mirror of
https://github.com/MariaDB/server.git
synced 2025-01-17 04:22:27 +01:00
b5e37b242e
Free row buffer cache after each query for MyISAM tables. Added table join option FORCE INDEX Fixed core dump bug when connecting with hostname that could not be resolved. include/my_base.h: Don't count NULL values in cardinalty myisam/mi_check.c: Don't count NULL values in cardinalty myisam/mi_extra.c: Free row buffer cache after each query myisam/mi_open.c: Avoid realloc if cache size doesn't change myisam/mi_search.c: Don't count NULL values in cardinalty myisam/myisamdef.h: Change buffer length from uint to uint32 to make it more portable/predictable mysql-test/r/myisam.result: Test case for cardinality with NULL keys and FORCE INDEX mysql-test/t/myisam.test: Test case for cardinality with NULL keys and FORCE INDEX sql/lex.h: Added table join option FORCE INDEX sql/mysql_priv.h: Added table join option FORCE INDEX sql/opt_range.cc: Added table join option FORCE INDEX sql/sql_base.cc: Added table join option FORCE INDEX sql/sql_lex.h: Added table join option FORCE INDEX sql/sql_parse.cc: Added table join option FORCE INDEX Don't use strlen() on hostname without first checking if it's not NULL sql/sql_select.cc: Added table join option FORCE INDEX sql/sql_yacc.yy: Added table join option FORCE INDEX sql/table.h: Added table join option FORCE INDEX
2852 lines
76 KiB
C++
2852 lines
76 KiB
C++
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/*
|
|
TODO:
|
|
Fix that MAYBE_KEY are stored in the tree so that we can detect use
|
|
of full hash keys for queries like:
|
|
|
|
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef __GNUC__
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mysql_priv.h"
|
|
#include <m_ctype.h>
|
|
#include <nisam.h>
|
|
#include "sql_select.h"
|
|
#include <assert.h>
|
|
|
|
|
|
#ifndef EXTRA_DEBUG
|
|
#define test_rb_tree(A,B) {}
|
|
#define test_use_count(A) {}
|
|
#endif
|
|
|
|
|
|
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);
|
|
|
|
static char is_null_string[2]= {1,0};
|
|
|
|
class SEL_ARG :public Sql_alloc
|
|
{
|
|
public:
|
|
uint8 min_flag,max_flag,maybe_flag;
|
|
uint8 part; // Which key part
|
|
uint8 maybe_null;
|
|
uint16 elements; // Elements in tree
|
|
ulong use_count; // use of this sub_tree
|
|
Field *field;
|
|
char *min_value,*max_value; // Pointer to range
|
|
|
|
SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
|
|
enum leaf_color { BLACK,RED } color;
|
|
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
|
|
|
|
SEL_ARG() {}
|
|
SEL_ARG(SEL_ARG &);
|
|
SEL_ARG(Field *,const char *,const char *);
|
|
SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
|
|
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
|
|
SEL_ARG(enum Type type_arg)
|
|
:elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
|
|
type(type_arg)
|
|
{}
|
|
inline bool is_same(SEL_ARG *arg)
|
|
{
|
|
if (type != arg->type)
|
|
return 0;
|
|
if (type != KEY_RANGE)
|
|
return 1;
|
|
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
|
|
}
|
|
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
|
|
inline void maybe_smaller() { maybe_flag=1; }
|
|
inline int cmp_min_to_min(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
|
|
}
|
|
inline int cmp_min_to_max(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
|
|
}
|
|
inline int cmp_max_to_max(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
|
|
}
|
|
inline int cmp_max_to_min(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
|
|
}
|
|
SEL_ARG *clone_and(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
char *new_min,*new_max;
|
|
uint8 flag_min,flag_max;
|
|
if (cmp_min_to_min(arg) >= 0)
|
|
{
|
|
new_min=min_value; flag_min=min_flag;
|
|
}
|
|
else
|
|
{
|
|
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
|
|
}
|
|
if (cmp_max_to_max(arg) <= 0)
|
|
{
|
|
new_max=max_value; flag_max=max_flag;
|
|
}
|
|
else
|
|
{
|
|
new_max=arg->max_value; flag_max=arg->max_flag;
|
|
}
|
|
return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
|
|
test(maybe_flag && arg->maybe_flag));
|
|
}
|
|
SEL_ARG *clone_first(SEL_ARG *arg)
|
|
{ // min <= X < arg->min
|
|
return new SEL_ARG(field,part, min_value, arg->min_value,
|
|
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
|
|
maybe_flag | arg->maybe_flag);
|
|
}
|
|
SEL_ARG *clone_last(SEL_ARG *arg)
|
|
{ // min <= X <= key_max
|
|
return new SEL_ARG(field, part, min_value, arg->max_value,
|
|
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
|
|
}
|
|
SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);
|
|
|
|
bool copy_min(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
if (cmp_min_to_min(arg) > 0)
|
|
{
|
|
min_value=arg->min_value; min_flag=arg->min_flag;
|
|
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
|
(NO_MAX_RANGE | NO_MIN_RANGE))
|
|
return 1; // Full range
|
|
}
|
|
maybe_flag|=arg->maybe_flag;
|
|
return 0;
|
|
}
|
|
bool copy_max(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
if (cmp_max_to_max(arg) <= 0)
|
|
{
|
|
max_value=arg->max_value; max_flag=arg->max_flag;
|
|
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
|
(NO_MAX_RANGE | NO_MIN_RANGE))
|
|
return 1; // Full range
|
|
}
|
|
maybe_flag|=arg->maybe_flag;
|
|
return 0;
|
|
}
|
|
|
|
void copy_min_to_min(SEL_ARG *arg)
|
|
{
|
|
min_value=arg->min_value; min_flag=arg->min_flag;
|
|
}
|
|
void copy_min_to_max(SEL_ARG *arg)
|
|
{
|
|
max_value=arg->min_value;
|
|
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
|
|
}
|
|
void copy_max_to_min(SEL_ARG *arg)
|
|
{
|
|
min_value=arg->max_value;
|
|
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
|
|
}
|
|
void store(uint length,char **min_key,uint min_key_flag,
|
|
char **max_key, uint max_key_flag)
|
|
{
|
|
if (!(min_flag & NO_MIN_RANGE) &&
|
|
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN)))
|
|
{
|
|
if (maybe_null && *min_value)
|
|
{
|
|
**min_key=1;
|
|
bzero(*min_key+1,length);
|
|
}
|
|
else
|
|
memcpy(*min_key,min_value,length+(int) maybe_null);
|
|
(*min_key)+= length+(int) maybe_null;
|
|
}
|
|
if (!(max_flag & NO_MAX_RANGE) &&
|
|
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
|
|
{
|
|
if (maybe_null && *max_value)
|
|
{
|
|
**max_key=1;
|
|
bzero(*max_key+1,length);
|
|
}
|
|
else
|
|
memcpy(*max_key,max_value,length+(int) maybe_null);
|
|
(*max_key)+= length+(int) maybe_null;
|
|
}
|
|
}
|
|
|
|
void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
|
|
{
|
|
SEL_ARG *key_tree= first();
|
|
key_tree->store(key[key_tree->part].part_length,
|
|
range_key,*range_key_flag,range_key,NO_MAX_RANGE);
|
|
*range_key_flag|= key_tree->min_flag;
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
|
|
}
|
|
|
|
void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
|
|
{
|
|
SEL_ARG *key_tree= last();
|
|
key_tree->store(key[key_tree->part].part_length,
|
|
range_key, NO_MIN_RANGE, range_key,*range_key_flag);
|
|
(*range_key_flag)|= key_tree->max_flag;
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
|
|
}
|
|
|
|
SEL_ARG *insert(SEL_ARG *key);
|
|
SEL_ARG *tree_delete(SEL_ARG *key);
|
|
SEL_ARG *find_range(SEL_ARG *key);
|
|
SEL_ARG *rb_insert(SEL_ARG *leaf);
|
|
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
|
|
#ifdef EXTRA_DEBUG
|
|
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
|
|
void test_use_count(SEL_ARG *root);
|
|
#endif
|
|
SEL_ARG *first();
|
|
SEL_ARG *last();
|
|
void make_root();
|
|
inline bool simple_key()
|
|
{
|
|
return !next_key_part && elements == 1;
|
|
}
|
|
void increment_use_count(long count)
|
|
{
|
|
if (next_key_part)
|
|
{
|
|
next_key_part->use_count+=count;
|
|
count*= (next_key_part->use_count-count);
|
|
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
|
|
if (pos->next_key_part)
|
|
pos->increment_use_count(count);
|
|
}
|
|
}
|
|
void free_tree()
|
|
{
|
|
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
|
if (pos->next_key_part)
|
|
{
|
|
pos->next_key_part->use_count--;
|
|
pos->next_key_part->free_tree();
|
|
}
|
|
}
|
|
|
|
inline SEL_ARG **parent_ptr()
|
|
{
|
|
return parent->left == this ? &parent->left : &parent->right;
|
|
}
|
|
SEL_ARG *clone_tree();
|
|
};
|
|
|
|
|
|
class SEL_TREE :public Sql_alloc
|
|
{
|
|
public:
|
|
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
|
|
SEL_TREE(enum Type type_arg) :type(type_arg) {}
|
|
SEL_TREE() :type(KEY) { bzero((char*) keys,sizeof(keys));}
|
|
SEL_ARG *keys[MAX_KEY];
|
|
};
|
|
|
|
|
|
typedef struct st_qsel_param {
|
|
TABLE *table;
|
|
KEY_PART *key_parts,*key_parts_end,*key[MAX_KEY];
|
|
MEM_ROOT *mem_root;
|
|
table_map prev_tables,read_tables,current_table;
|
|
uint baseflag,keys,max_key_part;
|
|
uint real_keynr[MAX_KEY];
|
|
char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
|
|
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
|
|
bool quick; // Don't calulate possible keys
|
|
} PARAM;
|
|
|
|
static SEL_TREE * get_mm_parts(PARAM *param,Field *field,
|
|
Item_func::Functype type,Item *value,
|
|
Item_result cmp_type);
|
|
static SEL_ARG *get_mm_leaf(PARAM *param,Field *field,KEY_PART *key_part,
|
|
Item_func::Functype type,Item *value);
|
|
static bool like_range(const char *ptr,uint length,char wild_prefix,
|
|
uint field_length, char *min_str,char *max_str,
|
|
char max_sort_char,uint *min_length,uint *max_length);
|
|
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
|
|
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
|
|
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
|
|
char *min_key,uint min_key_flag,
|
|
char *max_key, uint max_key_flag);
|
|
|
|
static QUICK_SELECT *get_quick_select(PARAM *param,uint index,
|
|
SEL_ARG *key_tree);
|
|
#ifndef DBUG_OFF
|
|
static void print_quick(QUICK_SELECT *quick,key_map needed_reg);
|
|
#endif
|
|
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
|
|
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
|
|
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
|
|
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
|
|
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
|
|
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
|
|
static bool get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
|
|
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
|
|
char *max_key,uint max_key_flag);
|
|
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
|
|
|
|
static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
|
|
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length);
|
|
|
|
/***************************************************************************
|
|
** Basic functions for SQL_SELECT and QUICK_SELECT
|
|
***************************************************************************/
|
|
|
|
/* make a select from mysql info
|
|
Error is set as following:
|
|
0 = ok
|
|
1 = Got some error (out of memory?)
