam.c,v 11.114 2002/09/03 15:44:46 krinsky Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/db_page.h"
#include "dbinc/db_shash.h"
#include "dbinc/btree.h"
#include "dbinc/hash.h"
#include "dbinc/lock.h"
#include "dbinc/log.h"
#include "dbinc/qam.h"
static int __db_buildpartial __P((DB *, DBT *, DBT *, DBT *));
static int __db_c_cleanup __P((DBC *, DBC *, int));
static int __db_c_del_secondary __P((DBC *));
static int __db_c_pget_recno __P((DBC *, DBT *, DBT *, u_int32_t));
static int __db_wrlock_err __P((DB_ENV *));
#define CDB_LOCKING_INIT(dbp, dbc) \
/* \
* If we are running CDB, this had better be either a write \
* cursor or an immediate writer. If it's a regular writer, \
* that means we have an IWRITE lock and we need to upgrade \
* it to a write lock. \
*/ \
if (CDB_LOCKING((dbp)->dbenv)) { \
if (!F_ISSET(dbc, DBC_WRITECURSOR | DBC_WRITER)) \
return (__db_wrlock_err(dbp->dbenv)); \
\
if (F_ISSET(dbc, DBC_WRITECURSOR) && \
(ret = (dbp)->dbenv->lock_get((dbp)->dbenv, \
(dbc)->locker, DB_LOCK_UPGRADE, &(dbc)->lock_dbt, \
DB_LOCK_WRITE, &(dbc)->mylock)) != 0) \
return (ret); \
}
#define CDB_LOCKING_DONE(dbp, dbc) \
/* Release the upgraded lock. */ \
if (F_ISSET(dbc, DBC_WRITECURSOR)) \
(void)__lock_downgrade( \
(dbp)->dbenv, &(dbc)->mylock, DB_LOCK_IWRITE, 0);
/*
* Copy the lock info from one cursor to another, so that locking
* in CDB can be done in the context of an internally-duplicated
* or off-page-duplicate cursor.
*/
#define CDB_LOCKING_COPY(dbp, dbc_o, dbc_n) \
if (CDB_LOCKING((dbp)->dbenv) && \
F_ISSET((dbc_o), DBC_WRITECURSOR | DBC_WRITEDUP)) { \
memcpy(&(dbc_n)->mylock, &(dbc_o)->mylock, \
sizeof((dbc_o)->mylock)); \
/* This lock isn't ours to put--just discard it on close. */ \
F_SET((dbc_n), DBC_WRITEDUP); \
}
/*
* __db_c_close --
* Close the cursor.
*
* PUBLIC: int __db_c_close __P((DBC *));
*/
int
__db_c_close(dbc)
DBC *dbc;
{
DB *dbp;
DBC *opd;
DBC_INTERNAL *cp;
DB_ENV *dbenv;
int ret, t_ret;
dbp = dbc->dbp;
dbenv = dbp->dbenv;
ret = 0;
PANIC_CHECK(dbenv);
/*
* If the cursor is already closed we have a serious problem, and we
* assume that the cursor isn't on the active queue. Don't do any of
* the remaining cursor close processing.
*/
if (!F_ISSET(dbc, DBC_ACTIVE)) {
if (dbp != NULL)
__db_err(dbenv, "Closing already-closed cursor");
DB_ASSERT(0);
return (EINVAL);
}
cp = dbc->internal;
opd = cp->opd;
/*
* Remove the cursor(s) from the active queue. We may be closing two
* cursors at once here, a top-level one and a lower-level, off-page
* duplicate one. The acess-method specific cursor close routine must
* close both of them in a single call.
*
* !!!
* Cursors must be removed from the active queue before calling the
* access specific cursor close routine, btree depends on having that
* order of operations.
*/
MUTEX_THREAD_LOCK(dbenv, dbp->mutexp);
if (opd != NULL) {
F_CLR(opd, DBC_ACTIVE);
TAILQ_REMOVE(&dbp->active_queue, opd, links);
}
F_CLR(dbc, DBC_ACTIVE);
TAILQ_REMOVE(&dbp->active_queue, dbc, links);
MUTEX_THREAD_UNLOCK(dbenv, dbp->mutexp);
/* Call the access specific cursor close routine. */
if ((t_ret =
dbc->c_am_close(dbc, PGNO_INVALID, NULL)) != 0 && ret == 0)
ret = t_ret;
/*
* Release the lock after calling the access method specific close
* routine, a Btree cursor may have had pending deletes.
*/
if (CDB_LOCKING(dbenv)) {
/*
* If DBC_WRITEDUP is set, the cursor is an internally
* duplicated write cursor and the lock isn't ours to put.
*
* Also, be sure not to free anything if mylock.off is
* INVALID; in some cases, such as idup'ed read cursors
* and secondary update cursors, a cursor in a CDB
* environment may not have a lock at all.
*/
if (!F_ISSET(dbc, DBC_WRITEDUP) && LOCK_ISSET(dbc->mylock)) {
if ((t_ret = dbenv->lock_put(
dbenv, &dbc->mylock)) != 0 && ret == 0)
ret = t_ret;
}
/* For safety's sake, since this is going on the free queue. */
memset(&dbc->mylock, 0, sizeof(dbc->mylock));
F_CLR(dbc, DBC_WRITEDUP);
}
if (dbc->txn != NULL)
dbc->txn->cursors--;
/* Move the cursor(s) to the free queue. */
MUTEX_THREAD_LOCK(dbenv, dbp->mutexp);
if (opd != NULL) {
if (dbc->txn != NULL)
dbc->txn->cursors--;
TAILQ_INSERT_TAIL(&dbp->free_queue, opd, links);
opd = NULL;
}
TAILQ_INSERT_TAIL(&dbp->free_queue, dbc, links);
MUTEX_THREAD_UNLOCK(dbenv, dbp->mutexp);
return (ret);
}
/*
* __db_c_destroy --
* Destroy the cursor, called after DBC->c_close.
*
* PUBLIC: int __db_c_destroy __P((DBC *));
*/
int
__db_c_destroy(dbc)
DBC *dbc;
{
DB *dbp;
DB_ENV *dbenv;
int ret, t_ret;
dbp = dbc->dbp;
dbenv = dbp->dbenv;
/* Remove the cursor from the free queue. */
MUTEX_THREAD_LOCK(dbenv, dbp->mutexp);
TAILQ_REMOVE(&dbp->free_queue, dbc, links);
MUTEX_THREAD_UNLOCK(dbenv, dbp->mutexp);
/* Free up allocated memory. */
if (dbc->my_rskey.data != NULL)
__os_free(dbenv, dbc->my_rskey.data);
if (dbc->my_rkey.data != NULL)
__os_free(dbenv, dbc->my_rkey.data);
if (dbc->my_rdata.data != NULL)
__os_free(dbenv, dbc->my_rdata.data);
/* Call the access specific cursor destroy routine. */
ret = dbc->c_am_destroy == NULL ? 0 : dbc->c_am_destroy(dbc);
/*
* Release the lock id for this cursor.
*/
if (LOCKING_ON(dbenv) &&
F_ISSET(dbc, DBC_OWN_LID) &&
(t_ret = dbenv->lock_id_free(dbenv, dbc->lid)) != 0 && ret == 0)
ret = t_ret;
__os_free(dbenv, dbc);
return (ret);
}
/*
* __db_c_count --
* Return a count of duplicate data items.
*
* PUBLIC: int __db_c_count __P((DBC *, db_recno_t *, u_int32_t));
*/
int
__db_c_count(dbc, recnop, flags)
DBC *dbc;
db_recno_t *recnop;
u_int32_t flags;
{
DB *dbp;
int ret;
/*
* Cursor Cleanup Note:
* All of the cursors passed to the underlying access methods by this
* routine are not duplicated and will not be cleaned up on return.
* So, pages/locks that the cursor references must be resolved by the
* underlying functions.
*/
dbp = dbc->dbp;
PANIC_CHECK(dbp->dbenv);
/* Check for invalid flags. */
if ((ret = __db_ccountchk(dbp, flags, IS_INITIALIZED(dbc))) != 0)
return (ret);
switch (dbc->dbtype) {
case DB_QUEUE:
case DB_RECNO:
*recnop = 1;
break;
case DB_HASH:
if (dbc->internal->opd == NULL) {
if ((ret = __ham_c_count(dbc, recnop)) != 0)
return (ret);
break;
}
/* FALLTHROUGH */
case DB_BTREE:
if ((ret = __bam_c_count(dbc, recnop)) != 0)
return (ret);
break;
default:
return (__db_unknown_type(dbp->dbenv,
"__db_c_count", dbp->type));
}
return (0);
}
/*
* __db_c_del --
* Delete using a cursor.
*
* PUBLIC: int __db_c_del __P((DBC *, u_int32_t));
*/
int
__db_c_del(dbc, flags)
DBC *dbc;
u_int32_t flags;
{
DB *dbp;
DBC *opd;
int ret;
/*
* Cursor Cleanup Note:
* All of the cursors passed to the underlying access methods by this
* routine are not duplicated and will not be cleaned up on return.
* So, pages/locks that the cursor references must be resolved by the
* underlying functions.
