mariadb/sql/item_cmpfunc.cc
Kristian Nielsen 16aa4b5f59 Merge from 10.4 to 10.5
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
2024-04-15 17:46:49 +02:00

7876 lines
213 KiB
C++

/* Copyright (c) 2000, 2013, Oracle and/or its affiliates.
Copyright (c) 2009, 2021, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
/**
@file
@brief
This file defines all compare functions
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mariadb.h"
#include "sql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"
#include "sql_parse.h" // check_stack_overrun
#include "sql_base.h" // dynamic_column_error_message
#define PCRE2_STATIC 1 /* Important on Windows */
#include "pcre2.h" /* pcre2 header file */
/*
Compare row signature of two expressions
SYNOPSIS:
cmp_row_type()
item1 the first expression
item2 the second expression
DESCRIPTION
The function checks that two expressions have compatible row signatures
i.e. that the number of columns they return are the same and that if they
are both row expressions then each component from the first expression has
a row signature compatible with the signature of the corresponding component
of the second expression.
RETURN VALUES
1 type incompatibility has been detected
0 otherwise
*/
static int cmp_row_type(Item* item1, Item* item2)
{
uint n= item1->cols();
if (item2->check_cols(n))
return 1;
for (uint i=0; i<n; i++)
{
if (item2->element_index(i)->check_cols(item1->element_index(i)->cols()) ||
(item1->element_index(i)->result_type() == ROW_RESULT &&
cmp_row_type(item1->element_index(i), item2->element_index(i))))
return 1;
}
return 0;
}
/**
Aggregates result types from the array of items.
This method aggregates comparison handler from the array of items.
The result handler is used later for comparison of values of these items.
aggregate_for_comparison()
funcname the function or operator name,
for error reporting
items array of items to aggregate the type from
nitems number of items in the array
int_uint_as_dec what to do when comparing INT to UINT:
set the comparison handler to decimal or int.
@retval true type incompatibility has been detected
@retval false otherwise
*/
bool
Type_handler_hybrid_field_type::aggregate_for_comparison(const char *funcname,
Item **items,
uint nitems,
bool int_uint_as_dec)
{
uint unsigned_count= items[0]->unsigned_flag;
/*
Convert sub-type to super-type (e.g. DATE to DATETIME, INT to BIGINT, etc).
Otherwise Predicant_to_list_comparator will treat sub-types of the same
super-type as different data types and won't be able to use bisection in
many cases.
*/
set_handler(items[0]->type_handler()->type_handler_for_comparison());
for (uint i= 1 ; i < nitems ; i++)
{
unsigned_count+= items[i]->unsigned_flag;
if (aggregate_for_comparison(items[i]->type_handler()->
type_handler_for_comparison()))
{
/*
For more precise error messages if aggregation failed on the first pair
{items[0],items[1]}, use the name of items[0]->data_handler().
Otherwise use the name of this->type_handler(), which is already a
result of aggregation for items[0]..items[i-1].
*/
my_error(ER_ILLEGAL_PARAMETER_DATA_TYPES2_FOR_OPERATION, MYF(0),
i == 1 ? items[0]->type_handler()->name().ptr() :
type_handler()->name().ptr(),
items[i]->type_handler()->name().ptr(),
funcname);
return true;
}
/*
When aggregating types of two row expressions we have to check
that they have the same cardinality and that each component
of the first row expression has a compatible row signature with
the signature of the corresponding component of the second row
expression.
*/
if (cmp_type() == ROW_RESULT && cmp_row_type(items[0], items[i]))
return true; // error found: invalid usage of rows
}
/**
If all arguments are of INT type but have different unsigned_flag values,
switch to DECIMAL_RESULT.
*/
if (int_uint_as_dec &&
cmp_type() == INT_RESULT &&
unsigned_count != nitems && unsigned_count != 0)
set_handler(&type_handler_newdecimal);
return 0;
}
/*
Collects different types for comparison of first item with each other items
SYNOPSIS
collect_cmp_types()
items Array of items to collect types from
nitems Number of items in the array
skip_nulls Don't collect types of NULL items if TRUE
DESCRIPTION
This function collects different result types for comparison of the first
item in the list with each of the remaining items in the 'items' array.
