mirror of
https://github.com/MariaDB/server.git
synced 2025-01-25 00:04:33 +01:00
b66cdbd1ea
This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2115 lines
67 KiB
C++
2115 lines
67 KiB
C++
/* Copyright (C) 2010, 2011 Monty Program Ab
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
#include "mariadb.h"
|
|
#include "sql_parse.h"
|
|
#include <my_bit.h>
|
|
#include "sql_select.h"
|
|
#include "key.h"
|
|
#include "sql_statistics.h"
|
|
#include "rowid_filter.h"
|
|
#include "optimizer_defaults.h"
|
|
|
|
/****************************************************************************
|
|
* Default MRR implementation (MRR to non-MRR converter)
|
|
***************************************************************************/
|
|
|
|
/**
|
|
Get cost and other information about MRR scan over a known list of ranges
|
|
|
|
Calculate estimated cost and other information about an MRR scan for given
|
|
sequence of ranges.
|
|
|
|
@param keyno Index number
|
|
@param seq Range sequence to be traversed
|
|
@param seq_init_param First parameter for seq->init()
|
|
@param n_ranges_arg Number of ranges in the sequence, or 0 if the caller
|
|
can't efficiently determine it
|
|
@param bufsz INOUT IN: Size of the buffer available for use
|
|
OUT: Size of the buffer that is expected to be
|
|
actually used, or 0 if buffer is not needed.
|
|
@param flags INOUT A combination of HA_MRR_* flags
|
|
@param cost OUT Estimated cost of MRR access
|
|
|
|
@note
|
|
This method (or an overriding one in a derived class) must check for
|
|
thd->killed and return HA_POS_ERROR if it is not zero. This is required
|
|
for a user to be able to interrupt the calculation by killing the
|
|
connection/query.
|
|
|
|
@retval
|
|
HA_POS_ERROR Error or the engine is unable to perform the requested
|
|
scan. Values of OUT parameters are undefined.
|
|
@retval
|
|
other OK, *cost contains cost of the scan, *bufsz and *flags
|
|
contain scan parameters.
|
|
*/
|
|
|
|
ha_rows
|
|
handler::multi_range_read_info_const(uint keyno, RANGE_SEQ_IF *seq,
|
|
void *seq_init_param, uint n_ranges_arg,
|
|
uint *bufsz, uint *flags,
|
|
Cost_estimate *cost)
|
|
{
|
|
KEY_MULTI_RANGE range;
|
|
range_seq_t seq_it;
|
|
ha_rows total_rows= 0;
|
|
uint n_ranges=0;
|
|
ha_rows max_rows= stats.records;
|
|
THD *thd= table->in_use;
|
|
ulonglong io_blocks;
|
|
|
|
/*
|
|
Counter of blocks that contain range edges for those ranges
|
|
for which records_in_range() is called
|
|
*/
|
|
ulonglong edge_blocks_cnt= 0;
|
|
/*
|
|
Counter of blocks that contain index tuples for those ranges
|
|
for which records_in_range() is called
|
|
*/
|
|
ulonglong range_blocks_cnt= 0;
|
|
/*
|
|
The position of the block containing the last record of the previous range
|
|
for which the info about range position is provided
|
|
*/
|
|
ulonglong prev_range_last_block= UNUSED_PAGE_NO;
|
|
/* The counter of records the staring from prev_range_last_block */
|
|
ulonglong prev_range_last_block_records= 0;
|
|
/*
|
|
The counter of single point ranges.
|
|
(For single point ranges we do not call records_in_range())
|
|
*/
|
|
ulonglong single_point_ranges= 0;
|
|
/*
|
|
The counter of of single point ranges that we succeded to assign
|
|
to some blocks
|
|
*/
|
|
ulonglong assigned_single_point_ranges= 0;
|
|
/*
|
|
Counter of single point ranges for which records_in_range in not
|
|
called and that are encountered between two ranges without such property
|
|
For example, let's have a subsequence of ranges
|
|
R1,r1,....rk,R2
|
|
where r1,...,rk are single point ranges for which records_in_range is
|
|
called while R1 and R2 are not such ranges.
|
|
Then single_point_ranges_delta will count ranges r1,...,rk.
|
|
*/
|
|
ulonglong unassigned_single_point_ranges= 0;
|
|
|
|
uint len= table->key_info[keyno].key_length + table->file->ref_length;
|
|
if (table->file->is_clustering_key(keyno))
|
|
len= table->s->stored_rec_length;
|
|
/* Assume block is 75 % full */
|
|
uint avg_block_records= ((uint) (stats.block_size*3/4))/len + 1;
|
|
uint limit= thd->variables.eq_range_index_dive_limit;
|
|
bool use_statistics_for_eq_range= eq_ranges_exceeds_limit(seq,
|
|
seq_init_param,
|
|
limit);
|
|
DBUG_ENTER("multi_range_read_info_const");
|
|
|
|
/* Default MRR implementation doesn't need buffer */
|
|
*bufsz= 0;
|
|
|
|
seq_it= seq->init(seq_init_param, n_ranges, *flags);
|
|
while (!seq->next(seq_it, &range))
|
|
{
|
|
ha_rows rows;
|
|
|
|
if (unlikely(thd->killed != 0))
|
|
DBUG_RETURN(HA_POS_ERROR);
|
|
|
|
n_ranges++;
|
|
key_range *min_endp, *max_endp;
|
|
if (range.range_flag & GEOM_FLAG)
|
|
{
|
|
/* In this case tmp_min_flag contains the handler-read-function */
|
|
range.start_key.flag= (ha_rkey_function) (range.range_flag ^ GEOM_FLAG);
|
|
min_endp= &range.start_key;
|
|
max_endp= NULL;
|
|
}
|
|
else
|
|
{
|
|
min_endp= range.start_key.length? &range.start_key : NULL;
|
|
max_endp= range.end_key.length? &range.end_key : NULL;
|
|
}
|
|
int keyparts_used= my_count_bits(range.start_key.keypart_map);
|
|
|
|
if ((range.range_flag & UNIQUE_RANGE) && !(range.range_flag & NULL_RANGE))
|
|
{
|
|
rows= 1;
|
|
/*
|
|
In this case we do not call records_in_range() and as a result
|
|
do not get any info on the edge blocks for this range. However if it
|
|
happens that the range for which we have such info uses the same block
|
|
for its first record as the last range for which such info is
|
|
provided uses for its last record then this range can be assigned
|
|
later to one of the blocks used by other ranges.
|
|
|
|
Note that we don't have to increment edge_blocks_cnt or
|
|
range_blocks_cnt here.
|
|
*/
|
|
single_point_ranges++;
|
|
}
|
|
else if (use_statistics_for_eq_range &&
|
|
!(range.range_flag & NULL_RANGE) &&
|
|
(range.range_flag & EQ_RANGE) &&
|
|
table->key_info[keyno].actual_rec_per_key(keyparts_used - 1) > 0.5)
|
|
{
|
|
rows= ((ha_rows) table->key_info[keyno].
|
|
actual_rec_per_key(keyparts_used-1));
|
|
range_blocks_cnt+= ((MY_MAX(rows, 1) - 1) / avg_block_records + 1);
|
|
}
|
|
else
|
|
{
|
|
page_range pages= unused_page_range;
|
|
if ((rows= this->records_in_range(keyno, min_endp, max_endp, &pages)) ==
|
|
HA_POS_ERROR)
|
|
{
|
|
/* Can't scan one range => can't do MRR scan at all */
|
|
total_rows= HA_POS_ERROR;
|
|
if (thd->is_error())
|
|
DBUG_RETURN(HA_POS_ERROR);
|
|
break;
|
|
}
|
|
if (pages.first_page == UNUSED_PAGE_NO)
|
|
{
|
|
/*
|
|
The engine does not provide info on the range position.
|
|
Place the range in a new block. Note that in this case
|
|
any new range will be placed in a new block.
|
|
*/
|
|
ulonglong additional_blocks= ((MY_MAX(rows,1) - 1) / avg_block_records +
|
|
1);
|
|
edge_blocks_cnt+= additional_blocks == 1 ? 1 : 2;
|
|
range_blocks_cnt+= additional_blocks;
|
|
}
|
|
else
|
|
{
|
|
/* The info on the range position is provided */
|
|
if (pages.first_page == prev_range_last_block)
|
|
{
|
|
/*
|
|
The new range starts in the same block that the last range
|
|
for which the position of the range was provided.
|
|
*/
|
|
/*
|
|
First add records of single point ranges that can be placed
|
|
between these two ranges.
|
|
*/
|
|
prev_range_last_block_records+= (single_point_ranges -
|
|
assigned_single_point_ranges);
|
|
assigned_single_point_ranges= single_point_ranges;
|
|
if (pages.first_page == pages.last_page)
|
|
{
|
|
/*
|
|
All records of the current range are in the same block
|
|
Note that the prev_range_last_block_records can be much larger
|
|
than max_records_in_block as the rows can be compressed!
|
|
*/
|
|
prev_range_last_block_records+= rows;
|
|
DBUG_ASSERT(prev_range_last_block_records <
|
|
stats.block_size);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The current range spans more than one block
|
|
|
|
Place part of the range records in 'prev_range_last_block'
|
|
and the remaining records in additional blocks.
|
|
|
|
We don't know where the first key was positioned in the
|
|
block, so we assume the range started in the middle of the
|
|
block.
|
|
|
|
Note that prev_range_last_block_records > avg_block_records
|
|
can be true in case of compressed rows.
|
|
*/
|
|
ha_rows rem_rows= rows;
|
|
|
|
if (avg_block_records > prev_range_last_block_records)
|
|
{
|
|
ha_rows space_left_in_prev_block=
|
|
(avg_block_records - prev_range_last_block_records)/2;
|
|
rem_rows= 0;
|
|
if (rows > space_left_in_prev_block)
|
|
rem_rows= rows - space_left_in_prev_block;
|
|
}
|
|
/* Calculate how many additional blocks we need for rem_rows */
|
|
ulonglong additional_blocks= ((MY_MAX(rem_rows, 1) - 1) /
|
|
avg_block_records + 1);
|
|
edge_blocks_cnt++;
|
|
range_blocks_cnt+= additional_blocks;
|
|
prev_range_last_block= pages.last_page;
|
|
/* There is at least one row on last page */
|
|
prev_range_last_block_records= 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The new range does not start in the same block that the last range
|
|
for which the position of the range was provided.
