mariadb/newbrt/test-inc-split.c
Bradley C. Kuszmaul 8511ea7372 Log db close so that recovery will work right if the same db is opened and closed repeatedly.
Also the file numbers can thus be reused.
Don't pass the BRT into the flush commands, since the BRT may no longer be present.
Put a counter in to see how many rollback records are present.  (Addresses #698.)
Increment the file version to 4.
Fixes #545, #703.

Note: All the tests pass except
 * Many cxx tests are getting valgrind errors.  (Addresses #716.  Possibly causes #716.)
 * {{{test_log9.recover}}} fails with "Binary files ... differ".  These will presumably be fixed by #711 or #714.  (Addresses #711, #714.)
 * {{{test_log10.recover}}} fails.   There are two failures:
  1. A valgrind problem (see #718.)  (Addresses #718.  Possibly causes #718.)
  1. The "Binary files ... differ" issue.


git-svn-id: file:///svn/tokudb@3486 c7de825b-a66e-492c-adef-691d508d4ae1
2008-04-17 03:11:55 +00:00

157 lines
4.6 KiB
C

/* The goal of this test: Make sure that when we aggressively promote
* that we don't get a fencepost error on the size. (#399, I think)
*
* For various values of I do the following:
*
* Make a tree of height 3 (that is, the root is of height 2)
* use small nodes (say 4KB)
* you have this tree:
* A
* B
* C0 C1 C2 .. C15
* A has only one child. B has as many children as it can get.
* Fill the C nodes (the leaves) all almost full.
* Fill B's buffer up with a big message X for C15, and a slightly smaller message Y for C1.
* Put into A's buffer a little message Z aimed at C0.
* Now when insert a message of size I aimed at C0. I and Z together are too big to fit in A.
* First: X will be pushed into C15, resulting in this split
* A
* B0
* C0 C1 ... C8
* B1
* C9 C10 ... C15 C16
* At this point C0 through C14 are full, Y is in B0's buffer, and A's buffer contains I and Z.
* So we try to push Z if it fits. Which it does.
* So then we try to I if it fits. If we calculated wrong, everything breaks now.
*
*/
#include "brt.h"
#include "key.h"
#include "toku_assert.h"
#include "brt-internal.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
static TOKUTXN const null_txn = 0;
static DB * const null_db = 0;
enum { NODESIZE = 1024, KSIZE=NODESIZE-100, PSIZE=20 };
CACHETABLE ct;
BRT t;
int fnamelen;
char *fname;
void doit (int ksize __attribute__((__unused__))) {
DISKOFF cnodes[BRT_FANOUT], bnode, anode;
u_int32_t fingerprints[BRT_FANOUT];
char *keys[BRT_FANOUT-1];
int keylens[BRT_FANOUT-1];
int i;
int r;
fnamelen = strlen(__FILE__) + 20;
fname = malloc(fnamelen);
assert(fname!=0);
snprintf(fname, fnamelen, "%s.brt", __FILE__);
r = toku_brt_create_cachetable(&ct, 16*1024, ZERO_LSN, NULL_LOGGER); assert(r==0);
unlink(fname);
r = toku_open_brt(fname, 0, 1, &t, NODESIZE, ct, null_txn, toku_default_compare_fun, null_db);
assert(r==0);
toku_free(fname);
for (i=0; i<BRT_FANOUT; i++) {
r=toku_testsetup_leaf(t, &cnodes[i]);
assert(r==0);
fingerprints[i]=0;
char key[KSIZE+10];
int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", i*10000+1, KSIZE-9, 0);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_leaf(t, cnodes[i], key, keylen, val, vallen, &fingerprints[i]);
assert(r==0);
}
// Now we have a bunch of leaves, all of which are with 100 bytes of full.
for (i=0; i+1<BRT_FANOUT; i++) {
char key[PSIZE];
keylens[i]=1+snprintf(key, PSIZE, "%08d", (i+1)*10000);
keys[i]=strdup(key);
}
r = toku_testsetup_nonleaf(t, 1, &bnode, BRT_FANOUT, cnodes, fingerprints, keys, keylens);
assert(r==0);
for (i=0; i+1<BRT_FANOUT; i++) {
toku_free(keys[i]);
}
u_int32_t bfingerprint=0;
{
const int magic_size = (NODESIZE-toku_testsetup_get_sersize(t, bnode))/2-25;
//printf("magic_size=%d\n", magic_size);
char key [KSIZE];
int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 150002, magic_size, 0);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_nonleaf(t, bnode, BRT_INSERT, key, keylen, val, vallen, &bfingerprint);
keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 2, magic_size-1, 0);
r=toku_testsetup_insert_to_nonleaf(t, bnode, BRT_INSERT, key, keylen, val, vallen, &bfingerprint);
}
//printf("%lld sersize=%d\n", bnode, toku_testsetup_get_sersize(t, bnode));
// Now we have an internal node which has full children and the buffers are nearly full
r = toku_testsetup_nonleaf(t, 2, &anode, 1, &bnode, &bfingerprint, 0, 0);
assert(r==0);
{
char key[20];
int keylen = 1+snprintf(key, 20, "%08d", 3);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_nonleaf(t, anode, BRT_INSERT, key, keylen, val, vallen, &bfingerprint);
}
if (0)
{
const int magic_size = 1; //NODESIZE-toku_testsetup_get_sersize(t, anode)-100;
DBT k,v;
char key[20];
char data[magic_size];
int keylen=1+snprintf(key, sizeof(key), "%08d", 4);
int vallen=magic_size;
snprintf(data, magic_size, "%*s", magic_size-1, " ");
r=toku_brt_insert(t,
toku_fill_dbt(&k, key, keylen),
toku_fill_dbt(&v, data, vallen),
null_txn);
}
r = toku_testsetup_root(t, anode);
assert(r==0);
r = toku_close_brt(t, 0); assert(r==0);
r = toku_cachetable_close(&ct); assert(r==0);
//printf("ksize=%d, unused\n", ksize);
}
int main (int argc __attribute__((__unused__)), char *argv[] __attribute__((__unused__))) {
int i;
doit(53);
toku_malloc_cleanup();
exit(0);
for (i=1; i<NODESIZE/2; i++) {
printf("extrasize=%d\n", i);
doit(i);
}
toku_malloc_cleanup();
return 0;
}