RETURN
0 - if row type incompatibility has been detected (see cmp_row_type)
Bitmap of collected types - otherwise
*/
static uint collect_cmp_types(Item **items, uint nitems, bool skip_nulls= FALSE)
{
uint i;
uint found_types;
Item_result left_cmp_type= items[0]->cmp_type();
DBUG_ASSERT(nitems > 1);
found_types= 0;
for (i= 1; i < nitems ; i++)
{
if (skip_nulls && items[i]->type() == Item::NULL_ITEM)
continue; // Skip NULL constant items
if ((left_cmp_type == ROW_RESULT ||
items[i]->cmp_type() == ROW_RESULT) &&
cmp_row_type(items[0], items[i]))
return 0;
found_types|= 1U << (uint) item_cmp_type(left_cmp_type, items[i]);
}
/*
Even if all right-hand items are NULLs and we are skipping them all, we need
at least one type bit in the found_type bitmask.
*/
if (skip_nulls && !found_types)
found_types= 1U << (uint) left_cmp_type;
return found_types;
}
/*
Test functions
Most of these returns 0LL if false and 1LL if true and
NULL if some arg is NULL.
*/
longlong Item_func_not::val_int()
{
DBUG_ASSERT(fixed == 1);
bool value= args[0]->val_bool();
null_value=args[0]->null_value;
return ((!null_value && value == 0) ? 1 : 0);
}
void Item_func_not::print(String *str, enum_query_type query_type)
{
str->append('!');
args[0]->print_parenthesised(str, query_type, precedence());
}
/**
special NOT for ALL subquery.
*/
longlong Item_func_not_all::val_int()
{
DBUG_ASSERT(fixed == 1);
bool value= args[0]->val_bool();
/*
return TRUE if there was records in underlying select in max/min
optimization (ALL subquery)
*/
if (empty_underlying_subquery())
return 1;
null_value= args[0]->null_value;
return ((!null_value && value == 0) ? 1 : 0);
}
bool Item_func_not_all::empty_underlying_subquery()
{
return ((test_sum_item && !test_sum_item->any_value()) ||
(test_sub_item && !test_sub_item->any_value()));
}
void Item_func_not_all::print(String *str, enum_query_type query_type)
{
if (show)
Item_func::print(str, query_type);
else
args[0]->print(str, query_type);
}
/**
Special NOP (No OPeration) for ALL subquery. It is like
Item_func_not_all.
@return
(return TRUE if underlying subquery do not return rows) but if subquery
returns some rows it return same value as argument (TRUE/FALSE).
*/
longlong Item_func_nop_all::val_int()
{
DBUG_ASSERT(fixed == 1);
longlong value= args[0]->val_int();
/*
return FALSE if there was records in underlying select in max/min
optimization (SAME/ANY subquery)
*/
if (empty_underlying_subquery())
return 0;
null_value= args[0]->null_value;
return (null_value || value == 0) ? 0 : 1;
}
/**
Convert a constant item to an int and replace the original item.
The function converts a constant expression or string to an integer.
On successful conversion the original item is substituted for the
result of the item evaluation.
This is done when comparing DATE/TIME of different formats and
also when comparing bigint to strings (in which case strings
are converted to bigints).
@param thd thread handle
@param field item will be converted using the type of this field
@param[in,out] item reference to the item to convert
@note
This function is called only at prepare stage.
As all derived tables are filled only after all derived tables
are prepared we do not evaluate items with subselects here because
they can contain derived tables and thus we may attempt to use a
table that has not been populated yet.
@retval
0 Can't convert item
@retval
1 Item was replaced with an integer version of the item
*/
static bool convert_const_to_int(THD *thd, Item_field *field_item,
Item **item)
{
Field *field= field_item->field;
int result= 0;
/*
We don't need to convert an integer to an integer,
pretend it's already converted.
But we still convert it if it is compared with a Field_year,
as YEAR(2) may change the value of an integer when converting it
to an integer (say, 0 to 70).
*/
if ((*item)->cmp_type() == INT_RESULT &&
field_item->field_type() != MYSQL_TYPE_YEAR)
return 1;
/*
Replace (*item) with its value if the item can be computed.
Do not replace items that contain aggregate functions:
There can be such items that are constants, e.g. COLLATION(AVG(123)),
but this function is called at Name Resolution phase.
