mirror of
https://github.com/MariaDB/server.git
synced 2025-01-25 00:04:33 +01:00
9723a143d0
fixed
2075 lines
52 KiB
C
2075 lines
52 KiB
C
/* Copyright (C) 2000 MySQL AB
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
||
|
||
/*
|
||
=======================================================================
|
||
NOTE: this library implements SQL standard "exact numeric" type
|
||
and is not at all generic, but rather intentinally crippled to
|
||
follow the standard :)
|
||
=======================================================================
|
||
Quoting the standard
|
||
(SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
|
||
|
||
4.4.2 Characteristics of numbers, page 27:
|
||
|
||
An exact numeric type has a precision P and a scale S. P is a positive
|
||
integer that determines the number of significant digits in a
|
||
particular radix R, where R is either 2 or 10. S is a non-negative
|
||
integer. Every value of an exact numeric type of scale S is of the
|
||
form n*10^{-S}, where n is an integer such that -R^P <= n <= R^P.
|
||
|
||
[...]
|
||
|
||
If an assignment of some number would result in a loss of its most
|
||
significant digit, an exception condition is raised. If least
|
||
significant digits are lost, implementation-defined rounding or
|
||
truncating occurs, with no exception condition being raised.
|
||
|
||
[...]
|
||
|
||
Whenever an exact or approximate numeric value is assigned to an exact
|
||
numeric value site, an approximation of its value that preserves
|
||
leading significant digits after rounding or truncating is represented
|
||
in the declared type of the target. The value is converted to have the
|
||
precision and scale of the target. The choice of whether to truncate
|
||
or round is implementation-defined.
|
||
|
||
[...]
|
||
|
||
All numeric values between the smallest and the largest value,
|
||
inclusive, in a given exact numeric type have an approximation
|
||
obtained by rounding or truncation for that type; it is
|
||
implementation-defined which other numeric values have such
|
||
approximations.
|
||
|
||
5.3 <literal>, page 143
|
||
|
||
<exact numeric literal> ::=
|
||
<unsigned integer> [ <period> [ <unsigned integer> ] ]
|
||
| <period> <unsigned integer>
|
||
|
||
6.1 <data type>, page 165:
|
||
|
||
19) The <scale> of an <exact numeric type> shall not be greater than
|
||
the <precision> of the <exact numeric type>.
|
||
|
||
20) For the <exact numeric type>s DECIMAL and NUMERIC:
|
||
|
||
a) The maximum value of <precision> is implementation-defined.
|
||
<precision> shall not be greater than this value.
|
||
b) The maximum value of <scale> is implementation-defined. <scale>
|
||
shall not be greater than this maximum value.
|
||
|
||
21) NUMERIC specifies the data type exact numeric, with the decimal
|
||
precision and scale specified by the <precision> and <scale>.
|
||
|
||
22) DECIMAL specifies the data type exact numeric, with the decimal
|
||
scale specified by the <scale> and the implementation-defined
|
||
decimal precision equal to or greater than the value of the
|
||
specified <precision>.
|
||
|
||
6.26 <numeric value expression>, page 241:
|
||
|
||
1) If the declared type of both operands of a dyadic arithmetic
|
||
operator is exact numeric, then the declared type of the result is
|
||
an implementation-defined exact numeric type, with precision and
|
||
scale determined as follows:
|
||
|
||
a) Let S1 and S2 be the scale of the first and second operands
|
||
respectively.
|
||
b) The precision of the result of addition and subtraction is
|
||
implementation-defined, and the scale is the maximum of S1 and S2.
|
||
c) The precision of the result of multiplication is
|
||
implementation-defined, and the scale is S1 + S2.
|
||
d) The precision and scale of the result of division are
|
||
implementation-defined.
|
||
*/
|
||
|
||
#include <decimal.h>
|
||
#include <m_ctype.h>
|
||
#include <myisampack.h>
|
||
#include <my_sys.h> /* for my_alloca */
|
||
|
||
typedef decimal_digit dec1;
|
||
typedef longlong dec2;
|
||
|
||
#define DIG_PER_DEC1 9
|
||
#define DIG_MASK 100000000
|
||
#define DIG_BASE 1000000000
|
||
#define DIG_BASE2 LL(1000000000000000000)
|
||
#define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1)
|
||
static const dec1 powers10[DIG_PER_DEC1+1]={
|
||
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
|
||
static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
|
||
|
||
#define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \
|
||
(d)->buf[(d)->len-1] | 1))
|
||
|
||
#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
|
||
do \
|
||
{ \
|
||
if (unlikely(intg1+frac1 > (len))) \
|
||
{ \
|
||
if (unlikely(intg1 > (len))) \
|
||
{ \
|
||
intg1=(len); \
|
||
frac1=0; \
|
||
error=E_DEC_OVERFLOW; \
|
||
} \
|
||
else \
|
||
{ \
|
||
frac1=(len)-intg1; \
|
||
error=E_DEC_TRUNCATED; \
|
||
} \
|
||
} \
|
||
else \
|
||
error=E_DEC_OK; \
|
||
} while(0)
|
||
|
||
#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
|
||
do \
|
||
{ \
|
||
dec1 a=(from1)+(from2)+(carry); \
|
||
if (((carry)= a >= DIG_BASE)) /* no division here! */ \
|
||
a-=DIG_BASE; \
|
||
(to)=a; \
|
||
} while(0)
|
||
|
||
#define ADD2(to, from1, from2, carry) \
|
||
do \
|
||
{ \
|
||
dec1 a=(from1)+(from2)+(carry); \
|
||
if (((carry)= a >= DIG_BASE)) \
|
||
a-=DIG_BASE; \
|
||
if (unlikely(a >= DIG_BASE)) \
|
||
{ \
|
||
a-=DIG_BASE; \
|
||
carry++; \
|
||
} \
|
||
(to)=a; \
|
||
} while(0)
|
||
|
||
#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
|
||
do \
|
||
{ \
|
||
dec1 a=(from1)-(from2)-(carry); \
|
||
if (((carry)= a < 0)) \
|
||
a+=DIG_BASE; \
|
||
(to)=a; \
|
||
} while(0)
|
||
|
||
#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
|
||
do \
|
||
{ \
|
||
dec1 a=(from1)-(from2)-(carry); \
|
||
if (((carry)= a < 0)) \
|
||
a+=DIG_BASE; \
|
||
if (unlikely(a < 0)) \
|
||
{ \
|
||
a+=DIG_BASE; \
|
||
carry++; \
|
||
} \
|
||
(to)=a; \
|
||
} while(0)
|
||
|
||
/*
|
||
Convert decimal to its printable string representation
|
||
|
||
SYNOPSIS
|
||
decimal2string()
|
||
from - value to convert
|
||
to - points to buffer where string representation should be stored
|
||
*to_len - in: size of to buffer
|
||
out: length of the actually written string
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
||
*/
|
||
|
||
int decimal2string(decimal *from, char *to, int *to_len)
|
||
{
|
||
int len, intg=from->intg, frac=from->frac, i;
|
||
int error=E_DEC_OK;
|
||
char *s=to;
|
||
dec1 *buf, *buf0=from->buf, tmp;
|
||
|
||
DBUG_ASSERT(*to_len >= 2+from->sign);
|
||
|
||
/* removing leading zeroes */
|
||
i=((intg-1) % DIG_PER_DEC1)+1;
|
||
while (intg > 0 && *buf0 == 0)
|
||
{
|
||
intg-=i;
|
||
i=DIG_PER_DEC1;
|
||
buf0++;
|
||
}
|
||
if (intg > 0)
|
||
{
|
||
for (i=(intg-1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ;
|
||
DBUG_ASSERT(intg > 0);
|
||
}
|
||
else
|
||
intg=0;
|
||
if (unlikely(intg+frac==0))
|
||
{
|
||
intg=1;
|
||
tmp=0;
|
||
buf0=&tmp;
|
||
}
|
||
|
||
len= from->sign + intg + test(frac) + frac;
|
||
if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
|
||
{
|
||
int i=len-*to_len;
|
||
error= (frac && i <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
|
||
if (frac && i >= frac + 1) i--;
|
||
if (i > frac)
|
||
{
|
||
intg-= i-frac;
|
||
frac= 0;
|
||
}
|
||
else
|
||
frac-=i;
|
||
len= from->sign + intg + test(frac) + frac;
|
||
}
|
||
*to_len=len;
|
||
s[len]=0;
|
||
|
||
if (from->sign)
|
||
*s++='-';
|
||
|
||
if (frac)
|
||
{
|
||
char *s1=s+intg;
|
||
buf=buf0+ROUND_UP(intg);
|
||
*s1++='.';
|
||
for (; frac>0; frac-=DIG_PER_DEC1)
|
||
{
|
||
dec1 x=*buf++;
|
||
for (i=min(frac, DIG_PER_DEC1); i; i--)
|
||
{
|
||
dec1 y=x/DIG_MASK;
|
||
*s1++='0'+(uchar)y;
|
||
x-=y*DIG_MASK;
|
||
x*=10;
|
||
}
|
||
}
|
||
}
|
||
|
||
s+=intg;
|
||
for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
|
||
{
|
||
dec1 x=*--buf;
|
||
for (i=min(intg, DIG_PER_DEC1); i; i--)
|
||
{
|
||
dec1 y=x/10;
|
||
*--s='0'+(uchar)(x-y*10);
|
||
x=y;
|
||
}
|
||
}
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
Convert string to decimal
|
||
|
||
SYNOPSIS
|
||
str2decl()
|
||
from - value to convert
|
||
to - decimal where where the result will be stored
|
||
to->buf and to->len must be set.