*/
dbp = dbc->dbp;
PANIC_CHECK(dbp->dbenv);
/* Check for invalid flags. */
if ((ret = __db_cdelchk(dbp, flags, IS_INITIALIZED(dbc))) != 0)
return (ret);
/* Check for consistent transaction usage. */
if ((ret = __db_check_txn(dbp, dbc->txn, dbc->locker, 0)) != 0)
return (ret);
DEBUG_LWRITE(dbc, dbc->txn, "db_c_del", NULL, NULL, flags);
CDB_LOCKING_INIT(dbp, dbc);
/*
* If we're a secondary index, and DB_UPDATE_SECONDARY isn't set
* (which it only is if we're being called from a primary update),
* then we need to call through to the primary and delete the item.
*
* Note that this will delete the current item; we don't need to
* delete it ourselves as well, so we can just goto done.
*/
if (flags != DB_UPDATE_SECONDARY && F_ISSET(dbp, DB_AM_SECONDARY)) {
ret = __db_c_del_secondary(dbc);
goto done;
}
/*
* If we are a primary and have secondary indices, go through
* and delete any secondary keys that point at the current record.
*/
if (LIST_FIRST(&dbp->s_secondaries) != NULL &&
(ret = __db_c_del_primary(dbc)) != 0)
goto done;
/*
* Off-page duplicate trees are locked in the primary tree, that is,
* we acquire a write lock in the primary tree and no locks in the
* off-page dup tree. If the del operation is done in an off-page
* duplicate tree, call the primary cursor's upgrade routine first.
*/
opd = dbc->internal->opd;
if (opd == NULL)
ret = dbc->c_am_del(dbc);
else
if ((ret = dbc->c_am_writelock(dbc)) == 0)
ret = opd->c_am_del(opd);
done: CDB_LOCKING_DONE(dbp, dbc);
return (ret);
}
/*
* __db_c_dup --
* Duplicate a cursor
*
* PUBLIC: int __db_c_dup __P((DBC *, DBC **, u_int32_t));
*/
int
__db_c_dup(dbc_orig, dbcp, flags)
DBC *dbc_orig;
DBC **dbcp;
u_int32_t flags;
{
DB_ENV *dbenv;
DB *dbp;
DBC *dbc_n, *dbc_nopd;
int ret;
dbp = dbc_orig->dbp;
dbenv = dbp->dbenv;
dbc_n = dbc_nopd = NULL;
PANIC_CHECK(dbp->dbenv);
/*
* We can never have two write cursors open in CDB, so do not
* allow duplication of a write cursor.
*/
if (flags != DB_POSITIONI &&
F_ISSET(dbc_orig, DBC_WRITER | DBC_WRITECURSOR)) {
__db_err(dbenv, "Cannot duplicate writeable cursor");
return (EINVAL);
}
/* Allocate a new cursor and initialize it. */
if ((ret = __db_c_idup(dbc_orig, &dbc_n, flags)) != 0)
goto err;
*dbcp = dbc_n;
/*
* If we're in CDB, and this isn't an internal duplication (in which
* case we're explicitly overriding CDB locking), the duplicated
* cursor needs its own read lock. (We know it's not a write cursor
* because we wouldn't have made it this far; you can't dup them.)
*/
if (CDB_LOCKING(dbenv) && flags != DB_POSITIONI) {
DB_ASSERT(!F_ISSET(dbc_orig, DBC_WRITER | DBC_WRITECURSOR));
if ((ret = dbenv->lock_get(dbenv, dbc_n->locker, 0,
&dbc_n->lock_dbt, DB_LOCK_READ, &dbc_n->mylock)) != 0) {
(void)__db_c_close(dbc_n);
return (ret);
}
}
/*
* If the cursor references an off-page duplicate tree, allocate a
* new cursor for that tree and initialize it.
*/
if (dbc_orig->internal->opd != NULL) {
if ((ret =
__db_c_idup(dbc_orig->internal->opd, &dbc_nopd, flags)) != 0)
goto err;
dbc_n->internal->opd = dbc_nopd;
}
/* Copy the dirty read flag to the new cursor. */
F_SET(dbc_n, F_ISSET(dbc_orig, DBC_DIRTY_READ));
return (0);
err: if (dbc_n != NULL)
(void)dbc_n->c_close(dbc_n);
if (dbc_nopd != NULL)
(void)dbc_nopd->c_close(dbc_nopd);
return (ret);
}
/*
* __db_c_idup --
* Internal version of __db_c_dup.
*
* PUBLIC: int __db_c_idup __P((DBC *, DBC **, u_int32_t));
*/
int
__db_c_idup(dbc_orig, dbcp, flags)
DBC *dbc_orig, **dbcp;
u_int32_t flags;
{
DB *dbp;
DBC *dbc_n;
DBC_INTERNAL *int_n, *int_orig;
int ret;
dbp = dbc_orig->dbp;
dbc_n = *dbcp;
if ((ret = __db_icursor(dbp, dbc_orig->txn, dbc_orig->dbtype,
dbc_orig->internal->root, F_ISSET(dbc_orig, DBC_OPD),
dbc_orig->locker, &dbc_n)) != 0)
return (ret);
/* If the user wants the cursor positioned, do it here. */
if (flags == DB_POSITION || flags == DB_POSITIONI) {
int_n = dbc_n->internal;
int_orig = dbc_orig->internal;
dbc_n->flags |= dbc_orig->flags & ~DBC_OWN_LID;
int_n->indx = int_orig->indx;
int_n->pgno = int_orig->pgno;
int_n->root = int_orig->root;
int_n->lock_mode = int_orig->lock_mode;
switch (dbc_orig->dbtype) {
case DB_QUEUE:
if ((ret = __qam_c_dup(dbc_orig, dbc_n)) != 0)
goto err;
break;
case DB_BTREE:
case DB_RECNO:
if ((ret = __bam_c_dup(dbc_orig, dbc_n)) != 0)
goto err;
break;
case DB_HASH:
if ((ret = __ham_c_dup(dbc_orig, dbc_n)) != 0)
goto err;
break;
default:
ret = __db_unknown_type(dbp->dbenv,
"__db_c_idup", dbc_orig->dbtype);
goto err;
}
}
/* Now take care of duping the CDB information. */
CDB_LOCKING_COPY(dbp, dbc_orig, dbc_n);
/* Copy the dirty read flag to the new cursor. */
F_SET(dbc_n, F_ISSET(dbc_orig, DBC_DIRTY_READ));
*dbcp = dbc_n;
return (0);
err: (void)dbc_n->c_close(dbc_n);
return (ret);
}
/*
* __db_c_newopd --
* Create a new off-page duplicate cursor.
*
* PUBLIC: int __db_c_newopd __P((DBC *, db_pgno_t, DBC *, DBC **));
*/
int
__db_c_newopd(dbc_parent, root, oldopd, dbcp)
DBC *dbc_parent;
db_pgno_t root;
DBC *oldopd;
DBC **dbcp;
{
DB *dbp;
DBC *opd;
DBTYPE dbtype;
int ret;
dbp = dbc_parent->dbp;
dbtype = (dbp->dup_compare == NULL) ? DB_RECNO : DB_BTREE;
/*
* On failure, we want to default to returning the old off-page dup
* cursor, if any; our caller can't be left with a dangling pointer
* to a freed cursor. On error the only allowable behavior is to
* close the cursor (and the old OPD cursor it in turn points to), so
* this should be safe.
*/
*dbcp = oldopd;
if ((ret = __db_icursor(dbp,
dbc_parent->txn, dbtype, root, 1, dbc_parent->locker, &opd)) != 0)
return (ret);
/* !!!
* If the parent is a DBC_WRITER, this won't copy anything. That's
* not actually a problem--we only need lock information in an
* off-page dup cursor in order to upgrade at cursor close time
* if we've done a delete, but WRITERs don't need to upgrade.
*/
CDB_LOCKING_COPY(dbp, dbc_parent, opd);
*dbcp = opd;
/*
* Check to see if we already have an off-page dup cursor that we've
* passed in. If we do, close it. It'd be nice to use it again
* if it's a cursor belonging to the right tree, but if we're doing
* a cursor-relative operation this might not be safe, so for now
* we'll take the easy way out and always close and reopen.
*
* Note that under no circumstances do we want to close the old
* cursor without returning a valid new one; we don't want to
* leave the main cursor in our caller with a non-NULL pointer
* to a freed off-page dup cursor.
*/
if (oldopd != NULL && (ret = oldopd->c_close(oldopd)) != 0)
return (ret);
return (0);
}
/*
* __db_c_get --
* Get using a cursor.
*
* PUBLIC: int __db_c_get __P((DBC *, DBT *, DBT *, u_int32_t));
*/
int
__db_c_get(dbc_arg, key, data, flags)
DBC *dbc_arg;
DBT *key, *data;
u_int32_t flags;
{
DB *dbp;
DBC *dbc, *dbc_n, *opd;
DBC_INTERNAL *cp, *cp_n;
DB_MPOOLFILE *mpf;
db_pgno_t pgno;
u_int32_t multi, tmp_dirty, tmp_flags, tmp_rmw;
u_int8_t type;
int ret, t_ret;
/*
* Cursor Cleanup Note:
* All of the cursors passed to the underlying access methods by this
* routine are duplicated cursors. On return, any referenced pages
* will be discarded, and, if the cursor is not intended to be used
* again, the close function will be called. So, pages/locks that
* the cursor references do not need to be resolved by the underlying
* functions.