|
|
Note that rows may be 0!
|
|
*/
|
|
ulonglong additional_blocks= ((MY_MAX(rows, 1) - 1) /
|
|
avg_block_records + 1);
|
|
edge_blocks_cnt+= additional_blocks == 1 ? 1 : 2;
|
|
range_blocks_cnt+= additional_blocks;
|
|
unassigned_single_point_ranges+= (single_point_ranges -
|
|
assigned_single_point_ranges);
|
|
assigned_single_point_ranges= single_point_ranges;
|
|
prev_range_last_block= pages.last_page;
|
|
/* There is at least one row on last page */
|
|
prev_range_last_block_records= 1;
|
|
}
|
|
}
|
|
}
|
|
total_rows+= rows;
|
|
}
|
|
/*
|
|
Count the number of io_blocks that where not yet read and thus not cached.
|
|
The number of equal read blocks that where not read are:
|
|
|
|
(single_point_ranges - assigned_single_point_ranges).
|
|
|
|
We don't add these to io_blocks as we don't want to penalize equal
|
|
reads (if we did, a range that would read 5 rows would be
|
|
regarded as better than one equal read).
|
|
|
|
Better to assume we have done a records_in_range() for the equal
|
|
range and it's also cached.
|
|
|
|
One effect of this is that io_blocks for simple ranges are often 0,
|
|
as the blocks where already read by records_in_range and we assume
|
|
that we don't have to read it again.
|
|
*/
|
|
io_blocks= (range_blocks_cnt - edge_blocks_cnt);
|
|
unassigned_single_point_ranges+= (single_point_ranges -
|
|
assigned_single_point_ranges);
|
|
|
|
if (total_rows != HA_POS_ERROR)
|
|
{
|
|
double key_cost;
|
|
set_if_smaller(total_rows, max_rows);
|
|
|
|
/* The following calculation is the same as in multi_range_read_info(): */
|
|
*flags |= HA_MRR_USE_DEFAULT_IMPL;
|
|
cost->reset();
|
|
cost->avg_io_cost= cost->idx_avg_io_cost= 0; // Not used!
|
|
|
|
if (!is_clustering_key(keyno))
|
|
{
|
|
key_cost= ha_keyread_time(keyno, n_ranges, total_rows, io_blocks);
|
|
cost->idx_cpu_cost= key_cost;
|
|
|
|
if (!(*flags & HA_MRR_INDEX_ONLY))
|
|
{
|
|
/* ha_rnd_pos_time includes ROW_COPY_COST */
|
|
cost->cpu_cost= ha_rnd_pos_time(total_rows);
|
|
}
|
|
else
|
|
{
|
|
/* Index only read */
|
|
cost->copy_cost= rows2double(total_rows) * KEY_COPY_COST;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Clustered index */
|
|
io_blocks+= unassigned_single_point_ranges;
|
|
key_cost= ha_keyread_time(keyno, n_ranges, total_rows, io_blocks);
|
|
cost->idx_cpu_cost= key_cost;
|
|
cost->copy_cost= rows2double(total_rows) * ROW_COPY_COST;
|
|
}
|
|
cost->comp_cost= (rows2double(total_rows) * WHERE_COST +
|
|
MULTI_RANGE_READ_SETUP_COST);
|
|
}
|
|
DBUG_PRINT("statistics",
|
|
("key: %s rows: %llu total_cost: %.3f io_blocks: %llu "
|
|
"idx_io_count: %.3f cpu_cost: %.3f io_count: %.3f "
|
|
"compare_cost: %.3f",
|
|
table->s->keynames.type_names[keyno],
|
|
(ulonglong) total_rows, cost->total_cost(),
|
|
(ulonglong) io_blocks,
|
|
cost->idx_io_count, cost->cpu_cost, cost->io_count,
|
|
cost->comp_cost));
|
|
DBUG_RETURN(total_rows);
|
|
}
|
|
|
|
|
|
/**
|
|
Get cost and other information about MRR scan over some sequence of ranges
|
|
|
|
Calculate estimated cost and other information about an MRR scan for some
|
|
sequence of ranges.
|
|
|
|
The ranges themselves will be known only at execution phase. When this
|
|
function is called we only know number of ranges and a (rough) E(#records)
|
|
within those ranges.
|
|
|
|
Currently this function is only called for "n-keypart singlepoint" ranges,
|
|
i.e. each range is "keypart1=someconst1 AND ... AND keypartN=someconstN"
|
|
|
|
The flags parameter is a combination of those flags: HA_MRR_SORTED,
|
|
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION, HA_MRR_LIMITS.
|
|
|
|
@param keyno Index number
|
|
@param n_ranges Estimated number of ranges (i.e. intervals) in the
|
|
range sequence.
|
|
@param total_rows Estimated total number of records contained within all
|
|
of the ranges
|
|
@param bufsz INOUT IN: Size of the buffer available for use
|
|
OUT: Size of the buffer that will be actually used, or
|
|
0 if buffer is not needed.
|
|
@param flags INOUT A combination of HA_MRR_* flags
|
|
@param cost OUT Estimated cost of MRR access
|
|
|
|
@retval
|
|
0 OK, *cost contains cost of the scan, *bufsz and *flags contain scan
|
|
parameters.
|
|
@retval
|
|
other Error or can't perform the requested scan
|
|
*/
|
|
|
|
ha_rows handler::multi_range_read_info(uint keyno, uint n_ranges, uint total_rows,
|
|
uint key_parts, uint *bufsz,
|
|
uint *flags, Cost_estimate *cost)
|
|
{
|
|
/*
|
|
Currently we expect this function to be called only in preparation of scan
|
|
with HA_MRR_SINGLE_POINT property.
|
|
*/
|
|
DBUG_ASSERT(*flags | HA_MRR_SINGLE_POINT);
|
|
|
|
*bufsz= 0; /* Default implementation doesn't need a buffer */
|
|
*flags |= HA_MRR_USE_DEFAULT_IMPL;
|
|
|
|
cost->reset();
|
|
/* Produce the same cost as non-MRR code does */
|
|
if (!is_clustering_key(keyno))
|
|
{
|
|
double key_cost= ha_keyread_time(keyno, n_ranges, total_rows, 0);
|
|
cost->idx_cpu_cost= key_cost;
|
|
|
|
if (!(*flags & HA_MRR_INDEX_ONLY))
|
|
{
|
|
/* ha_rnd_pos_time includes ROW_COPY_COST */
|
|
cost->cpu_cost= ha_rnd_pos_time(total_rows);
|
|
}
|
|
else
|
|
{
|
|
/* Index only read */
|
|
cost->copy_cost= rows2double(total_rows) * KEY_COPY_COST;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Clustering key */
|
|
cost->cpu_cost= ha_keyread_time(keyno, n_ranges, total_rows, 0);
|
|
cost->copy_cost= rows2double(total_rows) * ROW_COPY_COST;
|
|
}
|
|
cost->comp_cost= rows2double(total_rows) * WHERE_COST;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize the MRR scan
|
|
|
|
Initialize the MRR scan. This function may do heavyweight scan
|
|
initialization like row prefetching/sorting/etc (NOTE: but better not do
|
|
it here as we may not need it, e.g. if we never satisfy WHERE clause on
|
|
previous tables. For many implementations it would be natural to do such
|
|
initializations in the first multi_read_range_next() call)
|
|
|
|
mode is a combination of the following flags: HA_MRR_SORTED,
|
|
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION
|
|
|
|
@param seq Range sequence to be traversed
|
|
@param seq_init_param First parameter for seq->init()
|
|
@param n_ranges Number of ranges in the sequence
|
|
@param mode Flags, see the description section for the details
|
|
@param buf INOUT: memory buffer to be used
|
|
|
|
@note
|
|
One must have called index_init() before calling this function. Several
|
|
multi_range_read_init() calls may be made in course of one query.
|
|
|
|
Buffer memory management is done according to the following scenario:
|
|
The caller allocates the buffer and provides it to the callee by filling
|
|
the members of HANDLER_BUFFER structure.
|
|
The callee consumes all or some fraction of the provided buffer space, and
|
|
sets the HANDLER_BUFFER members accordingly.
|
|
The callee may use the buffer memory until the next multi_range_read_init()
|
|
call is made, all records have been read, or until index_end() call is
|
|
made, whichever comes first.
|
|
|
|
@retval 0 OK
|
|
@retval 1 Error
|
|
*/
|
|
|
|
int
|
|
handler::multi_range_read_init(RANGE_SEQ_IF *seq_funcs, void *seq_init_param,
|
|
uint n_ranges, uint mode, HANDLER_BUFFER *buf)
|
|
{
|
|
DBUG_ENTER("handler::multi_range_read_init");
|
|
mrr_iter= seq_funcs->init(seq_init_param, n_ranges, mode);
|
|
mrr_funcs= *seq_funcs;
|
|
mrr_is_output_sorted= MY_TEST(mode & HA_MRR_SORTED);
|
|
mrr_have_range= FALSE;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/**
|
|
Get next record in MRR scan
|
|
|
|
Default MRR implementation: read the next record
|
|
|
|
@param range_info OUT Undefined if HA_MRR_NO_ASSOCIATION flag is in effect
|
|
Otherwise, the opaque value associated with the range
|
|
that contains the returned record.
|
|
|
|
@retval 0 OK
|
|
@retval other Error code
|
|
*/
|
|
|
|
int handler::multi_range_read_next(range_id_t *range_info)
|
|
{
|
|
int result= HA_ERR_END_OF_FILE;
|
|
bool range_res;
|
|
DBUG_ENTER("handler::multi_range_read_next");
|
|
|
|
if (!mrr_have_range)
|
|
{
|
|
mrr_have_range= TRUE;
|
|
goto start;
|
|
}
|
|
|
|
do
|
|
{
|
|
/* Save a call if there can be only one row in range. */
|
|
if (mrr_cur_range.range_flag != (UNIQUE_RANGE | EQ_RANGE))
|
|
{
|
|
result= read_range_next();
|
|
/* On success or non-EOF errors jump to the end. */
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (ha_was_semi_consistent_read())
|
|
{
|
|
/*
|
|
The following assignment is redundant, but for extra safety and to
|
|
remove the compiler warning:
|
|
*/
|
|
range_res= FALSE;
|
|
goto scan_it_again;
|
|
}
|
|
/*
|
|
We need to set this for the last range only, but checking this
|
|
condition is more expensive than just setting the result code.
