mirror of
https://github.com/MariaDB/server.git
synced 2025-01-25 00:04:33 +01:00
740c0d3a87
Remove dead and unused code. Update to reflect the code review requests. include/thr_lock.h: Remove declarations for THR_LOCK_OWNER, added along with the patch for sensitive cursors. mysys/thr_lock.c: Remove support for multiple thr_lock requestors per THD. sql/lock.cc: Revert the patch that added support for sensitive cursors. sql/sp_rcontext.cc: Updated the use of mysql_open_cursor(). sql/sql_class.cc: Move the instance of Server_side_cursor from class Prepared_statement to class Statement. sql/sql_class.h: Move the isntance of Server_side_cursor from class Prepared_statement to class Statement. Remove multiple lock_ids of thr_lock. sql/sql_cursor.cc: Remove Sensitive_cursor implementation. sql/sql_cursor.h: Remove declarations for sensitive cursors. sql/sql_prepare.cc: Move the declaration of instance of Server_side_cursor from class Statement to class Prepared_statement, where it's used. sql/sql_select.cc: Remove sensitive cursor support. sql/sql_select.h: Remove sensitive cursor support. sql/sql_union.cc: Remove sensitive cursor support.
1327 lines
42 KiB
C++
1327 lines
42 KiB
C++
/* Copyright 2000-2008 MySQL AB, 2008-2009 Sun Microsystems, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
/**
|
|
@file
|
|
|
|
Locking functions for mysql.
|
|
|
|
Because of the new concurrent inserts, we must first get external locks
|
|
before getting internal locks. If we do it in the other order, the status
|
|
information is not up to date when called from the lock handler.
|
|
|
|
GENERAL DESCRIPTION OF LOCKING
|
|
|
|
When not using LOCK TABLES:
|
|
|
|
- For each SQL statement mysql_lock_tables() is called for all involved
|
|
tables.
|
|
- mysql_lock_tables() will call
|
|
table_handler->external_lock(thd,locktype) for each table.
|
|
This is followed by a call to thr_multi_lock() for all tables.
|
|
|
|
- When statement is done, we call mysql_unlock_tables().
|
|
This will call thr_multi_unlock() followed by
|
|
table_handler->external_lock(thd, F_UNLCK) for each table.
|
|
|
|
- Note that mysql_unlock_tables() may be called several times as
|
|
MySQL in some cases can free some tables earlier than others.
|
|
|
|
- The above is true both for normal and temporary tables.
|
|
|
|
- Temporary non transactional tables are never passed to thr_multi_lock()
|
|
and we never call external_lock(thd, F_UNLOCK) on these.
|
|
|
|
When using LOCK TABLES:
|
|
|
|
- LOCK TABLE will call mysql_lock_tables() for all tables.
|
|
mysql_lock_tables() will call
|
|
table_handler->external_lock(thd,locktype) for each table.
|
|
This is followed by a call to thr_multi_lock() for all tables.
|
|
|
|
- For each statement, we will call table_handler->start_stmt(THD)
|
|
to inform the table handler that we are using the table.
|
|
|
|
The tables used can only be tables used in LOCK TABLES or a
|
|
temporary table.
|
|
|
|
- When statement is done, we will call ha_commit_stmt(thd);
|
|
|
|
- When calling UNLOCK TABLES we call mysql_unlock_tables() for all
|
|
tables used in LOCK TABLES
|
|
|
|
If table_handler->external_lock(thd, locktype) fails, we call
|
|
table_handler->external_lock(thd, F_UNLCK) for each table that was locked,
|
|
excluding one that caused failure. That means handler must cleanup itself
|
|
in case external_lock() fails.
|
|
|
|
@todo
|
|
Change to use my_malloc() ONLY when using LOCK TABLES command or when
|
|
we are forced to use mysql_lock_merge.
|
|
*/
|
|
|
|
#include "sql_priv.h"
|
|
#include "debug_sync.h"
|
|
#include "unireg.h" // REQUIRED: for other includes
|
|
#include "lock.h"
|
|
#include "sql_base.h" // close_tables_for_reopen
|
|
#include "sql_parse.h" // is_log_table_write_query
|
|
#include "sql_acl.h" // SUPER_ACL
|
|
#include <hash.h>
|
|
#include <assert.h>
|
|
|
|
/**
|
|
@defgroup Locking Locking
|
|
@{
|
|
*/
|
|
|
|
extern HASH open_cache;
|
|
|
|
/* flags for get_lock_data */
|
|
#define GET_LOCK_UNLOCK 1
|
|
#define GET_LOCK_STORE_LOCKS 2
|
|
|
|
static MYSQL_LOCK *get_lock_data(THD *thd, TABLE **table_ptr, uint count,
|
|
uint flags);
|
|
static int lock_external(THD *thd, TABLE **table,uint count);
|
|
static int unlock_external(THD *thd, TABLE **table,uint count);
|
|
static void print_lock_error(int error, const char *);
|
|
|
|
/* Map the return value of thr_lock to an error from errmsg.txt */
|
|
static int thr_lock_errno_to_mysql[]=
|
|
{ 0, ER_LOCK_ABORTED, ER_LOCK_WAIT_TIMEOUT, ER_LOCK_DEADLOCK };
|
|
|
|
/**
|
|
Perform semantic checks for mysql_lock_tables.
|
|
@param thd The current thread
|
|
@param tables The tables to lock
|
|
@param count The number of tables to lock
|
|
@param flags Lock flags
|
|
@return 0 if all the check passed, non zero if a check failed.
|
|
*/
|
|
static int
|
|
lock_tables_check(THD *thd, TABLE **tables, uint count, uint flags)
|
|
{
|
|
uint system_count, i;
|
|
bool is_superuser, log_table_write_query;
|
|
|
|
DBUG_ENTER("lock_tables_check");
|
|
|
|
system_count= 0;
|
|
is_superuser= thd->security_ctx->master_access & SUPER_ACL;
|
|
log_table_write_query= (is_log_table_write_query(thd->lex->sql_command)
|
|
|| ((flags & MYSQL_LOCK_LOG_TABLE) != 0));
|
|
|
|
for (i=0 ; i<count; i++)
|
|
{
|
|
TABLE *t= tables[i];
|
|
|
|
/* Protect against 'fake' partially initialized TABLE_SHARE */
|
|
DBUG_ASSERT(t->s->table_category != TABLE_UNKNOWN_CATEGORY);
|
|
|
|
/*
|
|
Table I/O to performance schema tables is performed
|
|
only internally by the server implementation.
|
|
When a user is requesting a lock, the following
|
|
constraints are enforced:
|
|
*/
|
|
if (t->s->require_write_privileges() &&
|
|
! log_table_write_query)
|
|
{
|
|
/*
|
|
A user should not be able to prevent writes,
|
|
or hold any type of lock in a session,
|
|
since this would be a DOS attack.