|
|
*/
|
|
|
|
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
|
|
table_map read_tables, COND *conds, int *error)
|
|
{
|
|
SQL_SELECT *select;
|
|
DBUG_ENTER("make_select");
|
|
|
|
*error=0;
|
|
if (!conds)
|
|
DBUG_RETURN(0);
|
|
if (!(select= new SQL_SELECT))
|
|
{
|
|
*error= 1;
|
|
DBUG_RETURN(0); /* purecov: inspected */
|
|
}
|
|
select->read_tables=read_tables;
|
|
select->const_tables=const_tables;
|
|
select->head=head;
|
|
select->cond=conds;
|
|
|
|
if (head->io_cache)
|
|
{
|
|
select->file= *head->io_cache;
|
|
select->records=(ha_rows) (select->file.end_of_file/
|
|
head->file->ref_length);
|
|
my_free((gptr) (head->io_cache),MYF(0));
|
|
head->io_cache=0;
|
|
}
|
|
DBUG_RETURN(select);
|
|
}
|
|
|
|
|
|
SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
|
|
{
|
|
quick_keys=0; needed_reg=0;
|
|
my_b_clear(&file);
|
|
}
|
|
|
|
|
|
SQL_SELECT::~SQL_SELECT()
|
|
{
|
|
delete quick;
|
|
if (free_cond)
|
|
delete cond;
|
|
close_cached_file(&file);
|
|
}
|
|
|
|
#undef index // Fix for Unixware 7
|
|
|
|
QUICK_SELECT::QUICK_SELECT(TABLE *table,uint key_nr,bool no_alloc)
|
|
:dont_free(0),error(0),index(key_nr),max_used_key_length(0),head(table),
|
|
it(ranges),range(0)
|
|
{
|
|
if (!no_alloc)
|
|
{
|
|
init_sql_alloc(&alloc,1024,0); // Allocates everything here
|
|
my_pthread_setspecific_ptr(THR_MALLOC,&alloc);
|
|
}
|
|
else
|
|
bzero((char*) &alloc,sizeof(alloc));
|
|
file=head->file;
|
|
record=head->record[0];
|
|
init();
|
|
}
|
|
|
|
QUICK_SELECT::~QUICK_SELECT()
|
|
{
|
|
if (!dont_free)
|
|
{
|
|
file->index_end();
|
|
free_root(&alloc,MYF(0));
|
|
}
|
|
}
|
|
|
|
QUICK_RANGE::QUICK_RANGE()
|
|
:min_key(0),max_key(0),min_length(0),max_length(0),
|
|
flag(NO_MIN_RANGE | NO_MAX_RANGE)
|
|
{}
|
|
|
|
SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
|
|
{
|
|
type=arg.type;
|
|
min_flag=arg.min_flag;
|
|
max_flag=arg.max_flag;
|
|
maybe_flag=arg.maybe_flag;
|
|
maybe_null=arg.maybe_null;
|
|
part=arg.part;
|
|
field=arg.field;
|
|
min_value=arg.min_value;
|
|
max_value=arg.max_value;
|
|
next_key_part=arg.next_key_part;
|
|
use_count=1; elements=1;
|
|
}
|
|
|
|
|
|
inline void SEL_ARG::make_root()
|
|
{
|
|
left=right= &null_element;
|
|
color=BLACK;
|
|
next=prev=0;
|
|
use_count=0; elements=1;
|
|
}
|
|
|
|
SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
|
|
:min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
|
|
elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
|
|
max_value((char*) max_value_arg), next(0),prev(0),
|
|
next_key_part(0),color(BLACK),type(KEY_RANGE)
|
|
{
|
|
left=right= &null_element;
|
|
}
|
|
|
|
SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
|
|
uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
|
|
:min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
|
|
part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
|
|
field(field_), min_value(min_value_), max_value(max_value_),
|
|
next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
|
|
{
|
|
left=right= &null_element;
|
|
}
|
|
|
|
SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
|
|
{
|
|
SEL_ARG *tmp;
|
|
if (type != KEY_RANGE)
|
|
{
|
|
tmp=new SEL_ARG(type);
|
|
tmp->prev= *next_arg; // Link into next/prev chain
|
|
(*next_arg)->next=tmp;
|
|
(*next_arg)= tmp;
|
|
}
|
|
else
|
|
{
|
|
tmp=new SEL_ARG(field,part, min_value,max_value,
|
|
min_flag, max_flag, maybe_flag);
|
|
tmp->parent=new_parent;
|
|
tmp->next_key_part=next_key_part;
|
|
if (left != &null_element)
|
|
tmp->left=left->clone(tmp,next_arg);
|
|
|
|
tmp->prev= *next_arg; // Link into next/prev chain
|
|
(*next_arg)->next=tmp;
|
|
(*next_arg)= tmp;
|
|
|
|
if (right != &null_element)
|
|
tmp->right=right->clone(tmp,next_arg);
|
|
}
|
|
increment_use_count(1);
|
|
return tmp;
|
|
}
|
|
|
|
SEL_ARG *SEL_ARG::first()
|
|
{
|
|
SEL_ARG *next_arg=this;
|
|
if (!next_arg->left)
|
|
return 0; // MAYBE_KEY
|
|
while (next_arg->left != &null_element)
|
|
next_arg=next_arg->left;
|
|
return next_arg;
|
|
}
|
|
|
|
SEL_ARG *SEL_ARG::last()
|
|
{
|
|
SEL_ARG *next_arg=this;
|
|
if (!next_arg->right)
|
|
return 0; // MAYBE_KEY
|
|
while (next_arg->right != &null_element)
|
|
next_arg=next_arg->right;
|
|
return next_arg;
|
|
}
|
|
|
|
/*
|
|
Check if a compare is ok, when one takes ranges in account
|
|
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
|
|
*/
|
|
|
|
static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
|
|
{
|
|
int cmp;
|
|
/* First check if there was a compare to a min or max element */
|
|
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
|
|
{
|
|
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
|
|
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
|
|
return 0;
|
|
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
|
|
}
|
|
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
|
|
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
|
|
|
|
if (field->real_maybe_null()) // If null is part of key
|
|
{
|
|
if (*a != *b)
|
|
{
|
|
return *a ? -1 : 1;
|
|
}
|
|
if (*a)
|
|
goto end; // NULL where equal
|
|
a++; b++; // Skip NULL marker
|
|
}
|
|
cmp=field->key_cmp((byte*) a,(byte*) b);
|
|
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
|
|
|
|
// Check if the compared equal arguments was defined with open/closed range
|
|
end:
|
|
if (a_flag & (NEAR_MIN | NEAR_MAX))
|
|
{
|
|
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
|
|
return 0;
|
|
if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
|
|
return (a_flag & NEAR_MIN) ? 2 : -2;
|
|
return (a_flag & NEAR_MIN) ? 1 : -1;
|
|
}
|
|
if (b_flag & (NEAR_MIN | NEAR_MAX))
|
|
return (b_flag & NEAR_MIN) ? -2 : 2;
|
|
return 0; // The elements where equal
|
|
}
|
|
|
|
|
|
SEL_ARG *SEL_ARG::clone_tree()
|
|
{
|
|
SEL_ARG tmp_link,*next_arg,*root;
|
|
next_arg= &tmp_link;
|
|
root=clone((SEL_ARG *) 0, &next_arg);
|
|
next_arg->next=0; // Fix last link
|
|
tmp_link.next->prev=0; // Fix first link
|
|
root->use_count=0;
|
|
return root;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
** Test if a key can be used in different ranges
|
|
** Returns:
|
|
** -1 if impossible select
|
|
** 0 if can't use quick_select
|
|
** 1 if found usable range
|
|
** Updates the following in the select parameter:
|
|
** needed_reg ; Bits for keys with may be used if all prev regs are read
|
|
** quick ; Parameter to use when reading records.
|
|
** In the table struct the following information is updated:
|
|
** quick_keys ; Which keys can be used
|
|
** quick_rows ; How many rows the key matches
|
|
*****************************************************************************/
|
|
|
|
int SQL_SELECT::test_quick_select(key_map keys_to_use, table_map prev_tables,
|
|
ha_rows limit, bool force_quick_range)
|
|
{
|
|
uint basflag;
|
|
uint idx;
|
|
double scan_time;
|
|
DBUG_ENTER("test_quick_select");
|
|
DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
|
|
(ulong) keys_to_use, (ulong) prev_tables,
|
|
(ulong) const_tables));
|
|
|
|
delete quick;
|
|
quick=0;
|
|
needed_reg=0; quick_keys=0;
|
|
if (!cond || (specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
|
|
!limit)
|
|
DBUG_RETURN(0); /* purecov: inspected */
|
|
if (!((basflag= head->file->table_flags()) & HA_KEYPOS_TO_RNDPOS) &&
|
|
keys_to_use == (uint) ~0 || !keys_to_use)
|
|
DBUG_RETURN(0); /* Not smart database */
|
|
records=head->file->records;
|
|
if (!records)
|
|
records++; /* purecov: inspected */
|
|
scan_time=(double) records / TIME_FOR_COMPARE+1;
|
|
read_time=(double) head->file->scan_time()+ scan_time + 1.0;
|
|
if (head->force_index)
|
|
scan_time= read_time= DBL_MAX;
|
|
if (limit < records)
|
|
read_time=(double) records+scan_time+1; // Force to use index
|
|
else if (read_time <= 2.0 && !force_quick_range)
|
|
DBUG_RETURN(0); /* No need for quick select */
|
|
|
|
DBUG_PRINT("info",("Time to scan table: %g", read_time));
|
|
|
|
keys_to_use&=head->keys_in_use_for_query;
|
|
if (keys_to_use)
|
|
{
|
|
MEM_ROOT *old_root,alloc;
|
|
SEL_TREE *tree;
|
|
KEY_PART *key_parts;
|
|
PARAM param;
|
|
|
|
/* set up parameter that is passed to all functions */
|
|
param.baseflag=basflag;
|
|
param.prev_tables=prev_tables | const_tables;
|
|
param.read_tables=read_tables;
|
|
param.current_table= head->map;
|
|
param.table=head;
|
|
param.keys=0;
|
|
param.mem_root= &alloc;
|
|
|
|
current_thd->no_errors=1; // Don't warn about NULL
|
|
init_sql_alloc(&alloc,2048,0);
|
|
if (!(param.key_parts = (KEY_PART*) alloc_root(&alloc,
|
|
sizeof(KEY_PART)*
|
|
head->key_parts)))
|
|
{
|
|
current_thd->no_errors=0;
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
DBUG_RETURN(0); // Can't use range
|
|
}
|
|
key_parts= param.key_parts;
|
|
old_root=my_pthread_getspecific_ptr(MEM_ROOT*,THR_MALLOC);
|
|
my_pthread_setspecific_ptr(THR_MALLOC,&alloc);
|
|
|
|
for (idx=0 ; idx < head->keys ; idx++)
|
|
{
|
|
if (!(keys_to_use & ((key_map) 1L << idx)))
|
|
continue;
|
|
KEY *key_info= &head->key_info[idx];
|
|
if (key_info->flags & HA_FULLTEXT)
|
|
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
|
|
|
|
param.key[param.keys]=key_parts;
|
|
for (uint part=0 ; part < key_info->key_parts ; part++,key_parts++)
|
|
{
|
|
key_parts->key=param.keys;
|
|
key_parts->part=part;
|
|
key_parts->part_length= key_info->key_part[part].length;
|
|
key_parts->field= key_info->key_part[part].field;
|
|
key_parts->null_bit= key_info->key_part[part].null_bit;
|
|
if (key_parts->field->type() == FIELD_TYPE_BLOB)
|
|
key_parts->part_length+=HA_KEY_BLOB_LENGTH;
|
|
}
|
|
param.real_keynr[param.keys++]=idx;
|
|
}
|
|
param.key_parts_end=key_parts;
|
|
|
|
if ((tree=get_mm_tree(¶m,cond)))
|
|
{
|
|
if (tree->type == SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
records=0L; // Return -1 from this function
|
|
read_time= (double) HA_POS_ERROR;
|
|
}
|
|
else if (tree->type == SEL_TREE::KEY ||
|
|
tree->type == SEL_TREE::KEY_SMALLER)
|
|
{
|
|
SEL_ARG **key,**end,**best_key=0;
|
|
|
|
for (idx=0,key=tree->keys, end=key+param.keys ;
|
|
key != end ;
|
|
key++,idx++)
|
|
{
|
|
ha_rows found_records;
|
|
double found_read_time;
|
|
if (*key)
|
|
{
|
|
uint keynr= param.real_keynr[idx];
|
|
if ((*key)->type == SEL_ARG::MAYBE_KEY ||
|
|
(*key)->maybe_flag)
|
|
needed_reg|= (key_map) 1 << keynr;
|
|
|
|
found_records=check_quick_select(¶m, idx, *key);
|
|
if (found_records != HA_POS_ERROR && found_records > 2 &&
|
|
head->used_keys & ((table_map) 1 << keynr) &&
|
|
(head->file->index_flags(keynr) & HA_KEY_READ_ONLY))
|
|
{
|
|
/*
|
|
We can resolve this by only reading through this key.