|
||
end - if not NULL, *end will be set to the char where
|
||
conversion ended
|
||
fixed - use to->intg, to->frac as limits for input number
|
||
|
||
NOTE
|
||
to->intg and to->frac can be modified even when fixed=1
|
||
(but only decreased, in this case)
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
|
||
*/
|
||
|
||
static int str2dec(char *from, decimal *to, char **end, my_bool fixed)
|
||
{
|
||
char *s=from, *s1;
|
||
int i, intg, frac, error, intg1, frac1;
|
||
dec1 x,*buf;
|
||
|
||
sanity(to);
|
||
|
||
while (my_isspace(&my_charset_latin1, *s))
|
||
s++;
|
||
if ((to->sign= (*s == '-')))
|
||
s++;
|
||
else if (*s == '+')
|
||
s++;
|
||
|
||
s1=s;
|
||
while (my_isdigit(&my_charset_latin1, *s))
|
||
s++;
|
||
intg=s-s1;
|
||
if (*s=='.')
|
||
{
|
||
char *s2=s+1;
|
||
while (my_isdigit(&my_charset_latin1, *s2))
|
||
s2++;
|
||
frac=s2-s-1;
|
||
}
|
||
else
|
||
frac=0;
|
||
if (end)
|
||
*end=s1+intg+frac+test(frac);
|
||
|
||
if (frac+intg == 0)
|
||
return E_DEC_BAD_NUM;
|
||
|
||
if (fixed)
|
||
{
|
||
if (frac > to->frac)
|
||
{
|
||
error=E_DEC_TRUNCATED;
|
||
frac=to->frac;
|
||
}
|
||
if (intg > to->intg)
|
||
{
|
||
error=E_DEC_OVERFLOW;
|
||
intg=to->intg;
|
||
}
|
||
intg1=ROUND_UP(intg);
|
||
frac1=ROUND_UP(frac);
|
||
if (intg1+frac1 > to->len)
|
||
return E_DEC_OOM;
|
||
}
|
||
else
|
||
{
|
||
intg1=ROUND_UP(intg);
|
||
frac1=ROUND_UP(frac);
|
||
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
|
||
if (unlikely(error))
|
||
{
|
||
frac=frac1*DIG_PER_DEC1;
|
||
if (error == E_DEC_OVERFLOW)
|
||
intg=intg1*DIG_PER_DEC1;
|
||
}
|
||
}
|
||
to->intg=intg;
|
||
to->frac=frac;
|
||
|
||
buf=to->buf+intg1;
|
||
s1=s;
|
||
|
||
for (x=0, i=0; intg; intg--)
|
||
{
|
||
x+= (*--s - '0')*powers10[i];
|
||
|
||
if (unlikely(++i == DIG_PER_DEC1))
|
||
{
|
||
*--buf=x;
|
||
x=0;
|
||
i=0;
|
||
}
|
||
}
|
||
if (i)
|
||
*--buf=x;
|
||
|
||
buf=to->buf+intg1;
|
||
for (x=0, i=0; frac; frac--)
|
||
{
|
||
x= (*++s1 - '0') + x*10;
|
||
|
||
if (unlikely(++i == DIG_PER_DEC1))
|
||
{
|
||
*buf++=x;
|
||
x=0;
|
||
i=0;
|
||
}
|
||
}
|
||
if (i)
|
||
*buf=x*powers10[DIG_PER_DEC1-i];
|
||
|
||
return error;
|
||
}
|
||
|
||
int string2decimal(char *from, decimal *to, char **end)
|
||
{
|
||
return str2dec(from, to, end, 0);
|
||
}
|
||
|
||
int string2decimal_fixed(char *from, decimal *to, char **end)
|
||
{
|
||
return str2dec(from, to, end, 1);
|
||
}
|
||
|
||
/*
|
||
Convert decimal to double
|
||
|
||
SYNOPSIS
|
||
decimal2double()
|
||
from - value to convert
|
||
to - result will be stored there
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK
|
||
*/
|
||
|
||
int decimal2double(decimal *from, double *to)
|
||
{
|
||
double x=0, t=DIG_BASE;
|
||
int intg, frac;
|
||
dec1 *buf=from->buf;
|
||
|
||
for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
|
||
x=x*DIG_BASE + *buf++;
|
||
for (frac=from->frac; frac > 0; frac-=DIG_PER_DEC1, t*=DIG_BASE)
|
||
x+=*buf++/t;
|
||
*to=from->sign ? -x : x;
|
||
return E_DEC_OK;
|
||
}
|
||
|
||
/*
|
||
Convert double to decimal
|
||
|
||
SYNOPSIS
|
||
double2decimal()
|
||
from - value to convert
|
||
to - result will be stored there
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
|
||
*/
|
||
|
||
int double2decimal(double from, decimal *to)
|
||
{
|
||
/* TODO: fix it, when we'll have dtoa */
|
||
char s[400];
|
||
sprintf(s, "%f", from);
|
||
return string2decimal(s, to, 0);
|
||
}
|
||
|
||
static int ull2dec(ulonglong from, decimal *to)
|
||
{
|
||
int intg1, error=E_DEC_OK;
|
||
ulonglong x=from;
|
||
dec1 *buf;
|
||
|
||
sanity(to);
|
||
|
||
for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE);
|
||
if (unlikely(intg1 > to->len))
|
||
{
|
||
intg1=to->len;
|
||
error=E_DEC_OVERFLOW;
|
||
}
|
||
to->frac=0;
|
||
to->intg=intg1*DIG_PER_DEC1;
|
||
|
||
for (buf=to->buf+intg1; intg1; intg1--)
|
||
{
|
||
ulonglong y=x/DIG_BASE;
|
||
*--buf=(dec1)(x-y*DIG_BASE);
|
||
x=y;
|
||
}
|
||
return error;
|
||
}
|
||
|
||
int ulonglong2decimal(ulonglong from, decimal *to)
|
||
{
|
||
to->sign=0;
|
||
return ull2dec(from, to);
|
||
}
|
||
|
||
int longlong2decimal(longlong from, decimal *to)
|
||
{
|
||
if ((to->sign= from < 0))
|
||
return ull2dec(-from, to);
|
||
return ull2dec(from, to);
|
||
}
|
||
|
||
int decimal2ulonglong(decimal *from, ulonglong *to)
|
||
{
|
||
dec1 *buf=from->buf;
|
||
ulonglong x=0;
|
||
int intg;
|
||
|
||
if (from->sign)
|
||
{
|
||
*to=ULL(0);
|
||
return E_DEC_OVERFLOW;
|
||
}
|
||
|
||
for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
|
||
{
|
||
ulonglong y=x;
|
||
x=x*DIG_BASE + *buf++;
|
||
if (unlikely(x < y))
|
||
{
|
||
*to=y;
|
||
return E_DEC_OVERFLOW;
|
||
}
|
||
}
|
||
*to=x;
|
||
return from->frac ? E_DEC_TRUNCATED : E_DEC_OK;
|
||
}
|
||
|
||
int decimal2longlong(decimal *from, longlong *to)
|
||
{
|
||
dec1 *buf=from->buf;
|
||
longlong x=0;
|
||
int intg;
|
||
|
||
for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
|
||
{
|
||
longlong y=x;
|
||
/*
|
||
Attention: trick!