|
|
*/
|
|
if ((t->reginfo.lock_type >= TL_READ_NO_INSERT)
|
|
|| (thd->lex->sql_command == SQLCOM_LOCK_TABLES))
|
|
{
|
|
my_error(ER_CANT_LOCK_LOG_TABLE, MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
}
|
|
|
|
if (t->reginfo.lock_type >= TL_WRITE_ALLOW_WRITE)
|
|
{
|
|
if (t->s->table_category == TABLE_CATEGORY_SYSTEM)
|
|
system_count++;
|
|
|
|
if (t->db_stat & HA_READ_ONLY)
|
|
{
|
|
my_error(ER_OPEN_AS_READONLY, MYF(0), t->alias);
|
|
DBUG_RETURN(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
If we are going to lock a non-temporary table we must own metadata
|
|
lock of appropriate type on it (I.e. for table to be locked for
|
|
write we must own metadata lock of MDL_SHARED_WRITE or stronger
|
|
type. For table to be locked for read we must own metadata lock
|
|
of MDL_SHARED_READ or stronger type).
|
|
The only exception are HANDLER statements which are allowed to
|
|
lock table for read while having only MDL_SHARED lock on it.
|
|
*/
|
|
DBUG_ASSERT(t->s->tmp_table ||
|
|
thd->mdl_context.is_lock_owner(MDL_key::TABLE,
|
|
t->s->db.str, t->s->table_name.str,
|
|
t->reginfo.lock_type >= TL_WRITE_ALLOW_WRITE ?
|
|
MDL_SHARED_WRITE : MDL_SHARED_READ) ||
|
|
(t->open_by_handler &&
|
|
thd->mdl_context.is_lock_owner(MDL_key::TABLE,
|
|
t->s->db.str, t->s->table_name.str,
|
|
MDL_SHARED)));
|
|
|
|
/*
|
|
Prevent modifications to base tables if READ_ONLY is activated.
|
|
In any case, read only does not apply to temporary tables.
|
|
*/
|
|
if (!(flags & MYSQL_LOCK_IGNORE_GLOBAL_READ_ONLY) && !t->s->tmp_table)
|
|
{
|
|
if (t->reginfo.lock_type >= TL_WRITE_ALLOW_WRITE &&
|
|
!is_superuser && opt_readonly && !thd->slave_thread)
|
|
{
|
|
my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0), "--read-only");
|
|
DBUG_RETURN(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Locking of system tables is restricted:
|
|
locking a mix of system and non-system tables in the same lock
|
|
is prohibited, to prevent contention.
|
|
*/
|
|
if ((system_count > 0) && (system_count < count))
|
|
{
|
|
my_error(ER_WRONG_LOCK_OF_SYSTEM_TABLE, MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/**
|
|
Reset lock type in lock data
|
|
|
|
@param mysql_lock Lock structures to reset.
|
|
|
|
@note After a locking error we want to quit the locking of the table(s).
|
|
The test case in the bug report for Bug #18544 has the following
|
|
cases: 1. Locking error in lock_external() due to InnoDB timeout.
|
|
2. Locking error in get_lock_data() due to missing write permission.
|
|
3. Locking error in wait_if_global_read_lock() due to lock conflict.
|
|
|
|
@note In all these cases we have already set the lock type into the lock
|
|
data of the open table(s). If the table(s) are in the open table
|
|
cache, they could be reused with the non-zero lock type set. This
|
|
could lead to ignoring a different lock type with the next lock.
|
|
|
|
@note Clear the lock type of all lock data. This ensures that the next
|
|
lock request will set its lock type properly.
|
|
*/
|
|
|
|
|
|
static void reset_lock_data(MYSQL_LOCK *sql_lock)
|
|
{
|
|
THR_LOCK_DATA **ldata, **ldata_end;
|
|
DBUG_ENTER("reset_lock_data");
|
|
|
|
/* Clear the lock type of all lock data to avoid reusage. */
|
|
for (ldata= sql_lock->locks, ldata_end= ldata + sql_lock->lock_count;
|
|
ldata < ldata_end;
|
|
ldata++)
|
|
{
|
|
/* Reset lock type. */
|
|
(*ldata)->type= TL_UNLOCK;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Reset lock type in lock data and free.
|
|
|
|
@param mysql_lock Lock structures to reset.
|
|
|
|
*/
|
|
|
|
static void reset_lock_data_and_free(MYSQL_LOCK **mysql_lock)
|
|
{
|
|
reset_lock_data(*mysql_lock);
|
|
my_free(*mysql_lock);
|
|
*mysql_lock= 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Lock tables.
|
|
|
|
@param thd The current thread.
|
|
@param tables An array of pointers to the tables to lock.
|
|
@param count The number of tables to lock.
|
|
@param flags Options:
|
|
MYSQL_LOCK_IGNORE_GLOBAL_READ_ONLY Ignore SET GLOBAL READ_ONLY
|
|
MYSQL_LOCK_IGNORE_TIMEOUT Use maximum timeout value.
|
|
|
|
@retval A lock structure pointer on success.
|
|
@retval NULL if an error or if wait on a lock was killed.
|
|
*/
|
|
|
|
MYSQL_LOCK *mysql_lock_tables(THD *thd, TABLE **tables, uint count, uint flags)
|
|
{
|
|
int rc;
|
|
MYSQL_LOCK *sql_lock;
|
|
ulong timeout= (flags & MYSQL_LOCK_IGNORE_TIMEOUT) ?