|
|
Assume that we will read trough the whole key range
|
|
and that all key blocks are half full (normally things are
|
|
much better).
|
|
*/
|
|
uint keys_per_block= (head->file->block_size/2/
|
|
(head->key_info[keynr].key_length+
|
|
head->file->ref_length) + 1);
|
|
found_read_time=((double) (found_records+keys_per_block-1)/
|
|
(double) keys_per_block);
|
|
}
|
|
else
|
|
found_read_time= head->file->read_time(found_records)+
|
|
(double) found_records / TIME_FOR_COMPARE;
|
|
if (read_time > found_read_time)
|
|
{
|
|
read_time=found_read_time;
|
|
records=found_records;
|
|
best_key=key;
|
|
}
|
|
}
|
|
}
|
|
if (best_key && records)
|
|
{
|
|
if ((quick=get_quick_select(¶m,(uint) (best_key-tree->keys),
|
|
*best_key)))
|
|
{
|
|
quick->records=records;
|
|
quick->read_time=read_time;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
my_pthread_setspecific_ptr(THR_MALLOC,old_root);
|
|
current_thd->no_errors=0;
|
|
}
|
|
DBUG_EXECUTE("info",print_quick(quick,needed_reg););
|
|
/*
|
|
Assume that if the user is using 'limit' we will only need to scan
|
|
limit rows if we are using a key
|
|
*/
|
|
DBUG_RETURN(records ? test(quick) : -1);
|
|
}
|
|
|
|
/* make a select tree of all keys in condition */
|
|
|
|
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
|
|
{
|
|
SEL_TREE *tree=0;
|
|
DBUG_ENTER("get_mm_tree");
|
|
|
|
if (cond->type() == Item::COND_ITEM)
|
|
{
|
|
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
|
|
|
|
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
|
|
{
|
|
tree=0;
|
|
Item *item;
|
|
while ((item=li++))
|
|
{
|
|
SEL_TREE *new_tree=get_mm_tree(param,item);
|
|
tree=tree_and(param,tree,new_tree);
|
|
if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{ // COND OR
|
|
tree=get_mm_tree(param,li++);
|
|
if (tree)
|
|
{
|
|
Item *item;
|
|
while ((item=li++))
|
|
{
|
|
SEL_TREE *new_tree=get_mm_tree(param,item);
|
|
if (!new_tree)
|
|
DBUG_RETURN(0);
|
|
tree=tree_or(param,tree,new_tree);
|
|
if (!tree || tree->type == SEL_TREE::ALWAYS)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
/* Here when simple cond */
|
|
if (cond->const_item())
|
|
{
|
|
if (cond->val_int())
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
|
|
}
|
|
table_map ref_tables=cond->used_tables();
|
|
if (ref_tables & ~(param->prev_tables | param->read_tables |
|
|
param->current_table))
|
|
DBUG_RETURN(0); // Can't be calculated yet
|
|
if (cond->type() != Item::FUNC_ITEM)
|
|
{ // Should be a field
|
|
if (ref_tables & param->current_table)
|
|
DBUG_RETURN(0);
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
|
|
}
|
|
if (!(ref_tables & param->current_table))
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); // This may be false or true
|
|
Item_func *cond_func= (Item_func*) cond;
|
|
if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
|
|
DBUG_RETURN(0); // Can't be calculated
|
|
|
|
if (cond_func->functype() == Item_func::BETWEEN)
|
|
{
|
|
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
|
|
{
|
|
Field *field=((Item_field*) (cond_func->arguments()[0]))->field;
|
|
Item_result cmp_type=field->cmp_type();
|
|
tree= get_mm_parts(param,field,Item_func::GE_FUNC,
|
|
cond_func->arguments()[1],cmp_type);
|
|
DBUG_RETURN(tree_and(param,tree,
|
|
get_mm_parts(param, field,
|
|
Item_func::LE_FUNC,
|
|
cond_func->arguments()[2],cmp_type)));
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
if (cond_func->functype() == Item_func::IN_FUNC)
|
|
{ // COND OR
|
|
Item_func_in *func=(Item_func_in*) cond_func;
|
|
if (func->key_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
Field *field=((Item_field*) (func->key_item()))->field;
|
|
Item_result cmp_type=field->cmp_type();
|
|
tree= get_mm_parts(param,field,Item_func::EQ_FUNC,
|
|
func->arguments()[0],cmp_type);
|
|
if (!tree)
|
|
DBUG_RETURN(tree); // Not key field
|
|
for (uint i=1 ; i < func->argument_count(); i++)
|
|
{
|
|
SEL_TREE *new_tree=get_mm_parts(param,field,Item_func::EQ_FUNC,
|
|
func->arguments()[i],cmp_type);
|
|
tree=tree_or(param,tree,new_tree);
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
DBUG_RETURN(0); // Can't optimize this IN
|
|
}
|
|
|
|
/* check field op const */
|
|
/* btw, ft_func's arguments()[0] isn't FIELD_ITEM. SerG*/
|
|
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
|
|
{
|
|
tree= get_mm_parts(param,
|
|
((Item_field*) (cond_func->arguments()[0]))->field,
|
|
cond_func->functype(),
|
|
cond_func->arg_count > 1 ? cond_func->arguments()[1] :
|
|
0,
|
|
((Item_field*) (cond_func->arguments()[0]))->field->
|
|
cmp_type());
|
|
}
|
|
/* check const op field */
|
|
if (!tree &&
|
|
cond_func->have_rev_func() &&
|
|
cond_func->arguments()[1]->type() == Item::FIELD_ITEM)
|
|
{
|
|
DBUG_RETURN(get_mm_parts(param,
|
|
((Item_field*)
|
|
(cond_func->arguments()[1]))->field,
|
|
((Item_bool_func2*) cond_func)->rev_functype(),
|
|
cond_func->arguments()[0],
|
|
((Item_field*)
|
|
(cond_func->arguments()[1]))->field->cmp_type()
|
|
));
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
static SEL_TREE *
|
|
get_mm_parts(PARAM *param,Field *field, Item_func::Functype type,Item *value,
|
|
Item_result cmp_type)
|
|
{
|
|
DBUG_ENTER("get_mm_parts");
|
|
if (field->table != param->table)
|
|
DBUG_RETURN(0);
|
|
|
|
KEY_PART *key_part = param->key_parts,*end=param->key_parts_end;
|
|
SEL_TREE *tree=0;
|
|
if (value &&
|
|
value->used_tables() & ~(param->prev_tables | param->read_tables))
|
|
DBUG_RETURN(0);
|
|
for (; key_part != end ; key_part++)
|
|
{
|
|
if (field->eq(key_part->field))
|
|
{
|
|
SEL_ARG *sel_arg=0;
|
|
if (!tree)
|
|
tree=new SEL_TREE();
|
|
if (!value || !(value->used_tables() & ~param->read_tables))
|
|
{
|
|
sel_arg=get_mm_leaf(param,key_part->field,key_part,type,value);
|
|
if (!sel_arg)
|
|
continue;
|
|
if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
tree->type=SEL_TREE::IMPOSSIBLE;
|
|
DBUG_RETURN(tree);
|
|
}
|
|
}
|
|
else
|
|
sel_arg=new SEL_ARG(SEL_ARG::MAYBE_KEY);// This key may be used later
|
|
sel_arg->part=(uchar) key_part->part;
|
|
tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
|
|
}
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
static SEL_ARG *
|
|
get_mm_leaf(PARAM *param, Field *field, KEY_PART *key_part,
|
|
Item_func::Functype type,Item *value)
|
|
{
|
|
uint maybe_null=(uint) field->real_maybe_null();
|
|
uint field_length=field->pack_length()+maybe_null;
|
|
SEL_ARG *tree;
|
|
DBUG_ENTER("get_mm_leaf");
|
|
|
|
if (type == Item_func::LIKE_FUNC)
|
|
{
|
|
bool like_error;
|
|
char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
|
|
String tmp(buff1,sizeof(buff1)),*res;
|
|
uint length,offset,min_length,max_length;
|
|
|
|
if (!field->optimize_range((uint) key_part->key))
|
|
DBUG_RETURN(0); // Can't optimize this
|
|
if (!(res= value->val_str(&tmp)))
|
|
DBUG_RETURN(&null_element);
|
|
|
|
/*
|
|
TODO:
|
|
Check if this was a function. This should have be optimized away
|
|
in the sql_select.cc
|
|
*/
|
|
if (res != &tmp)
|
|
{
|
|
tmp.copy(*res); // Get own copy
|
|
res= &tmp;
|
|
}
|
|
if (field->cmp_type() != STRING_RESULT)
|
|
DBUG_RETURN(0); // Can only optimize strings
|
|
|
|
offset=maybe_null;
|
|
length=key_part->part_length;
|
|
if (field->type() == FIELD_TYPE_BLOB)
|
|
{
|
|
offset+=HA_KEY_BLOB_LENGTH;
|
|
field_length=key_part->part_length-HA_KEY_BLOB_LENGTH;
|
|
}
|
|
else
|
|
{
|
|
if (length < field_length)
|
|
length=field_length; // Only if overlapping key
|
|
else
|
|
field_length=length;
|
|
}
|
|
length+=offset;
|
|
if (!(min_str= (char*) alloc_root(param->mem_root, length*2)))
|
|
DBUG_RETURN(0);
|
|
max_str=min_str+length;
|
|
if (maybe_null)
|
|
max_str[0]= min_str[0]=0;
|
|
if (field->binary())
|
|
like_error=like_range(res->ptr(),res->length(),wild_prefix,field_length,
|
|
min_str+offset,max_str+offset,(char) 255,
|
|
&min_length,&max_length);
|
|
else
|
|
{
|
|
#ifdef USE_STRCOLL
|
|
if (use_strcoll(default_charset_info))
|
|
like_error= my_like_range(default_charset_info,
|
|
res->ptr(),res->length(),wild_prefix,
|
|
field_length, min_str+maybe_null,
|
|
max_str+maybe_null,&min_length,&max_length);
|
|
else
|
|
#endif
|
|
like_error=like_range(res->ptr(),res->length(),wild_prefix,
|
|
field_length,
|
|
min_str+offset,max_str+offset,
|
|
max_sort_char,&min_length,&max_length);
|
|
}
|
|
if (like_error) // Can't optimize with LIKE
|
|
DBUG_RETURN(0);
|
|
if (offset != maybe_null) // Blob
|
|
{
|
|
int2store(min_str+maybe_null,min_length);
|
|
int2store(max_str+maybe_null,max_length);
|
|
}
|
|
DBUG_RETURN(new SEL_ARG(field,min_str,max_str));
|
|
}
|
|
|
|
if (!value) // IS NULL or IS NOT NULL
|
|
{
|
|
if (field->table->outer_join) // Can't use a key on this
|
|
DBUG_RETURN(0);
|
|
if (!maybe_null) // Not null field
|
|
DBUG_RETURN(type == Item_func::ISNULL_FUNC ? &null_element : 0);
|
|
tree=new SEL_ARG(field,is_null_string,is_null_string);
|
|
if (!tree)
|
|
DBUG_RETURN(0);
|
|
if (type == Item_func::ISNOTNULL_FUNC)
|
|
{
|
|
tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
if (!field->optimize_range((uint) key_part->key) &&
|
|
type != Item_func::EQ_FUNC &&
|
|
type != Item_func::EQUAL_FUNC)
|
|
DBUG_RETURN(0); // Can't optimize this
|
|
|
|
/*
|
|
We can't always use indexes when comparing a string index to a number
|
|
cmp_type() is checked to allow compare of dates to numbers
|
|
*/
|
|
if (field->result_type() == STRING_RESULT &&
|
|
value->result_type() != STRING_RESULT &&
|
|
field->cmp_type() != value->result_type())
|
|
DBUG_RETURN(0);
|
|
|
|
if (value->save_in_field(field, 1))
|
|
{
|
|
/* This happens when we try to insert a NULL field in a not null column */
|
|
// TODO; Check if we can we remove the following block.