Removing aggregate functions may confuse query plan generation code, e.g.
the optimizer might conclude that the query doesn't need to do grouping
at all.
*/
if ((*item)->const_item() && !(*item)->is_expensive() &&
!(*item)->with_sum_func())
{
TABLE *table= field->table;
Sql_mode_save sql_mode(thd);
Check_level_instant_set check_level_save(thd, CHECK_FIELD_IGNORE);
MY_BITMAP *old_maps[2] = { NULL, NULL };
ulonglong UNINIT_VAR(orig_field_val); /* original field value if valid */
/* table->read_set may not be set if we come here from a CREATE TABLE */
if (table && table->read_set)
dbug_tmp_use_all_columns(table, old_maps,
&table->read_set, &table->write_set);
/* For comparison purposes allow invalid dates like 2000-01-32 */
thd->variables.sql_mode= (thd->variables.sql_mode & ~MODE_NO_ZERO_DATE) |
MODE_INVALID_DATES;
/*
Store the value of the field/constant because the call to save_in_field
below overrides that value. Don't save field value if no data has been
read yet.
*/
bool save_field_value= (field_item->const_item() ||
!(field->table->status & STATUS_NO_RECORD));
if (save_field_value)
orig_field_val= field->val_int();
if (!(*item)->save_in_field(field, 1) && !field->is_null())
{
int field_cmp= 0;
// If item is a decimal value, we must reject it if it was truncated.
if (field->type() == MYSQL_TYPE_LONGLONG)
{
field_cmp= stored_field_cmp_to_item(thd, field, *item);
DBUG_PRINT("info", ("convert_const_to_int %d", field_cmp));
}
if (0 == field_cmp)
{
Item *tmp= new (thd->mem_root) Item_int_with_ref(thd, field->val_int(), *item,
MY_TEST(field->flags & UNSIGNED_FLAG));
if (tmp)
thd->change_item_tree(item, tmp);
result= 1; // Item was replaced
}
}
/* Restore the original field value. */
if (save_field_value)
{
result= field->store(orig_field_val, TRUE);
/* orig_field_val must be a valid value that can be restored back. */
DBUG_ASSERT(!result);
}
if (table && table->read_set)
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_maps);
}
return result;
}
/*
Make a special case of compare with fields to get nicer comparisons
of bigint numbers with constant string.
This directly contradicts the manual (number and a string should
be compared as doubles), but seems to provide more
"intuitive" behavior in some cases (but less intuitive in others).
*/
void Item_func::convert_const_compared_to_int_field(THD *thd)
{
DBUG_ASSERT(arg_count >= 2); // Item_func_nullif has arg_count == 3
if (!thd->lex->is_ps_or_view_context_analysis())
{
int field;
if (args[field= 0]->real_item()->type() == FIELD_ITEM ||
args[field= 1]->real_item()->type() == FIELD_ITEM)
{
Item_field *field_item= (Item_field*) (args[field]->real_item());
if (((field_item->field_type() == MYSQL_TYPE_LONGLONG &&
field_item->type_handler() != &type_handler_vers_trx_id) ||
field_item->field_type() == MYSQL_TYPE_YEAR))
convert_const_to_int(thd, field_item, &args[!field]);
}
}
}
/*
Comparison operators remove arguments' dependency on PAD_CHAR_TO_FULL_LENGTH
in case of PAD SPACE comparison collations: trailing spaces do not affect
the comparison result for such collations.
*/
Sql_mode_dependency
Item_bool_rowready_func2::value_depends_on_sql_mode() const
{
if (compare_collation()->state & MY_CS_NOPAD)
return Item_func::value_depends_on_sql_mode();
return ((args[0]->value_depends_on_sql_mode() |
args[1]->value_depends_on_sql_mode()) &
Sql_mode_dependency(~0, ~MODE_PAD_CHAR_TO_FULL_LENGTH)).
soft_to_hard();
}
bool Item_bool_rowready_func2::fix_length_and_dec()
{
THD *thd= current_thd;
max_length= 1; // Function returns 0 or 1
/*
As some compare functions are generated after sql_yacc,
we have to check for out of memory conditions here
*/
if (!args[0] || !args[1])
return FALSE;
convert_const_compared_to_int_field(thd);
Type_handler_hybrid_field_type tmp;
if (tmp.aggregate_for_comparison(func_name(), args, 2, false) ||
tmp.type_handler()->Item_bool_rowready_func2_fix_length_and_dec(thd,
this))
{
DBUG_ASSERT(thd->is_error());
return true;
}
return false;
}
/**
Prepare the comparator (set the comparison function) for comparing
items *a1 and *a2 in the context of 'type'.