|
||
we're calculating -|from| instead of |from| here
|
||
because |MIN_LONGLONG| > MAX_LONGLONG
|
||
so we can convert -9223372036854775808 correctly
|
||
*/
|
||
x=x*DIG_BASE - *buf++;
|
||
if (unlikely(x > y))
|
||
{
|
||
*to= from->sign ? y : -y;
|
||
return E_DEC_OVERFLOW;
|
||
}
|
||
}
|
||
/* boundary case: 9223372036854775808 */
|
||
if (unlikely(from->sign==0 && x < 0 && -x < 0))
|
||
{
|
||
*to= -1-x;
|
||
return E_DEC_OVERFLOW;
|
||
}
|
||
|
||
*to=from->sign ? x : -x;
|
||
return from->frac ? E_DEC_TRUNCATED : E_DEC_OK;
|
||
}
|
||
|
||
/*
|
||
Convert decimal to its binary fixed-length representation
|
||
two representations of the same length can be compared with memcmp
|
||
with the correct -1/0/+1 result
|
||
|
||
SYNOPSIS
|
||
decimal2bin()
|
||
from - value to convert
|
||
to - points to buffer where string representation should be stored
|
||
precision/scale - see decimal_bin_size() below
|
||
|
||
NOTE
|
||
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
||
*/
|
||
int decimal2bin(decimal *from, char *to, int precision, int frac)
|
||
{
|
||
dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1;
|
||
int error=E_DEC_OK, intg=precision-frac,
|
||
isize1, intg1, intg1x=from->intg,
|
||
intg0=intg/DIG_PER_DEC1,
|
||
frac0=frac/DIG_PER_DEC1,
|
||
intg0x=intg-intg0*DIG_PER_DEC1,
|
||
frac0x=frac-frac0*DIG_PER_DEC1,
|
||
frac1=from->frac/DIG_PER_DEC1,
|
||
frac1x=from->frac-frac1*DIG_PER_DEC1,
|
||
isize0=intg0*sizeof(dec1)+dig2bytes[intg0x],
|
||
fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x],
|
||
fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x];
|
||
|
||
/* removing leading zeroes */
|
||
intg1=((intg1x-1) % DIG_PER_DEC1)+1;
|
||
while (intg1x > 0 && *buf1 == 0)
|
||
{
|
||
intg1x-=intg1;
|
||
intg1=DIG_PER_DEC1;
|
||
buf1++;
|
||
}
|
||
if (intg1x > 0)
|
||
{
|
||
for (intg1=(intg1x-1) % DIG_PER_DEC1; *buf1 < powers10[intg1--]; intg1x--) ;
|
||
DBUG_ASSERT(intg1x > 0);
|
||
}
|
||
else
|
||
intg1x=0;
|
||
|
||
if (unlikely(intg1x+fsize1==0))
|
||
{
|
||
mask=0; /* just in case */
|
||
intg=1;
|
||
buf1=&mask;
|
||
}
|
||
|
||
intg1=intg1x/DIG_PER_DEC1;
|
||
intg1x=intg1x-intg1*DIG_PER_DEC1;
|
||
isize1=intg1*sizeof(dec1)+dig2bytes[intg1x];
|
||
|
||
if (isize0 < isize1)
|
||
{
|
||
buf1+=intg1-intg0+(intg1x>0)-(intg0x>0);
|
||
intg1=intg0; intg1x=intg0x;
|
||
error=E_DEC_OVERFLOW;
|
||
}
|
||
else if (isize0 > isize1)
|
||
{
|
||
while (isize0-- > isize1)
|
||
*to++= (char)mask;
|
||
}
|
||
if (fsize0 < fsize1)
|
||
{
|
||
frac1=frac0; frac1x=frac0x;
|
||
error=E_DEC_TRUNCATED;
|
||
}
|
||
else if (fsize0 > fsize1 && frac1x)
|
||
{
|
||
if (frac0 == frac1)
|
||
frac1x=frac0x;
|
||
else
|
||
{
|
||
frac1++;
|
||
frac1x=0;
|
||
}
|
||
}
|
||
|
||
/* intg1x part */
|
||
if (intg1x)
|
||
{
|
||
int i=dig2bytes[intg1x];
|
||
dec1 x=(*buf1++ % powers10[intg1x]) ^ mask;
|
||
switch (i)
|
||
{
|
||
case 1: mi_int1store(to, x); break;
|
||
case 2: mi_int2store(to, x); break;
|
||
case 3: mi_int3store(to, x); break;
|
||
case 4: mi_int4store(to, x); break;
|
||
default: DBUG_ASSERT(0);
|
||
}
|
||
to+=i;
|
||
}
|
||
|
||
/* intg1+frac1 part */
|
||
for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1))
|
||
{
|
||
dec1 x=*buf1++ ^ mask;
|
||
DBUG_ASSERT(sizeof(dec1) == 4);
|
||
mi_int4store(to, x);
|
||
}
|
||
|
||
/* frac1x part */
|
||
if (frac1x)
|
||
{
|
||
int i=dig2bytes[frac1x];
|
||
dec1 x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask;
|
||
switch (i)
|
||
{
|
||
case 1: mi_int1store(to, x); break;
|
||
case 2: mi_int2store(to, x); break;
|
||
case 3: mi_int3store(to, x); break;
|
||
case 4: mi_int4store(to, x); break;
|
||
default: DBUG_ASSERT(0);
|
||
}
|
||
to+=i;
|
||
}
|
||
if (fsize0 > fsize1)
|
||
{
|
||
while (fsize0-- > fsize1)
|
||
*to++=(uchar)mask;
|
||
}
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
Restores decimal from its binary fixed-length representation
|
||
|
||
SYNOPSIS
|
||
bin2decimal()
|
||
from - value to convert
|
||
to - result
|
||
precision/scale - see decimal_bin_size() below
|
||
|
||
NOTE
|
||
see decimal2bin()
|
||
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
||
*/
|
||
|
||
int bin2decimal(char *from, decimal *to, int precision, int scale)
|
||
{
|
||
int error=E_DEC_OK, intg=precision-scale,
|
||
intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
|
||
intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
|
||
intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
|
||
dec1 *buf=to->buf, mask=(*from <0) ? -1 : 0;
|
||
char *stop;
|
||
|
||
sanity(to);
|
||
|
||
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
|
||
if (unlikely(error))
|
||
{
|
||
if (intg1 < intg0+(intg0x>0))
|
||
{
|
||
from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1);
|
||
frac0=frac0x=intg0x=0;
|
||
intg0=intg1;
|
||
}
|
||
else
|
||
{
|
||
frac0x=0;
|
||
frac0=frac1;
|
||
}
|
||
}
|
||
|
||
to->sign=(mask != 0);
|
||
to->intg=intg0*DIG_PER_DEC1+intg0x;
|
||
to->frac=frac0*DIG_PER_DEC1+frac0x;
|
||
|
||
if (intg0x)
|
||
{
|
||
int i=dig2bytes[intg0x];
|
||
dec1 x;
|
||
switch (i)
|
||
{
|
||
case 1: x=mi_sint1korr(from); break;
|
||
case 2: x=mi_sint2korr(from); break;
|
||
case 3: x=mi_sint3korr(from); break;
|
||
case 4: x=mi_sint4korr(from); break;
|
||
default: DBUG_ASSERT(0);
|
||
}
|
||
from+=i;
|
||
*buf=x ^ mask;
|
||
if (buf > to->buf || *buf != 0)
|
||
buf++;
|
||
else
|
||
to->intg-=intg0x;
|
||
}
|
||
for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
|
||
{
|
||
DBUG_ASSERT(sizeof(dec1) == 4);
|
||
*buf=mi_sint4korr(from) ^ mask;
|
||
if (buf > to->buf || *buf != 0)
|
||
buf++;
|
||
else
|
||
to->intg-=DIG_PER_DEC1;
|
||
}
|
||
DBUG_ASSERT(to->intg >=0);
|
||
for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
|
||
{
|
||
DBUG_ASSERT(sizeof(dec1) == 4);
|
||
*buf=mi_sint4korr(from) ^ mask;
|
||
buf++;
|
||
}
|
||
if (frac0x)
|
||
{
|
||
int i=dig2bytes[frac0x];
|
||
dec1 x;
|
||
switch (i)
|
||
{
|
||
case 1: x=mi_sint1korr(from); break;
|
||
case 2: x=mi_sint2korr(from); break;
|
||
case 3: x=mi_sint3korr(from); break;
|
||
case 4: x=mi_sint4korr(from); break;
|
||
default: DBUG_ASSERT(0);
|
||
}
|
||
*buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
|
||
buf++;
|
||
}
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
Returns the size of array to hold a decimal with given precision and scale
|
||
|
||
RETURN VALUE
|
||
size in dec1
|
||
(multiply by sizeof(dec1) to get the size if bytes)
|
||
*/
|
||
|
||
int decimal_size(int precision, int scale)
|
||
{
|
||
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
|
||
return ROUND_UP(precision-scale)+ROUND_UP(scale);
|
||
}
|
||
|
||
/*
|
||
Returns the size of array to hold a binary representation of a decimal
|
||
|
||
RETURN VALUE
|
||
size in bytes
|
||
*/
|
||
|
||
int decimal_bin_size(int precision, int scale)
|
||
{
|
||
int intg=precision-scale,
|
||
intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
|
||
intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;
|
||
|
||
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
|
||
return intg0*sizeof(dec1)+dig2bytes[intg0x]+
|
||
frac0*sizeof(dec1)+dig2bytes[frac0x];
|
||
}
|
||
|
||
/*
|
||
Rounds the decimal to "scale" digits
|
||
|
||
SYNOPSIS
|
||
decimal_round()
|
||
from - decimal to round,
|
||
to - result buffer. from==to is allowed
|
||
scale - to what position to round. can be negative!