|
|
if (type == Item_func::EQUAL_FUNC)
|
|
{
|
|
/* convert column_name <=> NULL -> column_name IS NULL */
|
|
// Get local copy of key
|
|
char *str= (char*) alloc_root(param->mem_root,1);
|
|
if (!str)
|
|
DBUG_RETURN(0);
|
|
*str= 1;
|
|
DBUG_RETURN(new SEL_ARG(field,str,str));
|
|
}
|
|
DBUG_RETURN(&null_element); // cmp with NULL is never true
|
|
}
|
|
// Get local copy of key
|
|
char *str= (char*) alloc_root(param->mem_root,
|
|
key_part->part_length+maybe_null);
|
|
if (!str)
|
|
DBUG_RETURN(0);
|
|
if (maybe_null)
|
|
*str= (char) field->is_real_null(); // Set to 1 if null
|
|
field->get_key_image(str+maybe_null,key_part->part_length);
|
|
if (!(tree=new SEL_ARG(field,str,str)))
|
|
DBUG_RETURN(0);
|
|
|
|
switch (type) {
|
|
case Item_func::LT_FUNC:
|
|
if (field_is_equal_to_item(field,value))
|
|
tree->max_flag=NEAR_MAX;
|
|
/* fall through */
|
|
case Item_func::LE_FUNC:
|
|
if (!maybe_null)
|
|
tree->min_flag=NO_MIN_RANGE; /* From start */
|
|
else
|
|
{ // > NULL
|
|
tree->min_value=is_null_string;
|
|
tree->min_flag=NEAR_MIN;
|
|
}
|
|
break;
|
|
case Item_func::GT_FUNC:
|
|
if (field_is_equal_to_item(field,value))
|
|
tree->min_flag=NEAR_MIN;
|
|
/* fall through */
|
|
case Item_func::GE_FUNC:
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
/*
|
|
** Calculate min_str and max_str that ranges a LIKE string.
|
|
** Arguments:
|
|
** ptr Pointer to LIKE string.
|
|
** ptr_length Length of LIKE string.
|
|
** escape Escape character in LIKE. (Normally '\').
|
|
** All escape characters should be removed from min_str and max_str
|
|
** res_length Length of min_str and max_str.
|
|
** min_str Smallest case sensitive string that ranges LIKE.
|
|
** Should be space padded to res_length.
|
|
** max_str Largest case sensitive string that ranges LIKE.
|
|
** Normally padded with the biggest character sort value.
|
|
**
|
|
** The function should return 0 if ok and 1 if the LIKE string can't be
|
|
** optimized !
|
|
*/
|
|
|
|
static bool like_range(const char *ptr,uint ptr_length,char escape,
|
|
uint res_length, char *min_str,char *max_str,
|
|
char max_sort_chr, uint *min_length, uint *max_length)
|
|
{
|
|
const char *end=ptr+ptr_length;
|
|
char *min_org=min_str;
|
|
char *min_end=min_str+res_length;
|
|
|
|
for (; ptr != end && min_str != min_end ; ptr++)
|
|
{
|
|
if (*ptr == escape && ptr+1 != end)
|
|
{
|
|
ptr++; // Skip escape
|
|
*min_str++= *max_str++ = *ptr;
|
|
continue;
|
|
}
|
|
if (*ptr == wild_one) // '_' in SQL
|
|
{
|
|
*min_str++='\0'; // This should be min char
|
|
*max_str++=max_sort_chr;
|
|
continue;
|
|
}
|
|
if (*ptr == wild_many) // '%' in SQL
|
|
{
|
|
*min_length= (uint) (min_str - min_org);
|
|
*max_length=res_length;
|
|
do {
|
|
*min_str++ = ' '; // Because if key compression
|
|
*max_str++ = max_sort_chr;
|
|
} while (min_str != min_end);
|
|
return 0;
|
|
}
|
|
*min_str++= *max_str++ = *ptr;
|
|
}
|
|
*min_length= *max_length = (uint) (min_str - min_org);
|
|
|
|
/* Temporary fix for handling wild_one at end of string (key compression) */
|
|
for (char *tmp= min_str ; tmp > min_org && tmp[-1] == '\0';)
|
|
*--tmp=' ';
|
|
|
|
while (min_str != min_end)
|
|
*min_str++ = *max_str++ = ' '; // Because if key compression
|
|
return 0;
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
** Tree manipulation functions
|
|
** If tree is 0 it means that the condition can't be tested. It refers
|
|
** to a non existent table or to a field in current table with isn't a key.
|
|
** The different tree flags:
|
|
** IMPOSSIBLE: Condition is never true
|
|
** ALWAYS: Condition is always true
|
|
** MAYBE: Condition may exists when tables are read
|
|
** MAYBE_KEY: Condition refers to a key that may be used in join loop
|
|
** KEY_RANGE: Condition uses a key
|
|
******************************************************************************/
|
|
|
|
/*
|
|
** Add a new key test to a key when scanning through all keys
|
|
** This will never be called for same key parts.
|
|
*/
|
|
|
|
static SEL_ARG *
|
|
sel_add(SEL_ARG *key1,SEL_ARG *key2)
|
|
{
|
|
SEL_ARG *root,**key_link;
|
|
|
|
if (!key1)
|
|
return key2;
|
|
if (!key2)
|
|
return key1;
|
|
|
|
key_link= &root;
|
|
while (key1 && key2)
|
|
{
|
|
if (key1->part < key2->part)
|
|
{
|
|
*key_link= key1;
|
|
key_link= &key1->next_key_part;
|
|
key1=key1->next_key_part;
|
|
}
|
|
else
|
|
{
|
|
*key_link= key2;
|
|
key_link= &key2->next_key_part;
|
|
key2=key2->next_key_part;
|
|
}
|
|
}
|
|
*key_link=key1 ? key1 : key2;
|
|
return root;
|
|
}
|
|
|
|
#define CLONE_KEY1_MAYBE 1
|
|
#define CLONE_KEY2_MAYBE 2
|
|
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)
|
|
|
|
|
|
static SEL_TREE *
|
|
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
|
|
{
|
|
DBUG_ENTER("tree_and");
|
|
if (!tree1)
|
|
DBUG_RETURN(tree2);
|
|
if (!tree2)
|
|
DBUG_RETURN(tree1);
|
|
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree1);
|
|
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree2);
|
|
if (tree1->type == SEL_TREE::MAYBE)
|
|
{
|
|
if (tree2->type == SEL_TREE::KEY)
|
|
tree2->type=SEL_TREE::KEY_SMALLER;
|
|
DBUG_RETURN(tree2);
|
|
}
|
|
if (tree2->type == SEL_TREE::MAYBE)
|
|
{
|
|
tree1->type=SEL_TREE::KEY_SMALLER;
|
|
DBUG_RETURN(tree1);
|
|
}
|
|
|
|
/* Join the trees key per key */
|
|
SEL_ARG **key1,**key2,**end;
|
|
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
|
|
key1 != end ; key1++,key2++)
|
|
{
|
|
uint flag=0;
|
|
if (*key1 || *key2)
|
|
{
|
|
if (*key1 && !(*key1)->simple_key())
|
|
flag|=CLONE_KEY1_MAYBE;
|
|
if (*key2 && !(*key2)->simple_key())
|
|
flag|=CLONE_KEY2_MAYBE;
|
|
*key1=key_and(*key1,*key2,flag);
|
|
if ((*key1)->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
tree1->type= SEL_TREE::IMPOSSIBLE;
|
|
break;
|
|
}
|
|
#ifdef EXTRA_DEBUG
|
|
(*key1)->test_use_count(*key1);
|
|
#endif
|
|
}
|
|
}
|
|
DBUG_RETURN(tree1);
|
|
}
|
|
|
|
|
|
|
|
static SEL_TREE *
|
|
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
|
|
{
|
|
DBUG_ENTER("tree_or");
|
|
if (!tree1 || !tree2)
|
|
DBUG_RETURN(0);
|
|
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree2);
|
|
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree1);
|
|
if (tree1->type == SEL_TREE::MAYBE)
|
|
DBUG_RETURN(tree1); // Can't use this
|
|
if (tree2->type == SEL_TREE::MAYBE)
|
|
DBUG_RETURN(tree2);
|
|
|
|
/* Join the trees key per key */
|
|
SEL_ARG **key1,**key2,**end;
|
|
SEL_TREE *result=0;
|
|
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
|
|
key1 != end ; key1++,key2++)
|
|
{
|
|
*key1=key_or(*key1,*key2);
|
|
if (*key1)
|
|
{
|
|
result=tree1; // Added to tree1
|
|
#ifdef EXTRA_DEBUG
|
|
(*key1)->test_use_count(*key1);
|
|
#endif
|
|
}
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/* And key trees where key1->part < key2 -> part */
|
|
|
|
static SEL_ARG *
|
|
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
|
|
{
|
|
SEL_ARG *next;
|
|
ulong use_count=key1->use_count;
|
|
|
|
if (key1->elements != 1)
|
|
{
|
|
key2->use_count+=key1->elements-1;
|
|
key2->increment_use_count((int) key1->elements-1);
|
|
}
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key1->right= key1->left= &null_element;
|
|
key1->next= key1->prev= 0;
|
|
}
|
|
for (next=key1->first(); next ; next=next->next)
|
|
{
|
|
if (next->next_key_part)
|
|
{
|
|
SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
|
|
if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
key1=key1->tree_delete(next);
|
|
continue;
|
|
}
|
|
next->next_key_part=tmp;
|
|
if (use_count)
|
|
next->increment_use_count(use_count);
|
|
}
|
|
else
|
|
next->next_key_part=key2;
|
|
}
|
|
if (!key1)
|
|
return &null_element; // Impossible ranges
|
|
key1->use_count++;
|
|
return key1;
|
|
}
|
|
|
|
|
|
|
|
static SEL_ARG *
|
|
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
|
|
{
|
|
if (!key1)
|
|
return key2;
|
|
if (!key2)
|
|
return key1;
|
|
if (key1->part != key2->part)
|
|
{
|
|
if (key1->part > key2->part)
|
|
{
|
|
swap(SEL_ARG *,key1,key2);
|
|
clone_flag=swap_clone_flag(clone_flag);
|
|
}
|
|
// key1->part < key2->part
|
|
key1->use_count--;
|
|
if (key1->use_count > 0)
|
|
key1=key1->clone_tree();
|
|
return and_all_keys(key1,key2,clone_flag);
|
|
}
|
|
|
|
if (((clone_flag & CLONE_KEY2_MAYBE) &&
|
|
!(clone_flag & CLONE_KEY1_MAYBE)) ||
|
|
key1->type == SEL_ARG::MAYBE_KEY)
|
|
{ // Put simple key in key2
|
|
swap(SEL_ARG *,key1,key2);
|
|
clone_flag=swap_clone_flag(clone_flag);
|
|
}
|
|
|
|
// If one of the key is MAYBE_KEY then the found region may be smaller
|
|
if (key2->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
if (key1->use_count > 1)
|
|
{
|
|
key1->use_count--;
|
|
key1=key1->clone_tree();
|
|
key1->use_count++;
|
|
}
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{ // Both are maybe key
|
|
key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
|
|
clone_flag);
|
|
if (key1->next_key_part &&
|
|
key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
|
|
return key1;
|
|
}
|
|
else
|
|
{
|
|
key1->maybe_smaller();
|
|
if (key2->next_key_part)
|
|
return and_all_keys(key1,key2,clone_flag);
|
|
key2->use_count--; // Key2 doesn't have a tree
|
|
}
|
|
return key1;
|
|
}
|
|
|
|
key1->use_count--;
|
|
key2->use_count--;
|
|
SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
|
|
|
|
while (e1 && e2)
|
|
{
|
|
int cmp=e1->cmp_min_to_min(e2);
|
|
if (cmp < 0)
|
|
{
|
|
if (get_range(&e1,&e2,key1))
|
|
continue;
|
|
}
|
|
else if (get_range(&e2,&e1,key2))
|
|
continue;
|
|
SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
|
|
e1->increment_use_count(1);
|
|
e2->increment_use_count(1);
|
|
if (!next || next->type != SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