@param[in] owner_arg Item, peforming the comparison (e.g. Item_func_eq)
@param[in,out] a1 first argument to compare
@param[in,out] a2 second argument to compare
@param[in] type type context to compare in
Both *a1 and *a2 can be replaced by this method - typically by constant
items, holding the cached converted value of the original (constant) item.
*/
int Arg_comparator::set_cmp_func(THD *thd, Item_func_or_sum *owner_arg,
const Type_handler *compare_handler,
Item **a1, Item **a2)
{
owner= owner_arg;
set_null= set_null && owner_arg;
a= a1;
b= a2;
m_compare_handler= compare_handler;
return m_compare_handler->set_comparator_func(this);
}
bool Arg_comparator::set_cmp_func_for_row_arguments()
{
THD *thd= current_thd;
uint n= (*a)->cols();
if (n != (*b)->cols())
{
my_error(ER_OPERAND_COLUMNS, MYF(0), n);
comparators= 0;
return true;
}
if (!(comparators= new Arg_comparator[n]))
return true;
for (uint i=0; i < n; i++)
{
if ((*a)->element_index(i)->cols() != (*b)->element_index(i)->cols())
{
my_error(ER_OPERAND_COLUMNS, MYF(0), (*a)->element_index(i)->cols());
return true;
}
if (comparators[i].set_cmp_func(thd, owner, (*a)->addr(i),
(*b)->addr(i), set_null))
return true;
}
return false;
}
bool Arg_comparator::set_cmp_func_row()
{
func= is_owner_equal_func() ? &Arg_comparator::compare_e_row :
&Arg_comparator::compare_row;
return set_cmp_func_for_row_arguments();
}
bool Arg_comparator::set_cmp_func_string()
{
THD *thd= current_thd;
func= is_owner_equal_func() ? &Arg_comparator::compare_e_string :
&Arg_comparator::compare_string;
if (compare_type() == STRING_RESULT &&
(*a)->result_type() == STRING_RESULT &&
(*b)->result_type() == STRING_RESULT)
{
/*
We must set cmp_collation here as we may be called from for an automatic
generated item, like in natural join.
Allow reinterpted superset as subset.
Use charset narrowing only for equalities, as that would allow
to construct ref access.
Non-equality comparisons with constants work without charset narrowing,
the constant gets converted.
Non-equality comparisons with non-constants would need narrowing to
enable range optimizer to handle e.g.
t1.mb3key_col <= const_table.mb4_col
But this doesn't look important.
*/
if (owner->agg_arg_charsets_for_comparison(&m_compare_collation, a, b))
return true;
if ((*a)->type() == Item::FUNC_ITEM &&
((Item_func *) (*a))->functype() == Item_func::JSON_EXTRACT_FUNC)
{
func= is_owner_equal_func() ? &Arg_comparator::compare_e_json_str:
&Arg_comparator::compare_json_str;
return 0;
}
else if ((*b)->type() == Item::FUNC_ITEM &&
((Item_func *) (*b))->functype() == Item_func::JSON_EXTRACT_FUNC)
{
func= is_owner_equal_func() ? &Arg_comparator::compare_e_json_str:
&Arg_comparator::compare_str_json;
return 0;
}
}
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
return false;
}
bool Arg_comparator::set_cmp_func_time()
{
THD *thd= current_thd;
m_compare_collation= &my_charset_numeric;
func= is_owner_equal_func() ? &Arg_comparator::compare_e_time :
&Arg_comparator::compare_time;
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
return false;
}
bool Arg_comparator::set_cmp_func_datetime()
{
THD *thd= current_thd;
m_compare_collation= &my_charset_numeric;
func= is_owner_equal_func() ? &Arg_comparator::compare_e_datetime :
&Arg_comparator::compare_datetime;
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
return false;
}
bool Arg_comparator::set_cmp_func_native()
{
THD *thd= current_thd;
m_compare_collation= &my_charset_numeric;
func= is_owner_equal_func() ? &Arg_comparator::compare_e_native :
&Arg_comparator::compare_native;
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
return false;
}
bool Arg_comparator::set_cmp_func_int()
{
THD *thd= current_thd;
func= is_owner_equal_func() ? &Arg_comparator::compare_e_int :
&Arg_comparator::compare_int_signed;
if ((*a)->field_type() == MYSQL_TYPE_YEAR &&
(*b)->field_type() == MYSQL_TYPE_YEAR)
{
func= is_owner_equal_func() ? &Arg_comparator::compare_e_datetime :
&Arg_comparator::compare_datetime;
}
else if (func == &Arg_comparator::compare_int_signed)
{
if ((*a)->unsigned_flag)
func= (((*b)->unsigned_flag)?