|
|
LONG_TIMEOUT : thd->variables.lock_wait_timeout;
|
|
|
|
DBUG_ENTER("mysql_lock_tables");
|
|
|
|
if (lock_tables_check(thd, tables, count, flags))
|
|
DBUG_RETURN(NULL);
|
|
|
|
if (! (sql_lock= get_lock_data(thd, tables, count, GET_LOCK_STORE_LOCKS)))
|
|
DBUG_RETURN(NULL);
|
|
|
|
thd_proc_info(thd, "System lock");
|
|
DBUG_PRINT("info", ("thd->proc_info %s", thd->proc_info));
|
|
if (sql_lock->table_count && lock_external(thd, sql_lock->table,
|
|
sql_lock->table_count))
|
|
{
|
|
/* Clear the lock type of all lock data to avoid reusage. */
|
|
reset_lock_data_and_free(&sql_lock);
|
|
goto end;
|
|
}
|
|
|
|
/* Copy the lock data array. thr_multi_lock() reorders its contents. */
|
|
memcpy(sql_lock->locks + sql_lock->lock_count, sql_lock->locks,
|
|
sql_lock->lock_count * sizeof(*sql_lock->locks));
|
|
/* Lock on the copied half of the lock data array. */
|
|
rc= thr_lock_errno_to_mysql[(int) thr_multi_lock(sql_lock->locks +
|
|
sql_lock->lock_count,
|
|
sql_lock->lock_count,
|
|
&thd->lock_info, timeout)];
|
|
if (rc)
|
|
{
|
|
if (sql_lock->table_count)
|
|
(void) unlock_external(thd, sql_lock->table, sql_lock->table_count);
|
|
reset_lock_data_and_free(&sql_lock);
|
|
if (! thd->killed)
|
|
my_error(rc, MYF(0));
|
|
}
|
|
end:
|
|
thd_proc_info(thd, 0);
|
|
|
|
if (thd->killed)
|
|
{
|
|
thd->send_kill_message();
|
|
if (sql_lock)
|
|
{
|
|
mysql_unlock_tables(thd, sql_lock);
|
|
sql_lock= 0;
|
|
}
|
|
}
|
|
|
|
thd->set_time_after_lock();
|
|
DBUG_RETURN(sql_lock);
|
|
}
|
|
|
|
|
|
static int lock_external(THD *thd, TABLE **tables, uint count)
|
|
{
|
|
reg1 uint i;
|
|
int lock_type,error;
|
|
DBUG_ENTER("lock_external");
|
|
|
|
DBUG_PRINT("info", ("count %d", count));
|
|
for (i=1 ; i <= count ; i++, tables++)
|
|
{
|
|
DBUG_ASSERT((*tables)->reginfo.lock_type >= TL_READ);
|
|
lock_type=F_WRLCK; /* Lock exclusive */
|
|
if ((*tables)->db_stat & HA_READ_ONLY ||
|
|
((*tables)->reginfo.lock_type >= TL_READ &&
|
|
(*tables)->reginfo.lock_type <= TL_READ_NO_INSERT))
|
|
lock_type=F_RDLCK;
|
|
|
|
if ((error=(*tables)->file->ha_external_lock(thd,lock_type)))
|
|
{
|
|
print_lock_error(error, (*tables)->file->table_type());
|
|
while (--i)
|
|
{
|
|
tables--;
|
|
(*tables)->file->ha_external_lock(thd, F_UNLCK);
|
|
(*tables)->current_lock=F_UNLCK;
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
else
|
|
{
|
|
(*tables)->db_stat &= ~ HA_BLOCK_LOCK;
|
|
(*tables)->current_lock= lock_type;
|
|
}
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
void mysql_unlock_tables(THD *thd, MYSQL_LOCK *sql_lock)
|
|
{
|
|
DBUG_ENTER("mysql_unlock_tables");
|
|
if (sql_lock->lock_count)
|
|
thr_multi_unlock(sql_lock->locks,sql_lock->lock_count);
|
|
if (sql_lock->table_count)
|
|
(void) unlock_external(thd,sql_lock->table,sql_lock->table_count);
|
|
my_free(sql_lock);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/**
|
|
Unlock some of the tables locked by mysql_lock_tables.
|
|
|
|
This will work even if get_lock_data fails (next unlock will free all)
|
|
*/
|
|
|
|
void mysql_unlock_some_tables(THD *thd, TABLE **table,uint count)
|
|
{
|
|
MYSQL_LOCK *sql_lock;
|
|
if ((sql_lock= get_lock_data(thd, table, count, GET_LOCK_UNLOCK)))
|
|
mysql_unlock_tables(thd, sql_lock);
|
|
}
|
|
|
|
|
|
/**
|
|
unlock all tables locked for read.
|
|
*/
|
|
|
|
void mysql_unlock_read_tables(THD *thd, MYSQL_LOCK *sql_lock)
|
|
{
|
|
uint i,found;
|
|
DBUG_ENTER("mysql_unlock_read_tables");
|
|
|
|
/* Move all write locks first */
|
|
THR_LOCK_DATA **lock=sql_lock->locks;
|
|
for (i=found=0 ; i < sql_lock->lock_count ; i++)
|
|
{
|
|
if (sql_lock->locks[i]->type > TL_WRITE_ALLOW_WRITE)
|
|
{
|
|
swap_variables(THR_LOCK_DATA *, *lock, sql_lock->locks[i]);
|
|
lock++;
|
|
found++;
|
|
}
|
|
}
|
|
/* unlock the read locked tables */
|
|
if (i != found)
|
|
{
|
|
thr_multi_unlock(lock,i-found);
|
|
sql_lock->lock_count= found;
|
|
}
|
|
|
|
/* Then do the same for the external locks */
|
|
/* Move all write locked tables first */
|
|
TABLE **table=sql_lock->table;
|
|
for (i=found=0 ; i < sql_lock->table_count ; i++)
|
|
{
|
|
DBUG_ASSERT(sql_lock->table[i]->lock_position == i);
|
|
if ((uint) sql_lock->table[i]->reginfo.lock_type > TL_WRITE_ALLOW_WRITE)
|
|
{
|
|
swap_variables(TABLE *, *table, sql_lock->table[i]);
|
|
table++;
|
|
found++;
|
|
}
|
|
}
|
|
/* Unlock all read locked tables */
|
|
if (i != found)
|
|
{
|
|
(void) unlock_external(thd,table,i-found);
|
|
sql_lock->table_count=found;
|
|
}
|
|
/* Fix the lock positions in TABLE */
|
|
table= sql_lock->table;
|
|
found= 0;
|
|
for (i= 0; i < sql_lock->table_count; i++)
|
|
{
|
|
TABLE *tbl= *table;
|
|
tbl->lock_position= (uint) (table - sql_lock->table);
|
|
tbl->lock_data_start= found;
|
|
found+= tbl->lock_count;
|
|
table++;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Try to find the table in the list of locked tables.
|
|
In case of success, unlock the table and remove it from this list.
|
|
If a table has more than one lock instance, removes them all.
|
|
|
|
@param thd thread context
|
|
@param locked list of locked tables
|
|
@param table the table to unlock
|
|
*/
|
|
|
|
void mysql_lock_remove(THD *thd, MYSQL_LOCK *locked,TABLE *table)
|
|
{
|
|
if (locked)
|
|
{
|
|
reg1 uint i;
|
|
for (i=0; i < locked->table_count; i++)
|
|
{
|
|
if (locked->table[i] == table)
|
|
{
|
|
uint j, removed_locks, old_tables;
|
|
TABLE *tbl;
|
|
uint lock_data_end;
|
|
|
|
DBUG_ASSERT(table->lock_position == i);
|
|
|
|
/* Unlock the table. */
|
|
mysql_unlock_some_tables(thd, &table, /* table count */ 1);
|
|
|
|
/* Decrement table_count in advance, making below expressions easier */
|
|
old_tables= --locked->table_count;
|
|
|
|
/* The table has 'removed_locks' lock data elements in locked->locks */
|
|
removed_locks= table->lock_count;
|
|
|
|
/* Move down all table pointers above 'i'. */
|
|
bmove((char*) (locked->table+i),
|
|
(char*) (locked->table+i+1),
|
|
(old_tables - i) * sizeof(TABLE*));
|
|
|
|
lock_data_end= table->lock_data_start + table->lock_count;
|
|
/* Move down all lock data pointers above 'table->lock_data_end-1' */
|
|
bmove((char*) (locked->locks + table->lock_data_start),
|
|
(char*) (locked->locks + lock_data_end),
|
|
(locked->lock_count - lock_data_end) *
|
|
sizeof(THR_LOCK_DATA*));
|
|
|
|
/*
|
|
Fix moved table elements.