|
||
mode - round to nearest even or truncate
|
||
|
||
NOTES
|
||
scale can be negative !
|
||
one TRUNCATED error (line XXX below) isn't treated very logical :(
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED
|
||
*/
|
||
|
||
int decimal_round(decimal *from, decimal *to, int scale, decimal_round_mode mode)
|
||
{
|
||
int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1,
|
||
frac1=ROUND_UP(from->frac), round_digit,
|
||
intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len;
|
||
dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
|
||
|
||
sanity(to);
|
||
|
||
switch (mode) {
|
||
case HALF_UP:
|
||
case HALF_EVEN: round_digit=5; break;
|
||
case CEILING: round_digit= from->sign ? 10 : 0; break;
|
||
case FLOOR: round_digit= from->sign ? 0 : 10; break;
|
||
case TRUNCATE: round_digit=10; break;
|
||
default: DBUG_ASSERT(0);
|
||
}
|
||
|
||
if (unlikely(frac0+intg0 > len))
|
||
{
|
||
frac0=len-intg0;
|
||
scale=frac0*DIG_PER_DEC1;
|
||
error=E_DEC_TRUNCATED;
|
||
}
|
||
|
||
if (scale+from->intg <0)
|
||
{
|
||
decimal_make_zero(to);
|
||
return E_DEC_OK;
|
||
}
|
||
|
||
if (to != from)
|
||
{
|
||
dec1 *end=buf0+intg0+min(frac1, frac0);
|
||
while (buf0 < end)
|
||
*buf1++ = *buf0++;
|
||
buf0=from->buf;
|
||
buf1=to->buf;
|
||
to->sign=from->sign;
|
||
to->intg=min(intg0, len)*DIG_PER_DEC1;
|
||
}
|
||
|
||
if (frac0 > frac1)
|
||
{
|
||
buf1+=intg0+frac1;
|
||
while (frac0-- > frac1)
|
||
*buf1++=0;
|
||
goto done;
|
||
}
|
||
|
||
if (scale >= from->frac)
|
||
goto done; /* nothing to do */
|
||
|
||
DBUG_ASSERT(frac0+intg0 > 0);
|
||
buf0+=intg0+frac0-1;
|
||
buf1+=intg0+frac0-1;
|
||
if (scale == frac0*DIG_PER_DEC1)
|
||
{
|
||
x=buf0[1]/DIG_MASK;
|
||
if (x > round_digit ||
|
||
(round_digit == 5 && x == 5 && (mode == HALF_UP || *buf0 & 1)))
|
||
(*buf1)++;
|
||
}
|
||
else
|
||
{
|
||
int pos=frac0*DIG_PER_DEC1-scale-1;
|
||
x=*buf1 / powers10[pos];
|
||
y=x % 10;
|
||
if (y > round_digit ||
|
||
(round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1)))
|
||
x+=10;
|
||
*buf1=powers10[pos]*(x-y);
|
||
}
|
||
if (*buf1 >= DIG_BASE)
|
||
{
|
||
carry=1;
|
||
*buf1-=DIG_BASE;
|
||
while (carry && --buf1 >= to->buf)
|
||
ADD(*buf1, *buf1, 0, carry);
|
||
if (unlikely(carry))
|
||
{
|
||
/* shifting the number to create space for new digit */
|
||
if (frac0+intg0 >= len)
|
||
{
|
||
frac0--;
|
||
scale=frac0*DIG_PER_DEC1;
|
||
error=E_DEC_TRUNCATED; /* XXX */
|
||
}
|
||
for (buf1=to->buf+frac0+intg0; buf1 > to->buf; buf1--)
|
||
{
|
||
buf1[0]=buf1[-1];
|
||
}
|
||
*buf1=1;
|
||
to->intg++;
|
||
}
|
||
}
|
||
if (scale<0) scale=0;
|
||
|
||
done:
|
||
to->frac=scale;
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
Returns the size of the result of the operation
|
||
|
||
SYNOPSIS
|
||
decimal_result_size()
|
||
from1 - operand of the unary operation or first operand of the
|
||
binary operation
|
||
from2 - second operand of the binary operation
|
||
op - operation. one char '+', '-', '*', '/' are allowed
|
||
others may be added later
|
||
param - extra param to the operation. unused for '+', '-', '*'
|
||
scale increment for '/'
|
||
|
||
NOTE
|
||
returned valued may be larger than the actual buffer requred
|
||
in the operation, as decimal_result_size, by design, operates on
|
||
precision/scale values only and not on the actual decimal number
|
||
|
||
RETURN VALUE
|
||
size of to->buf array in dec1 elements. to get size in bytes
|
||
multiply by sizeof(dec1)
|
||
*/
|
||
|
||
int decimal_result_size(decimal *from1, decimal *from2, char op, int param)
|
||
{
|
||
switch (op) {
|
||
case '-':
|
||
return ROUND_UP(max(from1->intg, from2->intg)) +
|
||
ROUND_UP(max(from1->frac, from2->frac));
|
||
case '+':
|
||
return ROUND_UP(max(from1->intg, from2->intg)+1) +
|
||
ROUND_UP(max(from1->frac, from2->frac));
|
||
case '*':
|
||
return ROUND_UP(from1->intg+from2->intg)+
|
||
ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
|
||
case '/':
|
||
return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
|
||
default: DBUG_ASSERT(0);
|
||
}
|
||
return -1; /* shut up the warning */
|
||
}
|
||
|
||
static int do_add(decimal *from1, decimal *from2, decimal *to)
|
||
{
|
||
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
|
||
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
|
||
frac0=max(frac1, frac2), intg0=max(intg1, intg2), error;
|
||
dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
|
||
|
||
sanity(to);
|
||
|
||
/* is there a need for extra word because of carry ? */
|
||
x=intg1 > intg2 ? from1->buf[0] :
|
||
intg2 > intg1 ? from2->buf[0] :
|
||
from1->buf[0] + from2->buf[0] ;
|
||
if (unlikely(x > DIG_MASK*9)) /* yes, there is */
|
||
{
|
||
intg0++;
|
||
to->buf[0]=0; /* safety */
|
||
}
|
||
|
||
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
|
||
buf0=to->buf+intg0+frac0;
|
||
|
||
to->sign=from1->sign;
|
||
to->frac=max(from1->frac, from2->frac);
|
||
to->intg=intg0*DIG_PER_DEC1;
|
||
if (unlikely(error))
|
||
{
|
||
set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
|
||
set_if_smaller(frac1, frac0);
|
||
set_if_smaller(frac2, frac0);
|
||
set_if_smaller(intg1, intg0);
|
||
set_if_smaller(intg2, intg0);
|
||
}
|
||
|
||
/* part 1 - max(frac) ... min (frac) */
|
||
if (frac1 > frac2)
|
||
{
|
||
buf1=from1->buf+intg1+frac1;
|
||
stop=from1->buf+intg1+frac2;
|
||
buf2=from2->buf+intg2+frac2;
|
||
stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0);
|
||
}
|
||
else
|
||
{
|
||
buf1=from2->buf+intg2+frac2;
|
||
stop=from2->buf+intg2+frac1;
|
||
buf2=from1->buf+intg1+frac1;
|
||
stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0);
|
||
}
|
||
while (buf1 > stop)
|
||
*--buf0=*--buf1;
|
||
|
||
/* part 2 - min(frac) ... min(intg) */
|
||
carry=0;
|
||
while (buf1 > stop2)
|
||
{
|
||
ADD(*--buf0, *--buf1, *--buf2, carry);
|
||
}
|
||
|
||
/* part 3 - min(intg) ... max(intg) */
|
||
buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) :
|
||
((stop=from2->buf)+intg2-intg1) ;
|
||
while (buf1 > stop)
|
||
{
|
||
ADD(*--buf0, *--buf1, 0, carry);
|
||
}
|
||
|
||
if (unlikely(carry))
|
||
*--buf0=1;
|
||
DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1);
|
||
|
||
return error;
|
||
}
|
||
|
||
/* to=from1-from2.