|
|
*/
|
|
result= HA_ERR_END_OF_FILE;
|
|
}
|
|
|
|
start:
|
|
/* Try the next range(s) until one matches a record. */
|
|
while (!(range_res= mrr_funcs.next(mrr_iter, &mrr_cur_range)))
|
|
{
|
|
scan_it_again:
|
|
result= read_range_first(mrr_cur_range.start_key.keypart_map ?
|
|
&mrr_cur_range.start_key : 0,
|
|
mrr_cur_range.end_key.keypart_map ?
|
|
&mrr_cur_range.end_key : 0,
|
|
MY_TEST(mrr_cur_range.range_flag & EQ_RANGE),
|
|
mrr_is_output_sorted);
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
break;
|
|
}
|
|
}
|
|
while ((result == HA_ERR_END_OF_FILE) && !range_res);
|
|
|
|
*range_info= mrr_cur_range.ptr;
|
|
DBUG_PRINT("exit",("handler::multi_range_read_next result %d", result));
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Mrr_*_reader classes (building blocks for DS-MRR)
|
|
***************************************************************************/
|
|
|
|
int Mrr_simple_index_reader::init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
|
|
void *seq_init_param, uint n_ranges,
|
|
uint mode, Key_parameters *key_par_arg,
|
|
Lifo_buffer *key_buffer_arg,
|
|
Buffer_manager *buf_manager_arg)
|
|
{
|
|
HANDLER_BUFFER no_buffer = {NULL, NULL, NULL};
|
|
file= h_arg;
|
|
return file->handler::multi_range_read_init(seq_funcs, seq_init_param,
|
|
n_ranges, mode, &no_buffer);
|
|
}
|
|
|
|
|
|
int Mrr_simple_index_reader::get_next(range_id_t *range_info)
|
|
{
|
|
int res;
|
|
while (!(res= file->handler::multi_range_read_next(range_info)))
|
|
{
|
|
KEY_MULTI_RANGE *curr_range= &file->handler::mrr_cur_range;
|
|
if (!file->mrr_funcs.skip_index_tuple ||
|
|
!file->mrr_funcs.skip_index_tuple(file->mrr_iter, curr_range->ptr))
|
|
break;
|
|
}
|
|
if (res && res != HA_ERR_END_OF_FILE && res != HA_ERR_KEY_NOT_FOUND)
|
|
file->print_error(res, MYF(0)); // Fatal error
|
|
return res;
|
|
}
|
|
|
|
|
|
/**
|
|
@brief Get next index record
|
|
|
|
@param range_info OUT identifier of range that the returned record belongs to
|
|
|
|
@note
|
|
We actually iterate over nested sequences:
|
|
- an ordered sequence of groups of identical keys
|
|
- each key group has key value, which has multiple matching records
|
|
- thus, each record matches all members of the key group
|
|
|
|
@retval 0 OK, next record was successfully read
|
|
@retval HA_ERR_END_OF_FILE End of records
|
|
@retval Other Some other error; Error is printed
|
|
*/
|
|
|
|
int Mrr_ordered_index_reader::get_next(range_id_t *range_info)
|
|
{
|
|
int res;
|
|
DBUG_ENTER("Mrr_ordered_index_reader::get_next");
|
|
|
|
for(;;)
|
|
{
|
|
if (!scanning_key_val_iter)
|
|
{
|
|
while ((res= kv_it.init(this)))
|
|
{
|
|
if ((res != HA_ERR_KEY_NOT_FOUND && res != HA_ERR_END_OF_FILE))
|
|
DBUG_RETURN(res); /* Some fatal error */
|
|
|
|
if (key_buffer->is_empty())
|
|
{
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
}
|
|
scanning_key_val_iter= TRUE;
|
|
}
|
|
|
|
if ((res= kv_it.get_next(range_info)))
|
|
{
|
|
scanning_key_val_iter= FALSE;
|
|
if ((res != HA_ERR_KEY_NOT_FOUND && res != HA_ERR_END_OF_FILE))
|
|
DBUG_RETURN(res);
|
|
kv_it.move_to_next_key_value();
|
|
continue;
|
|
}
|
|
if (!skip_index_tuple(*range_info) &&
|
|
!skip_record(*range_info, NULL))
|
|
{
|
|
break;
|
|
}
|
|
/* Go get another (record, range_id) combination */
|
|
} /* while */
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Supply index reader with the O(1)space it needs for scan interrupt/restore
|
|
operation
|
|
*/
|
|
|
|
bool Mrr_ordered_index_reader::set_interruption_temp_buffer(uint rowid_length,
|
|
uint key_len,
|
|
uint saved_pk_len,
|
|
uchar **space_start,
|
|
uchar *space_end)
|
|
{
|
|
if (space_end - *space_start <= (ptrdiff_t)(rowid_length + key_len + saved_pk_len))
|
|
return TRUE;
|
|
support_scan_interruptions= TRUE;
|
|
|
|
saved_rowid= *space_start;
|
|
*space_start += rowid_length;
|
|
|
|
if (saved_pk_len)
|
|
{
|
|
saved_primary_key= *space_start;
|
|
*space_start += saved_pk_len;
|
|
}
|
|
else
|
|
saved_primary_key= NULL;
|
|
|
|
saved_key_tuple= *space_start;
|
|
*space_start += key_len;
|
|
|
|
have_saved_rowid= FALSE;
|
|
read_was_interrupted= FALSE;
|
|
return FALSE;
|
|
}
|
|
|
|
void Mrr_ordered_index_reader::set_no_interruption_temp_buffer()
|
|
{
|
|
support_scan_interruptions= FALSE;
|
|
saved_key_tuple= saved_rowid= saved_primary_key= NULL; /* safety */
|
|
have_saved_rowid= FALSE;
|
|
read_was_interrupted= FALSE;
|
|
}
|
|
|
|
void Mrr_ordered_index_reader::interrupt_read()
|
|
{
|
|
DBUG_ASSERT(support_scan_interruptions);
|
|
TABLE *table= file->get_table();
|
|
KEY *used_index= &table->key_info[file->active_index];
|
|
/* Save the current key value */
|
|
key_copy(saved_key_tuple, table->record[0],
|
|
used_index, used_index->key_length);
|
|
|
|
if (saved_primary_key)
|
|
{
|
|
key_copy(saved_primary_key, table->record[0],
|
|
&table->key_info[table->s->primary_key],
|
|
table->key_info[table->s->primary_key].key_length);
|
|
}
|
|
read_was_interrupted= TRUE;
|
|
|
|
/* Save the last rowid */
|
|
memcpy(saved_rowid, file->ref, file->ref_length);
|
|
have_saved_rowid= TRUE;
|
|
}
|
|
|
|
void Mrr_ordered_index_reader::position()
|
|
{
|
|
if (have_saved_rowid)
|
|
memcpy(file->ref, saved_rowid, file->ref_length);
|
|
else
|
|
Mrr_index_reader::position();
|
|
}
|
|
|
|
void Mrr_ordered_index_reader::resume_read()
|
|
{
|
|
TABLE *table= file->get_table();
|
|
|
|
if (!read_was_interrupted)
|
|
return;
|
|
|
|
KEY *used_index= &table->key_info[file->active_index];
|
|
key_restore(table->record[0], saved_key_tuple,
|
|
used_index, used_index->key_length);
|
|
if (saved_primary_key)
|
|
{
|
|
key_restore(table->record[0], saved_primary_key,
|
|
&table->key_info[table->s->primary_key],
|
|
table->key_info[table->s->primary_key].key_length);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Fill the buffer with (lookup_tuple, range_id) pairs and sort
|
|
|
|
@return
|
|
0 OK, the buffer is non-empty and sorted
|
|
HA_ERR_END_OF_FILE Source exhausted, the buffer is empty.
|
|
*/
|
|
|
|
int Mrr_ordered_index_reader::refill_buffer(bool initial)
|
|
{
|
|
KEY_MULTI_RANGE cur_range;
|
|
DBUG_ENTER("Mrr_ordered_index_reader::refill_buffer");
|
|
|
|
DBUG_ASSERT(key_buffer->is_empty());
|
|
|
|
if (source_exhausted)
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
|
|
buf_manager->reset_buffer_sizes(buf_manager->arg);
|
|
key_buffer->reset();
|
|
key_buffer->setup_writing(keypar.key_size_in_keybuf,
|
|
is_mrr_assoc? sizeof(range_id_t) : 0);
|
|
|
|
while (key_buffer->can_write() &&
|
|
!(source_exhausted= mrr_funcs.next(mrr_iter, &cur_range)))
|
|
{
|
|
DBUG_ASSERT(cur_range.range_flag & EQ_RANGE);
|
|
|
|
/* Put key, or {key, range_id} pair into the buffer */
|
|
key_buffer->write_ptr1= keypar.use_key_pointers ?
|
|
(uchar*)&cur_range.start_key.key :
|
|
(uchar*)cur_range.start_key.key;
|
|
key_buffer->write_ptr2= (uchar*)&cur_range.ptr;
|
|
key_buffer->write();
|
|
}
|
|
|
|
/* Force get_next() to start with kv_it.init() call: */
|
|
scanning_key_val_iter= FALSE;
|
|
|
|
if (source_exhausted && key_buffer->is_empty())
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
|
|
if (!initial)
|
|
{
|
|
/* This is a non-initial buffer fill and we've got a non-empty buffer */
|
|
THD *thd= current_thd;
|
|
status_var_increment(thd->status_var.ha_mrr_key_refills_count);
|
|
}
|
|
|
|
key_buffer->sort((key_buffer->type() == Lifo_buffer::FORWARD)?