*/
dbp = dbc_arg->dbp;
mpf = dbp->mpf;
dbc_n = NULL;
opd = NULL;
PANIC_CHECK(dbp->dbenv);
/* Check for invalid flags. */
if ((ret =
__db_cgetchk(dbp, key, data, flags, IS_INITIALIZED(dbc_arg))) != 0)
return (ret);
/* Clear OR'd in additional bits so we can check for flag equality. */
tmp_rmw = LF_ISSET(DB_RMW);
LF_CLR(DB_RMW);
tmp_dirty = LF_ISSET(DB_DIRTY_READ);
LF_CLR(DB_DIRTY_READ);
multi = LF_ISSET(DB_MULTIPLE|DB_MULTIPLE_KEY);
LF_CLR(DB_MULTIPLE|DB_MULTIPLE_KEY);
DEBUG_LREAD(dbc_arg, dbc_arg->txn, "db_c_get",
flags == DB_SET || flags == DB_SET_RANGE ? key : NULL, NULL, flags);
/*
* Return a cursor's record number. It has nothing to do with the
* cursor get code except that it was put into the interface.
*/
if (flags == DB_GET_RECNO) {
if (tmp_rmw)
F_SET(dbc_arg, DBC_RMW);
if (tmp_dirty)
F_SET(dbc_arg, DBC_DIRTY_READ);
ret = __bam_c_rget(dbc_arg, data);
if (tmp_rmw)
F_CLR(dbc_arg, DBC_RMW);
if (tmp_dirty)
F_CLR(dbc_arg, DBC_DIRTY_READ);
return (ret);
}
if (flags == DB_CONSUME || flags == DB_CONSUME_WAIT)
CDB_LOCKING_INIT(dbp, dbc_arg);
/*
* If we have an off-page duplicates cursor, and the operation applies
* to it, perform the operation. Duplicate the cursor and call the
* underlying function.
*
* Off-page duplicate trees are locked in the primary tree, that is,
* we acquire a write lock in the primary tree and no locks in the
* off-page dup tree. If the DB_RMW flag was specified and the get
* operation is done in an off-page duplicate tree, call the primary
* cursor's upgrade routine first.
*/
cp = dbc_arg->internal;
if (cp->opd != NULL &&
(flags == DB_CURRENT || flags == DB_GET_BOTHC ||
flags == DB_NEXT || flags == DB_NEXT_DUP || flags == DB_PREV)) {
if (tmp_rmw && (ret = dbc_arg->c_am_writelock(dbc_arg)) != 0)
return (ret);
if ((ret = __db_c_idup(cp->opd, &opd, DB_POSITIONI)) != 0)
return (ret);
switch (ret =
opd->c_am_get(opd, key, data, flags, NULL)) {
case 0:
goto done;
case DB_NOTFOUND:
/*
* Translate DB_NOTFOUND failures for the DB_NEXT and
* DB_PREV operations into a subsequent operation on
* the parent cursor.
*/
if (flags == DB_NEXT || flags == DB_PREV) {
if ((ret = opd->c_close(opd)) != 0)
goto err;
opd = NULL;
break;
}
goto err;
default:
goto err;
}
}
/*
* Perform an operation on the main cursor. Duplicate the cursor,
* upgrade the lock as required, and call the underlying function.
*/
switch (flags) {
case DB_CURRENT:
case DB_GET_BOTHC:
case DB_NEXT:
case DB_NEXT_DUP:
case DB_NEXT_NODUP:
case DB_PREV:
case DB_PREV_NODUP:
tmp_flags = DB_POSITIONI;
break;
default:
tmp_flags = 0;
break;
}
if (tmp_dirty)
F_SET(dbc_arg, DBC_DIRTY_READ);
/*
* If this cursor is going to be closed immediately, we don't
* need to take precautions to clean it up on error.
*/
if (F_ISSET(dbc_arg, DBC_TRANSIENT))
dbc_n = dbc_arg;
else {
ret = __db_c_idup(dbc_arg, &dbc_n, tmp_flags);
if (tmp_dirty)
F_CLR(dbc_arg, DBC_DIRTY_READ);
if (ret != 0)
goto err;
COPY_RET_MEM(dbc_arg, dbc_n);
}
if (tmp_rmw)
F_SET(dbc_n, DBC_RMW);
switch (multi) {
case DB_MULTIPLE:
F_SET(dbc_n, DBC_MULTIPLE);
break;
case DB_MULTIPLE_KEY:
F_SET(dbc_n, DBC_MULTIPLE_KEY);
break;
case DB_MULTIPLE | DB_MULTIPLE_KEY:
F_SET(dbc_n, DBC_MULTIPLE|DBC_MULTIPLE_KEY);
break;
case 0:
break;
}
pgno = PGNO_INVALID;
ret = dbc_n->c_am_get(dbc_n, key, data, flags, &pgno);
if (tmp_rmw)
F_CLR(dbc_n, DBC_RMW);
if (tmp_dirty)
F_CLR(dbc_arg, DBC_DIRTY_READ);
F_CLR(dbc_n, DBC_MULTIPLE|DBC_MULTIPLE_KEY);
if (ret != 0)
goto err;
cp_n = dbc_n->internal;
/*
* We may be referencing a new off-page duplicates tree. Acquire
* a new cursor and call the underlying function.
*/
if (pgno != PGNO_INVALID) {
if ((ret = __db_c_newopd(dbc_arg,
pgno, cp_n->opd, &cp_n->opd)) != 0)
goto err;
switch (flags) {
case DB_FIRST:
case DB_NEXT:
case DB_NEXT_NODUP:
case DB_SET:
case DB_SET_RECNO:
case DB_SET_RANGE:
tmp_flags = DB_FIRST;
break;
case DB_LAST:
case DB_PREV:
case DB_PREV_NODUP:
tmp_flags = DB_LAST;
break;
case DB_GET_BOTH:
case DB_GET_BOTHC:
case DB_GET_BOTH_RANGE:
tmp_flags = flags;
break;
default:
ret =
__db_unknown_flag(dbp->dbenv, "__db_c_get", flags);
goto err;
}
if ((ret = cp_n->opd->c_am_get(
cp_n->opd, key, data, tmp_flags, NULL)) != 0)
goto err;
}
done: /*
* Return a key/data item. The only exception is that we don't return
* a key if the user already gave us one, that is, if the DB_SET flag
* was set. The DB_SET flag is necessary. In a Btree, the user's key
* doesn't have to be the same as the key stored the tree, depending on
* the magic performed by the comparison function. As we may not have
* done any key-oriented operation here, the page reference may not be
* valid. Fill it in as necessary. We don't have to worry about any
* locks, the cursor must already be holding appropriate locks.
*
* XXX
* If not a Btree and DB_SET_RANGE is set, we shouldn't return a key
* either, should we?
*/
cp_n = dbc_n == NULL ? dbc_arg->internal : dbc_n->internal;
if (!F_ISSET(key, DB_DBT_ISSET)) {
if (cp_n->page == NULL && (ret =
mpf->get(mpf, &cp_n->pgno, 0, &cp_n->page)) != 0)
goto err;
if ((ret = __db_ret(dbp, cp_n->page, cp_n->indx,
key, &dbc_arg->rkey->data, &dbc_arg->rkey->ulen)) != 0)
goto err;
}
if (multi != 0) {
/*
* Even if fetching from the OPD cursor we need a duplicate
* primary cursor if we are going after multiple keys.
*/
if (dbc_n == NULL) {
/*
* Non-"_KEY" DB_MULTIPLE doesn't move the main cursor,
* so it's safe to just use dbc_arg, unless dbc_arg
* has an open OPD cursor whose state might need to
* be preserved.
*/
if ((!(multi & DB_MULTIPLE_KEY) &&
dbc_arg->internal->opd == NULL) ||
F_ISSET(dbc_arg, DBC_TRANSIENT))
dbc_n = dbc_arg;
else {
if ((ret = __db_c_idup(dbc_arg,
&dbc_n, DB_POSITIONI)) != 0)
goto err;
if ((ret = dbc_n->c_am_get(dbc_n,
key, data, DB_CURRENT, &pgno)) != 0)
goto err;
}
cp_n = dbc_n->internal;
}
/*
* If opd is set then we dupped the opd that we came in with.
* When we return we may have a new opd if we went to another
* key.
*/
if (opd != NULL) {
DB_ASSERT(cp_n->opd == NULL);
cp_n->opd = opd;
opd = NULL;
}
/*
* Bulk get doesn't use __db_retcopy, so data.size won't
* get set up unless there is an error. Assume success
* here. This is the only call to c_am_bulk, and it avoids
* setting it exactly the same everywhere. If we have an
* ENOMEM error, it'll get overwritten with the needed value.
*/
data->size = data->ulen;
ret = dbc_n->c_am_bulk(dbc_n, data, flags | multi);
} else if (!F_ISSET(data, DB_DBT_ISSET)) {
dbc = opd != NULL ? opd : cp_n->opd != NULL ? cp_n->opd : dbc_n;
type = TYPE(dbc->internal->page);
ret = __db_ret(dbp, dbc->internal->page, dbc->internal->indx +
(type == P_LBTREE || type == P_HASH ? O_INDX : 0),
data, &dbc_arg->rdata->data, &dbc_arg->rdata->ulen);
}
err: /* Don't pass DB_DBT_ISSET back to application level, error or no. */
F_CLR(key, DB_DBT_ISSET);
F_CLR(data, DB_DBT_ISSET);
/* Cleanup and cursor resolution. */
if (opd != NULL) {
if ((t_ret = __db_c_cleanup(
dbc_arg->internal->opd, opd, ret)) != 0 && ret == 0)
ret = t_ret;
}
if ((t_ret = __db_c_cleanup(dbc_arg, dbc_n, ret)) != 0 && ret == 0)
ret = t_ret;
if (flags == DB_CONSUME || flags == DB_CONSUME_WAIT)
CDB_LOCKING_DONE(dbp, dbc_arg);
return (ret);
}
/*
* __db_c_put --
* Put using a cursor.