|
|
lock_position is the index in the 'locked->table' array,
|
|
it must be fixed by one.
|
|
table->lock_data_start is pointer to the lock data for this table
|
|
in the 'locked->locks' array, they must be fixed by 'removed_locks',
|
|
the lock data count of the removed table.
|
|
*/
|
|
for (j= i ; j < old_tables; j++)
|
|
{
|
|
tbl= locked->table[j];
|
|
tbl->lock_position--;
|
|
DBUG_ASSERT(tbl->lock_position == j);
|
|
tbl->lock_data_start-= removed_locks;
|
|
}
|
|
|
|
/* Finally adjust lock_count. */
|
|
locked->lock_count-= removed_locks;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/** Abort all other threads waiting to get lock in table. */
|
|
|
|
void mysql_lock_abort(THD *thd, TABLE *table, bool upgrade_lock)
|
|
{
|
|
MYSQL_LOCK *locked;
|
|
DBUG_ENTER("mysql_lock_abort");
|
|
|
|
if ((locked= get_lock_data(thd, &table, 1, GET_LOCK_UNLOCK)))
|
|
{
|
|
for (uint i=0; i < locked->lock_count; i++)
|
|
thr_abort_locks(locked->locks[i]->lock, upgrade_lock);
|
|
my_free(locked);
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Abort one thread / table combination.
|
|
|
|
@param thd Thread handler
|
|
@param table Table that should be removed from lock queue
|
|
|
|
@retval
|
|
0 Table was not locked by another thread
|
|
@retval
|
|
1 Table was locked by at least one other thread
|
|
*/
|
|
|
|
bool mysql_lock_abort_for_thread(THD *thd, TABLE *table)
|
|
{
|
|
MYSQL_LOCK *locked;
|
|
bool result= FALSE;
|
|
DBUG_ENTER("mysql_lock_abort_for_thread");
|
|
|
|
if ((locked= get_lock_data(thd, &table, 1, GET_LOCK_UNLOCK)))
|
|
{
|
|
for (uint i=0; i < locked->lock_count; i++)
|
|
{
|
|
if (thr_abort_locks_for_thread(locked->locks[i]->lock,
|
|
table->in_use->thread_id))
|
|
result= TRUE;
|
|
}
|
|
my_free(locked);
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
MYSQL_LOCK *mysql_lock_merge(MYSQL_LOCK *a,MYSQL_LOCK *b)
|
|
{
|
|
MYSQL_LOCK *sql_lock;
|
|
TABLE **table, **end_table;
|
|
DBUG_ENTER("mysql_lock_merge");
|
|
|
|
if (!(sql_lock= (MYSQL_LOCK*)
|
|
my_malloc(sizeof(*sql_lock)+
|
|
sizeof(THR_LOCK_DATA*)*(a->lock_count+b->lock_count)+
|
|
sizeof(TABLE*)*(a->table_count+b->table_count),MYF(MY_WME))))
|
|
DBUG_RETURN(0); // Fatal error
|
|
sql_lock->lock_count=a->lock_count+b->lock_count;
|
|
sql_lock->table_count=a->table_count+b->table_count;
|
|
sql_lock->locks=(THR_LOCK_DATA**) (sql_lock+1);
|
|
sql_lock->table=(TABLE**) (sql_lock->locks+sql_lock->lock_count);
|
|
memcpy(sql_lock->locks,a->locks,a->lock_count*sizeof(*a->locks));
|
|
memcpy(sql_lock->locks+a->lock_count,b->locks,
|
|
b->lock_count*sizeof(*b->locks));
|
|
memcpy(sql_lock->table,a->table,a->table_count*sizeof(*a->table));
|
|
memcpy(sql_lock->table+a->table_count,b->table,
|
|
b->table_count*sizeof(*b->table));
|
|
|
|
/*
|
|
Now adjust lock_position and lock_data_start for all objects that was
|
|
moved in 'b' (as there is now all objects in 'a' before these).
|
|
*/
|
|
for (table= sql_lock->table + a->table_count,
|
|
end_table= table + b->table_count;
|
|
table < end_table;
|
|
table++)
|
|
{
|
|
(*table)->lock_position+= a->table_count;
|
|
(*table)->lock_data_start+= a->lock_count;
|
|
}
|
|
|
|
/* Delete old, not needed locks */
|
|
my_free(a);
|
|
my_free(b);
|
|
|
|
thr_lock_merge_status(sql_lock->locks, sql_lock->lock_count);
|
|
DBUG_RETURN(sql_lock);
|
|
}
|
|
|
|
|
|
/** Unlock a set of external. */
|
|
|
|
static int unlock_external(THD *thd, TABLE **table,uint count)
|
|
{
|
|
int error,error_code;
|
|
DBUG_ENTER("unlock_external");
|
|
|
|
error_code=0;
|
|
do
|
|
{
|
|
if ((*table)->current_lock != F_UNLCK)
|
|
{
|
|
(*table)->current_lock = F_UNLCK;
|
|
if ((error=(*table)->file->ha_external_lock(thd, F_UNLCK)))
|
|
{
|
|
error_code=error;
|
|
print_lock_error(error_code, (*table)->file->table_type());
|
|
}
|
|
}
|
|
table++;
|
|
} while (--count);
|
|
DBUG_RETURN(error_code);
|
|
}
|
|
|
|
|
|
/**
|
|
Get lock structures from table structs and initialize locks.
|
|
|
|
@param thd Thread handler
|
|
@param table_ptr Pointer to tables that should be locks
|
|
@param flags One of:
|
|
- GET_LOCK_UNLOCK : If we should send TL_IGNORE to store lock
|
|
- GET_LOCK_STORE_LOCKS : Store lock info in TABLE
|
|
*/
|
|
|
|
static MYSQL_LOCK *get_lock_data(THD *thd, TABLE **table_ptr, uint count,
|
|
uint flags)
|
|
{
|
|
uint i,tables,lock_count;
|
|
MYSQL_LOCK *sql_lock;
|
|
THR_LOCK_DATA **locks, **locks_buf, **locks_start;
|
|
TABLE **to, **table_buf;
|
|
DBUG_ENTER("get_lock_data");
|
|
|
|
DBUG_ASSERT((flags == GET_LOCK_UNLOCK) || (flags == GET_LOCK_STORE_LOCKS));
|
|
DBUG_PRINT("info", ("count %d", count));
|
|
|
|
for (i=tables=lock_count=0 ; i < count ; i++)
|
|
{
|
|
TABLE *t= table_ptr[i];
|
|
|
|
if (t->s->tmp_table != NON_TRANSACTIONAL_TMP_TABLE)
|
|
{
|
|
tables+= t->file->lock_count();
|
|
lock_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Allocating twice the number of pointers for lock data for use in
|
|
thr_mulit_lock(). This function reorders the lock data, but cannot
|
|
update the table values. So the second part of the array is copied
|
|
from the first part immediately before calling thr_multi_lock().