|
||
if to==0, return -1/0/+1 - the result of the comparison */
|
||
static int do_sub(decimal *from1, decimal *from2, decimal *to)
|
||
{
|
||
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
|
||
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac);
|
||
int frac0=max(frac1, frac2), error;
|
||
dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0;
|
||
|
||
/* let carry:=1 if from2 > from1 */
|
||
start1=buf1=from1->buf; stop1=buf1+intg1;
|
||
start2=buf2=from2->buf; stop2=buf2+intg2;
|
||
if (unlikely(*buf1 == 0))
|
||
{
|
||
while (buf1 < stop1 && *buf1 == 0)
|
||
buf1++;
|
||
start1=buf1;
|
||
intg1=stop1-buf1;
|
||
}
|
||
if (unlikely(*buf2 == 0))
|
||
{
|
||
while (buf2 < stop2 && *buf2 == 0)
|
||
buf2++;
|
||
start2=buf2;
|
||
intg2=stop2-buf2;
|
||
}
|
||
if (intg2 > intg1)
|
||
carry=1;
|
||
else if (intg2 == intg1)
|
||
{
|
||
while (unlikely(stop1[frac1-1] == 0))
|
||
frac1--;
|
||
while (unlikely(stop2[frac2-1] == 0))
|
||
frac2--;
|
||
while (buf1 < stop1+frac1 && buf2 < stop2+frac2 && *buf1 == *buf2)
|
||
buf1++, buf2++;
|
||
if (buf1 < stop1+frac1)
|
||
if (buf2 < stop2+frac2)
|
||
carry= *buf2 > *buf1;
|
||
else
|
||
carry= 0;
|
||
else
|
||
if (buf2 < stop2+frac2)
|
||
carry=1;
|
||
else /* short-circuit everything: from1 == from2 */
|
||
{
|
||
if (to == 0) /* decimal_cmp() */
|
||
return 0;
|
||
decimal_make_zero(to);
|
||
return E_DEC_OK;
|
||
}
|
||
}
|
||
|
||
if (to == 0) /* decimal_cmp() */
|
||
return carry == from1->sign ? 1 : -1;
|
||
|
||
sanity(to);
|
||
|
||
to->sign=from1->sign;
|
||
|
||
/* ensure that always from1 > from2 (and intg1 >= intg2) */
|
||
if (carry)
|
||
{
|
||
swap_variables(decimal *,from1,from1);
|
||
swap_variables(dec1 *,start1, start2);
|
||
swap_variables(int,intg1,intg2);
|
||
swap_variables(int,frac1,frac2);
|
||
to->sign= 1 - to->sign;
|
||
}
|
||
|
||
FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
|
||
buf0=to->buf+intg1+frac0;
|
||
|
||
to->frac=max(from1->frac, from2->frac);
|
||
to->intg=intg1*DIG_PER_DEC1;
|
||
if (unlikely(error))
|
||
{
|
||
set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
|
||
set_if_smaller(frac1, frac0);
|
||
set_if_smaller(frac2, frac0);
|
||
set_if_smaller(intg2, intg1);
|
||
}
|
||
carry=0;
|
||
|
||
/* part 1 - max(frac) ... min (frac) */
|
||
if (frac1 > frac2)
|
||
{
|
||
buf1=start1+intg1+frac1;
|
||
stop1=start1+intg1+frac2;
|
||
buf2=start2+intg2+frac2;
|
||
while (frac0-- > frac1)
|
||
*--buf0=0;
|
||
while (buf1 > stop1)
|
||
*--buf0=*--buf1;
|
||
}
|
||
else
|
||
{
|
||
buf1=start1+intg1+frac1;
|
||
buf2=start2+intg2+frac2;
|
||
stop2=start2+intg2+frac1;
|
||
while (frac0-- > frac2)
|
||
*--buf0=0;
|
||
while (buf2 > stop2)
|
||
{
|
||
SUB(*--buf0, 0, *--buf2, carry);
|
||
}
|
||
}
|
||
|
||
/* part 2 - min(frac) ... intg2 */
|
||
while (buf2 > start2)
|
||
{
|
||
SUB(*--buf0, *--buf1, *--buf2, carry);
|
||
}
|
||
|
||
/* part 3 - intg2 ... intg1 */
|
||
while (carry && buf1 > start1)
|
||
{
|
||
SUB(*--buf0, *--buf1, 0, carry);
|
||
}
|
||
|
||
while (buf1 > start1)
|
||
*--buf0=*--buf1;
|
||
|
||
while (buf0 > to->buf)
|
||
*--buf0=0;
|
||
|
||
return error;
|
||
}
|
||
|
||
int decimal_add(decimal *from1, decimal *from2, decimal *to)
|
||
{
|
||
if (likely(from1->sign == from2->sign))
|
||
return do_add(from1, from2, to);
|
||
return do_sub(from1, from2, to);
|
||
}
|
||
|
||
int decimal_sub(decimal *from1, decimal *from2, decimal *to)
|
||
{
|
||
if (likely(from1->sign == from2->sign))
|
||
return do_sub(from1, from2, to);
|
||
return do_add(from1, from2, to);
|
||
}
|
||
|
||
int decimal_cmp(decimal *from1, decimal *from2)
|
||
{
|
||
if (likely(from1->sign == from2->sign))
|
||
return do_sub(from1, from2, 0);
|
||
return from1->sign > from2->sign ? -1 : 1;
|
||
}
|
||
|
||
/*
|
||
multiply two decimals
|
||
|
||
SYNOPSIS
|
||
decimal_mul()
|
||
from1, from2 - factors
|
||
to - product
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
|
||
|
||
NOTES
|
||
in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
|
||
and 63-digit number will take only 7 dec1 words (basically a 7-digit
|
||
"base 999999999" number). Thus there's no need in fast multiplication
|
||
algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
|
||
method.
|
||
|
||
XXX if this library is to be used with huge numbers of thousands of
|
||
digits, fast multiplication must be implemented.
|
||
*/
|
||
int decimal_mul(decimal *from1, decimal *from2, decimal *to)
|
||
{
|
||
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
|
||
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
|
||
intg0=ROUND_UP(from1->intg+from2->intg),
|
||
frac0=frac1+frac2, error, i, j;
|
||
dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
|
||
*start2, *stop2, *stop1, *start0, carry;
|
||
|
||
sanity(to);
|
||
|
||
i=intg0;
|
||
j=frac0;
|
||
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
|
||
to->sign=from1->sign != from2->sign;
|
||
to->frac=from1->frac+from2->frac;
|
||
to->intg=intg0*DIG_PER_DEC1;
|
||
|
||
if (unlikely(error))
|
||
{
|
||
set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
|
||
set_if_smaller(to->intg, intg0*DIG_PER_DEC1);
|
||
if (unlikely(i > intg0))
|
||
{
|
||
i-=intg0;
|
||
j=i >> 1;
|
||
intg1-= j;
|
||
intg2-=i-j;
|
||
frac1=frac2=0; /* frac0 is already 0 here */
|
||
}
|
||
else
|
||
{
|
||
j-=frac0;
|
||
i=j >> 1;
|
||
frac1-= i;
|
||
frac2-=j-i;
|
||
}
|
||
}
|
||
start0=to->buf+intg0+frac0-1;
|
||
start2=buf2+frac2-1;
|
||
stop1=buf1-intg1;
|
||
stop2=buf2-intg2;
|
||
|
||
bzero(to->buf, (intg0+frac0)*sizeof(dec1));
|
||
|
||
for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--)
|
||
{
|
||
carry=0;
|
||
for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--)
|
||
{
|
||
dec1 hi, lo;
|
||
dec2 p= ((dec2)*buf1) * ((dec2)*buf2);
|
||
hi=(dec1)(p/DIG_BASE);
|
||
lo=(dec1)(p-((dec2)hi)*DIG_BASE);
|
||
ADD2(*buf0, *buf0, lo, carry);
|
||
carry+=hi;
|
||
}
|
||
for (; carry; buf0--)
|
||
ADD(*buf0, *buf0, 0, carry);
|
||
}
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
naive division algorithm (Knuth's Algorithm D in 4.3.1) -
|
||
it's ok for short numbers
|
||
also we're using alloca() to allocate a temporary buffer
|
||
|
||
XXX if this library is to be used with huge numbers of thousands of
|
||
digits, fast division must be implemented and alloca should be
|
||
changed to malloc (or at least fallback to malloc if alloca() fails)
|
||
but then, decimal_mod() should be rewritten too :(
|
||
*/
|
||
static int do_div_mod(decimal *from1, decimal *from2,
|
||
decimal *to, decimal *mod, int scale_incr)
|
||
{
|
||
int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
|
||
frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
|
||
error, i, intg0, frac0, len1, len2, dlen1, dintg, div=(!mod);
|
||
dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1,
|
||
*start2, *stop2, *stop1, *stop0, norm2, carry, *start1;
|
||
dec2 norm_factor, x, guess, y;
|
||
|
||
if (mod)
|
||
to=mod;
|
||
|
||
sanity(to);
|
||
|
||
/* removing all the leading zeroes */
|
||
i=((prec1-1) % DIG_PER_DEC1)+1;
|
||
while (prec1 > 0 && *buf1 == 0)
|
||
{
|
||
prec1-=i;
|
||
i=DIG_PER_DEC1;
|
||
buf1++;
|
||
}
|
||
if (prec1 <= 0)
|
||
{ /* short-circuit everything: from1 == 0 */
|
||
decimal_make_zero(to);
|
||
return E_DEC_OK;
|
||
}
|
||
for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ;
|
||
DBUG_ASSERT(prec1 > 0);
|
||
|
||
i=((prec2-1) % DIG_PER_DEC1)+1;
|
||
while (prec2 > 0 && *buf2 == 0)
|
||
{
|
||
prec2-=i;
|
||
i=DIG_PER_DEC1;
|
||
buf2++;
|
||
}
|
||
if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
|
||
return E_DEC_DIV_ZERO;
|
||
|
||
for (i=(prec2-1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ;
|
||
DBUG_ASSERT(prec2 > 0);
|
||
|
||
/* let's fix scale_incr, taking into account frac1,frac2 increase */
|
||
if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0)
|
||
scale_incr=0;
|
||
|
||
dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2);
|
||
if (dintg < 0)
|
||
{
|
||
dintg/=DIG_PER_DEC1;
|
||
intg0=0;
|
||
}
|
||
else
|
||
intg0=ROUND_UP(dintg);
|
||
if (mod)
|
||
{
|
||
/* we're calculating N1 % N2.