*
* PUBLIC: int __db_c_put __P((DBC *, DBT *, DBT *, u_int32_t));
*/
int
__db_c_put(dbc_arg, key, data, flags)
DBC *dbc_arg;
DBT *key, *data;
u_int32_t flags;
{
DB *dbp, *sdbp;
DBC *dbc_n, *oldopd, *opd, *sdbc, *pdbc;
DBT olddata, oldpkey, oldskey, newdata, pkey, save_skey, skey, temp;
db_pgno_t pgno;
int cmp, have_oldrec, ispartial, nodel, re_pad, ret, rmw, t_ret;
u_int32_t re_len, size, tmp_flags;
/*
* Cursor Cleanup Note:
* All of the cursors passed to the underlying access methods by this
* routine are duplicated cursors. On return, any referenced pages
* will be discarded, and, if the cursor is not intended to be used
* again, the close function will be called. So, pages/locks that
* the cursor references do not need to be resolved by the underlying
* functions.
*/
dbp = dbc_arg->dbp;
sdbp = NULL;
pdbc = dbc_n = NULL;
memset(&newdata, 0, sizeof(DBT));
PANIC_CHECK(dbp->dbenv);
/* Check for invalid flags. */
if ((ret = __db_cputchk(dbp,
key, data, flags, IS_INITIALIZED(dbc_arg))) != 0)
return (ret);
/* Check for consistent transaction usage. */
if ((ret = __db_check_txn(dbp, dbc_arg->txn, dbc_arg->locker, 0)) != 0)
return (ret);
/*
* Putting to secondary indices is forbidden; when we need
* to internally update one, we'll call this with a private
* synonym for DB_KEYLAST, DB_UPDATE_SECONDARY, which does
* the right thing but won't return an error from cputchk().
*/
if (flags == DB_UPDATE_SECONDARY)
flags = DB_KEYLAST;
DEBUG_LWRITE(dbc_arg, dbc_arg->txn, "db_c_put",
flags == DB_KEYFIRST || flags == DB_KEYLAST ||
flags == DB_NODUPDATA ? key : NULL, data, flags);
CDB_LOCKING_INIT(dbp, dbc_arg);
/*
* Check to see if we are a primary and have secondary indices.
* If we are not, we save ourselves a good bit of trouble and
* just skip to the "normal" put.
*/
if (LIST_FIRST(&dbp->s_secondaries) == NULL)
goto skip_s_update;
/*
* We have at least one secondary which we may need to update.
*
* There is a rather vile locking issue here. Secondary gets
* will always involve acquiring a read lock in the secondary,
* then acquiring a read lock in the primary. Ideally, we
* would likewise perform puts by updating all the secondaries
* first, then doing the actual put in the primary, to avoid
* deadlock (since having multiple threads doing secondary
* gets and puts simultaneously is probably a common case).
*
* However, if this put is a put-overwrite--and we have no way to
* tell in advance whether it will be--we may need to delete
* an outdated secondary key. In order to find that old
* secondary key, we need to get the record we're overwriting,
* before we overwrite it.
*
* (XXX: It would be nice to avoid this extra get, and have the
* underlying put routines somehow pass us the old record
* since they need to traverse the tree anyway. I'm saving
* this optimization for later, as it's a lot of work, and it
* would be hard to fit into this locking paradigm anyway.)
*
* The simple thing to do would be to go get the old record before
* we do anything else. Unfortunately, though, doing so would
* violate our "secondary, then primary" lock acquisition
* ordering--even in the common case where no old primary record
* exists, we'll still acquire and keep a lock on the page where
* we're about to do the primary insert.
*
* To get around this, we do the following gyrations, which
* hopefully solve this problem in the common case:
*
* 1) If this is a c_put(DB_CURRENT), go ahead and get the
* old record. We already hold the lock on this page in
* the primary, so no harm done, and we'll need the primary
* key (which we weren't passed in this case) to do any
* secondary puts anyway.
*
* 2) If we're doing a partial put, we need to perform the
* get on the primary key right away, since we don't have
* the whole datum that the secondary key is based on.
* We may also need to pad out the record if the primary
* has a fixed record length.
*
* 3) Loop through the secondary indices, putting into each a
* new secondary key that corresponds to the new record.
*
* 4) If we haven't done so in (1) or (2), get the old primary
* key/data pair. If one does not exist--the common case--we're
* done with secondary indices, and can go straight on to the
* primary put.
*
* 5) If we do have an old primary key/data pair, however, we need
* to loop through all the secondaries a second time and delete
* the old secondary in each.
*/
memset(&pkey, 0, sizeof(DBT));
memset(&olddata, 0, sizeof(DBT));
have_oldrec = nodel = 0;
/*
* Primary indices can't have duplicates, so only DB_CURRENT,
* DB_KEYFIRST, and DB_KEYLAST make any sense. Other flags
* should have been caught by the checking routine, but
* add a sprinkling of paranoia.
*/
DB_ASSERT(flags == DB_CURRENT ||
flags == DB_KEYFIRST || flags == DB_KEYLAST);
/*
* We'll want to use DB_RMW in a few places, but it's only legal
* when locking is on.
*/
rmw = STD_LOCKING(dbc_arg) ? DB_RMW : 0;
if (flags == DB_CURRENT) { /* Step 1. */
/*
* This is safe to do on the cursor we already have;
* error or no, it won't move.
*
* We use DB_RMW for all of these gets because we'll be
* writing soon enough in the "normal" put code. In
* transactional databases we'll hold those write locks
* even if we close the cursor we're reading with.
*/
ret = dbc_arg->c_get(dbc_arg,
&pkey, &olddata, rmw | DB_CURRENT);
if (ret == DB_KEYEMPTY) {
nodel = 1; /*
* We know we don't need a delete
* in the secondary.
*/
have_oldrec = 1; /* We've looked for the old record. */
} else if (ret != 0)
goto err;
else
have_oldrec = 1;
} else {
/* So we can just use &pkey everywhere instead of key. */
pkey.data = key->data;
pkey.size = key->size;
}
/*
* Check for partial puts (step 2).
*/
if (F_ISSET(data, DB_DBT_PARTIAL)) {
if (!have_oldrec && !nodel) {
/*
* We're going to have to search the tree for the
* specified key. Dup a cursor (so we have the same
* locking info) and do a c_get.
*/
if ((ret = __db_c_idup(dbc_arg, &pdbc, 0)) != 0)
goto err;
/* We should have gotten DB_CURRENT in step 1. */
DB_ASSERT(flags != DB_CURRENT);
ret = pdbc->c_get(pdbc,
&pkey, &olddata, rmw | DB_SET);
if (ret == DB_KEYEMPTY || ret == DB_NOTFOUND) {
nodel = 1;
ret = 0;
}
if ((t_ret = pdbc->c_close(pdbc)) != 0)
ret = t_ret;
if (ret != 0)
goto err;
have_oldrec = 1;
}
/*
* Now build the new datum from olddata and the partial
* data we were given.
*/
if ((ret =
__db_buildpartial(dbp, &olddata, data, &newdata)) != 0)
goto err;
ispartial = 1;
} else
ispartial = 0;
/*
* Handle fixed-length records. If the primary database has
* fixed-length records, we need to pad out the datum before
* we pass it into the callback function; we always index the
* "real" record.
*/
if ((dbp->type == DB_RECNO && F_ISSET(dbp, DB_AM_FIXEDLEN)) ||
(dbp->type == DB_QUEUE)) {
if (dbp->type == DB_QUEUE) {
re_len = ((QUEUE *)dbp->q_internal)->re_len;
re_pad = ((QUEUE *)dbp->q_internal)->re_pad;
} else {
re_len = ((BTREE *)dbp->bt_internal)->re_len;
re_pad = ((BTREE *)dbp->bt_internal)->re_pad;
}
size = ispartial ? newdata.size : data->size;
if (size > re_len) {
__db_err(dbp->dbenv,
"Length improper for fixed length record %lu",
(u_long)size);
ret = EINVAL;
goto err;
} else if (size < re_len) {
/*
* If we're not doing a partial put, copy
* data->data into newdata.data, then pad out
* newdata.data.
*
* If we're doing a partial put, the data
* we want are already in newdata.data; we
* just need to pad.
*
* Either way, realloc is safe.
*/
if ((ret = __os_realloc(dbp->dbenv, re_len,
&newdata.data)) != 0)
goto err;
if (!ispartial)
memcpy(newdata.data, data->data, size);
memset((u_int8_t *)newdata.data + size, re_pad,
re_len - size);
newdata.size = re_len;
ispartial = 1;
}
}
/*
* Loop through the secondaries. (Step 3.)
*
* Note that __db_s_first and __db_s_next will take care of
* thread-locking and refcounting issues.