&Arg_comparator::compare_int_unsigned :
&Arg_comparator::compare_int_unsigned_signed);
else if ((*b)->unsigned_flag)
func= &Arg_comparator::compare_int_signed_unsigned;
}
else if (func== &Arg_comparator::compare_e_int)
{
if ((*a)->unsigned_flag ^ (*b)->unsigned_flag)
func= &Arg_comparator::compare_e_int_diff_signedness;
}
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
return false;
}
bool Arg_comparator::set_cmp_func_real()
{
if ((((*a)->result_type() == DECIMAL_RESULT && !(*a)->const_item() &&
(*b)->result_type() == STRING_RESULT && (*b)->const_item()) ||
((*b)->result_type() == DECIMAL_RESULT && !(*b)->const_item() &&
(*a)->result_type() == STRING_RESULT && (*a)->const_item())))
{
/*
<non-const decimal expression> <cmp> <const string expression>
or
<const string expression> <cmp> <non-const decimal expression>
Do comparison as decimal rather than float, in order not to lose precision.
*/
m_compare_handler= &type_handler_newdecimal;
return set_cmp_func_decimal();
}
THD *thd= current_thd;
func= is_owner_equal_func() ? &Arg_comparator::compare_e_real :
&Arg_comparator::compare_real;
if ((*a)->decimals < NOT_FIXED_DEC && (*b)->decimals < NOT_FIXED_DEC)
{
precision= 5 / log_10[MY_MAX((*a)->decimals, (*b)->decimals) + 1];
if (func == &Arg_comparator::compare_real)
func= &Arg_comparator::compare_real_fixed;
else if (func == &Arg_comparator::compare_e_real)
func= &Arg_comparator::compare_e_real_fixed;
}
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
return false;
}
bool Arg_comparator::set_cmp_func_decimal()
{
THD *thd= current_thd;
func= is_owner_equal_func() ? &Arg_comparator::compare_e_decimal :
&Arg_comparator::compare_decimal;
a= cache_converted_constant(thd, a, &a_cache, compare_type_handler());
b= cache_converted_constant(thd, b, &b_cache, compare_type_handler());
return false;
}
/**
Convert and cache a constant.
@param value [in] An item to cache
@param cache_item [out] Placeholder for the cache item
@param type [in] Comparison type
@details
When given item is a constant and its type differs from comparison type
then cache its value to avoid type conversion of this constant on each
evaluation. In this case the value is cached and the reference to the cache
is returned.
Original value is returned otherwise.
@return cache item or original value.
*/
Item** Arg_comparator::cache_converted_constant(THD *thd_arg, Item **value,
Item **cache_item,
const Type_handler *handler)
{
/*
Don't need cache if doing context analysis only.