|
||
The result will have
|
||
frac=max(frac1, frac2), as for subtraction
|
||
intg=intg2
|
||
*/
|
||
to->sign=from1->sign;
|
||
to->frac=max(from1->frac, from2->frac);
|
||
frac0=0;
|
||
}
|
||
else
|
||
{
|
||
/*
|
||
we're calculating N1/N2. N1 is in the buf1, has prec1 digits
|
||
N2 is in the buf2, has prec2 digits. Scales are frac1 and
|
||
frac2 accordingly.
|
||
Thus, the result will have
|
||
frac = ROUND_UP(frac1+frac2+scale_incr)
|
||
and
|
||
intg = (prec1-frac1) - (prec2-frac2) + 1
|
||
prec = intg+frac
|
||
*/
|
||
frac0=ROUND_UP(frac1+frac2+scale_incr);
|
||
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
|
||
to->sign=from1->sign != from2->sign;
|
||
to->intg=intg0*DIG_PER_DEC1;
|
||
to->frac=frac0*DIG_PER_DEC1;
|
||
}
|
||
buf0=to->buf;
|
||
stop0=buf0+intg0+frac0;
|
||
if (likely(div))
|
||
while (dintg++ < 0)
|
||
*buf0++=0;
|
||
|
||
len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1);
|
||
set_if_bigger(len1, 3);
|
||
if (!(tmp1=my_alloca(len1*sizeof(dec1))))
|
||
return E_DEC_OOM;
|
||
memcpy(tmp1, buf1, i*sizeof(dec1));
|
||
bzero(tmp1+i, (len1-i)*sizeof(dec1));
|
||
|
||
start1=tmp1;
|
||
stop1=start1+len1;
|
||
start2=buf2;
|
||
stop2=buf2+ROUND_UP(prec2)-1;
|
||
|
||
/* removing end zeroes */
|
||
while (*stop2 == 0 && stop2 >= start2)
|
||
stop2--;
|
||
len2= ++stop2 - start2;
|
||
|
||
/*
|
||
calculating norm2 (normalized *start2) - we need *start2 to be large
|
||
(at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
|
||
normalize input numbers (as we don't make a copy of the divisor).
|
||
Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
|
||
on the fly for the purpose of guesstimation only.
|
||
It's also faster, as we're saving on normalization of buf2
|
||
*/
|
||
norm_factor=DIG_BASE/(*start2+1);
|
||
norm2=(dec1)(norm_factor*start2[0]);
|
||
if (likely(len2>1))
|
||
norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE);
|
||
|
||
/* main loop */
|
||
for ( ; buf0 < stop0; buf0++)
|
||
{
|
||
/* short-circuit, if possible */
|
||
if (unlikely(*start1 == 0))
|
||
{
|
||
start1++;
|
||
if (likely(div))
|
||
*buf0=0;
|
||
continue;
|
||
}
|
||
|
||
/* D3: make a guess */
|
||
if (*start1 >= *start2)
|
||
{
|
||
x=start1[0];
|
||
y=start1[1];
|
||
dlen1=len2-1;
|
||
}
|
||
else
|
||
{
|
||
x=((dec2)start1[0])*DIG_BASE+start1[1];
|
||
y=start1[2];
|
||
dlen1=len2;
|
||
}
|
||
guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2;
|
||
if (unlikely(guess >= DIG_BASE))
|
||
guess=DIG_BASE-1;
|
||
if (likely(len2>1))
|
||
{
|
||
/* hmm, this is a suspicious trick - I removed normalization here */
|
||
if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)
|
||
guess--;
|
||
if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y))
|
||
guess--;
|
||
DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y);
|
||
}
|
||
|
||
/* D4: multiply and subtract */
|
||
buf2=stop2;
|
||
buf1=start1+dlen1;
|
||
DBUG_ASSERT(buf1 < stop1);
|
||
for (carry=0; buf2 > start2; buf1--)
|
||
{
|
||
dec1 hi, lo;
|
||
x=guess * (*--buf2);
|
||
hi=(dec1)(x/DIG_BASE);
|
||
lo=(dec1)(x-((dec2)hi)*DIG_BASE);
|
||
SUB2(*buf1, *buf1, lo, carry);
|
||
carry+=hi;
|
||
}
|
||
for (; buf1 >= start1; buf1--)
|
||
{
|
||
SUB2(*buf1, *buf1, 0, carry);
|
||
}
|
||
|
||
/* D5: check the remainder */
|
||
if (unlikely(carry))
|
||
{
|
||
DBUG_ASSERT(carry==1);
|
||
/* D6: correct the guess */
|
||
guess--;
|
||
buf2=stop2;
|
||
buf1=start1+dlen1;
|
||
for (carry=0; buf2 > start2; buf1--)
|
||
{
|
||
ADD(*buf1, *buf1, *--buf2, carry);
|
||
}
|
||
for (; buf1 >= start1; buf1--)
|
||
{
|
||
SUB2(*buf1, *buf1, 0, carry);
|
||
}
|
||
DBUG_ASSERT(carry==1);
|
||
}
|
||
if (likely(div))
|
||
*buf0=(dec1)guess;
|
||
if (*start1 == 0)
|
||
start1++;
|
||
}
|
||
if (mod)
|
||
{
|
||
/*
|
||
now the result is in tmp1, it has
|
||
intg=prec1-frac1
|
||
frac=max(frac1, frac2)=to->frac
|
||
*/
|
||
buf0=to->buf;
|
||
intg0=ROUND_UP(prec1-frac1)-(start1-tmp1);
|
||
frac0=ROUND_UP(to->frac);
|
||
error=E_DEC_OK;
|
||
if (unlikely(frac0==0 && intg0==0))
|
||
{
|
||
decimal_make_zero(to);
|
||
goto done;
|
||
}
|
||
if (intg0<=0)
|
||
{
|
||
if (unlikely(-intg0 >= to->len))
|
||
{
|
||
decimal_make_zero(to);
|
||
error=E_DEC_TRUNCATED;
|
||
goto done;
|
||
}
|
||
stop1=start1+frac0;
|
||
frac0+=intg0;
|
||
to->intg=0;
|
||
while (intg0++ < 0)
|
||
*buf0++=0;
|
||
}
|
||
else
|
||
{
|
||
if (unlikely(intg0 > to->len))
|
||
{
|
||
frac0=0;
|
||
intg0=to->len;
|
||
error=E_DEC_OVERFLOW;
|
||
goto done;
|
||
}
|
||
DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg));
|
||
stop1=start1+frac0+intg0;
|
||
to->intg=min(intg0*DIG_PER_DEC1, from2->intg);
|
||
}
|
||
if (unlikely(intg0+frac0 > to->len))
|
||
{
|
||
stop1-=to->len-frac0-intg0;
|
||
frac0=to->len-intg0;
|
||
to->frac=frac0*DIG_PER_DEC1;
|
||
error=E_DEC_TRUNCATED;
|
||
}
|
||
while (start1 < stop1)
|
||
*buf0++=*start1++;
|
||
}
|
||
done:
|
||
my_afree(tmp1);
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
division of two decimals
|
||
|
||
SYNOPSIS
|
||
decimal_div()
|
||
from1 - dividend
|
||
from2 - divisor
|
||
to - quotient
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
|
||
|
||
NOTES
|
||
see do_div_mod()
|
||
*/
|
||
|
||
int decimal_div(decimal *from1, decimal *from2, decimal *to, int scale_incr)
|
||
{
|
||
return do_div_mod(from1, from2, to, 0, scale_incr);
|
||
}
|
||
|
||
/*
|
||
modulus
|
||
|
||
SYNOPSIS
|
||
decimal_mod()
|
||
from1 - dividend
|
||
from2 - divisor
|
||
to - modulus
|
||
|
||
RETURN VALUE
|
||
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
|
||
|
||
NOTES
|
||
see do_div_mod()
|
||
|
||
DESCRIPTION
|
||
the modulus R in R = M mod N
|
||
|
||
is defined as
|
||
|
||
0 <= |R| < |M|
|
||
sign R == sign M
|
||
R = M - k*N, where k is integer
|
||
|
||
thus, there's no requirement for M or N to be integers
|
||
*/
|
||
|
||
int decimal_mod(decimal *from1, decimal *from2, decimal *to)
|
||
{
|
||
return do_div_mod(from1, from2, 0, to, 0);
|
||
}
|
||
|
||
#ifdef MAIN
|
||
|
||
int full=0;
|
||
decimal a, b, c;
|
||
char buf1[100], buf2[100], buf3[100];
|
||
|
||
void dump_decimal(decimal *d)
|
||
{
|
||
int i;
|
||
printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign);