*/
for (sdbp = __db_s_first(dbp);
sdbp != NULL && ret == 0; ret = __db_s_next(&sdbp)) {
/*
* Call the callback for this secondary, to get the
* appropriate secondary key.
*/
memset(&skey, 0, sizeof(DBT));
if ((ret = sdbp->s_callback(sdbp,
&pkey, ispartial ? &newdata : data, &skey)) != 0) {
if (ret == DB_DONOTINDEX)
/*
* The callback returned a null value--don't
* put this key in the secondary. Just
* move on to the next one--we'll handle
* any necessary deletes in step 5.
*/
continue;
else
goto err;
}
/*
* Save the DBT we just got back from the callback function
* off; we want to pass its value into c_get functions
* that may stomp on a buffer the callback function
* allocated.
*/
memset(&save_skey, 0, sizeof(DBT)); /* Paranoia. */
save_skey = skey;
/*
* Open a cursor in this secondary.
*
* Use the same locker ID as our primary cursor, so that
* we're guaranteed that the locks don't conflict (e.g. in CDB
* or if we're subdatabases that share and want to lock a
* metadata page).
*/
if ((ret = __db_icursor(sdbp, dbc_arg->txn, sdbp->type,
PGNO_INVALID, 0, dbc_arg->locker, &sdbc)) != 0)
goto err;
/*
* If we're in CDB, updates will fail since the new cursor
* isn't a writer. However, we hold the WRITE lock in the
* primary and will for as long as our new cursor lasts,
* and the primary and secondary share a lock file ID,
* so it's safe to consider this a WRITER. The close
* routine won't try to put anything because we don't
* really have a lock.
*/
if (CDB_LOCKING(sdbp->dbenv)) {
DB_ASSERT(sdbc->mylock.off == LOCK_INVALID);
F_SET(sdbc, DBC_WRITER);
}
/*
* There are three cases here--
* 1) The secondary supports sorted duplicates.
* If we attempt to put a secondary/primary pair
* that already exists, that's a duplicate duplicate,
* and c_put will return DB_KEYEXIST (see __db_duperr).
* This will leave us with exactly one copy of the
* secondary/primary pair, and this is just right--we'll
* avoid deleting it later, as the old and new secondaries
* will match (since the old secondary is the dup dup
* that's already there).
* 2) The secondary supports duplicates, but they're not
* sorted. We need to avoid putting a duplicate
* duplicate, because the matching old and new secondaries
* will prevent us from deleting anything and we'll
* wind up with two secondary records that point to the
* same primary key. Do a c_get(DB_GET_BOTH); if
* that returns 0, skip the put.
* 3) The secondary doesn't support duplicates at all.
* In this case, secondary keys must be unique; if
* another primary key already exists for this
* secondary key, we have to either overwrite it or
* not put this one, and in either case we've
* corrupted the secondary index. Do a c_get(DB_SET).
* If the secondary/primary pair already exists, do
* nothing; if the secondary exists with a different
* primary, return an error; and if the secondary
* does not exist, put it.
*/
if (!F_ISSET(sdbp, DB_AM_DUP)) {
/* Case 3. */
memset(&oldpkey, 0, sizeof(DBT));
F_SET(&oldpkey, DB_DBT_MALLOC);
ret = sdbc->c_real_get(sdbc,
&skey, &oldpkey, rmw | DB_SET);
if (ret == 0) {
cmp = __bam_defcmp(sdbp, &oldpkey, &pkey);
__os_ufree(sdbp->dbenv, oldpkey.data);
if (cmp != 0) {
__db_err(sdbp->dbenv, "%s%s",
"Put results in a non-unique secondary key in an ",
"index not configured to support duplicates");
ret = EINVAL;
goto skipput;
}
} else if (ret != DB_NOTFOUND && ret != DB_KEYEMPTY)
goto skipput;
} else if (!F_ISSET(sdbp, DB_AM_DUPSORT))
/* Case 2. */
if ((ret = sdbc->c_real_get(sdbc,
&skey, &pkey, rmw | DB_GET_BOTH)) == 0)
goto skipput;
ret = sdbc->c_put(sdbc, &skey, &pkey, DB_UPDATE_SECONDARY);
/*
* We don't know yet whether this was a put-overwrite that
* in fact changed nothing. If it was, we may get DB_KEYEXIST.
* This is not an error.
*/
if (ret == DB_KEYEXIST)
ret = 0;
skipput: FREE_IF_NEEDED(sdbp, &save_skey)
if ((t_ret = sdbc->c_close(sdbc)) != 0)
ret = t_ret;
if (ret != 0)
goto err;
}
if (ret != 0)
goto err;
/* If still necessary, go get the old primary key/data. (Step 4.) */
if (!have_oldrec) {
/* See the comments in step 2. This is real familiar. */
if ((ret = __db_c_idup(dbc_arg, &pdbc, 0)) != 0)
goto err;
DB_ASSERT(flags != DB_CURRENT);
pkey.data = key->data;
pkey.size = key->size;
ret = pdbc->c_get(pdbc, &pkey, &olddata, rmw | DB_SET);
if (ret == DB_KEYEMPTY || ret == DB_NOTFOUND) {
nodel = 1;
ret = 0;
}
if ((t_ret = pdbc->c_close(pdbc)) != 0)
ret = t_ret;
if (ret != 0)
goto err;
have_oldrec = 1;
}
/*
* If we don't follow this goto, we do in fact have an old record
* we may need to go delete. (Step 5).
*/
if (nodel)
goto skip_s_update;
for (sdbp = __db_s_first(dbp);
sdbp != NULL && ret == 0; ret = __db_s_next(&sdbp)) {
/*
* Call the callback for this secondary to get the
* old secondary key.
*/
memset(&oldskey, 0, sizeof(DBT));
if ((ret = sdbp->s_callback(sdbp,
&pkey, &olddata, &oldskey)) != 0) {
if (ret == DB_DONOTINDEX)
/*
* The callback returned a null value--there's
* nothing to delete. Go on to the next
* secondary.
*/
continue;
else
goto err;
}
if ((ret = sdbp->s_callback(sdbp,
&pkey, ispartial ? &newdata : data, &skey)) != 0 &&
ret != DB_DONOTINDEX)
goto err;
/*
* If there is no new secondary key, or if the old secondary
* key is different from the new secondary key, then
* we need to delete the old one.
*
* Note that bt_compare is (and must be) set no matter
* what access method we're in.
*/
sdbc = NULL;
if (ret == DB_DONOTINDEX ||
((BTREE *)sdbp->bt_internal)->bt_compare(sdbp,
&oldskey, &skey) != 0) {
if ((ret = __db_icursor(sdbp, dbc_arg->txn, sdbp->type,
PGNO_INVALID, 0, dbc_arg->locker, &sdbc)) != 0)
goto err;
if (CDB_LOCKING(sdbp->dbenv)) {
DB_ASSERT(sdbc->mylock.off == LOCK_INVALID);
F_SET(sdbc, DBC_WRITER);
}
/*
* Don't let c_get(DB_GET_BOTH) stomp on
* any secondary key value that the callback
* function may have allocated. Use a temp
* DBT instead.
*/
memset(&temp, 0, sizeof(DBT));
temp.data = oldskey.data;
temp.size = oldskey.size;
if ((ret = sdbc->c_real_get(sdbc,
&temp, &pkey, rmw | DB_GET_BOTH)) == 0)
ret = sdbc->c_del(sdbc, DB_UPDATE_SECONDARY);
}
FREE_IF_NEEDED(sdbp, &skey);
FREE_IF_NEEDED(sdbp, &oldskey);
if (sdbc != NULL && (t_ret = sdbc->c_close(sdbc)) != 0)
ret = t_ret;
if (ret != 0)
goto err;
}
/* Secondary index updates are now done. On to the "real" stuff. */
skip_s_update:
/*
* If we have an off-page duplicates cursor, and the operation applies
* to it, perform the operation. Duplicate the cursor and call the
* underlying function.
*
* Off-page duplicate trees are locked in the primary tree, that is,
* we acquire a write lock in the primary tree and no locks in the
* off-page dup tree. If the put operation is done in an off-page
* duplicate tree, call the primary cursor's upgrade routine first.
*/
if (dbc_arg->internal->opd != NULL &&
(flags == DB_AFTER || flags == DB_BEFORE || flags == DB_CURRENT)) {
/*
* A special case for hash off-page duplicates. Hash doesn't
* support (and is documented not to support) put operations
* relative to a cursor which references an already deleted
* item. For consistency, apply the same criteria to off-page
* duplicates as well.
*/
if (dbc_arg->dbtype == DB_HASH && F_ISSET(
((BTREE_CURSOR *)(dbc_arg->internal->opd->internal)),
C_DELETED)) {
ret = DB_NOTFOUND;
goto err;
}
if ((ret = dbc_arg->c_am_writelock(dbc_arg)) != 0)
return (ret);
if ((ret = __db_c_dup(dbc_arg, &dbc_n, DB_POSITIONI)) != 0)
goto err;
opd = dbc_n->internal->opd;
if ((ret = opd->c_am_put(
opd, key, data, flags, NULL)) != 0)
goto err;
goto done;
}
/*
* Perform an operation on the main cursor. Duplicate the cursor,
* and call the underlying function.