|
|
(qsort2_cmp)Mrr_ordered_index_reader::compare_keys_reverse :
|
|
(qsort2_cmp)Mrr_ordered_index_reader::compare_keys,
|
|
this);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int Mrr_ordered_index_reader::init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
|
|
void *seq_init_param, uint n_ranges,
|
|
uint mode, Key_parameters *key_par_arg,
|
|
Lifo_buffer *key_buffer_arg,
|
|
Buffer_manager *buf_manager_arg)
|
|
{
|
|
file= h_arg;
|
|
key_buffer= key_buffer_arg;
|
|
buf_manager= buf_manager_arg;
|
|
keypar= *key_par_arg;
|
|
|
|
KEY *key_info= &file->get_table()->key_info[file->active_index];
|
|
keypar.index_ranges_unique= MY_TEST(key_info->flags & HA_NOSAME &&
|
|
key_info->user_defined_key_parts ==
|
|
my_count_bits(keypar.key_tuple_map));
|
|
|
|
mrr_iter= seq_funcs->init(seq_init_param, n_ranges, mode);
|
|
is_mrr_assoc= !MY_TEST(mode & HA_MRR_NO_ASSOCIATION);
|
|
mrr_funcs= *seq_funcs;
|
|
source_exhausted= FALSE;
|
|
read_was_interrupted= false;
|
|
have_saved_rowid= FALSE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int rowid_cmp_reverse(void *file, uchar *a, uchar *b)
|
|
{
|
|
return - ((handler*)file)->cmp_ref(a, b);
|
|
}
|
|
|
|
|
|
int Mrr_ordered_rndpos_reader::init(handler *h_arg,
|
|
Mrr_index_reader *index_reader_arg,
|
|
uint mode,
|
|
Lifo_buffer *buf,
|
|
Rowid_filter *filter)
|
|
{
|
|
file= h_arg;
|
|
index_reader= index_reader_arg;
|
|
rowid_buffer= buf;
|
|
is_mrr_assoc= !MY_TEST(mode & HA_MRR_NO_ASSOCIATION);
|
|
index_reader_exhausted= FALSE;
|
|
index_reader_needs_refill= TRUE;
|
|
rowid_filter= filter;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
DS-MRR: Fill and sort the rowid buffer
|
|
|
|
Scan the MRR ranges and collect ROWIDs (or {ROWID, range_id} pairs) into
|
|
buffer. When the buffer is full or scan is completed, sort the buffer by
|
|
rowid and return.
|
|
|
|
When this function returns, either rowid buffer is not empty, or the source
|
|
of lookup keys (i.e. ranges) is exhaused.
|
|
|
|
@retval 0 OK, the next portion of rowids is in the buffer,
|
|
properly ordered
|
|
@retval other Error
|
|
*/
|
|
|
|
int Mrr_ordered_rndpos_reader::refill_buffer(bool initial)
|
|
{
|
|
int res;
|
|
bool first_call= initial;
|
|
DBUG_ENTER("Mrr_ordered_rndpos_reader::refill_buffer");
|
|
|
|
if (index_reader_exhausted)
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
|
|
while (initial || index_reader_needs_refill ||
|
|
(res= refill_from_index_reader()) == HA_ERR_END_OF_FILE)
|
|
{
|
|
if ((res= index_reader->refill_buffer(initial)))
|
|
{
|
|
if (res == HA_ERR_END_OF_FILE)
|
|
index_reader_exhausted= TRUE;
|
|
break;
|
|
}
|
|
initial= FALSE;
|
|
index_reader_needs_refill= FALSE;
|
|
}
|
|
|
|
if (!first_call && !index_reader_exhausted)
|
|
{
|
|
/* Ok, this was a successful buffer refill operation */
|
|
THD *thd= current_thd;
|
|
status_var_increment(thd->status_var.ha_mrr_rowid_refills_count);
|
|
}
|
|
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
void Mrr_index_reader::position()
|
|
{
|
|
file->position(file->get_table()->record[0]);
|
|
}
|
|
|
|
|
|
/*
|
|
@brief Try to refill the rowid buffer without calling
|
|
index_reader->refill_buffer().
|
|
*/
|
|
|
|
int Mrr_ordered_rndpos_reader::refill_from_index_reader()
|
|
{
|
|
range_id_t range_info;
|
|
int res;
|
|
DBUG_ENTER("Mrr_ordered_rndpos_reader::refill_from_index_reader");
|
|
|
|
DBUG_ASSERT(rowid_buffer->is_empty());
|
|
index_rowid= index_reader->get_rowid_ptr();
|
|
rowid_buffer->reset();
|
|
rowid_buffer->setup_writing(file->ref_length,
|
|
is_mrr_assoc? sizeof(range_id_t) : 0);
|
|
|
|
last_identical_rowid= NULL;
|
|
|
|
index_reader->resume_read();
|
|
while (rowid_buffer->can_write())
|
|
{
|
|
res= index_reader->get_next(&range_info);
|
|
|
|
if (res)
|
|
{
|
|
if (res != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(res);
|
|
index_reader_needs_refill=TRUE;
|
|
break;
|
|
}
|
|
|
|
index_reader->position();
|
|
|
|
/*
|
|
If the built rowid filter cannot be used at the engine level, use it here.
|
|
*/
|
|
if (rowid_filter && !file->pushed_rowid_filter &&
|
|
!rowid_filter->check((char *)index_rowid))
|
|
continue;
|
|
|
|
/* Put rowid, or {rowid, range_id} pair into the buffer */
|
|
rowid_buffer->write_ptr1= index_rowid;
|
|
rowid_buffer->write_ptr2= (uchar*)&range_info;
|
|
rowid_buffer->write();
|
|
}
|
|
|
|
/*
|
|
When index_reader_needs_refill=TRUE, this means we've got all of index
|
|
tuples for lookups keys that index_reader had. We are not in the middle
|
|
of an index read, so there is no need to call interrupt_read.
|
|
|
|
Actually, we must not call interrupt_read(), because it could be that we
|
|
haven't read a single row (because all index lookups returned
|
|
HA_ERR_KEY_NOT_FOUND). In this case, interrupt_read() will cause [harmless]
|
|
valgrind warnings when trying to save garbage from table->record[0].
|
|
*/
|
|
if (!index_reader_needs_refill)
|
|
index_reader->interrupt_read();
|
|
/* Sort the buffer contents by rowid */
|
|
rowid_buffer->sort((qsort2_cmp)rowid_cmp_reverse, (void*)file);
|
|
|
|
rowid_buffer->setup_reading(file->ref_length,
|
|
is_mrr_assoc ? sizeof(range_id_t) : 0);
|
|
DBUG_RETURN(rowid_buffer->is_empty()? HA_ERR_END_OF_FILE : 0);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the next {record, range_id} using ordered array of rowid+range_id pairs
|
|
|
|
@note
|
|
Since we have sorted rowids, we try not to make multiple rnd_pos() calls
|
|
with the same rowid value.
|
|
*/
|
|
|
|
int Mrr_ordered_rndpos_reader::get_next(range_id_t *range_info)
|
|
{
|
|
int res;
|
|
|
|
/*
|
|
First, check if rowid buffer has elements with the same rowid value as
|
|
the previous.
|
|
*/
|
|
while (last_identical_rowid)
|
|
{
|
|
/*
|
|
Current record (the one we've returned in previous call) was obtained
|
|
from a rowid that matched multiple range_ids. Return this record again,
|
|
with next matching range_id.
|
|
*/
|
|
(void)rowid_buffer->read();
|
|
|
|
if (rowid_buffer->read_ptr1 == last_identical_rowid)
|
|
last_identical_rowid= NULL; /* reached the last of identical rowids */
|
|
|
|
if (!is_mrr_assoc)
|
|
return 0;
|
|
|
|
memcpy(range_info, rowid_buffer->read_ptr2, sizeof(range_id_t));
|
|
if (!index_reader->skip_record(*range_info, rowid_buffer->read_ptr1))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Ok, last_identical_rowid==NULL, it's time to read next different rowid
|
|
value and get record for it.
|
|
*/
|
|
for(;;)
|
|
{
|
|
/* Return eof if there are no rowids in the buffer after re-fill attempt */
|
|
if (rowid_buffer->read())
|
|
return HA_ERR_END_OF_FILE;
|
|
|
|
if (is_mrr_assoc)
|
|
{
|
|
memcpy(range_info, rowid_buffer->read_ptr2, sizeof(range_id_t));
|
|
if (index_reader->skip_record(*range_info, rowid_buffer->read_ptr1))
|
|
continue;
|
|
}
|
|
|
|
res= file->ha_rnd_pos(file->get_table()->record[0],
|
|
rowid_buffer->read_ptr1);
|
|
|
|
if (res)
|
|
return res; /* Some fatal error */
|
|
|
|
break; /* Got another record */
|
|
}
|
|
|
|
/*
|
|
Check if subsequent buffer elements have the same rowid value as this
|
|
one. If yes, remember this fact so that we don't make any more rnd_pos()
|
|
calls with this value.
|
|
|
|
Note: this implies that SQL layer doesn't touch table->record[0]
|
|
between calls.
|
|
*/
|
|
Lifo_buffer_iterator it;
|
|
it.init(rowid_buffer);
|
|
while (!it.read())
|
|
{
|
|
if (file->cmp_ref(it.read_ptr1, rowid_buffer->read_ptr1))
|
|
break;
|
|
last_identical_rowid= it.read_ptr1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* Top-level DS-MRR implementation functions (the ones called by storage engine)
|
|
***************************************************************************/
|
|
|
|
/**
|
|
DS-MRR: Initialize and start MRR scan
|
|
|
|
Initialize and start the MRR scan. Depending on the mode parameter, this
|
|
may use default or DS-MRR implementation.
|
|
|
|
@param h_arg Table handler to be used
|
|
@param key Index to be used
|
|
@param seq_funcs Interval sequence enumeration functions
|
|
@param seq_init_param Interval sequence enumeration parameter
|
|
@param n_ranges Number of ranges in the sequence.
|
|
@param mode HA_MRR_* modes to use
|
|
@param buf INOUT Buffer to use
|
|
|
|
@retval 0 Ok, Scan started.
|
|
@retval other Error
|
|
*/
|
|
|
|
int DsMrr_impl::dsmrr_init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
|
|
void *seq_init_param, uint n_ranges, uint mode,
|
|
HANDLER_BUFFER *buf)
|
|
{
|
|
TABLE *table= h_arg->get_table();
|
|
THD *thd= table->in_use;
|
|
int res;
|
|
Key_parameters keypar;
|
|
uint UNINIT_VAR(key_buff_elem_size); /* set/used when do_sort_keys==TRUE */
|
|
handler *h_idx;
|
|
Mrr_ordered_rndpos_reader *disk_strategy= NULL;
|
|
bool do_sort_keys= FALSE;
|
|
DBUG_ENTER("DsMrr_impl::dsmrr_init");
|
|
/*
|
|
index_merge may invoke a scan on an object for which dsmrr_info[_const]
|
|
has not been called, so set the owner handler here as well.