SEL_ARG *new_arg= e1->clone_and(e2);
|
|
new_arg->next_key_part=next;
|
|
if (!new_tree)
|
|
{
|
|
new_tree=new_arg;
|
|
}
|
|
else
|
|
new_tree=new_tree->insert(new_arg);
|
|
}
|
|
if (e1->cmp_max_to_max(e2) < 0)
|
|
e1=e1->next; // e1 can't overlapp next e2
|
|
else
|
|
e2=e2->next;
|
|
}
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
if (!new_tree)
|
|
return &null_element; // Impossible range
|
|
return new_tree;
|
|
}
|
|
|
|
|
|
static bool
|
|
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
|
|
{
|
|
(*e1)=root1->find_range(*e2); // first e1->min < e2->min
|
|
if ((*e1)->cmp_max_to_min(*e2) < 0)
|
|
{
|
|
if (!((*e1)=(*e1)->next))
|
|
return 1;
|
|
if ((*e1)->cmp_min_to_max(*e2) > 0)
|
|
{
|
|
(*e2)=(*e2)->next;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static SEL_ARG *
|
|
key_or(SEL_ARG *key1,SEL_ARG *key2)
|
|
{
|
|
if (!key1)
|
|
{
|
|
if (key2)
|
|
{
|
|
key2->use_count--;
|
|
key2->free_tree();
|
|
}
|
|
return 0;
|
|
}
|
|
else if (!key2)
|
|
{
|
|
key1->use_count--;
|
|
key1->free_tree();
|
|
return 0;
|
|
}
|
|
key1->use_count--;
|
|
key2->use_count--;
|
|
|
|
if (key1->part != key2->part)
|
|
{
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
return 0; // Can't optimize this
|
|
}
|
|
|
|
// If one of the key is MAYBE_KEY then the found region may be bigger
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key2->free_tree();
|
|
key1->use_count++;
|
|
return key1;
|
|
}
|
|
if (key2->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key1->free_tree();
|
|
key2->use_count++;
|
|
return key2;
|
|
}
|
|
|
|
if (key1->use_count > 0)
|
|
{
|
|
if (key2->use_count == 0 || key1->elements > key2->elements)
|
|
{
|
|
swap(SEL_ARG *,key1,key2);
|
|
}
|
|
else
|
|
key1=key1->clone_tree();
|
|
}
|
|
|
|
// Add tree at key2 to tree at key1
|
|
bool key2_shared=key2->use_count != 0;
|
|
key1->maybe_flag|=key2->maybe_flag;
|
|
|
|
for (key2=key2->first(); key2; )
|
|
{
|
|
SEL_ARG *tmp=key1->find_range(key2); // Find key1.min <= key2.min
|
|
int cmp;
|
|
|
|
if (!tmp)
|
|
{
|
|
tmp=key1->first(); // tmp.min > key2.min
|
|
cmp= -1;
|
|
}
|
|
else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
|
|
{ // Found tmp.max < key2.min
|
|
SEL_ARG *next=tmp->next;
|
|
if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{
|
|
// Join near ranges like tmp.max < 0 and key2.min >= 0
|
|
SEL_ARG *key2_next=key2->next;
|
|
if (key2_shared)
|
|
{
|
|
key2=new SEL_ARG(*key2);
|
|
key2->increment_use_count(key1->use_count+1);
|
|
key2->next=key2_next; // New copy of key2
|
|
}
|
|
key2->copy_min(tmp);
|
|
if (!(key1=key1->tree_delete(tmp)))
|
|
{ // Only one key in tree
|
|
key1=key2;
|
|
key1->make_root();
|
|
key2=key2_next;
|
|
break;
|
|
}
|
|
}
|
|
if (!(tmp=next)) // tmp.min > key2.min
|
|
break; // Copy rest of key2
|
|
}
|
|
if (cmp < 0)
|
|
{ // tmp.min > key2.min
|
|
int tmp_cmp;
|
|
if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
|
|
{
|
|
if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{ // ranges are connected
|
|
tmp->copy_min_to_min(key2);
|
|
key1->merge_flags(key2);
|
|
if (tmp->min_flag & NO_MIN_RANGE &&
|
|
tmp->max_flag & NO_MAX_RANGE)
|
|
{
|
|
if (key1->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0;
|
|
}
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
key2=key2->next;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *next=key2->next; // Keys are not overlapping
|
|
if (key2_shared)
|
|
{
|
|
key1=key1->insert(new SEL_ARG(*key2)); // Must make copy
|
|
key2->increment_use_count(key1->use_count+1);
|
|
}
|
|
else
|
|
key1=key1->insert(key2); // Will destroy key2_root
|
|
key2=next;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// tmp.max >= key2.min && tmp.min <= key.max (overlapping ranges)
|
|
if (eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{
|
|
if (tmp->is_same(key2))
|
|
{
|
|
tmp->merge_flags(key2); // Copy maybe flags
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *last=tmp;
|
|
while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
|
|
eq_tree(last->next->next_key_part,key2->next_key_part))
|
|
{
|
|
SEL_ARG *save=last;
|
|
last=last->next;
|
|
key1=key1->tree_delete(save);
|
|
}
|
|
if (last->copy_min(key2) || last->copy_max(key2))
|
|
{ // Full range
|
|
key1->free_tree();
|
|
for (; key2 ; key2=key2->next)
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
if (key1->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0;
|
|
}
|
|
}
|
|
key2=key2->next;
|
|
continue;
|
|
}
|
|
|
|
if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
|
|
{ // tmp.min <= x < key2.min
|
|
SEL_ARG *new_arg=tmp->clone_first(key2);
|
|
if ((new_arg->next_key_part= key1->next_key_part))
|
|
new_arg->increment_use_count(key1->use_count+1);
|
|
tmp->copy_min_to_min(key2);
|
|
key1=key1->insert(new_arg);
|
|
}
|
|
|
|
// tmp.min >= key2.min && tmp.min <= key2.max
|
|
SEL_ARG key(*key2); // Get copy we can modify
|
|
for (;;)
|
|
{
|
|
if (tmp->cmp_min_to_min(&key) > 0)
|
|
{ // key.min <= x < tmp.min
|
|
SEL_ARG *new_arg=key.clone_first(tmp);
|
|
if ((new_arg->next_key_part=key.next_key_part))
|
|
new_arg->increment_use_count(key1->use_count+1);
|
|
key1=key1->insert(new_arg);
|
|
}
|
|
if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
|
|
{ // tmp.min. <= x <= tmp.max
|
|
tmp->maybe_flag|= key.maybe_flag;
|
|
key.increment_use_count(key1->use_count+1);
|
|
tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
|
|
if (!cmp) // Key2 is ready
|
|
break;
|
|
key.copy_max_to_min(tmp);
|
|
if (!(tmp=tmp->next))
|
|
{
|
|
key1=key1->insert(new SEL_ARG(key));
|
|
key2=key2->next;
|
|
goto end;
|
|
}
|
|
if (tmp->cmp_min_to_max(&key) > 0)
|
|
{
|
|
key1=key1->insert(new SEL_ARG(key));
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
|
|
tmp->copy_max_to_min(&key);
|
|
tmp->increment_use_count(key1->use_count+1);
|
|
new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
|
|
key1=key1->insert(new_arg);
|
|
break;
|
|
}
|
|
}
|
|
key2=key2->next;
|
|
}
|
|
|
|
end:
|
|
while (key2)
|
|
{
|
|
SEL_ARG *next=key2->next;
|
|
if (key2_shared)
|
|
{
|
|
key2->increment_use_count(key1->use_count+1);
|
|
key1=key1->insert(new SEL_ARG(*key2)); // Must make copy
|
|
}
|
|
else
|
|
key1=key1->insert(key2); // Will destroy key2_root
|
|
key2=next;
|
|
}
|
|
key1->use_count++;
|
|
return key1;
|
|
}
|
|
|
|
|
|
/* Compare if two trees are equal */
|
|
|
|
static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
|
|
{
|
|
if (a == b)
|
|
return 1;
|
|
if (!a || !b || !a->is_same(b))
|
|
return 0;
|
|
if (a->left != &null_element && b->left != &null_element)
|
|
{
|
|
if (!eq_tree(a->left,b->left))
|
|
return 0;
|
|
}
|
|
else if (a->left != &null_element || b->left != &null_element)
|
|
return 0;
|
|
if (a->right != &null_element && b->right != &null_element)
|
|
{
|
|
if (!eq_tree(a->right,b->right))
|
|
return 0;
|
|
}
|
|
else if (a->right != &null_element || b->right != &null_element)
|
|
return 0;
|
|
if (a->next_key_part != b->next_key_part)
|
|
{ // Sub range
|
|
if (!a->next_key_part != !b->next_key_part ||
|
|
!eq_tree(a->next_key_part, b->next_key_part))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::insert(SEL_ARG *key)
|
|
{
|
|
SEL_ARG *element,**par,*last_element;
|
|
|
|
LINT_INIT(par); LINT_INIT(last_element);
|
|
for (element= this; element != &null_element ; )
|
|
{
|
|
last_element=element;
|
|
if (key->cmp_min_to_min(element) > 0)
|
|
{
|
|
par= &element->right; element= element->right;
|
|
}
|
|
else
|
|
{
|
|
par = &element->left; element= element->left;
|
|
}
|
|
}
|
|
*par=key;
|
|
key->parent=last_element;
|
|
/* Link in list */
|
|
if (par == &last_element->left)
|
|
{
|
|
key->next=last_element;
|
|
if ((key->prev=last_element->prev))
|
|
key->prev->next=key;
|
|
last_element->prev=key;
|
|
}
|
|
else
|
|
{
|
|
if ((key->next=last_element->next))
|
|
key->next->prev=key;
|
|
key->prev=last_element;
|
|
last_element->next=key;
|
|
}
|
|
key->left=key->right= &null_element;
|
|
SEL_ARG *root=rb_insert(key); // rebalance tree
|
|
root->use_count=this->use_count; // copy root info
|
|
root->elements= this->elements+1;
|
|
root->maybe_flag=this->maybe_flag;
|
|
return root;
|
|
}
|
|
|
|
|
|
/*
|
|
** Find best key with min <= given key
|
|
** Because the call context this should never return 0 to get_range
|
|
*/
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::find_range(SEL_ARG *key)
|
|
{
|
|
SEL_ARG *element=this,*found=0;
|
|
|
|
for (;;)
|
|
{
|
|
if (element == &null_element)
|
|
return found;
|
|
int cmp=element->cmp_min_to_min(key);
|
|
if (cmp == 0)
|
|
return element;
|
|
if (cmp < 0)
|
|
{
|
|
found=element;
|
|
element=element->right;
|
|
}
|
|
else
|
|
element=element->left;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Remove a element from the tree
|
|
** This also frees all sub trees that is used by the element
|
|
*/
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::tree_delete(SEL_ARG *key)
|
|
{
|
|
enum leaf_color remove_color;
|
|
SEL_ARG *root,*nod,**par,*fix_par;
|
|
root=this; this->parent= 0;
|
|
|
|
/* Unlink from list */
|
|
if (key->prev)
|
|
key->prev->next=key->next;
|
|
if (key->next)
|
|
key->next->prev=key->prev;
|
|
key->increment_use_count(-1);
|
|
if (!key->parent)
|
|
par= &root;
|
|
else
|
|
par=key->parent_ptr();
|
|
|
|
if (key->left == &null_element)
|
|
{
|
|
*par=nod=key->right;
|
|
fix_par=key->parent;
|
|
if (nod != &null_element)
|
|
nod->parent=fix_par;
|
|
remove_color= key->color;
|
|
}
|
|
else if (key->right == &null_element)
|
|
{
|
|
*par= nod=key->left;
|
|
nod->parent=fix_par=key->parent;
|
|
remove_color= key->color;
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *tmp=key->next; // next bigger key (exist!)