*
* XXX: MARGO
*
tmp_flags = flags == DB_AFTER ||
flags == DB_BEFORE || flags == DB_CURRENT ? DB_POSITIONI : 0;
*/
tmp_flags = DB_POSITIONI;
/*
* If this cursor is going to be closed immediately, we don't
* need to take precautions to clean it up on error.
*/
if (F_ISSET(dbc_arg, DBC_TRANSIENT))
dbc_n = dbc_arg;
else if ((ret = __db_c_idup(dbc_arg, &dbc_n, tmp_flags)) != 0)
goto err;
pgno = PGNO_INVALID;
if ((ret = dbc_n->c_am_put(dbc_n, key, data, flags, &pgno)) != 0)
goto err;
/*
* We may be referencing a new off-page duplicates tree. Acquire
* a new cursor and call the underlying function.
*/
if (pgno != PGNO_INVALID) {
oldopd = dbc_n->internal->opd;
if ((ret = __db_c_newopd(dbc_arg, pgno, oldopd, &opd)) != 0) {
dbc_n->internal->opd = opd;
goto err;
}
dbc_n->internal->opd = opd;
if ((ret = opd->c_am_put(
opd, key, data, flags, NULL)) != 0)
goto err;
}
done:
err: /* Cleanup and cursor resolution. */
if ((t_ret = __db_c_cleanup(dbc_arg, dbc_n, ret)) != 0 && ret == 0)
ret = t_ret;
/* If newdata was used, free its buffer. */
if (newdata.data != NULL)
__os_free(dbp->dbenv, newdata.data);
CDB_LOCKING_DONE(dbp, dbc_arg);
if (sdbp != NULL && (t_ret = __db_s_done(sdbp)) != 0)
return (t_ret);
return (ret);
}
/*
* __db_duperr()
* Error message: we don't currently support sorted duplicate duplicates.
* PUBLIC: int __db_duperr __P((DB *, u_int32_t));
*/
int
__db_duperr(dbp, flags)
DB *dbp;
u_int32_t flags;
{
/*
* If we run into this error while updating a secondary index,
* don't yell--there's no clean way to pass DB_NODUPDATA in along
* with DB_UPDATE_SECONDARY, but we may run into this problem
* in a normal, non-error course of events.
*
* !!!
* If and when we ever permit duplicate duplicates in sorted-dup
* databases, we need to either change the secondary index code
* to check for dup dups, or we need to maintain the implicit
* "DB_NODUPDATA" behavior for databases with DB_AM_SECONDARY set.
*/
if (flags != DB_NODUPDATA && !F_ISSET(dbp, DB_AM_SECONDARY))
__db_err(dbp->dbenv,
"Duplicate data items are not supported with sorted data");
return (DB_KEYEXIST);
}
/*
* __db_c_cleanup --
* Clean up duplicate cursors.
*/
static int
__db_c_cleanup(dbc, dbc_n, failed)
DBC *dbc, *dbc_n;
int failed;
{
DB *dbp;
DBC *opd;
DBC_INTERNAL *internal;
DB_MPOOLFILE *mpf;
int ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
internal = dbc->internal;
ret = 0;
/* Discard any pages we're holding. */
if (internal->page != NULL) {
if ((t_ret = mpf->put(mpf, internal->page, 0)) != 0 && ret == 0)
ret = t_ret;
internal->page = NULL;
}
opd = internal->opd;
if (opd != NULL && opd->internal->page != NULL) {
if ((t_ret =
mpf->put(mpf, opd->internal->page, 0)) != 0 && ret == 0)
ret = t_ret;
opd->internal->page = NULL;
}
/*
* If dbc_n is NULL, there's no internal cursor swapping to be done
* and no dbc_n to close--we probably did the entire operation on an
* offpage duplicate cursor. Just return.
*
* If dbc and dbc_n are the same, we're either inside a DB->{put/get}
* operation, and as an optimization we performed the operation on
* the main cursor rather than on a duplicated one, or we're in a
* bulk get that can't have moved the cursor (DB_MULTIPLE with the
* initial c_get operation on an off-page dup cursor). Just
* return--either we know we didn't move the cursor, or we're going
* to close it before we return to application code, so we're sure
* not to visibly violate the "cursor stays put on error" rule.
*/
if (dbc_n == NULL || dbc == dbc_n)
return (ret);
if (dbc_n->internal->page != NULL) {
if ((t_ret =
mpf->put(mpf, dbc_n->internal->page, 0)) != 0 && ret == 0)
ret = t_ret;
dbc_n->internal->page = NULL;
}
opd = dbc_n->internal->opd;
if (opd != NULL && opd->internal->page != NULL) {
if ((t_ret =
mpf->put(mpf, opd->internal->page, 0)) != 0 && ret == 0)
ret = t_ret;
opd->internal->page = NULL;
}
/*
* If we didn't fail before entering this routine or just now when
* freeing pages, swap the interesting contents of the old and new
* cursors.
*/
if (!failed && ret == 0) {
dbc->internal = dbc_n->internal;
dbc_n->internal = internal;
}
/*
* Close the cursor we don't care about anymore. The close can fail,
* but we only expect DB_LOCK_DEADLOCK failures. This violates our
* "the cursor is unchanged on error" semantics, but since all you can
* do with a DB_LOCK_DEADLOCK failure is close the cursor, I believe
* that's OK.
*
* XXX
* There's no way to recover from failure to close the old cursor.
* All we can do is move to the new position and return an error.
*
* XXX
* We might want to consider adding a flag to the cursor, so that any
* subsequent operations other than close just return an error?
*/
if ((t_ret = dbc_n->c_close(dbc_n)) != 0 && ret == 0)
ret = t_ret;
return (ret);
}
/*
* __db_c_secondary_get --
* This wrapper function for DBC->c_pget() is the DBC->c_get() function
* for a secondary index cursor.
*
* PUBLIC: int __db_c_secondary_get __P((DBC *, DBT *, DBT *, u_int32_t));
*/
int
__db_c_secondary_get(dbc, skey, data, flags)
DBC *dbc;
DBT *skey, *data;
u_int32_t flags;
{
DB_ASSERT(F_ISSET(dbc->dbp, DB_AM_SECONDARY));
return (dbc->c_pget(dbc, skey, NULL, data, flags));
}
/*
* __db_c_pget --
* Get a primary key/data pair through a secondary index.
*
* PUBLIC: int __db_c_pget __P((DBC *, DBT *, DBT *, DBT *, u_int32_t));
*/
int
__db_c_pget(dbc, skey, pkey, data, flags)
DBC *dbc;
DBT *skey, *pkey, *data;
u_int32_t flags;
{
DB *pdbp, *sdbp;
DBC *pdbc;
DBT *save_rdata, nullpkey;
int pkeymalloc, ret, save_pkey_flags, t_ret;
sdbp = dbc->dbp;
pdbp = sdbp->s_primary;
pkeymalloc = t_ret = 0;
PANIC_CHECK(sdbp->dbenv);
if ((ret = __db_cpgetchk(sdbp,
skey, pkey, data, flags, IS_INITIALIZED(dbc))) != 0)
return (ret);
/*
* The challenging part of this function is getting the behavior
* right for all the various permutations of DBT flags. The
* next several blocks handle the various cases we need to
* deal with specially.
*/
/*
* We may be called with a NULL pkey argument, if we've been
* wrapped by a 2-DBT get call. If so, we need to use our
* own DBT.
*/
if (pkey == NULL) {
memset(&nullpkey, 0, sizeof(DBT));
pkey = &nullpkey;
}
/*
* DB_GET_RECNO is a special case, because we're interested not in
* the primary key/data pair, but rather in the primary's record
* number.
*/
if ((flags & DB_OPFLAGS_MASK) == DB_GET_RECNO)
return (__db_c_pget_recno(dbc, pkey, data, flags));
/*
* If the DBTs we've been passed don't have any of the
* user-specified memory management flags set, we want to make sure
* we return values using the DBTs dbc->rskey, dbc->rkey, and
* dbc->rdata, respectively.
*
* There are two tricky aspects to this: first, we need to pass
* skey and pkey *in* to the initial c_get on the secondary key,
* since either or both may be looked at by it (depending on the
* get flag). Second, we must not use a normal DB->get call
* on the secondary, even though that's what we want to accomplish,
* because the DB handle may be free-threaded. Instead,
* we open a cursor, then take steps to ensure that we actually use
* the rkey/rdata from the *secondary* cursor.
*
* We accomplish all this by passing in the DBTs we started out
* with to the c_get, but having swapped the contents of rskey and
* rkey, respectively, into rkey and rdata; __db_ret will treat
* them like the normal key/data pair in a c_get call, and will
* realloc them as need be (this is "step 1"). Then, for "step 2",
* we swap back rskey/rkey/rdata to normal, and do a get on the primary
* with the secondary dbc appointed as the owner of the returned-data
* memory.
*
* Note that in step 2, we copy the flags field in case we need to
* pass down a DB_DBT_PARTIAL or other flag that is compatible with
* letting DB do the memory management.
*/
/* Step 1. */
save_rdata = dbc->rdata;
dbc->rdata = dbc->rkey;
dbc->rkey = dbc->rskey;
/*
* It is correct, though slightly sick, to attempt a partial get
* of a primary key. However, if we do so here, we'll never find the
* primary record; clear the DB_DBT_PARTIAL field of pkey just
* for the duration of the next call.