*/
if (!thd_arg->lex->is_ps_or_view_context_analysis() &&
(*value)->const_item() &&
handler->type_handler_for_comparison() !=
(*value)->type_handler_for_comparison())
{
Item_cache *cache= handler->Item_get_cache(thd_arg, *value);
cache->setup(thd_arg, *value);
*cache_item= cache;
return cache_item;
}
return value;
}
int Arg_comparator::compare_time()
{
THD *thd= current_thd;
longlong val1= (*a)->val_time_packed(thd);
if (!(*a)->null_value)
{
longlong val2= (*b)->val_time_packed(thd);
if (!(*b)->null_value)
return compare_not_null_values(val1, val2);
}
if (set_null)
owner->null_value= true;
return -1;
}
int Arg_comparator::compare_e_time()
{
THD *thd= current_thd;
longlong val1= (*a)->val_time_packed(thd);
longlong val2= (*b)->val_time_packed(thd);
if ((*a)->null_value || (*b)->null_value)
return MY_TEST((*a)->null_value && (*b)->null_value);
return MY_TEST(val1 == val2);
}
int Arg_comparator::compare_datetime()
{
THD *thd= current_thd;
longlong val1= (*a)->val_datetime_packed(thd);
if (!(*a)->null_value)
{
longlong val2= (*b)->val_datetime_packed(thd);
if (!(*b)->null_value)
return compare_not_null_values(val1, val2);
}
if (set_null)
owner->null_value= true;
return -1;
}
int Arg_comparator::compare_e_datetime()
{
THD *thd= current_thd;
longlong val1= (*a)->val_datetime_packed(thd);
longlong val2= (*b)->val_datetime_packed(thd);
if ((*a)->null_value || (*b)->null_value)
return MY_TEST((*a)->null_value && (*b)->null_value);
return MY_TEST(val1 == val2);
}
int Arg_comparator::compare_string()
{
String *res1,*res2;
if ((res1= (*a)->val_str(&value1)))
{
if ((res2= (*b)->val_str(&value2)))
{
if (set_null)
owner->null_value= 0;
return sortcmp(res1, res2, compare_collation());
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
/**
Compare strings, but take into account that NULL == NULL.
*/
int Arg_comparator::compare_e_string()
{
String *res1,*res2;
res1= (*a)->val_str(&value1);
DBUG_ASSERT((res1 == NULL) == (*a)->null_value);
res2= (*b)->val_str(&value2);
DBUG_ASSERT((res2 == NULL) == (*b)->null_value);
if (!res1 || !res2)
return MY_TEST(res1 == res2);
return MY_TEST(sortcmp(res1, res2, compare_collation()) == 0);
}
int Arg_comparator::compare_native()
{
THD *thd= current_thd;
if (!(*a)->val_native_with_conversion(thd, &m_native1,
compare_type_handler()))
{
if (!(*b)->val_native_with_conversion(thd, &m_native2,
compare_type_handler()))
{
if (set_null)
owner->null_value= 0;
return compare_type_handler()->cmp_native(m_native1, m_native2);
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
int Arg_comparator::compare_e_native()
{
THD *thd= current_thd;
bool res1= (*a)->val_native_with_conversion(thd, &m_native1,
compare_type_handler());
bool res2= (*b)->val_native_with_conversion(thd, &m_native2,
compare_type_handler());
if (res1 || res2)
return MY_TEST(res1 == res2);
return MY_TEST(compare_type_handler()->cmp_native(m_native1, m_native2) == 0);
}
int Arg_comparator::compare_real()
{
/*
Fix yet another manifestation of Bug#2338. 'Volatile' will instruct
gcc to flush double values out of 80-bit Intel FPU registers before
performing the comparison.
*/
volatile double val1, val2;
val1= (*a)->val_real();
if (!(*a)->null_value)
{
val2= (*b)->val_real();
if (!(*b)->null_value)
{
if (set_null)
owner->null_value= 0;
if (val1 < val2) return -1;
if (val1 == val2) return 0;
return 1;
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
int Arg_comparator::compare_decimal()
{
VDec val1(*a);
if (!val1.is_null())
{
VDec val2(*b);
if (!val2.is_null())
{
if (set_null)
owner->null_value= 0;
val1.round_self_if_needed((*a)->decimals, HALF_UP);
val2.round_self_if_needed((*b)->decimals, HALF_UP);
return val1.cmp(val2);
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
int Arg_comparator::compare_e_real()
{
double val1= (*a)->val_real();
double val2= (*b)->val_real();
if ((*a)->null_value || (*b)->null_value)
return MY_TEST((*a)->null_value && (*b)->null_value);
return MY_TEST(val1 == val2);
}
int Arg_comparator::compare_e_decimal()
{
VDec val1(*a), val2(*b);
if (val1.is_null() || val2.is_null())
return MY_TEST(val1.is_null() && val2.is_null());
val1.round_self_if_needed((*a)->decimals, HALF_UP);
val2.round_self_if_needed((*b)->decimals, HALF_UP);
return MY_TEST(val1.cmp(val2) == 0);
}
int Arg_comparator::compare_real_fixed()
{
/*
Fix yet another manifestation of Bug#2338. 'Volatile' will instruct
gcc to flush double values out of 80-bit Intel FPU registers before
performing the comparison.