|
||
for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++)
|
||
printf("%09d, ", d->buf[i]);
|
||
printf("%09d} */ ", d->buf[i]);
|
||
}
|
||
|
||
void print_decimal(decimal *d)
|
||
{
|
||
char s[100];
|
||
int slen=sizeof(s);
|
||
|
||
if (full) dump_decimal(d);
|
||
decimal2string(d, s, &slen);
|
||
printf("'%s'", s);
|
||
}
|
||
|
||
void test_d2s()
|
||
{
|
||
char s[100];
|
||
int slen, res;
|
||
|
||
/***********************************/
|
||
printf("==== decimal2string ====\n");
|
||
a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0;
|
||
slen=sizeof(s);
|
||
res=decimal2string(&a, s, &slen);
|
||
dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
|
||
|
||
a.buf[1]=987000000; a.frac=3;
|
||
slen=sizeof(s);
|
||
res=decimal2string(&a, s, &slen);
|
||
dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
|
||
|
||
a.sign=1;
|
||
slen=sizeof(s);
|
||
res=decimal2string(&a, s, &slen);
|
||
dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
|
||
|
||
slen=8;
|
||
res=decimal2string(&a, s, &slen);
|
||
dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
|
||
|
||
slen=5;
|
||
res=decimal2string(&a, s, &slen);
|
||
dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
|
||
|
||
a.buf[0]=987000000; a.frac=3; a.intg=0;
|
||
slen=sizeof(s);
|
||
res=decimal2string(&a, s, &slen);
|
||
dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
|
||
}
|
||
|
||
void test_s2d(char *s)
|
||
{
|
||
char s1[100];
|
||
sprintf(s1, "'%s'", s);
|
||
printf("len=%2d %-30s => res=%d ", a.len, s1, string2decimal(s, &a, 0));
|
||
print_decimal(&a);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_d2f(char *s)
|
||
{
|
||
char s1[100];
|
||
double x;
|
||
int res;
|
||
|
||
sprintf(s1, "'%s'", s);
|
||
string2decimal(s, &a, 0);
|
||
res=decimal2double(&a, &x);
|
||
if (full) dump_decimal(&a);
|
||
printf("%-40s => res=%d %.*g\n", s1, res, a.intg+a.frac, x);
|
||
}
|
||
|
||
void test_d2b2d(char *str, int p, int s)
|
||
{
|
||
char s1[100], buf[100];
|
||
double x;
|
||
int res, i, size=decimal_bin_size(p, s);
|
||
|
||
sprintf(s1, "'%s'", str);
|
||
string2decimal(str, &a, 0);
|
||
res=decimal2bin(&a, buf, p, s);
|
||
printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size);
|
||
if (full)
|
||
{
|
||
printf("0x");
|
||
for (i=0; i < size; i++)
|
||
printf("%02x", ((uchar *)buf)[i]);
|
||
}
|
||
res=bin2decimal(buf, &a, p, s);
|
||
printf(" => res=%d ", res);
|
||
print_decimal(&a);
|
||
printf("\n");
|
||
}
|
||
void test_f2d(double from)
|
||
{
|
||
int res;
|
||
|
||
res=double2decimal(from, &a);
|
||
printf("%-40.*f => res=%d ", DBL_DIG-2, from, res);
|
||
print_decimal(&a);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_ull2d(ulonglong from)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
|
||
res=ulonglong2decimal(from, &a);
|
||
longlong10_to_str(from,s,10);
|
||
printf("%-40s => res=%d ", s, res);
|
||
print_decimal(&a);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_ll2d(longlong from)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
|
||
res=longlong2decimal(from, &a);
|
||
longlong10_to_str(from,s,-10);
|
||
printf("%-40s => res=%d ", s, res);
|
||
print_decimal(&a);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_d2ull(char *s)
|
||
{
|
||
char s1[100];
|
||
ulonglong x;
|
||
int res;
|
||
|
||
string2decimal(s, &a, 0);
|
||
res=decimal2ulonglong(&a, &x);
|
||
if (full) dump_decimal(&a);
|
||
longlong10_to_str(x,s1,10);
|
||
printf("%-40s => res=%d %s\n", s, res, s1);
|
||
}
|
||
|
||
void test_d2ll(char *s)
|
||
{
|
||
char s1[100];
|
||
longlong x;
|
||
int res;
|
||
|
||
string2decimal(s, &a, 0);
|
||
res=decimal2longlong(&a, &x);
|
||
if (full) dump_decimal(&a);
|
||
longlong10_to_str(x,s1,-10);
|
||
printf("%-40s => res=%d %s\n", s, res, s1);
|
||
}
|
||
|
||
void test_da(char *s1, char *s2)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
sprintf(s, "'%s' + '%s'", s1, s2);
|
||
string2decimal(s1, &a, 0);
|
||
string2decimal(s2, &b, 0);
|
||
res=decimal_add(&a, &b, &c);
|
||
printf("%-40s => res=%d ", s, res);
|
||
print_decimal(&c);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_ds(char *s1, char *s2)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
sprintf(s, "'%s' - '%s'", s1, s2);
|
||
string2decimal(s1, &a, 0);
|
||
string2decimal(s2, &b, 0);
|
||
res=decimal_sub(&a, &b, &c);
|
||
printf("%-40s => res=%d ", s, res);
|
||
print_decimal(&c);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_dc(char *s1, char *s2)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
sprintf(s, "'%s' <=> '%s'", s1, s2);
|
||
string2decimal(s1, &a, 0);
|
||
string2decimal(s2, &b, 0);
|
||
res=decimal_cmp(&a, &b);
|
||
printf("%-40s => res=%d\n", s, res);
|
||
}
|
||
|
||
void test_dm(char *s1, char *s2)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
sprintf(s, "'%s' * '%s'", s1, s2);
|
||
string2decimal(s1, &a, 0);
|
||
string2decimal(s2, &b, 0);
|
||
res=decimal_mul(&a, &b, &c);
|
||
printf("%-40s => res=%d ", s, res);
|
||
print_decimal(&c);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_dv(char *s1, char *s2)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
sprintf(s, "'%s' / '%s'", s1, s2);
|
||
string2decimal(s1, &a, 0);
|
||
string2decimal(s2, &b, 0);
|
||
res=decimal_div(&a, &b, &c, 5);
|
||
printf("%-40s => res=%d ", s, res);
|
||
if (res == E_DEC_DIV_ZERO)
|
||
printf("E_DEC_DIV_ZERO");
|
||
else
|
||
print_decimal(&c);
|
||
printf("\n");
|
||
}
|
||
|
||
void test_md(char *s1, char *s2)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
sprintf(s, "'%s' %% '%s'", s1, s2);
|
||
string2decimal(s1, &a, 0);
|
||
string2decimal(s2, &b, 0);
|
||
res=decimal_mod(&a, &b, &c);
|
||
printf("%-40s => res=%d ", s, res);
|
||
if (res == E_DEC_DIV_ZERO)
|
||
printf("E_DEC_DIV_ZERO");
|
||
else
|
||
print_decimal(&c);
|
||
printf("\n");
|
||
}
|
||
|
||
char *round_mode[]={"TRUNCATE", "HALF_EVEN", "HALF_UP", "CEILING", "FLOOR"};
|
||
|
||
void test_ro(char *s1, int n, decimal_round_mode mode)
|
||
{
|
||
char s[100];
|
||
int res;
|
||
sprintf(s, "'%s', %d, %s", s1, n, round_mode[mode]);
|
||
string2decimal(s1, &a, 0);
|
||
res=decimal_round(&a, &b, n, mode);
|
||
printf("%-40s => res=%d ", s, res);
|
||