*/
save_pkey_flags = pkey->flags;
F_CLR(pkey, DB_DBT_PARTIAL);
/*
* Now we can go ahead with the meat of this call. First, get the
* primary key from the secondary index. (What exactly we get depends
* on the flags, but the underlying cursor get will take care of the
* dirty work.)
*/
if ((ret = dbc->c_real_get(dbc, skey, pkey, flags)) != 0) {
/* Restore rskey/rkey/rdata and return. */
pkey->flags = save_pkey_flags;
dbc->rskey = dbc->rkey;
dbc->rkey = dbc->rdata;
dbc->rdata = save_rdata;
goto err;
}
/* Restore pkey's flags in case we stomped the PARTIAL flag. */
pkey->flags = save_pkey_flags;
/*
* Restore the cursor's rskey, rkey, and rdata DBTs. If DB
* is handling the memory management, we now have newly
* reallocated buffers and ulens in rkey and rdata which we want
* to put in rskey and rkey. save_rdata contains the old value
* of dbc->rdata.
*/
dbc->rskey = dbc->rkey;
dbc->rkey = dbc->rdata;
dbc->rdata = save_rdata;
/*
* Now we're ready for "step 2". If either or both of pkey and
* data do not have memory management flags set--that is, if DB is
* managing their memory--we need to swap around the rkey/rdata
* structures so that we don't wind up trying to use memory managed
* by the primary database cursor, which we'll close before we return.
*
* !!!
* If you're carefully following the bouncing ball, you'll note
* that in the DB-managed case, the buffer hanging off of pkey is
* the same as dbc->rkey->data. This is just fine; we may well
* realloc and stomp on it when we return, if we're going a
* DB_GET_BOTH and need to return a different partial or key
* (depending on the comparison function), but this is safe.
*
* !!!
* We need to use __db_icursor here rather than simply calling
* pdbp->cursor, because otherwise, if we're in CDB, we'll
* allocate a new locker ID and leave ourselves open to deadlocks.
* (Even though we're only acquiring read locks, we'll still block
* if there are any waiters.)
*/
if ((ret = __db_icursor(pdbp,
dbc->txn, pdbp->type, PGNO_INVALID, 0, dbc->locker, &pdbc)) != 0)
goto err;
/*
* We're about to use pkey a second time. If DB_DBT_MALLOC
* is set on it, we'll leak the memory we allocated the first time.
* Thus, set DB_DBT_REALLOC instead so that we reuse that memory
* instead of leaking it.
*
* !!!
* This assumes that the user must always specify a compatible
* realloc function if a malloc function is specified. I think
* this is a reasonable requirement.
*/
if (F_ISSET(pkey, DB_DBT_MALLOC)) {
F_CLR(pkey, DB_DBT_MALLOC);
F_SET(pkey, DB_DBT_REALLOC);
pkeymalloc = 1;
}
/*
* Do the actual get. Set DBC_TRANSIENT since we don't care
* about preserving the position on error, and it's faster.
* SET_RET_MEM so that the secondary DBC owns any returned-data
* memory.
*/
F_SET(pdbc, DBC_TRANSIENT);
SET_RET_MEM(pdbc, dbc);
ret = pdbc->c_get(pdbc, pkey, data, DB_SET);
/*
* If the item wasn't found in the primary, this is a bug;
* our secondary has somehow gotten corrupted, and contains
* elements that don't correspond to anything in the primary.
* Complain.
*/
if (ret == DB_NOTFOUND)
ret = __db_secondary_corrupt(pdbp);
/* Now close the primary cursor. */
t_ret = pdbc->c_close(pdbc);
err: if (pkeymalloc) {
/*
* If pkey had a MALLOC flag, we need to restore it;
* otherwise, if the user frees the buffer but reuses
* the DBT without NULL'ing its data field or changing
* the flags, we may drop core.
*/
F_CLR(pkey, DB_DBT_REALLOC);
F_SET(pkey, DB_DBT_MALLOC);
}
return (t_ret == 0 ? ret : t_ret);
}
/*
* __db_c_pget_recno --
* Perform a DB_GET_RECNO c_pget on a secondary index. Returns
* the secondary's record number in the pkey field and the primary's
* in the data field.
*/
static int
__db_c_pget_recno(sdbc, pkey, data, flags)
DBC *sdbc;
DBT *pkey, *data;
u_int32_t flags;
{
DB *pdbp, *sdbp;
DB_ENV *dbenv;
DBC *pdbc;
DBT discardme, primary_key;
db_recno_t oob;
u_int32_t rmw;
int ret, t_ret;
sdbp = sdbc->dbp;
pdbp = sdbp->s_primary;
dbenv = sdbp->dbenv;
pdbc = NULL;
ret = t_ret = 0;
rmw = LF_ISSET(DB_RMW);
memset(&discardme, 0, sizeof(DBT));
F_SET(&discardme, DB_DBT_USERMEM | DB_DBT_PARTIAL);
oob = RECNO_OOB;
/*
* If the primary is an rbtree, we want its record number, whether
* or not the secondary is one too. Fetch the recno into "data".
*
* If it's not an rbtree, return RECNO_OOB in "data".
*/
if (F_ISSET(pdbp, DB_AM_RECNUM)) {
/*
* Get the primary key, so we can find the record number
* in the primary. (We're uninterested in the secondary key.)
*/
memset(&primary_key, 0, sizeof(DBT));
F_SET(&primary_key, DB_DBT_MALLOC);
if ((ret = sdbc->c_real_get(sdbc,
&discardme, &primary_key, rmw | DB_CURRENT)) != 0)
return (ret);
/*
* Open a cursor on the primary, set it to the right record,
* and fetch its recno into "data".
*
* (See __db_c_pget for a comment on the use of __db_icursor.)
*
* SET_RET_MEM so that the secondary DBC owns any returned-data
* memory.
*/
if ((ret = __db_icursor(pdbp, sdbc->txn,
pdbp->type, PGNO_INVALID, 0, sdbc->locker, &pdbc)) != 0)
goto perr;
SET_RET_MEM(pdbc, sdbc);
if ((ret = pdbc->c_get(pdbc,
&primary_key, &discardme, rmw | DB_SET)) != 0)
goto perr;
ret = pdbc->c_get(pdbc, &discardme, data, rmw | DB_GET_RECNO);
perr: __os_ufree(sdbp->dbenv, primary_key.data);
if (pdbc != NULL &&
(t_ret = pdbc->c_close(pdbc)) != 0 && ret == 0)
ret = t_ret;
if (ret != 0)
return (ret);
} else if ((ret = __db_retcopy(dbenv, data, &oob,
sizeof(oob), &sdbc->rkey->data, &sdbc->rkey->ulen)) != 0)
return (ret);
/*
* If the secondary is an rbtree, we want its record number, whether
* or not the primary is one too. Fetch the recno into "pkey".
*
* If it's not an rbtree, return RECNO_OOB in "pkey".
*/
if (F_ISSET(sdbp, DB_AM_RECNUM))
return (sdbc->c_real_get(sdbc, &discardme, pkey, flags));
else
return (__db_retcopy(dbenv, pkey, &oob,
sizeof(oob), &sdbc->rdata->data, &sdbc->rdata->ulen));
}
/*
* __db_wrlock_err -- do not have a write lock.
*/
static int
__db_wrlock_err(dbenv)
DB_ENV *dbenv;
{
__db_err(dbenv, "Write attempted on read-only cursor");
return (EPERM);
}
/*
* __db_c_del_secondary --
* Perform a delete operation on a secondary index: call through
* to the primary and delete the primary record that this record
* points to.
*
* Note that deleting the primary record will call c_del on all
* the secondaries, including this one; thus, it is not necessary
* to execute both this function and an actual delete.
*
*/
static int
__db_c_del_secondary(dbc)
DBC *dbc;
{
DB *pdbp;
DBC *pdbc;
DBT skey, pkey;
int ret, t_ret;
memset(&skey, 0, sizeof(DBT));
memset(&pkey, 0, sizeof(DBT));
/*
* Get the current item that we're pointing at.
* We don't actually care about the secondary key, just
* the primary.
*/
F_SET(&skey, DB_DBT_PARTIAL | DB_DBT_USERMEM);
if ((ret = dbc->c_real_get(dbc,
&skey, &pkey, DB_CURRENT)) != 0)
return (ret);
/*
* Create a cursor on the primary with our locker ID,
* so that when it calls back, we don't conflict.
*
* We create a cursor explicitly because there's no
* way to specify the same locker ID if we're using
* locking but not transactions if we use the DB->del
* interface. This shouldn't be any less efficient
* anyway.
*/
pdbp = dbc->dbp->s_primary;
if ((ret = __db_icursor(pdbp, dbc->txn,
pdbp->type, PGNO_INVALID, 0, dbc->locker, &pdbc)) != 0)
return (ret);
/*
* See comment in __db_c_put--if we're in CDB,
* we already hold the locks we need, and we need to flag
* the cursor as a WRITER so we don't run into errors
* when we try to delete.
*/
if (CDB_LOCKING(pdbp->dbenv)) {
DB_ASSERT(pdbc->mylock.off == LOCK_INVALID);
F_SET(pdbc, DBC_WRITER);
}
/*
* Set the new cursor to the correct primary key. Then
* delete it. We don't really care about the datum;
* just reuse our skey DBT.
*
* If the primary get returns DB_NOTFOUND, something is amiss--
* every record in the secondary should correspond to some record
* in the primary.