|
|
nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree
|
|
fix_par=tmp->parent;
|
|
if (nod != &null_element)
|
|
nod->parent=fix_par;
|
|
remove_color= tmp->color;
|
|
|
|
tmp->parent=key->parent; // Move node in place of key
|
|
(tmp->left=key->left)->parent=tmp;
|
|
if ((tmp->right=key->right) != &null_element)
|
|
tmp->right->parent=tmp;
|
|
tmp->color=key->color;
|
|
*par=tmp;
|
|
if (fix_par == key) // key->right == key->next
|
|
fix_par=tmp; // new parent of nod
|
|
}
|
|
|
|
if (root == &null_element)
|
|
return 0; // Maybe root later
|
|
if (remove_color == BLACK)
|
|
root=rb_delete_fixup(root,nod,fix_par);
|
|
test_rb_tree(root,root->parent);
|
|
|
|
root->use_count=this->use_count; // Fix root counters
|
|
root->elements=this->elements-1;
|
|
root->maybe_flag=this->maybe_flag;
|
|
return root;
|
|
}
|
|
|
|
|
|
/* Functions to fix up the tree after insert and delete */
|
|
|
|
static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y=leaf->right;
|
|
leaf->right=y->left;
|
|
if (y->left != &null_element)
|
|
y->left->parent=leaf;
|
|
if (!(y->parent=leaf->parent))
|
|
*root=y;
|
|
else
|
|
*leaf->parent_ptr()=y;
|
|
y->left=leaf;
|
|
leaf->parent=y;
|
|
}
|
|
|
|
static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y=leaf->left;
|
|
leaf->left=y->right;
|
|
if (y->right != &null_element)
|
|
y->right->parent=leaf;
|
|
if (!(y->parent=leaf->parent))
|
|
*root=y;
|
|
else
|
|
*leaf->parent_ptr()=y;
|
|
y->right=leaf;
|
|
leaf->parent=y;
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::rb_insert(SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y,*par,*par2,*root;
|
|
root= this; root->parent= 0;
|
|
|
|
leaf->color=RED;
|
|
while (leaf != root && (par= leaf->parent)->color == RED)
|
|
{ // This can't be root or 1 level under
|
|
if (par == (par2= leaf->parent->parent)->left)
|
|
{
|
|
y= par2->right;
|
|
if (y->color == RED)
|
|
{
|
|
par->color=BLACK;
|
|
y->color=BLACK;
|
|
leaf=par2;
|
|
leaf->color=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->right)
|
|
{
|
|
left_rotate(&root,leaf->parent);
|
|
par=leaf; /* leaf is now parent to old leaf */
|
|
}
|
|
par->color=BLACK;
|
|
par2->color=RED;
|
|
right_rotate(&root,par2);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
y= par2->left;
|
|
if (y->color == RED)
|
|
{
|
|
par->color=BLACK;
|
|
y->color=BLACK;
|
|
leaf=par2;
|
|
leaf->color=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->left)
|
|
{
|
|
right_rotate(&root,par);
|
|
par=leaf;
|
|
}
|
|
par->color=BLACK;
|
|
par2->color=RED;
|
|
left_rotate(&root,par2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
root->color=BLACK;
|
|
test_rb_tree(root,root->parent);
|
|
return root;
|
|
}
|
|
|
|
|
|
SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
|
|
{
|
|
SEL_ARG *x,*w;
|
|
root->parent=0;
|
|
|
|
x= key;
|
|
while (x != root && x->color == SEL_ARG::BLACK)
|
|
{
|
|
if (x == par->left)
|
|
{
|
|
w=par->right;
|
|
if (w->color == SEL_ARG::RED)
|
|
{
|
|
w->color=SEL_ARG::BLACK;
|
|
par->color=SEL_ARG::RED;
|
|
left_rotate(&root,par);
|
|
w=par->right;
|
|
}
|
|
if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
|
|
{
|
|
w->color=SEL_ARG::RED;
|
|
x=par;
|
|
}
|
|
else
|
|
{
|
|
if (w->right->color == SEL_ARG::BLACK)
|
|
{
|
|
w->left->color=SEL_ARG::BLACK;
|
|
w->color=SEL_ARG::RED;
|
|
right_rotate(&root,w);
|
|
w=par->right;
|
|
}
|
|
w->color=par->color;
|
|
par->color=SEL_ARG::BLACK;
|
|
w->right->color=SEL_ARG::BLACK;
|
|
left_rotate(&root,par);
|
|
x=root;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
w=par->left;
|
|
if (w->color == SEL_ARG::RED)
|
|
{
|
|
w->color=SEL_ARG::BLACK;
|
|
par->color=SEL_ARG::RED;
|
|
right_rotate(&root,par);
|
|
w=par->left;
|
|
}
|
|
if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
|
|
{
|
|
w->color=SEL_ARG::RED;
|
|
x=par;
|
|
}
|
|
else
|
|
{
|
|
if (w->left->color == SEL_ARG::BLACK)
|
|
{
|
|
w->right->color=SEL_ARG::BLACK;
|
|
w->color=SEL_ARG::RED;
|
|
left_rotate(&root,w);
|
|
w=par->left;
|
|
}
|
|
w->color=par->color;
|
|
par->color=SEL_ARG::BLACK;
|
|
w->left->color=SEL_ARG::BLACK;
|
|
right_rotate(&root,par);
|
|
x=root;
|
|
break;
|
|
}
|
|
}
|
|
par=x->parent;
|
|
}
|
|
x->color=SEL_ARG::BLACK;
|
|
return root;
|
|
}
|
|
|
|
|
|
/* Test that the proporties for a red-black tree holds */
|
|
|
|
#ifdef EXTRA_DEBUG
|
|
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
|
|
{
|
|
int count_l,count_r;
|
|
|
|
if (element == &null_element)
|
|
return 0; // Found end of tree
|
|
if (element->parent != parent)
|
|
{
|
|
sql_print_error("Wrong tree: Parent doesn't point at parent");
|
|
return -1;
|
|
}
|
|
if (element->color == SEL_ARG::RED &&
|
|
(element->left->color == SEL_ARG::RED ||
|
|
element->right->color == SEL_ARG::RED))
|
|
{
|
|
sql_print_error("Wrong tree: Found two red in a row");
|
|
return -1;
|
|
}
|
|
if (element->left == element->right && element->left != &null_element)
|
|
{ // Dummy test
|
|
sql_print_error("Wrong tree: Found right == left");
|
|
return -1;
|
|
}
|
|
count_l=test_rb_tree(element->left,element);
|
|
count_r=test_rb_tree(element->right,element);
|
|
if (count_l >= 0 && count_r >= 0)
|
|
{
|
|
if (count_l == count_r)
|
|
return count_l+(element->color == SEL_ARG::BLACK);
|
|
sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
|
|
count_l,count_r);
|
|
}
|
|
return -1; // Error, no more warnings
|
|
}
|
|
|
|
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
|
|
{
|
|
ulong count= 0;
|
|
for (root=root->first(); root ; root=root->next)
|
|
{
|
|
if (root->next_key_part)
|
|
{
|
|
if (root->next_key_part == key)
|
|
count++;
|
|
if (root->next_key_part->part < key->part)
|
|
count+=count_key_part_usage(root->next_key_part,key);
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
void SEL_ARG::test_use_count(SEL_ARG *root)
|
|
{
|
|
if (this == root && use_count != 1)
|
|
{
|
|
sql_print_error("Use_count: Wrong count %lu for root",use_count);
|
|
return;
|
|
}
|
|
if (this->type != SEL_ARG::KEY_RANGE)
|
|
return;
|
|
uint e_count=0;
|
|
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
|
{
|
|
e_count++;
|
|
if (pos->next_key_part)
|
|
{
|
|
ulong count=count_key_part_usage(root,pos->next_key_part);
|
|
if (count > pos->next_key_part->use_count)
|
|
{
|
|
sql_print_error("Use_count: Wrong count for key at %lx, %lu should be %lu",
|
|
pos,pos->next_key_part->use_count,count);
|
|
return;
|
|
}
|
|
pos->next_key_part->test_use_count(root);
|
|
}
|
|
}
|
|
if (e_count != elements)
|
|
sql_print_error("Wrong use count: %u for tree at %lx", e_count,
|
|
(gptr) this);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
** Check how many records we will find by using the found tree
|
|
*****************************************************************************/
|
|
|
|
static ha_rows
|
|
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
|
|
{
|
|
ha_rows records;
|
|
DBUG_ENTER("check_quick_select");
|
|
|
|
if (!tree)
|
|
DBUG_RETURN(HA_POS_ERROR); // Can't use it
|
|
if (tree->type == SEL_ARG::IMPOSSIBLE)
|
|
DBUG_RETURN(0L); // Impossible select. return
|
|
if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
|
|
DBUG_RETURN(HA_POS_ERROR); // Don't use tree
|
|
param->max_key_part=0;
|
|
records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
|
|
if (records != HA_POS_ERROR)
|
|
{
|
|
uint key=param->real_keynr[idx];
|
|
param->table->quick_keys|= (key_map) 1 << key;
|
|
param->table->quick_rows[key]=records;
|
|
param->table->quick_key_parts[key]=param->max_key_part+1;
|
|
}
|
|
DBUG_RETURN(records);
|
|
}
|
|
|
|
|
|
static ha_rows
|
|
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
|
|
char *min_key,uint min_key_flag, char *max_key,
|
|
uint max_key_flag)
|
|
{
|
|
ha_rows records=0,tmp;
|
|
|
|
param->max_key_part=max(param->max_key_part,key_tree->part);
|
|
if (key_tree->left != &null_element)
|
|
{
|
|
records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
|
|
max_key,max_key_flag);
|
|
if (records == HA_POS_ERROR) // Impossible
|
|
return records;
|
|
}
|
|
|
|
uint tmp_min_flag,tmp_max_flag,keynr;
|
|
char *tmp_min_key=min_key,*tmp_max_key=max_key;
|
|
|
|
key_tree->store(param->key[idx][key_tree->part].part_length,
|
|
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
|
|
uint min_key_length= (uint) (tmp_min_key- param->min_key);
|
|
uint max_key_length= (uint) (tmp_max_key- param->max_key);
|
|
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
{ // const key as prefix
|
|
if (min_key_length == max_key_length &&
|
|
!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
|
|
!key_tree->min_flag && !key_tree->max_flag)
|
|
{
|
|
tmp=check_quick_keys(param,idx,key_tree->next_key_part,
|
|
tmp_min_key, min_key_flag | key_tree->min_flag,
|
|
tmp_max_key, max_key_flag | key_tree->max_flag);
|
|
goto end; // Ugly, but efficient
|
|
}
|
|
tmp_min_flag=key_tree->min_flag;
|
|
tmp_max_flag=key_tree->max_flag;
|
|
if (!tmp_min_flag)
|
|
key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
|
|
&tmp_min_flag);
|
|
if (!tmp_max_flag)
|
|
key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
|
|
&tmp_max_flag);
|
|
min_key_length= (uint) (tmp_min_key- param->min_key);
|
|
max_key_length= (uint) (tmp_max_key- param->max_key);
|
|
}
|
|
else
|
|
{
|
|
tmp_min_flag=min_key_flag | key_tree->min_flag;
|
|
tmp_max_flag=max_key_flag | key_tree->max_flag;
|
|
}
|
|
|
|
keynr=param->real_keynr[idx];
|
|
if (!tmp_min_flag && ! tmp_max_flag &&
|
|
(uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
|
|
(param->table->key_info[keynr].flags & HA_NOSAME) &&
|
|
min_key_length == max_key_length &&
|
|
!memcmp(param->min_key,param->max_key,min_key_length))
|
|
tmp=1; // Max one record
|
|
else
|
|
tmp=param->table->file->
|
|
records_in_range((int) keynr,
|
|
(byte*) (!min_key_length ? NullS :
|
|
param->min_key),
|
|
min_key_length,
|
|
(tmp_min_flag & NEAR_MIN ?