|
|
*/
|
|
if (!(sql_lock= (MYSQL_LOCK*)
|
|
my_malloc(sizeof(*sql_lock) +
|
|
sizeof(THR_LOCK_DATA*) * tables * 2 +
|
|
sizeof(table_ptr) * lock_count,
|
|
MYF(0))))
|
|
DBUG_RETURN(0);
|
|
locks= locks_buf= sql_lock->locks= (THR_LOCK_DATA**) (sql_lock + 1);
|
|
to= table_buf= sql_lock->table= (TABLE**) (locks + tables * 2);
|
|
sql_lock->table_count=lock_count;
|
|
|
|
for (i=0 ; i < count ; i++)
|
|
{
|
|
TABLE *table;
|
|
enum thr_lock_type lock_type;
|
|
THR_LOCK_DATA **org_locks = locks;
|
|
|
|
if ((table=table_ptr[i])->s->tmp_table == NON_TRANSACTIONAL_TMP_TABLE)
|
|
continue;
|
|
lock_type= table->reginfo.lock_type;
|
|
DBUG_ASSERT(lock_type != TL_WRITE_DEFAULT && lock_type != TL_READ_DEFAULT);
|
|
locks_start= locks;
|
|
locks= table->file->store_lock(thd, locks,
|
|
(flags & GET_LOCK_UNLOCK) ? TL_IGNORE :
|
|
lock_type);
|
|
if (flags & GET_LOCK_STORE_LOCKS)
|
|
{
|
|
table->lock_position= (uint) (to - table_buf);
|
|
table->lock_data_start= (uint) (locks_start - locks_buf);
|
|
table->lock_count= (uint) (locks - locks_start);
|
|
}
|
|
*to++= table;
|
|
if (locks)
|
|
for ( ; org_locks != locks ; org_locks++)
|
|
(*org_locks)->debug_print_param= (void *) table;
|
|
}
|
|
/*
|
|
We do not use 'tables', because there are cases where store_lock()
|
|
returns less locks than lock_count() claimed. This can happen when
|
|
a FLUSH TABLES tries to abort locks from a MERGE table of another
|
|
thread. When that thread has just opened the table, but not yet
|
|
attached its children, it cannot return the locks. lock_count()
|
|
always returns the number of locks that an attached table has.
|
|
This is done to avoid the reverse situation: If lock_count() would
|
|
return 0 for a non-attached MERGE table, and that table becomes
|
|
attached between the calls to lock_count() and store_lock(), then
|
|
we would have allocated too little memory for the lock data. Now
|
|
we may allocate too much, but better safe than memory overrun.
|
|
And in the FLUSH case, the memory is released quickly anyway.
|
|
*/
|
|
sql_lock->lock_count= locks - locks_buf;
|
|
DBUG_PRINT("info", ("sql_lock->table_count %d sql_lock->lock_count %d",
|
|
sql_lock->table_count, sql_lock->lock_count));
|
|
DBUG_RETURN(sql_lock);
|
|
}
|
|
|
|
|
|
/**
|
|
Obtain an exclusive metadata lock on a schema name.
|
|
|
|
@param thd Thread handle.
|
|
@param db The database name.
|
|
|
|
This function cannot be called while holding LOCK_open mutex.
|
|
To avoid deadlocks, we do not try to obtain exclusive metadata
|
|
locks in LOCK TABLES mode, since in this mode there may be
|
|
other metadata locks already taken by the current connection,
|
|
and we must not wait for MDL locks while holding locks.
|
|
|
|
@retval FALSE Success.
|
|
@retval TRUE Failure: we're in LOCK TABLES mode, or out of memory,
|
|
or this connection was killed.
|
|
*/
|
|
|
|
bool lock_schema_name(THD *thd, const char *db)
|
|
{
|
|
MDL_request_list mdl_requests;
|
|
MDL_request global_request;
|
|
MDL_request mdl_request;
|
|
|
|
if (thd->locked_tables_mode)
|
|
{
|
|
my_message(ER_LOCK_OR_ACTIVE_TRANSACTION,
|
|
ER(ER_LOCK_OR_ACTIVE_TRANSACTION), MYF(0));
|
|
return TRUE;
|
|
}
|
|
|
|
global_request.init(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE);
|
|
mdl_request.init(MDL_key::SCHEMA, db, "", MDL_EXCLUSIVE);
|
|
|
|
mdl_requests.push_front(&mdl_request);
|
|
mdl_requests.push_front(&global_request);
|
|
|
|
if (thd->mdl_context.acquire_locks(&mdl_requests,
|
|
thd->variables.lock_wait_timeout))
|
|
return TRUE;
|
|
|
|
DEBUG_SYNC(thd, "after_wait_locked_schema_name");
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Obtain an exclusive metadata lock on the stored routine name.
|
|
|
|
@param thd Thread handle.
|
|
@param is_function Stored routine type (only functions or procedures
|
|
are name-locked.
|
|
@param db The schema the routine belongs to.
|
|
@param name Routine name.
|
|
|
|
This function assumes that no metadata locks were acquired
|
|
before calling it. Additionally, it cannot be called while
|
|
holding LOCK_open mutex. Both these invariants are enforced by
|
|
asserts in MDL_context::acquire_locks().
|
|
To avoid deadlocks, we do not try to obtain exclusive metadata
|
|
locks in LOCK TABLES mode, since in this mode there may be
|
|
other metadata locks already taken by the current connection,
|
|
and we must not wait for MDL locks while holding locks.
|
|
|
|
@retval FALSE Success.
|
|
@retval TRUE Failure: we're in LOCK TABLES mode, or out of memory,
|
|
or this connection was killed.
|
|
*/
|
|
|
|
bool lock_routine_name(THD *thd, bool is_function,
|
|
const char *db, const char *name)
|
|
{
|
|
MDL_key::enum_mdl_namespace mdl_type= (is_function ?