*/
if ((ret = pdbc->c_get(pdbc, &pkey, &skey,
(STD_LOCKING(dbc) ? DB_RMW : 0) | DB_SET)) == 0)
ret = pdbc->c_del(pdbc, 0);
else if (ret == DB_NOTFOUND)
ret = __db_secondary_corrupt(pdbp);
if ((t_ret = pdbc->c_close(pdbc)) != 0 && ret != 0)
ret = t_ret;
return (ret);
}
/*
* __db_c_del_primary --
* Perform a delete operation on a primary index. Loop through
* all the secondary indices which correspond to this primary
* database, and delete any secondary keys that point at the current
* record.
*
* PUBLIC: int __db_c_del_primary __P((DBC *));
*/
int
__db_c_del_primary(dbc)
DBC *dbc;
{
DB *dbp, *sdbp;
DBC *sdbc;
DBT data, pkey, skey, temp;
int ret, t_ret;
dbp = dbc->dbp;
/*
* If we're called at all, we have at least one secondary.
* (Unfortunately, we can't assert this without grabbing the mutex.)
* Get the current record so that we can construct appropriate
* secondary keys as needed.
*/
memset(&pkey, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));
if ((ret = dbc->c_get(dbc, &pkey, &data, DB_CURRENT)) != 0)
return (ret);
for (sdbp = __db_s_first(dbp);
sdbp != NULL && ret == 0; ret = __db_s_next(&sdbp)) {
/*
* Get the secondary key for this secondary and the current
* item.
*/
memset(&skey, 0, sizeof(DBT));
if ((ret = sdbp->s_callback(sdbp, &pkey, &data, &skey)) != 0) {
/*
* If the current item isn't in this index, we
* have no work to do. Proceed.
*/
if (ret == DB_DONOTINDEX)
continue;
/* We had a substantive error. Bail. */
FREE_IF_NEEDED(sdbp, &skey);
goto done;
}
/* Open a secondary cursor. */
if ((ret = __db_icursor(sdbp, dbc->txn, sdbp->type,
PGNO_INVALID, 0, dbc->locker, &sdbc)) != 0)
goto done;
/* See comment above and in __db_c_put. */
if (CDB_LOCKING(sdbp->dbenv)) {
DB_ASSERT(sdbc->mylock.off == LOCK_INVALID);
F_SET(sdbc, DBC_WRITER);
}
/*
* Set the secondary cursor to the appropriate item.
* Delete it.
*
* We want to use DB_RMW if locking is on; it's only
* legal then, though.
*
* !!!
* Don't stomp on any callback-allocated buffer in skey
* when we do a c_get(DB_GET_BOTH); use a temp DBT instead.
*/
memset(&temp, 0, sizeof(DBT));
temp.data = skey.data;
temp.size = skey.size;
if ((ret = sdbc->c_real_get(sdbc, &temp, &pkey,
(STD_LOCKING(dbc) ? DB_RMW : 0) | DB_GET_BOTH)) == 0)
ret = sdbc->c_del(sdbc, DB_UPDATE_SECONDARY);
FREE_IF_NEEDED(sdbp, &skey);
if ((t_ret = sdbc->c_close(sdbc)) != 0 || ret != 0) {
if (ret == 0)
ret = t_ret;
goto done;
}
}
done: if (sdbp != NULL && (t_ret = __db_s_done(sdbp)) != 0 && ret == 0)
return (t_ret);
return (ret);
}
/*
* __db_s_first --
* Get the first secondary, if any are present, from the primary.
*
* PUBLIC: DB *__db_s_first __P((DB *));
*/
DB *
__db_s_first(pdbp)
DB *pdbp;
{
DB *sdbp;
MUTEX_THREAD_LOCK(pdbp->dbenv, pdbp->mutexp);
sdbp = LIST_FIRST(&pdbp->s_secondaries);
/* See __db_s_next. */
if (sdbp != NULL)
sdbp->s_refcnt++;
MUTEX_THREAD_UNLOCK(pdbp->dbenv, pdbp->mutexp);
return (sdbp);
}
/*
* __db_s_next --
* Get the next secondary in the list.
*
* PUBLIC: int __db_s_next __P((DB **));
*/
int
__db_s_next(sdbpp)
DB **sdbpp;
{
DB *sdbp, *pdbp, *closeme;
int ret;
/*
* Secondary indices are kept in a linked list, s_secondaries,
* off each primary DB handle. If a primary is free-threaded,
* this list may only be traversed or modified while the primary's
* thread mutex is held.
*
* The tricky part is that we don't want to hold the thread mutex
* across the full set of secondary puts necessary for each primary
* put, or we'll wind up essentially single-threading all the puts
* to the handle; the secondary puts will each take about as
* long as the primary does, and may require I/O. So we instead
* hold the thread mutex only long enough to follow one link to the
* next secondary, and then we release it before performing the
* actual secondary put.
*
* The only danger here is that we might legitimately close a
* secondary index in one thread while another thread is performing
* a put and trying to update that same secondary index. To
* prevent this from happening, we refcount the secondary handles.
* If close is called on a secondary index handle while we're putting
* to it, it won't really be closed--the refcount will simply drop,
* and we'll be responsible for closing it here.
*/
sdbp = *sdbpp;
pdbp = sdbp->s_primary;
closeme = NULL;
MUTEX_THREAD_LOCK(pdbp->dbenv, pdbp->mutexp);
DB_ASSERT(sdbp->s_refcnt != 0);
if (--sdbp->s_refcnt == 0) {
LIST_REMOVE(sdbp, s_links);
closeme = sdbp;
}
sdbp = LIST_NEXT(sdbp, s_links);
if (sdbp != NULL)
sdbp->s_refcnt++;
MUTEX_THREAD_UNLOCK(pdbp->dbenv, pdbp->mutexp);
*sdbpp = sdbp;
/*
* closeme->close() is a wrapper; call __db_close explicitly.
*/
ret = closeme != NULL ? __db_close(closeme, 0) : 0;
return (ret);
}
/*
* __db_s_done --
* Properly decrement the refcount on a secondary database handle we're
* using, without calling __db_s_next.
*
* PUBLIC: int __db_s_done __P((DB *));
*/
int
__db_s_done(sdbp)
DB *sdbp;
{
DB *pdbp;
int doclose;
pdbp = sdbp->s_primary;
doclose = 0;
MUTEX_THREAD_LOCK(pdbp->dbenv, pdbp->mutexp);
DB_ASSERT(sdbp->s_refcnt != 0);
if (--sdbp->s_refcnt == 0) {
LIST_REMOVE(sdbp, s_links);
doclose = 1;
}
MUTEX_THREAD_UNLOCK(pdbp->dbenv, pdbp->mutexp);
return (doclose ? __db_close(sdbp, 0) : 0);
}
/*
* __db_buildpartial --
* Build the record that will result after a partial put is applied to
* an existing record.
*
* This should probably be merged with __bam_build, but that requires
* a little trickery if we plan to keep the overflow-record optimization
* in that function.
*/
static int
__db_buildpartial(dbp, oldrec, partial, newrec)
DB *dbp;
DBT *oldrec, *partial, *newrec;
{
int ret;
u_int8_t *buf;
u_int32_t len, nbytes;
DB_ASSERT(F_ISSET(partial, DB_DBT_PARTIAL));
memset(newrec, 0, sizeof(DBT));
nbytes = __db_partsize(oldrec->size, partial);
newrec->size = nbytes;
if ((ret = __os_malloc(dbp->dbenv, nbytes, &buf)) != 0)
return (ret);
newrec->data = buf;
/* Nul or pad out the buffer, for any part that isn't specified. */
memset(buf,
F_ISSET(dbp, DB_AM_FIXEDLEN) ? ((BTREE *)dbp->bt_internal)->re_pad :
0, nbytes);
/* Copy in any leading data from the original record. */
memcpy(buf, oldrec->data,
partial->doff > oldrec->size ? oldrec->size : partial->doff);
/* Copy the data from partial. */
memcpy(buf + partial->doff, partial->data, partial->size);
/* Copy any trailing data from the original record. */
len = partial->doff + partial->dlen;
if (oldrec->size > len)
memcpy(buf + partial->doff + partial->size,
(u_int8_t *)oldrec->data + len, oldrec->size - len);
return (0);
}
/*
* __db_partsize --
* Given the number of bytes in an existing record and a DBT that
* is about to be partial-put, calculate the size of the record
* after the put.
*
* This code is called from __bam_partsize.
*
* PUBLIC: u_int32_t __db_partsize __P((u_int32_t, DBT *));
*/
u_int32_t
__db_partsize(nbytes, data)
u_int32_t nbytes;
DBT *data;
{
/*
* There are really two cases here:
*
* Case 1: We are replacing some bytes that do not exist (i.e., they
* are past the end of the record). In this case the number of bytes
* we are replacing is irrelevant and all we care about is how many
* bytes we are going to add from offset. So, the new record length
* is going to be the size of the new bytes (size) plus wherever those
* new bytes begin (doff).
*
* Case 2: All the bytes we are replacing exist. Therefore, the new
* size is the oldsize (nbytes) minus the bytes we are replacing (dlen)
* plus the bytes we are adding (size).
*/
if (nbytes < data->doff + data->dlen) /* Case 1 */
return (data->doff + data->size);
return (nbytes + data->size - data->dlen); /* Case 2 */
}