|
|
*/
|
|
primary_file= h_arg;
|
|
is_mrr_assoc= !MY_TEST(mode & HA_MRR_NO_ASSOCIATION);
|
|
|
|
strategy_exhausted= FALSE;
|
|
|
|
/* By default, have do-nothing buffer manager */
|
|
buf_manager.arg= this;
|
|
buf_manager.reset_buffer_sizes= do_nothing;
|
|
buf_manager.redistribute_buffer_space= do_nothing;
|
|
|
|
if (mode & (HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SORTED))
|
|
goto use_default_impl;
|
|
|
|
/*
|
|
Determine whether we'll need to do key sorting and/or rnd_pos() scan
|
|
*/
|
|
index_strategy= NULL;
|
|
if ((mode & HA_MRR_SINGLE_POINT) &&
|
|
optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS))
|
|
{
|
|
do_sort_keys= TRUE;
|
|
index_strategy= &reader_factory.ordered_index_reader;
|
|
}
|
|
else
|
|
index_strategy= &reader_factory.simple_index_reader;
|
|
|
|
strategy= index_strategy;
|
|
/*
|
|
We don't need a rowid-to-rndpos step if
|
|
- We're doing a scan on clustered primary key
|
|
- [In the future] We're doing an index_only read
|
|
*/
|
|
DBUG_ASSERT(primary_file->inited == handler::INDEX ||
|
|
(primary_file->inited == handler::RND &&
|
|
secondary_file &&
|
|
secondary_file->inited == handler::INDEX));
|
|
|
|
h_idx= (primary_file->inited == handler::INDEX)? primary_file: secondary_file;
|
|
keyno= h_idx->active_index;
|
|
|
|
if (! h_idx->is_clustering_key(keyno))
|
|
{
|
|
strategy= disk_strategy= &reader_factory.ordered_rndpos_reader;
|
|
if (h_arg->pushed_rowid_filter)
|
|
{
|
|
/*
|
|
Currently usage of a rowid filter within InnoDB engine is not supported
|
|
if the table is accessed by the primary key.
|
|
With optimizer switches ''mrr' and 'mrr_sort_keys' are both enabled
|
|
any access by a secondary index is converted to the rndpos access. In
|
|
InnoDB the rndpos access is always uses the primary key.
|
|
Do not use pushed rowid filter if the table is accessed actually by the
|
|
primary key. Use the rowid filter outside the engine code (see
|
|
Mrr_ordered_rndpos_reader::refill_from_index_reader).
|
|
*/
|
|
rowid_filter= h_arg->pushed_rowid_filter;
|
|
h_arg->cancel_pushed_rowid_filter();
|
|
}
|
|
}
|
|
|
|
full_buf= buf->buffer;
|
|
full_buf_end= buf->buffer_end;
|
|
|
|
if (do_sort_keys)
|
|
{
|
|
/* Pre-calculate some parameters of key sorting */
|
|
keypar.use_key_pointers= MY_TEST(mode & HA_MRR_MATERIALIZED_KEYS);
|
|
seq_funcs->get_key_info(seq_init_param, &keypar.key_tuple_length,
|
|
&keypar.key_tuple_map);
|
|
keypar.key_size_in_keybuf= keypar.use_key_pointers?
|
|
sizeof(char*) : keypar.key_tuple_length;
|
|
key_buff_elem_size= keypar.key_size_in_keybuf + (int)is_mrr_assoc * sizeof(void*);
|
|
|
|
/* Ordered index reader needs some space to store an index tuple */
|
|
if (strategy != index_strategy)
|
|
{
|
|
uint saved_pk_length=0;
|
|
uint pk= h_idx->get_table()->s->primary_key;
|
|
if (h_idx->pk_is_clustering_key(pk))
|
|
{
|
|
saved_pk_length= h_idx->get_table()->key_info[pk].key_length;
|
|
}
|
|
|
|
KEY *used_index= &h_idx->get_table()->key_info[h_idx->active_index];
|
|
if (reader_factory.ordered_index_reader.
|
|
set_interruption_temp_buffer(primary_file->ref_length,
|
|
used_index->key_length,
|
|
saved_pk_length,
|
|
&full_buf, full_buf_end))
|
|
goto use_default_impl;
|
|
}
|
|
else
|
|
reader_factory.ordered_index_reader.set_no_interruption_temp_buffer();
|
|
}
|
|
|
|
if (strategy == index_strategy)
|
|
{
|
|
/*
|
|
Index strategy alone handles the record retrieval. Give all buffer space
|
|
to it. Key buffer should have forward orientation so we can return the
|
|
end of it.
|
|
*/
|
|
key_buffer= &forward_key_buf;
|
|
key_buffer->set_buffer_space(full_buf, full_buf_end);
|
|
|
|
/* Safety: specify that rowid buffer has zero size: */
|
|
rowid_buffer.set_buffer_space(full_buf_end, full_buf_end);
|
|
|
|
if (do_sort_keys && !key_buffer->have_space_for(key_buff_elem_size))
|
|
goto use_default_impl;
|
|
|
|
if ((res= index_strategy->init(primary_file, seq_funcs, seq_init_param, n_ranges,
|
|
mode, &keypar, key_buffer, &buf_manager)))
|
|
goto error;
|
|
}
|
|
else
|
|
{
|
|
/* We'll have both index and rndpos strategies working together */
|
|
if (do_sort_keys)
|
|
{
|
|
/* Both strategies will need buffer space, share the buffer */
|
|
if (setup_buffer_sharing(keypar.key_size_in_keybuf, keypar.key_tuple_map))
|
|
goto use_default_impl;
|
|
|
|
buf_manager.reset_buffer_sizes= reset_buffer_sizes;
|
|
buf_manager.redistribute_buffer_space= redistribute_buffer_space;
|
|
}
|
|
else
|
|
{
|
|
/* index strategy doesn't need buffer, give all space to rowids*/
|
|
rowid_buffer.set_buffer_space(full_buf, full_buf_end);
|
|
if (!rowid_buffer.have_space_for(primary_file->ref_length +
|
|
(int)is_mrr_assoc * sizeof(range_id_t)))
|
|
goto use_default_impl;
|
|
}
|
|
|
|
// setup_two_handlers() will call dsmrr_close() will clears the filter.
|
|
// Save its value and restore afterwards.
|
|
Rowid_filter *tmp = rowid_filter;
|
|
if ((res= setup_two_handlers()))
|
|
goto error;
|
|
rowid_filter= tmp;
|
|
|
|
if ((res= index_strategy->init(secondary_file, seq_funcs, seq_init_param,
|
|
n_ranges, mode, &keypar, key_buffer,
|
|
&buf_manager)) ||
|
|
(res= disk_strategy->init(primary_file, index_strategy, mode,
|
|
&rowid_buffer, rowid_filter)))
|
|
{
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
At this point, we're sure that we're running a native MRR scan (i.e. we
|
|
didnt fall back to default implementation for some reason).
|
|
*/
|
|
status_var_increment(thd->status_var.ha_mrr_init_count);
|
|
|
|
res= strategy->refill_buffer(TRUE);
|
|
if (res)
|
|
{
|
|
if (res != HA_ERR_END_OF_FILE)
|
|
goto error;
|
|
strategy_exhausted= TRUE;
|
|
}
|
|
|
|
/*
|
|
If we have scanned through all intervals in *seq, then adjust *buf to
|
|
indicate that the remaining buffer space will not be used.
|
|
*/
|
|
// if (dsmrr_eof)
|
|
// buf->end_of_used_area= rowid_buffer.end_of_space();
|
|
|
|
|
|
DBUG_RETURN(0);
|
|
error:
|
|
close_second_handler();
|
|
/* Safety, not really needed but: */
|
|
strategy= NULL;
|
|
DBUG_RETURN(res);
|
|
|
|
use_default_impl:
|
|
if (primary_file->inited != handler::INDEX)
|
|
{
|
|
/* We can get here when
|
|
- we've previously successfully done a DS-MRR scan (and so have
|
|
secondary_file!= NULL, secondary_file->inited= INDEX,
|
|
primary_file->inited=RND)
|
|
- for this invocation, we haven't got enough buffer space, and so we
|
|
have to use the default MRR implementation.
|
|
|
|
note: primary_file->ha_index_end() will call dsmrr_close() which will
|
|
close/destroy the secondary_file, this is intentional.
|
|
(Yes this is slow, but one can't expect performance with join buffer
|
|
so small that it can accomodate one rowid and one index tuple)
|
|
*/
|
|
if ((res= primary_file->ha_rnd_end()) ||
|
|
(res= primary_file->ha_index_init(keyno, MY_TEST(mode & HA_MRR_SORTED))))
|
|
{
|
|
DBUG_RETURN(res);
|
|
}
|
|
}
|
|
/* Call correct init function and assign to top level object */
|
|
Mrr_simple_index_reader *s= &reader_factory.simple_index_reader;
|
|
res= s->init(primary_file, seq_funcs, seq_init_param, n_ranges, mode, NULL,
|
|
NULL, NULL);
|
|
strategy= s;
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
/*
|
|
Whatever the current state is, make it so that we have two handler objects:
|
|
- primary_file - initialized for rnd_pos() scan
|
|
- secondary_file - initialized for scanning the index specified in
|
|
this->keyno
|
|
RETURN
|
|
0 OK
|
|
HA_XXX Error code
|
|
*/
|
|
|
|
int DsMrr_impl::setup_two_handlers()
|
|
{
|
|
int res;
|
|
THD *thd= primary_file->get_table()->in_use;
|
|
DBUG_ENTER("DsMrr_impl::setup_two_handlers");
|
|
if (!secondary_file)
|
|
{
|
|
handler *new_h2;
|
|
Item *pushed_cond= NULL;
|
|
DBUG_ASSERT(primary_file->inited == handler::INDEX);
|
|
/* Create a separate handler object to do rnd_pos() calls. */
|
|
/*
|
|
::clone() takes up a lot of stack, especially on 64 bit platforms.
|
|
The constant 5 is an empiric result.