|
|
HA_READ_AFTER_KEY : HA_READ_KEY_EXACT),
|
|
(byte*) (!max_key_length ? NullS :
|
|
param->max_key),
|
|
max_key_length,
|
|
(tmp_max_flag & NEAR_MAX ?
|
|
HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY));
|
|
end:
|
|
if (tmp == HA_POS_ERROR) // Impossible range
|
|
return tmp;
|
|
records+=tmp;
|
|
if (key_tree->right != &null_element)
|
|
{
|
|
tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
|
|
max_key,max_key_flag);
|
|
if (tmp == HA_POS_ERROR)
|
|
return tmp;
|
|
records+=tmp;
|
|
}
|
|
return records;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
** change a tree to a structure to be used by quick_select
|
|
** This uses it's own malloc tree
|
|
****************************************************************************/
|
|
|
|
static QUICK_SELECT *
|
|
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree)
|
|
{
|
|
QUICK_SELECT *quick;
|
|
DBUG_ENTER("get_quick_select");
|
|
if ((quick=new QUICK_SELECT(param->table,param->real_keynr[idx])))
|
|
{
|
|
if (quick->error ||
|
|
get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
|
|
param->max_key,0))
|
|
{
|
|
delete quick;
|
|
quick=0;
|
|
}
|
|
else
|
|
{
|
|
quick->key_parts=(KEY_PART*)
|
|
memdup_root(&quick->alloc,(char*) param->key[idx],
|
|
sizeof(KEY_PART)*
|
|
param->table->key_info[param->real_keynr[idx]].key_parts);
|
|
}
|
|
}
|
|
DBUG_RETURN(quick);
|
|
}
|
|
|
|
|
|
/*
|
|
** Fix this to get all possible sub_ranges
|
|
*/
|
|
|
|
static bool
|
|
get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
|
|
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
|
|
char *max_key, uint max_key_flag)
|
|
{
|
|
QUICK_RANGE *range;
|
|
uint flag;
|
|
|
|
if (key_tree->left != &null_element)
|
|
{
|
|
if (get_quick_keys(param,quick,key,key_tree->left,
|
|
min_key,min_key_flag, max_key, max_key_flag))
|
|
return 1;
|
|
}
|
|
char *tmp_min_key=min_key,*tmp_max_key=max_key;
|
|
key_tree->store(key[key_tree->part].part_length,
|
|
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
|
|
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
{ // const key as prefix
|
|
if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
|
|
memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
|
|
key_tree->min_flag || key_tree->max_flag))
|
|
{
|
|
if (get_quick_keys(param,quick,key,key_tree->next_key_part,
|
|
tmp_min_key, min_key_flag | key_tree->min_flag,
|
|
tmp_max_key, max_key_flag | key_tree->max_flag))
|
|
return 1;
|
|
goto end; // Ugly, but efficient
|
|
}
|
|
{
|
|
uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
|
|
if (!tmp_min_flag)
|
|
key_tree->next_key_part->store_min_key(key, &tmp_min_key,
|
|
&tmp_min_flag);
|
|
if (!tmp_max_flag)
|
|
key_tree->next_key_part->store_max_key(key, &tmp_max_key,
|
|
&tmp_max_flag);
|
|
flag=tmp_min_flag | tmp_max_flag;
|
|
}
|
|
}
|
|
else
|
|
flag=key_tree->min_flag | key_tree->max_flag;
|
|
|
|
/* Ensure that some part of min_key and max_key are used. If not,
|
|
regard this as no lower/upper range */
|
|
if (tmp_min_key != param->min_key)
|
|
flag&= ~NO_MIN_RANGE;
|
|
else
|
|
flag|= NO_MIN_RANGE;
|
|
if (tmp_max_key != param->max_key)
|
|
flag&= ~NO_MAX_RANGE;
|
|
else
|
|
flag|= NO_MAX_RANGE;
|
|
|
|
if (flag == 0)
|
|
{
|
|
uint length= (uint) (tmp_min_key - param->min_key);
|
|
if (length == (uint) (tmp_max_key - param->max_key) &&
|
|
!memcmp(param->min_key,param->max_key,length))
|
|
{
|
|
KEY *table_key=quick->head->key_info+quick->index;
|
|
flag=EQ_RANGE;
|
|
if (table_key->flags & HA_NOSAME && key->part == table_key->key_parts-1)
|
|
{
|
|
if (!(table_key->flags & HA_NULL_PART_KEY) ||
|
|
!null_part_in_key(key,
|
|
param->min_key,
|
|
(uint) (tmp_min_key - param->min_key)))
|
|
flag|= UNIQUE_RANGE;
|
|
else
|
|
flag|= NULL_RANGE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Get range for retrieving rows in QUICK_SELECT::get_next */
|
|
range= new QUICK_RANGE(param->min_key,
|
|
(uint) (tmp_min_key - param->min_key),
|
|
param->max_key,
|
|
(uint) (tmp_max_key - param->max_key),
|
|
flag);
|
|
set_if_bigger(quick->max_used_key_length,range->min_length);
|
|
set_if_bigger(quick->max_used_key_length,range->max_length);
|
|
if (!range) // Not enough memory
|
|
return 1;
|
|
quick->ranges.push_back(range);
|
|
|
|
end:
|
|
if (key_tree->right != &null_element)
|
|
return get_quick_keys(param,quick,key,key_tree->right,
|
|
min_key,min_key_flag,
|
|
max_key,max_key_flag);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Return 1 if there is only one range and this uses the whole primary key
|
|
*/
|
|
|
|
bool QUICK_SELECT::unique_key_range()
|
|
{
|
|
if (ranges.elements == 1)
|
|
{
|
|
QUICK_RANGE *tmp;
|
|
if (((tmp=ranges.head())->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
|
|
{
|
|
KEY *key=head->key_info+index;
|
|
return ((key->flags & HA_NOSAME) &&
|
|
key->key_length == tmp->min_length);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Returns true if any part of the key is NULL */
|
|
|
|
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
|
|
{
|
|
for (const char *end=key+length ;
|
|
key < end;
|
|
key+= key_part++->part_length)
|
|
{
|
|
if (key_part->null_bit)
|
|
{
|
|
if (*key++)
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************
|
|
** Create a QUICK RANGE based on a key
|
|
****************************************************************************/
|
|
|
|
QUICK_SELECT *get_quick_select_for_ref(TABLE *table, TABLE_REF *ref)
|
|
{
|
|
table->file->index_end(); // Remove old cursor
|
|
QUICK_SELECT *quick=new QUICK_SELECT(table, ref->key, 1);
|
|
KEY *key_info = &table->key_info[ref->key];
|
|
KEY_PART *key_part;
|
|
uint part;
|
|
|
|
if (!quick)
|
|
return 0;
|
|
QUICK_RANGE *range= new QUICK_RANGE();
|
|
if (!range || cp_buffer_from_ref(ref))
|
|
goto err;
|
|
range->min_key=range->max_key=(char*) ref->key_buff;
|
|
range->min_length=range->max_length=ref->key_length;
|
|
range->flag= ((ref->key_length == key_info->key_length &&
|
|
(key_info->flags & HA_NOSAME)) ? EQ_RANGE : 0);
|
|
|
|
if (!(quick->key_parts=key_part=(KEY_PART *)
|
|
alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
|
|
goto err;
|
|
|
|
for (part=0 ; part < ref->key_parts ;part++,key_part++)
|
|
{
|
|
key_part->part=part;
|
|
key_part->field= key_info->key_part[part].field;
|
|
key_part->part_length= key_info->key_part[part].length;
|
|
if (key_part->field->type() == FIELD_TYPE_BLOB)
|
|
key_part->part_length+=HA_KEY_BLOB_LENGTH;
|
|
key_part->null_bit= key_info->key_part[part].null_bit;
|
|
}
|
|
if (!quick->ranges.push_back(range))
|
|
return quick;
|
|
|
|
err:
|
|
delete quick;
|
|
return 0;
|
|
}
|
|
|
|
/* get next possible record using quick-struct */
|
|
|
|
int QUICK_SELECT::get_next()
|
|
{
|
|
DBUG_ENTER("get_next");
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
if (range)
|
|
{ // Already read through key
|
|
result=((range->flag & EQ_RANGE) ?
|
|
file->index_next_same(record, (byte*) range->min_key,
|
|
range->min_length) :
|
|
file->index_next(record));
|
|
if (!result)
|
|
{
|
|
if (!cmp_next(*it.ref()))
|
|
DBUG_RETURN(0);
|
|
}
|
|
else if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (!(range=it++))
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
|
|
if (range->flag & NO_MIN_RANGE) // Read first record
|
|
{
|
|
int local_error;
|
|
if ((local_error=file->index_first(record)))
|
|
DBUG_RETURN(local_error); // Empty table
|
|
if (cmp_next(range) == 0)
|
|
DBUG_RETURN(0);
|
|
range=0; // No matching records; go to next range
|
|
continue;
|
|
}
|
|
if ((result = file->index_read(record,(byte*) range->min_key,
|
|
range->min_length,
|
|
((range->flag & NEAR_MIN) ?
|
|
HA_READ_AFTER_KEY:
|
|
(range->flag & EQ_RANGE) ?