|
|
MDL_key::FUNCTION :
|
|
MDL_key::PROCEDURE);
|
|
MDL_request_list mdl_requests;
|
|
MDL_request global_request;
|
|
MDL_request schema_request;
|
|
MDL_request mdl_request;
|
|
|
|
if (thd->locked_tables_mode)
|
|
{
|
|
my_message(ER_LOCK_OR_ACTIVE_TRANSACTION,
|
|
ER(ER_LOCK_OR_ACTIVE_TRANSACTION), MYF(0));
|
|
return TRUE;
|
|
}
|
|
|
|
DBUG_ASSERT(name);
|
|
DEBUG_SYNC(thd, "before_wait_locked_pname");
|
|
|
|
global_request.init(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE);
|
|
schema_request.init(MDL_key::SCHEMA, db, "", MDL_INTENTION_EXCLUSIVE);
|
|
mdl_request.init(mdl_type, db, name, MDL_EXCLUSIVE);
|
|
|
|
mdl_requests.push_front(&mdl_request);
|
|
mdl_requests.push_front(&schema_request);
|
|
mdl_requests.push_front(&global_request);
|
|
|
|
if (thd->mdl_context.acquire_locks(&mdl_requests,
|
|
thd->variables.lock_wait_timeout))
|
|
return TRUE;
|
|
|
|
DEBUG_SYNC(thd, "after_wait_locked_pname");
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
static void print_lock_error(int error, const char *table)
|
|
{
|
|
int textno;
|
|
DBUG_ENTER("print_lock_error");
|
|
|
|
switch (error) {
|
|
case HA_ERR_LOCK_WAIT_TIMEOUT:
|
|
textno=ER_LOCK_WAIT_TIMEOUT;
|
|
break;
|
|
case HA_ERR_READ_ONLY_TRANSACTION:
|
|
textno=ER_READ_ONLY_TRANSACTION;
|
|
break;
|
|
case HA_ERR_LOCK_DEADLOCK:
|
|
textno=ER_LOCK_DEADLOCK;
|
|
break;
|
|
case HA_ERR_WRONG_COMMAND:
|
|
textno=ER_ILLEGAL_HA;
|
|
break;
|
|
default:
|
|
textno=ER_CANT_LOCK;
|
|
break;
|
|
}
|
|
|
|
if ( textno == ER_ILLEGAL_HA )
|
|
my_error(textno, MYF(ME_BELL+ME_OLDWIN+ME_WAITTANG), table);
|
|
else
|
|
my_error(textno, MYF(ME_BELL+ME_OLDWIN+ME_WAITTANG), error);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
Handling of global read locks
|
|
|
|
Taking the global read lock is TWO steps (2nd step is optional; without
|
|
it, COMMIT of existing transactions will be allowed):
|
|
lock_global_read_lock() THEN make_global_read_lock_block_commit().
|
|
|
|
The global locks are handled through the global variables:
|
|
global_read_lock
|
|
count of threads which have the global read lock (i.e. have completed at
|
|
least the first step above)
|
|
global_read_lock_blocks_commit
|
|
count of threads which have the global read lock and block
|
|
commits (i.e. are in or have completed the second step above)
|
|
waiting_for_read_lock
|
|
count of threads which want to take a global read lock but cannot
|
|
protect_against_global_read_lock
|
|
count of threads which have set protection against global read lock.
|
|
|
|
access to them is protected with a mutex LOCK_global_read_lock
|
|
|
|
(XXX: one should never take LOCK_open if LOCK_global_read_lock is
|
|
taken, otherwise a deadlock may occur. Other mutexes could be a
|
|
problem too - grep the code for global_read_lock if you want to use
|
|
any other mutex here) Also one must not hold LOCK_open when calling
|
|
wait_if_global_read_lock(). When the thread with the global read lock
|
|
tries to close its tables, it needs to take LOCK_open in
|
|
close_thread_table().
|
|
|
|
How blocking of threads by global read lock is achieved: that's
|
|
advisory. Any piece of code which should be blocked by global read lock must
|
|
be designed like this:
|
|
- call to wait_if_global_read_lock(). When this returns 0, no global read
|
|
lock is owned; if argument abort_on_refresh was 0, none can be obtained.
|
|
- job
|
|
- if abort_on_refresh was 0, call to start_waiting_global_read_lock() to
|
|
allow other threads to get the global read lock. I.e. removal of the
|
|
protection.
|
|
(Note: it's a bit like an implementation of rwlock).
|
|
|
|
[ I am sorry to mention some SQL syntaxes below I know I shouldn't but found
|
|
no better descriptive way ]
|
|
|
|
Why does FLUSH TABLES WITH READ LOCK need to block COMMIT: because it's used
|
|
to read a non-moving SHOW MASTER STATUS, and a COMMIT writes to the binary
|
|
log.
|
|
|
|
Why getting the global read lock is two steps and not one. Because FLUSH
|
|
TABLES WITH READ LOCK needs to insert one other step between the two:
|
|
flushing tables. So the order is
|
|
1) lock_global_read_lock() (prevents any new table write locks, i.e. stalls
|
|
all new updates)
|
|
2) close_cached_tables() (the FLUSH TABLES), which will wait for tables
|
|
currently opened and being updated to close (so it's possible that there is
|
|
a moment where all new updates of server are stalled *and* FLUSH TABLES WITH
|
|
READ LOCK is, too).
|
|
3) make_global_read_lock_block_commit().
|
|
If we have merged 1) and 3) into 1), we would have had this deadlock:
|
|
imagine thread 1 and 2, in non-autocommit mode, thread 3, and an InnoDB
|
|
table t.
|
|
thd1: SELECT * FROM t FOR UPDATE;
|
|
thd2: UPDATE t SET a=1; # blocked by row-level locks of thd1
|
|
thd3: FLUSH TABLES WITH READ LOCK; # blocked in close_cached_tables() by the
|
|
table instance of thd2
|
|
thd1: COMMIT; # blocked by thd3.
|
|
thd1 blocks thd2 which blocks thd3 which blocks thd1: deadlock.
|
|
|
|
Note that we need to support that one thread does
|
|
FLUSH TABLES WITH READ LOCK; and then COMMIT;
|
|
(that's what innobackup does, for some good reason).
|
|
So in this exceptional case the COMMIT should not be blocked by the FLUSH
|
|
TABLES WITH READ LOCK.
|
|
|
|
****************************************************************************/
|
|
|
|
volatile uint global_read_lock=0;
|
|
volatile uint global_read_lock_blocks_commit=0;
|
|
static volatile uint protect_against_global_read_lock=0;
|
|
static volatile uint waiting_for_read_lock=0;
|
|
|
|
/**
|
|
Take global read lock, wait if there is protection against lock.
|
|
|
|
If the global read lock is already taken by this thread, then nothing is done.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
|
|
@retval False Success, global read lock set, commits are NOT blocked.
|
|
@retval True Failure, thread was killed.
|
|
*/
|
|
|
|
bool Global_read_lock::lock_global_read_lock(THD *thd)
|
|
{
|
|
DBUG_ENTER("lock_global_read_lock");
|
|
|
|
if (!m_state)
|
|
{
|
|
MDL_request mdl_request;
|
|
const char *old_message;
|
|
const char *new_message= "Waiting to get readlock";
|
|
(void) mysql_mutex_lock(&LOCK_global_read_lock);
|
|
|
|
#if defined(ENABLED_DEBUG_SYNC)
|
|
/*
|
|
The below sync point fires if we have to wait for
|
|
protect_against_global_read_lock.