|
|
*/
|
|
if (check_stack_overrun(thd, 5*STACK_MIN_SIZE, (uchar*) &new_h2))
|
|
DBUG_RETURN(1);
|
|
|
|
/* Create a separate handler object to do rnd_pos() calls. */
|
|
if (!(new_h2= primary_file->clone(primary_file->get_table()->s->
|
|
normalized_path.str,
|
|
thd->mem_root)) ||
|
|
new_h2->ha_external_lock(thd, F_RDLCK))
|
|
{
|
|
delete new_h2;
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
if (keyno == primary_file->pushed_idx_cond_keyno)
|
|
pushed_cond= primary_file->pushed_idx_cond;
|
|
|
|
Mrr_reader *save_strategy= strategy;
|
|
strategy= NULL;
|
|
/*
|
|
Caution: this call will invoke this->dsmrr_close(). Do not put the
|
|
created secondary table handler new_h2 into this->secondary_file or it
|
|
will delete it. Also, save the picked strategy
|
|
*/
|
|
res= primary_file->ha_index_end();
|
|
|
|
strategy= save_strategy;
|
|
secondary_file= new_h2;
|
|
|
|
if (res || (res= (primary_file->ha_rnd_init(FALSE))))
|
|
goto error;
|
|
|
|
table->prepare_for_position();
|
|
secondary_file->extra(HA_EXTRA_KEYREAD);
|
|
secondary_file->mrr_iter= primary_file->mrr_iter;
|
|
|
|
if ((res= secondary_file->ha_index_init(keyno, FALSE)))
|
|
goto error;
|
|
|
|
if (pushed_cond)
|
|
secondary_file->idx_cond_push(keyno, pushed_cond);
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(secondary_file && secondary_file->inited==handler::INDEX);
|
|
/*
|
|
We get here when the access alternates betwen MRR scan(s) and non-MRR
|
|
scans.
|
|
|
|
Calling primary_file->index_end() will invoke dsmrr_close() for this
|
|
object, which will delete secondary_file. We need to keep it, so put it
|
|
away and don't let it be deleted:
|
|
*/
|
|
if (primary_file->inited == handler::INDEX)
|
|
{
|
|
handler *save_h2= secondary_file;
|
|
Mrr_reader *save_strategy= strategy;
|
|
secondary_file= NULL;
|
|
strategy= NULL;
|
|
res= primary_file->ha_index_end();
|
|
secondary_file= save_h2;
|
|
strategy= save_strategy;
|
|
if (res)
|
|
goto error;
|
|
}
|
|
if ((primary_file->inited != handler::RND) &&
|
|
(res= primary_file->ha_rnd_init(FALSE)))
|
|
goto error;
|
|
}
|
|
DBUG_RETURN(0);
|
|
|
|
error:
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
void DsMrr_impl::close_second_handler()
|
|
{
|
|
if (secondary_file)
|
|
{
|
|
secondary_file->extra(HA_EXTRA_NO_KEYREAD);
|
|
secondary_file->ha_index_or_rnd_end();
|
|
secondary_file->ha_external_unlock(current_thd);
|
|
secondary_file->ha_close();
|
|
delete secondary_file;
|
|
secondary_file= NULL;
|
|
}
|
|
}
|
|
|
|
|
|
void DsMrr_impl::dsmrr_close()
|
|
{
|
|
DBUG_ENTER("DsMrr_impl::dsmrr_close");
|
|
rowid_filter= NULL;
|
|
close_second_handler();
|
|
strategy= NULL;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
my_qsort2-compatible static member function to compare key tuples
|
|
*/
|
|
|
|
int Mrr_ordered_index_reader::compare_keys(void* arg, uchar* key1_arg,
|
|
uchar* key2_arg)
|
|
{
|
|
Mrr_ordered_index_reader *reader= (Mrr_ordered_index_reader*)arg;
|
|
TABLE *table= reader->file->get_table();
|
|
KEY_PART_INFO *part= table->key_info[reader->file->active_index].key_part;
|
|
uchar *key1, *key2;
|
|
|
|
if (reader->keypar.use_key_pointers)
|
|
{
|
|
/* the buffer stores pointers to keys, get to the keys */
|
|
memcpy(&key1, key1_arg, sizeof(char*));
|
|
memcpy(&key2, key2_arg, sizeof(char*));
|
|
}
|
|
else
|
|
{
|
|
key1= key1_arg;
|
|
key2= key2_arg;
|
|
}
|
|
|
|
return key_tuple_cmp(part, key1, key2, reader->keypar.key_tuple_length);
|
|
}
|
|
|
|
|
|
int Mrr_ordered_index_reader::compare_keys_reverse(void* arg, uchar* key1,
|
|
uchar* key2)
|
|
{
|
|
return -compare_keys(arg, key1, key2);
|
|
}
|
|
|
|
|
|
/**
|
|
Set the buffer space to be shared between rowid and key buffer
|
|
|
|
@return FALSE ok
|
|
@return TRUE There is so little buffer space that we won't be able to use
|
|
the strategy.
|
|
This happens when we don't have enough space for one rowid
|
|
element and one key element so this is mainly targeted at
|
|
testing.
|
|
*/
|
|
|
|
bool DsMrr_impl::setup_buffer_sharing(uint key_size_in_keybuf,
|
|
key_part_map key_tuple_map)
|
|
{
|
|
long key_buff_elem_size= key_size_in_keybuf +
|
|
(int)is_mrr_assoc * sizeof(range_id_t);
|
|
|
|
KEY *key_info= &primary_file->get_table()->key_info[keyno];
|
|
/*
|
|
Ok if we got here we need to allocate one part of the buffer
|
|
for keys and another part for rowids.
|
|
*/
|
|
ulonglong rowid_buf_elem_size= primary_file->ref_length +
|
|
(int)is_mrr_assoc * sizeof(range_id_t);
|
|
|
|
/*
|
|
Use rec_per_key statistics as a basis to find out how many rowids
|
|
we'll get for each key value.
|
|
TODO: what should be the default value to use when there is no
|
|
statistics?
|
|
*/
|
|
uint parts= my_count_bits(key_tuple_map);
|
|
ha_rows rpc;
|
|
ulonglong rowids_size= rowid_buf_elem_size;
|
|
if ((rpc= (ha_rows) key_info->actual_rec_per_key(parts - 1)))
|
|
rowids_size= rowid_buf_elem_size * rpc;
|
|
|
|
double fraction_for_rowids=
|
|
(ulonglong2double(rowids_size) /
|
|
(ulonglong2double(rowids_size) + key_buff_elem_size));
|
|
|
|
ptrdiff_t bytes_for_rowids=
|
|
(ptrdiff_t)floor(0.5 + fraction_for_rowids * (full_buf_end - full_buf));
|
|
|
|
ptrdiff_t bytes_for_keys= (full_buf_end - full_buf) - bytes_for_rowids;
|
|
|
|
if (bytes_for_keys < key_buff_elem_size + 1 ||
|
|
bytes_for_rowids < (ptrdiff_t)rowid_buf_elem_size + 1)
|
|
return TRUE; /* Failed to provide minimum space for one of the buffers */
|
|
|
|
rowid_buffer_end= full_buf + bytes_for_rowids;
|
|
rowid_buffer.set_buffer_space(full_buf, rowid_buffer_end);
|
|
key_buffer= &backward_key_buf;
|
|
key_buffer->set_buffer_space(rowid_buffer_end, full_buf_end);
|
|
|
|
/* The above code guarantees that the buffers are big enough */
|
|
DBUG_ASSERT(key_buffer->have_space_for(key_buff_elem_size) &&
|
|
rowid_buffer.have_space_for((size_t)rowid_buf_elem_size));
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
void DsMrr_impl::do_nothing(void *dsmrr_arg)
|
|
{
|
|
/* Do nothing */
|
|
}
|
|
|
|
|
|
void DsMrr_impl::reset_buffer_sizes(void *dsmrr_arg)
|
|
{
|
|
DsMrr_impl *dsmrr= (DsMrr_impl*)dsmrr_arg;
|
|
dsmrr->rowid_buffer.set_buffer_space(dsmrr->full_buf,
|
|
dsmrr->rowid_buffer_end);
|
|
dsmrr->key_buffer->set_buffer_space(dsmrr->rowid_buffer_end,
|
|
dsmrr->full_buf_end);
|
|
}
|
|
|
|
|
|
/*
|
|
Take unused space from the key buffer and give it to the rowid buffer
|
|
*/
|
|
|
|
void DsMrr_impl::redistribute_buffer_space(void *dsmrr_arg)
|
|
{
|
|
DsMrr_impl *dsmrr= (DsMrr_impl*)dsmrr_arg;
|
|
uchar *unused_start, *unused_end;
|
|
dsmrr->key_buffer->remove_unused_space(&unused_start, &unused_end);
|
|
dsmrr->rowid_buffer.grow(unused_start, unused_end);
|
|
}
|
|
|
|
|
|
/*
|
|
@brief Initialize the iterator
|
|
|
|
@note
|
|
Initialize the iterator to produce matches for the key of the first element
|
|
in owner_arg->key_buffer
|
|
|
|
@retval 0 OK
|
|
@retval HA_ERR_END_OF_FILE Either the owner->key_buffer is empty or
|
|
no matches for the key we've tried (check
|
|
key_buffer->is_empty() to tell these apart)
|
|
@retval other code Fatal error
|
|
*/
|
|
|
|
int Key_value_records_iterator::init(Mrr_ordered_index_reader *owner_arg)
|
|
{
|
|
int res;
|
|
owner= owner_arg;
|
|
|
|
identical_key_it.init(owner->key_buffer);
|
|
owner->key_buffer->setup_reading(owner->keypar.key_size_in_keybuf,
|
|
owner->is_mrr_assoc ? sizeof(void*) : 0);
|
|
|
|
if (identical_key_it.read())
|
|
return HA_ERR_END_OF_FILE;
|
|
|
|
uchar *key_in_buf= last_identical_key_ptr= identical_key_it.read_ptr1;
|
|
|
|
uchar *index_tuple= key_in_buf;
|
|
if (owner->keypar.use_key_pointers)
|
|
memcpy(&index_tuple, key_in_buf, sizeof(char*));
|
|
|
|
/* Check out how many more identical keys are following */
|
|
while (!identical_key_it.read())
|
|
{
|
|
if (Mrr_ordered_index_reader::compare_keys(owner, key_in_buf,
|
|
identical_key_it.read_ptr1))
|
|
break;
|
|
last_identical_key_ptr= identical_key_it.read_ptr1;
|
|
}
|
|
identical_key_it.init(owner->key_buffer);
|
|
res= owner->file->ha_index_read_map(owner->file->get_table()->record[0],
|
|
index_tuple,
|
|
owner->keypar.key_tuple_map,
|
|
HA_READ_KEY_EXACT);
|
|
|
|
if (res)
|
|
{
|
|
/* Failed to find any matching records */
|
|
move_to_next_key_value();
|
|
return res;
|
|
}
|
|
owner->have_saved_rowid= FALSE;
|
|
get_next_row= FALSE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int Key_value_records_iterator::get_next(range_id_t *range_info)
|
|
{
|
|
int res;
|
|
|
|
if (get_next_row)
|
|
{
|
|
if (owner->keypar.index_ranges_unique)
|
|
{
|
|
/* We're using a full unique key, no point to call index_next_same */
|
|
return HA_ERR_END_OF_FILE;
|
|
}
|
|
|
|
handler *h= owner->file;
|
|
uchar *lookup_key;
|
|
if (owner->keypar.use_key_pointers)
|
|
memcpy(&lookup_key, identical_key_it.read_ptr1, sizeof(void*));
|
|
else
|
|
lookup_key= identical_key_it.read_ptr1;
|
|
|
|
if ((res= h->ha_index_next_same(h->get_table()->record[0],
|
|
lookup_key,
|
|
owner->keypar.key_tuple_length)))
|
|
{
|
|
/* It's either HA_ERR_END_OF_FILE or some other error */
|
|
return res;
|
|
}
|
|
identical_key_it.init(owner->key_buffer);
|
|
owner->have_saved_rowid= FALSE;
|
|
get_next_row= FALSE;
|
|
}
|
|
|
|
identical_key_it.read(); /* This gets us next range_id */
|
|
memcpy(range_info, identical_key_it.read_ptr2, sizeof(range_id_t));
|
|
|
|
if (!last_identical_key_ptr ||
|
|
(identical_key_it.read_ptr1 == last_identical_key_ptr))
|
|
{
|
|
/*
|
|
We've reached the last of the identical keys that current record is a
|
|
match for. Set get_next_row=TRUE so that we read the next index record
|
|
on the next call to this function.