|
|
HA_READ_KEY_EXACT :
|
|
HA_READ_KEY_OR_NEXT))))
|
|
|
|
{
|
|
if (result != HA_ERR_KEY_NOT_FOUND)
|
|
DBUG_RETURN(result);
|
|
range=0; // Not found, to next range
|
|
continue;
|
|
}
|
|
if (cmp_next(range) == 0)
|
|
{
|
|
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
|
|
range=0; // Stop searching
|
|
DBUG_RETURN(0); // Found key is in range
|
|
}
|
|
range=0; // To next range
|
|
}
|
|
}
|
|
|
|
/* compare if found key is over max-value */
|
|
/* Returns 0 if key <= range->max_key */
|
|
|
|
int QUICK_SELECT::cmp_next(QUICK_RANGE *range_arg)
|
|
{
|
|
if (range_arg->flag & NO_MAX_RANGE)
|
|
return 0; /* key can't be to large */
|
|
|
|
KEY_PART *key_part=key_parts;
|
|
for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
|
|
key < end;
|
|
key+= key_part++->part_length)
|
|
{
|
|
int cmp;
|
|
if (key_part->null_bit)
|
|
{
|
|
if (*key++)
|
|
{
|
|
if (!key_part->field->is_null())
|
|
return 1;
|
|
continue;
|
|
}
|
|
else if (key_part->field->is_null())
|
|
return 0;
|
|
}
|
|
if ((cmp=key_part->field->key_cmp((byte*) key, key_part->part_length)) < 0)
|
|
return 0;
|
|
if (cmp > 0)
|
|
return 1;
|
|
}
|
|
return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match
|
|
}
|
|
|
|
|
|
/*
|
|
This is a hack: we inherit from QUICK_SELECT so that we can use the
|
|
get_next() interface, but we have to hold a pointer to the original
|
|
QUICK_SELECT because its data are used all over the place. What
|
|
should be done is to factor out the data that is needed into a base
|
|
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
|
|
which handle the ranges and implement the get_next() function. But
|
|
for now, this seems to work right at least.
|
|
*/
|
|
|
|
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_SELECT *q, uint used_key_parts)
|
|
: QUICK_SELECT(*q), rev_it(rev_ranges)
|
|
{
|
|
bool not_read_after_key = file->table_flags() & HA_NOT_READ_AFTER_KEY;
|
|
QUICK_RANGE *r;
|
|
|
|
it.rewind();
|
|
for (r = it++; r; r = it++)
|
|
{
|
|
rev_ranges.push_front(r);
|
|
if (not_read_after_key && range_reads_after_key(r) ||
|
|
test_if_null_range(r,used_key_parts))
|
|
{
|
|
it.rewind(); // Reset range
|
|
error = HA_ERR_UNSUPPORTED;
|
|
dont_free=1; // Don't free memory from 'q'
|
|
return;
|
|
}
|
|
}
|
|
/* Remove EQ_RANGE flag for keys that are not using the full key */
|
|
for (r = rev_it++; r; r = rev_it++)
|
|
{
|
|
if ((r->flag & EQ_RANGE) &&
|
|
head->key_info[index].key_length != r->max_length)
|
|
r->flag&= ~EQ_RANGE;
|
|
}
|
|
rev_it.rewind();
|
|
q->dont_free=1; // Don't free shared mem
|
|
delete q;
|
|
}
|
|
|
|
|
|
int QUICK_SELECT_DESC::get_next()
|
|
{
|
|
DBUG_ENTER("QUICK_SELECT_DESC::get_next");
|
|
|
|
/* The max key is handled as follows:
|
|
* - if there is NO_MAX_RANGE, start at the end and move backwards
|
|
* - if it is an EQ_RANGE, which means that max key covers the entire
|
|
* key, go directly to the key and read through it (sorting backwards is
|
|
* same as sorting forwards)
|
|
* - if it is NEAR_MAX, go to the key or next, step back once, and
|
|
* move backwards
|
|
* - otherwise (not NEAR_MAX == include the key), go after the key,
|
|
* step back once, and move backwards
|
|
*/
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
if (range)
|
|
{ // Already read through key
|
|
result = ((range->flag & EQ_RANGE)
|
|
? file->index_next_same(record, (byte*) range->min_key,
|
|
range->min_length) :
|
|
file->index_prev(record));
|
|
if (!result)
|
|
{
|
|
if (cmp_prev(*rev_it.ref()) == 0)
|
|
DBUG_RETURN(0);
|
|
}
|
|
else if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (!(range=rev_it++))
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
|
|
|
|
if (range->flag & NO_MAX_RANGE) // Read last record
|
|
{
|
|
int local_error;
|
|
if ((local_error=file->index_last(record)))
|
|
DBUG_RETURN(local_error); // Empty table
|
|
if (cmp_prev(range) == 0)
|
|
DBUG_RETURN(0);
|
|
range=0; // No matching records; go to next range
|
|
continue;
|
|
}
|
|
|
|
if (range->flag & EQ_RANGE)
|
|
{
|
|
result = file->index_read(record, (byte*) range->max_key,
|
|
range->max_length, HA_READ_KEY_EXACT);
|
|
}
|
|
else
|
|
{
|
|
/* Heikki changed Sept 11, 2002: since InnoDB does not store the cursor
|
|
position if READ_KEY_EXACT is used to a primary key with all
|
|
key columns specified, we must use below HA_READ_KEY_OR_NEXT,
|
|
so that InnoDB stores the cursor position and is able to move
|
|
the cursor one step backward after the search. */
|
|
|
|
DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
|
|
/* Note: even if max_key is only a prefix, HA_READ_AFTER_KEY will
|
|
* do the right thing - go past all keys which match the prefix */
|
|
result=file->index_read(record, (byte*) range->max_key,
|
|
range->max_length,
|
|
((range->flag & NEAR_MAX) ?
|
|
HA_READ_KEY_OR_NEXT : HA_READ_AFTER_KEY));
|
|
result = file->index_prev(record);
|
|
}
|
|
if (result)
|
|
{
|
|
if (result != HA_ERR_KEY_NOT_FOUND)
|
|
DBUG_RETURN(result);
|
|
range=0; // Not found, to next range
|
|
continue;
|
|
}
|
|
if (cmp_prev(range) == 0)
|
|
{
|
|
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
|
|
range = 0; // Stop searching
|
|
DBUG_RETURN(0); // Found key is in range
|
|
}
|
|
range = 0; // To next range
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Returns 0 if found key is inside range (found key >= range->min_key).
|
|
*/
|
|
|
|
int QUICK_SELECT_DESC::cmp_prev(QUICK_RANGE *range_arg)
|
|
{
|
|
if (range_arg->flag & NO_MIN_RANGE)
|
|
return 0; /* key can't be to small */
|
|
|
|
KEY_PART *key_part = key_parts;
|
|
for (char *key = range_arg->min_key, *end = key + range_arg->min_length;
|
|
key < end;
|
|
key += key_part++->part_length)
|
|
{
|
|
int cmp;
|
|
if (key_part->null_bit)
|
|
{
|
|
// this key part allows null values; NULL is lower than everything else
|
|
if (*key++)
|
|
{
|
|
// the range is expecting a null value
|
|
if (!key_part->field->is_null())
|
|
return 0; // not null -- still inside the range
|
|
continue; // null -- exact match, go to next key part
|
|
}
|
|
else if (key_part->field->is_null())
|
|
return 1; // null -- outside the range
|
|
}
|
|
if ((cmp = key_part->field->key_cmp((byte*) key,
|
|
key_part->part_length)) > 0)
|
|
return 0;
|
|
if (cmp < 0)
|
|
return 1;
|
|
}
|
|
return (range_arg->flag & NEAR_MIN) ? 1 : 0; // Exact match
|
|
}
|
|
|
|
|
|
/*
|
|
* True if this range will require using HA_READ_AFTER_KEY
|
|
See comment in get_next() about this
|
|
*/
|
|
|
|
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
|
|
{
|
|
return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
|
|
!(range_arg->flag & EQ_RANGE) ||
|
|
head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
|
|
}
|
|
|
|
|
|
/* True if we are reading over a key that may have a NULL value */
|
|
|
|
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
|
|
uint used_key_parts)
|
|
{
|
|
uint offset,end;
|
|
KEY_PART *key_part = key_parts,
|
|
*key_part_end= key_part+used_key_parts;
|
|
|
|
for (offset= 0, end = min(range_arg->min_length, range_arg->max_length) ;
|
|
offset < end && key_part != key_part_end ;
|
|
offset += key_part++->part_length)
|
|
{
|
|
uint null_length=test(key_part->null_bit);
|
|
if (!memcmp((char*) range_arg->min_key+offset,
|
|
(char*) range_arg->max_key+offset,
|
|
key_part->part_length + null_length))
|
|
{
|
|
offset+=null_length;
|
|
continue;
|
|
}
|
|
if (null_length && range_arg->min_key[offset])
|
|
return 1; // min_key is null and max_key isn't
|
|
// Range doesn't cover NULL. This is ok if there is no more null parts
|
|
break;
|
|
}
|
|
/*
|
|
If the next min_range is > NULL, then we can use this, even if
|
|
it's a NULL key
|
|
Example: SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;
|
|
|
|
*/
|
|
if (key_part != key_part_end && key_part->null_bit)
|
|
{
|
|
if (offset >= range_arg->min_length || range_arg->min_key[offset])
|
|
return 1; // Could be null
|
|
key_part++;
|
|
}
|
|
/*
|
|
If any of the key parts used in the ORDER BY could be NULL, we can't
|
|
use the key to sort the data.
|
|
*/
|
|
for (; key_part != key_part_end ; key_part++)
|
|
if (key_part->null_bit)
|
|
return 1; // Covers null part
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
** Print a quick range for debugging
|
|
** TODO:
|
|
** This should be changed to use a String to store each row instead
|
|
** of locking the DEBUG stream !
|
|
*****************************************************************************/
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
static void
|
|
print_key(KEY_PART *key_part,const char *key,uint used_length)
|
|
{
|
|
char buff[1024];
|
|
String tmp(buff,sizeof(buff));
|
|
|
|
for (uint length=0;
|
|
length < used_length ;
|
|
length+=key_part->part_length, key+=key_part->part_length, key_part++)
|
|
{
|
|
Field *field=key_part->field;
|
|
if (length != 0)
|
|
fputc('/',DBUG_FILE);
|
|
if (field->real_maybe_null())
|
|
{
|
|
length++; // null byte is not in part_length
|
|
if (*key++)
|
|
{
|
|
fwrite("NULL",sizeof(char),4,DBUG_FILE);
|
|
continue;
|
|
}
|
|
}
|
|
field->set_key_image((char*) key,key_part->part_length -
|
|
((field->type() == FIELD_TYPE_BLOB) ?
|
|
HA_KEY_BLOB_LENGTH : 0));
|
|
field->val_str(&tmp,&tmp);
|
|
fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
|
|
}
|
|
}
|
|
|
|
static void print_quick(QUICK_SELECT *quick,key_map needed_reg)
|
|
{
|
|
QUICK_RANGE *range;
|
|
DBUG_ENTER("print_param");
|
|
if (! _db_on_ || !quick)
|
|
DBUG_VOID_RETURN;
|
|
|
|
List_iterator<QUICK_RANGE> li(quick->ranges);
|
|
DBUG_LOCK_FILE;
|
|
fprintf(DBUG_FILE,"Used quick_range on key: %d (other_keys: %lu):\n",
|
|
quick->index, (ulong) needed_reg);
|
|
while ((range=li++))
|
|
{
|
|
if (!(range->flag & NO_MIN_RANGE))
|
|
{
|
|
print_key(quick->key_parts,range->min_key,range->min_length);
|
|
if (range->flag & NEAR_MIN)
|
|
fputs(" < ",DBUG_FILE);
|
|
else
|
|
fputs(" <= ",DBUG_FILE);
|
|
}
|
|
fputs("X",DBUG_FILE);
|
|
|
|
if (!(range->flag & NO_MAX_RANGE))
|
|
{
|
|
if (range->flag & NEAR_MAX)
|
|
fputs(" < ",DBUG_FILE);
|
|
else
|
|
fputs(" <= ",DBUG_FILE);
|
|
print_key(quick->key_parts,range->max_key,range->max_length);
|
|
}
|
|
fputs("\n",DBUG_FILE);
|
|
}
|
|
DBUG_UNLOCK_FILE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*****************************************************************************
|
|
** Instansiate templates
|
|
*****************************************************************************/
|
|
|
|
#ifdef __GNUC__
|
|
template class List<QUICK_RANGE>;
|
|
template class List_iterator<QUICK_RANGE>;
|
|
#endif
|