print_decimal(&b);
|
||
printf("\n");
|
||
}
|
||
|
||
main()
|
||
{
|
||
a.buf=(void*)buf1;
|
||
a.len=sizeof(buf1)/sizeof(dec1);
|
||
b.buf=(void*)buf2;
|
||
b.len=sizeof(buf2)/sizeof(dec1);
|
||
c.buf=(void*)buf3;
|
||
c.len=sizeof(buf3)/sizeof(dec1);
|
||
|
||
if (full)
|
||
test_d2s();
|
||
|
||
printf("==== string2decimal ====\n");
|
||
test_s2d("12345");
|
||
test_s2d("12345.");
|
||
test_s2d("123.45");
|
||
test_s2d("-123.45");
|
||
test_s2d(".00012345000098765");
|
||
test_s2d(".12345000098765");
|
||
test_s2d("-.000000012345000098765");
|
||
test_s2d("1234500009876.5");
|
||
a.len=1;
|
||
test_s2d("123450000098765");
|
||
test_s2d("123450.000098765");
|
||
a.len=sizeof(buf1)/sizeof(dec1);
|
||
|
||
printf("==== decimal2double ====\n");
|
||
test_d2f("12345");
|
||
test_d2f("123.45");
|
||
test_d2f("-123.45");
|
||
test_d2f(".00012345000098765");
|
||
test_d2f("1234500009876.5");
|
||
|
||
printf("==== double2decimal ====\n");
|
||
test_f2d(12345);
|
||
test_f2d(1.0/3);
|
||
test_f2d(-123.45);
|
||
test_f2d(0.00012345000098765);
|
||
test_f2d(1234500009876.5);
|
||
|
||
printf("==== ulonglong2decimal ====\n");
|
||
test_ull2d(ULL(12345));
|
||
test_ull2d(ULL(0));
|
||
test_ull2d(ULL(18446744073709551615));
|
||
|
||
printf("==== decimal2ulonglong ====\n");
|
||
test_d2ull("12345");
|
||
test_d2ull("0");
|
||
test_d2ull("18446744073709551615");
|
||
test_d2ull("18446744073709551616");
|
||
test_d2ull("-1");
|
||
test_d2ull("1.23");
|
||
|
||
printf("==== longlong2decimal ====\n");
|
||
test_ll2d(LL(-12345));
|
||
test_ll2d(LL(-1));
|
||
test_ll2d(LL(-9223372036854775807));
|
||
test_ll2d(ULL(9223372036854775808));
|
||
|
||
printf("==== decimal2longlong ====\n");
|
||
test_d2ll("18446744073709551615");
|
||
test_d2ll("-1");
|
||
test_d2ll("-1.23");
|
||
test_d2ll("-9223372036854775807");
|
||
test_d2ll("-9223372036854775808");
|
||
test_d2ll("9223372036854775808");
|
||
|
||
printf("==== do_add ====\n");
|
||
test_da(".00012345000098765" ,"123.45");
|
||
test_da(".1" ,".45");
|
||
test_da("1234500009876.5" ,".00012345000098765");
|
||
test_da("9999909999999.5" ,".555");
|
||
test_da("99999999" ,"1");
|
||
test_da("989999999" ,"1");
|
||
test_da("999999999" ,"1");
|
||
test_da("12345" ,"123.45");
|
||
test_da("-12345" ,"-123.45");
|
||
test_ds("-12345" ,"123.45");
|
||
test_ds("12345" ,"-123.45");
|
||
|
||
printf("==== do_sub ====\n");
|
||
test_ds(".00012345000098765", "123.45");
|
||
test_ds("1234500009876.5", ".00012345000098765");
|
||
test_ds("9999900000000.5", ".555");
|
||
test_ds("1111.5551", "1111.555");
|
||
test_ds(".555", ".555");
|
||
test_ds("10000000", "1");
|
||
test_ds("1000001000", ".1");
|
||
test_ds("1000000000", ".1");
|
||
test_ds("12345", "123.45");
|
||
test_ds("-12345", "-123.45");
|
||
test_da("-12345", "123.45");
|
||
test_da("12345", "-123.45");
|
||
test_ds("123.45", "12345");
|
||
test_ds("-123.45", "-12345");
|
||
test_da("123.45", "-12345");
|
||
test_da("-123.45", "12345");
|
||
test_da("5", "-6.0");
|
||
|
||
printf("==== decimal_mul ====\n");
|
||
test_dm("12", "10");
|
||
test_dm("-123.456", "98765.4321");
|
||
test_dm("-123456000000", "98765432100000");
|
||
test_dm("123456", "987654321");
|
||
test_dm("123456", "9876543210");
|
||
test_dm("123", "0.01");
|
||
test_dm("123", "0");
|
||
|
||
printf("==== decimal_div ====\n");
|
||
test_dv("120", "10");
|
||
test_dv("123", "0.01");
|
||
test_dv("120", "100000000000.00000");
|
||
test_dv("123", "0");
|
||
test_dv("-12193185.1853376", "98765.4321");
|
||
test_dv("121931851853376", "987654321");
|
||
test_dv("0", "987");
|
||
test_dv("1", "3");
|
||
test_dv("1.000000000000", "3");
|
||
test_dv("1", "1");
|
||
test_dv("0.0123456789012345678912345", "9999999999");
|
||
|
||
printf("==== decimal_mod ====\n");
|
||
test_md("234","10");
|
||
test_md("234.567","10.555");
|
||
test_md("-234.567","10.555");
|
||
test_md("234.567","-10.555");
|
||
if (full)
|
||
{
|
||
c.buf[1]=0x3ABECA;
|
||
test_md("99999999999999999999999999999999999999","3");
|
||
printf("%X\n", c.buf[1]);
|
||
}
|
||
|
||
printf("==== decimal2bin/bin2decimal ====\n");
|
||
test_d2b2d("-10.55", 4, 2);
|
||
test_d2b2d("0.0123456789012345678912345", 30, 25);
|
||
test_d2b2d("12345", 5, 0);
|
||
test_d2b2d("12345", 10, 3);
|
||
test_d2b2d("123.45", 10, 3);
|
||
test_d2b2d("-123.45", 20, 10);
|
||
test_d2b2d(".00012345000098765", 15, 14);
|
||
test_d2b2d(".00012345000098765", 22, 20);
|
||
test_d2b2d(".12345000098765", 30, 20);
|
||
test_d2b2d("-.000000012345000098765", 30, 20);
|
||
test_d2b2d("1234500009876.5", 30, 5);
|
||
|
||
printf("==== decimal_cmp ====\n");
|
||
test_dc("12","13");
|
||
test_dc("13","12");
|
||
test_dc("-10","10");
|
||
test_dc("10","-10");
|
||
test_dc("-12","-13");
|
||
test_dc("0","12");
|
||
test_dc("-10","0");
|
||
test_dc("4","4");
|
||
|
||
printf("==== decimal_round ====\n");
|
||
test_ro("5678.123451",-4,TRUNCATE);
|
||
test_ro("5678.123451",-3,TRUNCATE);
|
||
test_ro("5678.123451",-2,TRUNCATE);
|
||
test_ro("5678.123451",-1,TRUNCATE);
|
||
test_ro("5678.123451",0,TRUNCATE);
|
||
test_ro("5678.123451",1,TRUNCATE);
|
||
test_ro("5678.123451",2,TRUNCATE);
|
||
test_ro("5678.123451",3,TRUNCATE);
|
||
test_ro("5678.123451",4,TRUNCATE);
|
||
test_ro("5678.123451",5,TRUNCATE);
|
||
test_ro("5678.123451",6,TRUNCATE);
|
||
test_ro("-5678.123451",-4,TRUNCATE);
|
||
test_ro("99999999999999999999999999999999999999",-31,TRUNCATE);
|
||
test_ro("15.1",0,HALF_UP);
|
||
test_ro("15.5",0,HALF_UP);
|
||
test_ro("15.9",0,HALF_UP);
|
||
test_ro("-15.1",0,HALF_UP);
|
||
test_ro("-15.5",0,HALF_UP);
|
||
test_ro("-15.9",0,HALF_UP);
|
||
test_ro("15.1",1,HALF_UP);
|
||
test_ro("-15.1",1,HALF_UP);
|
||
test_ro("15.17",1,HALF_UP);
|
||
test_ro("15.4",-1,HALF_UP);
|
||
test_ro("-15.4",-1,HALF_UP);
|
||
test_ro("5.4",-1,HALF_UP);
|
||
test_ro("15.1",0,HALF_EVEN);
|
||
test_ro("15.5",0,HALF_EVEN);
|
||
test_ro("14.5",0,HALF_EVEN);
|
||
test_ro("15.9",0,HALF_EVEN);
|
||
test_ro("15.1",0,CEILING);
|
||
test_ro("-15.1",0,CEILING);
|
||
test_ro("15.1",0,FLOOR);
|
||
test_ro("-15.1",0,FLOOR);
|
||
test_ro("999999999999999999999.999", 0, CEILING);
|
||
test_ro("-999999999999999999999.999", 0, FLOOR);
|
||
|
||
|
||
return 0;
|
||
}
|
||
#endif
|