|
|
*/
|
|
get_next_row= TRUE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
void Key_value_records_iterator::move_to_next_key_value()
|
|
{
|
|
while (!owner->key_buffer->read() &&
|
|
(owner->key_buffer->read_ptr1 != last_identical_key_ptr)) {}
|
|
}
|
|
|
|
|
|
/**
|
|
DS-MRR implementation: multi_range_read_next() function.
|
|
|
|
Calling convention is like multi_range_read_next() has.
|
|
*/
|
|
|
|
int DsMrr_impl::dsmrr_next(range_id_t *range_info)
|
|
{
|
|
int res;
|
|
if (strategy_exhausted)
|
|
return HA_ERR_END_OF_FILE;
|
|
|
|
while ((res= strategy->get_next(range_info)) == HA_ERR_END_OF_FILE)
|
|
{
|
|
if ((res= strategy->refill_buffer(FALSE)))
|
|
break; /* EOF or error */
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/**
|
|
DS-MRR implementation: multi_range_read_info() function
|
|
*/
|
|
ha_rows DsMrr_impl::dsmrr_info(uint keyno, uint n_ranges, uint rows,
|
|
uint key_parts,
|
|
uint *bufsz, uint *flags, Cost_estimate *cost)
|
|
{
|
|
ha_rows res __attribute__((unused));
|
|
uint def_flags= *flags;
|
|
uint def_bufsz= *bufsz;
|
|
|
|
/* Get cost/flags/mem_usage of default MRR implementation */
|
|
res= primary_file->handler::multi_range_read_info(keyno, n_ranges, rows,
|
|
key_parts, &def_bufsz,
|
|
&def_flags, cost);
|
|
DBUG_ASSERT(!res);
|
|
|
|
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
|
|
choose_mrr_impl(keyno, rows, flags, bufsz, cost))
|
|
{
|
|
/* Default implementation is chosen */
|
|
DBUG_PRINT("info", ("Default MRR implementation chosen"));
|
|
*flags= def_flags;
|
|
*bufsz= def_bufsz;
|
|
}
|
|
else
|
|
{
|
|
/* *flags and *bufsz were set by choose_mrr_impl */
|
|
DBUG_PRINT("info", ("DS-MRR implementation chosen"));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
DS-MRR Implementation: multi_range_read_info_const() function
|
|
*/
|
|
|
|
ha_rows DsMrr_impl::dsmrr_info_const(uint keyno, RANGE_SEQ_IF *seq,
|
|
void *seq_init_param, uint n_ranges,
|
|
uint *bufsz, uint *flags, Cost_estimate *cost)
|
|
{
|
|
ha_rows rows;
|
|
uint def_flags= *flags;
|
|
uint def_bufsz= *bufsz;
|
|
/* Get cost/flags/mem_usage of default MRR implementation */
|
|
rows= primary_file->handler::multi_range_read_info_const(keyno, seq,
|
|
seq_init_param,
|
|
n_ranges,
|
|
&def_bufsz,
|
|
&def_flags, cost);
|
|
if (rows == HA_POS_ERROR)
|
|
{
|
|
/* Default implementation can't perform MRR scan => we can't either */
|
|
return rows;
|
|
}
|
|
|
|
/*
|
|
If HA_MRR_USE_DEFAULT_IMPL has been passed to us, that is an order to
|
|
use the default MRR implementation (we need it for UPDATE/DELETE).
|
|
Otherwise, make a choice based on cost and @@optimizer_switch settings
|
|
*/
|
|
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
|
|
choose_mrr_impl(keyno, rows, flags, bufsz, cost))
|
|
{
|
|
DBUG_PRINT("info", ("Default MRR implementation chosen"));
|
|
*flags= def_flags;
|
|
*bufsz= def_bufsz;
|
|
}
|
|
else
|
|
{
|
|
/* *flags and *bufsz were set by choose_mrr_impl */
|
|
DBUG_PRINT("info", ("DS-MRR implementation chosen"));
|
|
}
|
|
return rows;
|
|
}
|
|
|
|
|
|
/**
|
|
Check if key has partially-covered columns
|
|
|
|
We can't use DS-MRR to perform range scans when the ranges are over
|
|
partially-covered keys, because we'll not have full key part values
|
|
(we'll have their prefixes from the index) and will not be able to check
|
|
if we've reached the end the range.
|
|
|
|
@param keyno Key to check
|
|
|
|
@todo
|
|
Allow use of DS-MRR in cases where the index has partially-covered
|
|
components but they are not used for scanning.
|
|
|
|
@retval TRUE Yes
|
|
@retval FALSE No
|
|
*/
|
|
|
|
bool key_uses_partial_cols(TABLE_SHARE *share, uint keyno)
|
|
{
|
|
KEY_PART_INFO *kp= share->key_info[keyno].key_part;
|
|
KEY_PART_INFO *kp_end= kp + share->key_info[keyno].user_defined_key_parts;
|
|
for (; kp != kp_end; kp++)
|
|
{
|
|
if (!kp->field->part_of_key.is_set(keyno))
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if key/flags allow DS-MRR/CPK strategy to be used
|
|
|
|
@param thd
|
|
@param keyno Index that will be used
|
|
@param mrr_flags
|
|
|
|
@retval TRUE DS-MRR/CPK should be used
|
|
@retval FALSE Otherwise
|
|
*/
|
|
|
|
bool DsMrr_impl::check_cpk_scan(THD *thd, TABLE_SHARE *share, uint keyno,
|
|
uint mrr_flags)
|
|
{
|
|
return MY_TEST((mrr_flags & HA_MRR_SINGLE_POINT) &&
|
|
primary_file->is_clustering_key(keyno) &&
|
|
optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS));
|
|
}
|
|
|
|
|
|
/*
|
|
DS-MRR Internals: Choose between Default MRR implementation and DS-MRR
|
|
|
|
Make the choice between using Default MRR implementation and DS-MRR.
|
|
This function contains common functionality factored out of dsmrr_info()
|
|
and dsmrr_info_const(). The function assumes that the default MRR
|
|
implementation's applicability requirements are satisfied.
|
|
|
|
@param keyno Index number
|
|
@param rows E(full rows to be retrieved)
|
|
@param flags IN MRR flags provided by the MRR user
|
|
OUT If DS-MRR is chosen, flags of DS-MRR implementation
|
|
else the value is not modified
|
|
@param bufsz IN If DS-MRR is chosen, buffer use of DS-MRR implementation
|
|
else the value is not modified
|
|
@param cost IN Cost of default MRR implementation
|
|
OUT If DS-MRR is chosen, cost of DS-MRR scan
|
|
else the value is not modified
|
|
|
|
@retval TRUE Default MRR implementation should be used
|
|
@retval FALSE DS-MRR implementation should be used
|
|
*/
|
|
|
|
|
|
bool DsMrr_impl::choose_mrr_impl(uint keyno, ha_rows rows, uint *flags,
|
|
uint *bufsz, Cost_estimate *cost)
|
|
{
|
|
Cost_estimate dsmrr_cost;
|
|
bool res;
|
|
THD *thd= primary_file->get_table()->in_use;
|
|
TABLE_SHARE *share= primary_file->get_table_share();
|
|
|
|
bool doing_cpk_scan= check_cpk_scan(thd, share, keyno, *flags);
|
|
bool using_cpk= primary_file->is_clustering_key(keyno);
|
|
*flags &= ~HA_MRR_IMPLEMENTATION_FLAGS;
|
|
if (!optimizer_flag(thd, OPTIMIZER_SWITCH_MRR) ||
|
|
*flags & HA_MRR_INDEX_ONLY ||
|
|
(using_cpk && !doing_cpk_scan) || key_uses_partial_cols(share, keyno))
|
|
{
|
|
/* Use the default implementation */
|
|
*flags |= HA_MRR_USE_DEFAULT_IMPL;
|
|
*flags &= ~HA_MRR_IMPLEMENTATION_FLAGS;
|
|
return TRUE;
|
|
}
|
|
|
|
uint add_len= share->key_info[keyno].key_length + primary_file->ref_length;
|
|
if (get_disk_sweep_mrr_cost(keyno, rows, *flags, bufsz, add_len,
|
|
&dsmrr_cost))
|
|
return TRUE;
|
|
|
|
bool force_dsmrr;
|
|
/*
|
|
If mrr_cost_based flag is not set, then set cost of DS-MRR to be minimum of
|
|
DS-MRR and Default implementations cost. This allows one to force use of
|
|
DS-MRR whenever it is applicable without affecting other cost-based
|
|
choices.