|
|
|
|
WARNING: Beware to use WAIT_FOR with this sync point. We hold
|
|
LOCK_global_read_lock here.
|
|
|
|
Call the sync point before calling enter_cond() as it does use
|
|
enter_cond() and exit_cond() itself if a WAIT_FOR action is
|
|
executed in spite of the above warning.
|
|
|
|
Pre-set proc_info so that it is available immediately after the
|
|
sync point sends a SIGNAL. This makes tests more reliable.
|
|
*/
|
|
if (protect_against_global_read_lock)
|
|
{
|
|
thd_proc_info(thd, new_message);
|
|
DEBUG_SYNC(thd, "wait_lock_global_read_lock");
|
|
}
|
|
#endif /* defined(ENABLED_DEBUG_SYNC) */
|
|
|
|
old_message=thd->enter_cond(&COND_global_read_lock, &LOCK_global_read_lock,
|
|
new_message);
|
|
DBUG_PRINT("info",
|
|
("waiting_for: %d protect_against: %d",
|
|
waiting_for_read_lock, protect_against_global_read_lock));
|
|
|
|
waiting_for_read_lock++;
|
|
while (protect_against_global_read_lock && !thd->killed)
|
|
mysql_cond_wait(&COND_global_read_lock, &LOCK_global_read_lock);
|
|
waiting_for_read_lock--;
|
|
if (thd->killed)
|
|
{
|
|
thd->exit_cond(old_message);
|
|
DBUG_RETURN(1);
|
|
}
|
|
m_state= GRL_ACQUIRED;
|
|
global_read_lock++;
|
|
thd->exit_cond(old_message); // this unlocks LOCK_global_read_lock
|
|
/*
|
|
When we perform FLUSH TABLES or ALTER TABLE under LOCK TABLES,
|
|
tables being reopened are protected only by meta-data locks at
|
|
some point. To avoid sneaking in with our global read lock at
|
|
this moment we have to take global shared meta data lock.
|
|
|
|
TODO: We should change this code to acquire global shared metadata
|
|
lock before acquiring global read lock. But in order to do
|
|
this we have to get rid of all those places in which
|
|
wait_if_global_read_lock() is called before acquiring
|
|
metadata locks first. Also long-term we should get rid of
|
|
redundancy between metadata locks, global read lock and DDL
|
|
blocker (see WL#4399 and WL#4400).
|
|
*/
|
|
|
|
DBUG_ASSERT(! thd->mdl_context.is_lock_owner(MDL_key::GLOBAL, "", "",
|
|
MDL_SHARED));
|
|
mdl_request.init(MDL_key::GLOBAL, "", "", MDL_SHARED);
|
|
|
|
if (thd->mdl_context.acquire_lock(&mdl_request,
|
|
thd->variables.lock_wait_timeout))
|
|
{
|
|
/* Our thread was killed -- return back to initial state. */
|
|
mysql_mutex_lock(&LOCK_global_read_lock);
|
|
if (!(--global_read_lock))
|
|
{
|
|
DBUG_PRINT("signal", ("Broadcasting COND_global_read_lock"));
|
|
mysql_cond_broadcast(&COND_global_read_lock);
|
|
}
|
|
mysql_mutex_unlock(&LOCK_global_read_lock);
|
|
m_state= GRL_NONE;
|
|
DBUG_RETURN(1);
|
|
}
|
|
thd->mdl_context.move_ticket_after_trans_sentinel(mdl_request.ticket);
|
|
m_mdl_global_shared_lock= mdl_request.ticket;
|
|
}
|
|
/*
|
|
We DON'T set global_read_lock_blocks_commit now, it will be set after
|
|
tables are flushed (as the present function serves for FLUSH TABLES WITH
|
|
READ LOCK only). Doing things in this order is necessary to avoid
|
|
deadlocks (we must allow COMMIT until all tables are closed; we should not
|
|
forbid it before, or we can have a 3-thread deadlock if 2 do SELECT FOR
|
|
UPDATE and one does FLUSH TABLES WITH READ LOCK).
|
|
*/
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/**
|
|
Unlock global read lock.
|
|
|
|
Commits may or may not be blocked when this function is called.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
*/
|
|
|
|
void Global_read_lock::unlock_global_read_lock(THD *thd)
|
|
{
|
|
uint tmp;
|
|
DBUG_ENTER("unlock_global_read_lock");
|
|
DBUG_PRINT("info",
|
|
("global_read_lock: %u global_read_lock_blocks_commit: %u",
|
|
global_read_lock, global_read_lock_blocks_commit));
|
|
|
|
DBUG_ASSERT(m_mdl_global_shared_lock && m_state);
|
|
|
|
thd->mdl_context.release_lock(m_mdl_global_shared_lock);
|
|
m_mdl_global_shared_lock= NULL;
|
|
|
|
mysql_mutex_lock(&LOCK_global_read_lock);
|
|
tmp= --global_read_lock;
|
|
if (m_state == GRL_ACQUIRED_AND_BLOCKS_COMMIT)
|
|
--global_read_lock_blocks_commit;
|
|
mysql_mutex_unlock(&LOCK_global_read_lock);
|
|
/* Send the signal outside the mutex to avoid a context switch */
|
|
if (!tmp)
|
|
{
|
|
DBUG_PRINT("signal", ("Broadcasting COND_global_read_lock"));
|
|
mysql_cond_broadcast(&COND_global_read_lock);
|
|
}
|
|
m_state= GRL_NONE;
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/**
|
|
Wait if the global read lock is set, and optionally seek protection against
|
|
global read lock.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
@param abort_on_refresh If True, abort waiting if a refresh occurs,
|
|
do NOT seek protection against GRL.
|
|
If False, wait until the GRL is released and seek
|
|
protection against GRL.
|
|
@param is_not_commit If False, called from a commit operation,
|
|
wait only if commit blocking is also enabled.
|
|
|
|
@retval False Success, protection against global read lock is set
|
|
(if !abort_on_refresh)
|
|
@retval True Failure, wait was aborted or thread was killed.
|
|
*/
|
|
|
|
#define must_wait (global_read_lock && \
|
|
(is_not_commit || \
|
|
global_read_lock_blocks_commit))
|
|
|
|
bool Global_read_lock::
|
|
wait_if_global_read_lock(THD *thd, bool abort_on_refresh,
|
|
bool is_not_commit)
|
|
{
|
|
const char *UNINIT_VAR(old_message);
|
|
bool result= 0, need_exit_cond;
|
|
DBUG_ENTER("wait_if_global_read_lock");
|
|
|
|
/*
|
|
If we already have protection against global read lock,
|
|
just increment the counter.
|
|
*/
|
|
if (unlikely(m_protection_count > 0))
|
|
{
|
|
if (!abort_on_refresh)
|
|
m_protection_count++;
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
/*
|
|
Assert that we do not own LOCK_open. If we would own it, other
|
|
threads could not close their tables. This would make a pretty
|
|
deadlock.