|
|
*/
|
|
if ((force_dsmrr= !optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_COST_BASED)) &&
|
|
dsmrr_cost.total_cost() > cost->total_cost())
|
|
dsmrr_cost= *cost;
|
|
|
|
if (force_dsmrr || dsmrr_cost.total_cost() <= cost->total_cost())
|
|
{
|
|
*flags &= ~HA_MRR_USE_DEFAULT_IMPL; /* Use the DS-MRR implementation */
|
|
*flags &= ~HA_MRR_SORTED; /* We will return unordered output */
|
|
*cost= dsmrr_cost;
|
|
res= FALSE;
|
|
|
|
|
|
if ((using_cpk && doing_cpk_scan) ||
|
|
(optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS) &&
|
|
*flags & HA_MRR_SINGLE_POINT))
|
|
{
|
|
*flags |= DSMRR_IMPL_SORT_KEYS;
|
|
}
|
|
|
|
if (!(using_cpk && doing_cpk_scan) &&
|
|
!(*flags & HA_MRR_INDEX_ONLY))
|
|
{
|
|
*flags |= DSMRR_IMPL_SORT_ROWIDS;
|
|
}
|
|
/*
|
|
if ((*flags & HA_MRR_SINGLE_POINT) &&
|
|
optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS))
|
|
*flags |= HA_MRR_MATERIALIZED_KEYS;
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
/* Use the default MRR implementation */
|
|
res= TRUE;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
Take the flags we've returned previously and print one of
|
|
- Key-ordered scan
|
|
- Rowid-ordered scan
|
|
- Key-ordered Rowid-ordered scan
|
|
*/
|
|
|
|
int DsMrr_impl::dsmrr_explain_info(uint mrr_mode, char *str, size_t size)
|
|
{
|
|
const char *key_ordered= "Key-ordered scan";
|
|
const char *rowid_ordered= "Rowid-ordered scan";
|
|
const char *both_ordered= "Key-ordered Rowid-ordered scan";
|
|
const char *used_str="";
|
|
const uint BOTH_FLAGS= (DSMRR_IMPL_SORT_KEYS | DSMRR_IMPL_SORT_ROWIDS);
|
|
|
|
if (!(mrr_mode & HA_MRR_USE_DEFAULT_IMPL))
|
|
{
|
|
if ((mrr_mode & BOTH_FLAGS) == BOTH_FLAGS)
|
|
used_str= both_ordered;
|
|
else if (mrr_mode & DSMRR_IMPL_SORT_KEYS)
|
|
used_str= key_ordered;
|
|
else if (mrr_mode & DSMRR_IMPL_SORT_ROWIDS)
|
|
used_str= rowid_ordered;
|
|
|
|
size_t used_str_len= strlen(used_str);
|
|
size_t copy_len= MY_MIN(used_str_len, size);
|
|
memcpy(str, used_str, copy_len);
|
|
return (int)copy_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows, Cost_estimate *cost);
|
|
|
|
|
|
/**
|
|
Get cost of DS-MRR scan
|
|
|
|
@param keynr Index to be used
|
|
@param rows E(Number of rows to be scanned)
|
|
@param flags Scan parameters (HA_MRR_* flags)
|
|
@param buffer_size INOUT Buffer size
|
|
IN: Buffer of size 0 means the function
|
|
will determine the best size and return it.
|
|
@param extra_mem_overhead Extra memory overhead of the MRR implementation
|
|
(the function assumes this many bytes of buffer
|
|
space will not be usable by DS-MRR)
|
|
@param cost OUT The cost
|
|
|
|
@retval FALSE OK
|
|
@retval TRUE Error, DS-MRR cannot be used (the buffer is too small
|
|
for even 1 rowid)
|
|
*/
|
|
|
|
bool DsMrr_impl::get_disk_sweep_mrr_cost(uint keynr, ha_rows rows, uint flags,
|
|
uint *buffer_size,
|
|
uint extra_mem_overhead,
|
|
Cost_estimate *cost)
|
|
{
|
|
ulong max_buff_entries, elem_size;
|
|
ha_rows rows_in_full_step;
|
|
ha_rows rows_in_last_step;
|
|
uint n_full_steps;
|
|
double index_read_cost;
|
|
|
|
elem_size= primary_file->ref_length +
|
|
sizeof(void*) * (!MY_TEST(flags & HA_MRR_NO_ASSOCIATION));
|
|
|
|
if (!*buffer_size)
|
|
{
|
|
/*
|
|
We are requested to determine how much memory we need.
|
|
Request memory to finish the scan in one pass but do not request
|
|
more than @@mrr_buff_size.
|
|
*/
|
|
*buffer_size= (uint) MY_MIN(extra_mem_overhead + elem_size*(ulong)rows,
|
|
MY_MAX(table->in_use->variables.mrr_buff_size,
|
|
extra_mem_overhead));
|
|
}
|
|
|
|
if (elem_size + extra_mem_overhead > *buffer_size)
|
|
return TRUE; /* Buffer has not enough space for even 1 rowid */
|
|
|
|
max_buff_entries = (*buffer_size - extra_mem_overhead) / elem_size;
|
|
|
|
/* Number of iterations we'll make with full buffer */
|
|
n_full_steps= (uint)floor(rows2double(rows) / max_buff_entries);
|
|
|
|
/*
|
|
Get numbers of rows we'll be processing in
|
|
- non-last sweep, with full buffer
|
|
- last iteration, with non-full buffer
|
|
*/
|
|
rows_in_full_step= max_buff_entries;
|
|
rows_in_last_step= rows % max_buff_entries;
|
|
|
|
/* Adjust buffer size if we expect to use only part of the buffer */
|
|
if (n_full_steps)
|
|
{
|
|
get_sort_and_sweep_cost(table, rows_in_full_step, cost);
|
|
cost->multiply(n_full_steps);
|
|
}
|
|
else
|
|
{
|
|
cost->reset();
|
|
*buffer_size= ((uint) MY_MAX(*buffer_size,
|
|
(size_t)(1.2*rows_in_last_step) * elem_size +
|
|
primary_file->ref_length +
|
|
table->key_info[keynr].key_length));
|
|
}
|
|
|
|
Cost_estimate last_step_cost;
|
|
get_sort_and_sweep_cost(table, rows_in_last_step, &last_step_cost);
|
|
cost->add(&last_step_cost);
|
|
|
|
if (n_full_steps != 0)
|
|
cost->mem_cost= *buffer_size;
|
|
else
|
|
cost->mem_cost= (double)rows_in_last_step * elem_size;
|
|
|
|
/* Total cost of all index accesses */
|
|
index_read_cost= primary_file->ha_keyread_and_copy_time(keynr, 1, rows, 0);
|
|
cost->add_io(index_read_cost, 1 /* Random seeks */);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Get cost of one sort-and-sweep step
|
|
|
|
It consists of two parts:
|
|
- sort an array of #nrows ROWIDs using qsort
|
|
- read #nrows records from table in a sweep.
|
|
|
|
@param table Table being accessed
|
|
@param nrows Number of rows to be sorted and retrieved
|
|
@param cost OUT The cost of scan
|
|
*/
|
|
|
|
static
|
|
void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows, Cost_estimate *cost)
|
|
{
|
|
if (nrows)
|
|
{
|
|
get_sweep_read_cost(table, nrows, FALSE, cost);
|
|
/* Add cost of qsort call: n * log2(n) * cost(rowid_comparison) */
|
|
double cmp_op= rows2double(nrows) * ROWID_COMPARE_COST_THD(table->in_use);
|
|
if (cmp_op < 3)
|
|
cmp_op= 3;
|
|
cost->cpu_cost += cmp_op * log2(cmp_op);
|
|
}
|
|
else
|
|
cost->reset();
|
|
}
|
|
|
|
|
|
/**
|
|
Get cost of reading nrows table records in a "disk sweep"
|
|
|
|
@param table Table to be accessed
|
|
@param nrows Number of rows to retrieve
|
|
@param interrupted TRUE <=> Assume that the disk sweep will be
|
|
interrupted by other disk IO. FALSE - otherwise.
|
|
@param cost OUT The cost.
|
|
*/
|
|
|
|
void get_sweep_read_cost(TABLE *table, ha_rows nrows, bool interrupted,
|
|
Cost_estimate *cost)
|
|
{
|
|
DBUG_ENTER("get_sweep_read_cost");
|
|
|
|
cost->reset();
|
|
#ifndef OLD_SWEEP_COST
|
|
cost->cpu_cost= table->file->ha_rnd_pos_call_time(nrows);
|
|
#else
|
|
if (table->file->pk_is_clustering_key(table->s->primary_key))
|
|
{
|
|
cost->cpu_cost= table->file->ha_read_and_copy_time(table->s->primary_key,
|
|
(uint) nrows, nrows);
|
|
}
|
|
else if ((cost->avg_io_cost= table->file->avg_io_cost()) >= 0.999)
|
|
{
|
|
double n_blocks=
|
|
ceil(ulonglong2double(table->file->stats.data_file_length) / IO_SIZE);
|
|
double busy_blocks=
|
|
n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(nrows)));
|
|
if (busy_blocks < 1.0)
|
|
busy_blocks= 1.0;
|
|
|
|
DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
|
|
busy_blocks));
|
|
cost->io_count= busy_blocks;
|
|
|
|
if (!interrupted)
|
|
{
|
|
/* Assume reading is done in one 'sweep' */
|
|
cost->avg_io_cost= (DISK_SEEK_BASE_COST +
|
|
DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
|
|
}
|
|
}
|
|
cost->cpu_cost+= rows2double(n_rows) * ROW_COPY_COST;
|
|
#endif
|
|
DBUG_PRINT("info",("returning cost: %g", cost->total_cost()));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/* **************************************************************************
|
|
* DS-MRR implementation ends
|
|
***************************************************************************/
|