|
|
*/
|
|
mysql_mutex_assert_not_owner(&LOCK_open);
|
|
|
|
mysql_mutex_lock(&LOCK_global_read_lock);
|
|
if ((need_exit_cond= must_wait))
|
|
{
|
|
if (m_state) // This thread had the read locks
|
|
{
|
|
if (is_not_commit)
|
|
my_message(ER_CANT_UPDATE_WITH_READLOCK,
|
|
ER(ER_CANT_UPDATE_WITH_READLOCK), MYF(0));
|
|
mysql_mutex_unlock(&LOCK_global_read_lock);
|
|
/*
|
|
We allow FLUSHer to COMMIT; we assume FLUSHer knows what it does.
|
|
This allowance is needed to not break existing versions of innobackup
|
|
which do a BEGIN; INSERT; FLUSH TABLES WITH READ LOCK; COMMIT.
|
|
*/
|
|
DBUG_RETURN(is_not_commit);
|
|
}
|
|
old_message=thd->enter_cond(&COND_global_read_lock, &LOCK_global_read_lock,
|
|
"Waiting for release of readlock");
|
|
while (must_wait && ! thd->killed &&
|
|
(!abort_on_refresh || !thd->open_tables ||
|
|
thd->open_tables->s->version == refresh_version))
|
|
{
|
|
DBUG_PRINT("signal", ("Waiting for COND_global_read_lock"));
|
|
mysql_cond_wait(&COND_global_read_lock, &LOCK_global_read_lock);
|
|
DBUG_PRINT("signal", ("Got COND_global_read_lock"));
|
|
}
|
|
if (thd->killed)
|
|
result=1;
|
|
}
|
|
if (!abort_on_refresh && !result)
|
|
{
|
|
m_protection_count++;
|
|
protect_against_global_read_lock++;
|
|
DBUG_PRINT("sql_lock", ("protect_against_global_read_lock incr: %u",
|
|
protect_against_global_read_lock));
|
|
}
|
|
/*
|
|
The following is only true in case of a global read locks (which is rare)
|
|
and if old_message is set
|
|
*/
|
|
if (unlikely(need_exit_cond))
|
|
thd->exit_cond(old_message); // this unlocks LOCK_global_read_lock
|
|
else
|
|
mysql_mutex_unlock(&LOCK_global_read_lock);
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/**
|
|
Release protection against global read lock and restart
|
|
global read lock waiters.
|
|
|
|
Should only be called if we have protection against global read lock.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
*/
|
|
|
|
void Global_read_lock::start_waiting_global_read_lock(THD *thd)
|
|
{
|
|
bool tmp;
|
|
DBUG_ENTER("start_waiting_global_read_lock");
|
|
/*
|
|
Ignore request if we do not have protection against global read lock.
|
|
(Note that this is a violation of the interface contract, hence the assert).
|
|
*/
|
|
DBUG_ASSERT(m_protection_count > 0);
|
|
if (unlikely(m_protection_count == 0))
|
|
DBUG_VOID_RETURN;
|
|
/* Decrement local read lock protection counter, return if we still have it */
|
|
if (unlikely(--m_protection_count > 0))
|
|
DBUG_VOID_RETURN;
|
|
if (unlikely(m_state))
|
|
DBUG_VOID_RETURN;
|
|
mysql_mutex_lock(&LOCK_global_read_lock);
|
|
DBUG_ASSERT(protect_against_global_read_lock);
|
|
tmp= (!--protect_against_global_read_lock &&
|
|
(waiting_for_read_lock || global_read_lock_blocks_commit));
|
|
mysql_mutex_unlock(&LOCK_global_read_lock);
|
|
if (tmp)
|
|
mysql_cond_broadcast(&COND_global_read_lock);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Make global read lock also block commits.
|
|
|
|
The scenario is:
|
|
- This thread has the global read lock.
|
|
- Global read lock blocking of commits is not set.
|
|
|
|
See also "Handling of global read locks" above.
|
|
|
|
@param thd Reference to thread.
|
|
|
|
@retval False Success, global read lock set, commits are blocked.
|
|
@retval True Failure, thread was killed.
|
|
*/
|
|
|
|
bool Global_read_lock::make_global_read_lock_block_commit(THD *thd)
|
|
{
|
|
bool error;
|
|
const char *old_message;
|
|
DBUG_ENTER("make_global_read_lock_block_commit");
|
|
/*
|
|
If we didn't succeed lock_global_read_lock(), or if we already suceeded
|
|
make_global_read_lock_block_commit(), do nothing.
|
|
*/
|
|
if (m_state != GRL_ACQUIRED)
|
|
DBUG_RETURN(0);
|
|
mysql_mutex_lock(&LOCK_global_read_lock);
|
|
/* increment this BEFORE waiting on cond (otherwise race cond) */
|
|
global_read_lock_blocks_commit++;
|
|
/* For testing we set up some blocking, to see if we can be killed */
|
|
DBUG_EXECUTE_IF("make_global_read_lock_block_commit_loop",
|
|
protect_against_global_read_lock++;);
|
|
old_message= thd->enter_cond(&COND_global_read_lock, &LOCK_global_read_lock,
|
|
"Waiting for all running commits to finish");
|
|
while (protect_against_global_read_lock && !thd->killed)
|
|
mysql_cond_wait(&COND_global_read_lock, &LOCK_global_read_lock);
|
|
DBUG_EXECUTE_IF("make_global_read_lock_block_commit_loop",
|
|
protect_against_global_read_lock--;);
|
|
if ((error= test(thd->killed)))
|
|
global_read_lock_blocks_commit--; // undo what we did
|
|
else
|
|
m_state= GRL_ACQUIRED_AND_BLOCKS_COMMIT;
|
|
thd->exit_cond(old_message); // this unlocks LOCK_global_read_lock
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/**
|
|
Broadcast COND_refresh and COND_global_read_lock.
|
|
|
|
Due to a bug in a threading library it could happen that a signal
|
|
did not reach its target. A condition for this was that the same
|
|
condition variable was used with different mutexes in
|
|
mysql_cond_wait(). Some time ago we changed LOCK_open to
|
|
LOCK_global_read_lock in global read lock handling. So COND_refresh
|
|
was used with LOCK_open and LOCK_global_read_lock.
|
|
|
|
We did now also change from COND_refresh to COND_global_read_lock
|
|
in global read lock handling. But now it is necessary to signal
|
|
both conditions at the same time.
|
|
|
|
@note
|
|
When signalling COND_global_read_lock within the global read lock
|
|
handling, it is not necessary to also signal COND_refresh.
|
|
*/
|
|
|
|
void broadcast_refresh(void)
|
|
{
|
|
mysql_cond_broadcast(&COND_refresh);
|
|
mysql_cond_broadcast(&COND_global_read_lock);
|
|
}
|
|
|
|
/**
|
|
@} (end of group Locking)
|
|
*/
|