*/
volatile double val1, val2;
val1= (*a)->val_real();
if (!(*a)->null_value)
{
val2= (*b)->val_real();
if (!(*b)->null_value)
{
if (set_null)
owner->null_value= 0;
if (val1 == val2 || fabs(val1 - val2) < precision)
return 0;
if (val1 < val2)
return -1;
return 1;
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
int Arg_comparator::compare_e_real_fixed()
{
double val1= (*a)->val_real();
double val2= (*b)->val_real();
if ((*a)->null_value || (*b)->null_value)
return MY_TEST((*a)->null_value && (*b)->null_value);
return MY_TEST(val1 == val2 || fabs(val1 - val2) < precision);
}
int Arg_comparator::compare_int_signed()
{
longlong val1= (*a)->val_int();
if (!(*a)->null_value)
{
longlong val2= (*b)->val_int();
if (!(*b)->null_value)
return compare_not_null_values(val1, val2);
}
if (set_null)
owner->null_value= 1;
return -1;
}
/**
Compare values as BIGINT UNSIGNED.
*/
int Arg_comparator::compare_int_unsigned()
{
ulonglong val1= (*a)->val_int();
if (!(*a)->null_value)
{
ulonglong val2= (*b)->val_int();
if (!(*b)->null_value)
{
if (set_null)
owner->null_value= 0;
if (val1 < val2) return -1;
if (val1 == val2) return 0;
return 1;
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
/**
Compare signed (*a) with unsigned (*B)
*/
int Arg_comparator::compare_int_signed_unsigned()
{
longlong sval1= (*a)->val_int();
if (!(*a)->null_value)
{
ulonglong uval2= (ulonglong)(*b)->val_int();
if (!(*b)->null_value)
{
if (set_null)
owner->null_value= 0;
if (sval1 < 0 || (ulonglong)sval1 < uval2)
return -1;
if ((ulonglong)sval1 == uval2)
return 0;
return 1;
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
/**
Compare unsigned (*a) with signed (*B)
*/
int Arg_comparator::compare_int_unsigned_signed()
{
ulonglong uval1= (ulonglong)(*a)->val_int();
if (!(*a)->null_value)
{
longlong sval2= (*b)->val_int();
if (!(*b)->null_value)
{
if (set_null)
owner->null_value= 0;
if (sval2 < 0)
return 1;
if (uval1 < (ulonglong)sval2)
return -1;
if (uval1 == (ulonglong)sval2)
return 0;
return 1;
}
}
if (set_null)
owner->null_value= 1;
return -1;
}
int Arg_comparator::compare_e_int()
{
longlong val1= (*a)->val_int();
longlong val2= (*b)->val_int();
if ((*a)->null_value || (*b)->null_value)
return MY_TEST((*a)->null_value && (*b)->null_value);
return MY_TEST(val1 == val2);
}
/**
Compare unsigned *a with signed *b or signed *a with unsigned *b.
*/
int Arg_comparator::compare_e_int_diff_signedness()
{
longlong val1= (*a)->val_int();
longlong val2= (*b)->val_int();
if ((*a)->null_value || (*b)->null_value)
return MY_TEST((*a)->null_value && (*b)->null_value);
return (val1 >= 0) && MY_TEST(val1 == val2);
}
int Arg_comparator::compare_row()
{
int res= 0;
bool was_null= 0;
(*a)->bring_value();
(*b)->bring_value();
if ((*a)->null_value || (*b)->null_value)
{
owner->null_value= 1;
return -1;
}
uint n= (*a)->cols();
for (uint i= 0; i<n; i++)
{
res= comparators[i].compare();
/* Aggregate functions don't need special null handling. */
if (owner->null_value && owner->type() == Item::FUNC_ITEM)
{
// NULL was compared
switch (((Item_func*)owner)->functype()) {
case Item_func::NE_FUNC:
break; // NE never aborts on NULL even if abort_on_null is set
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
case Item_func::GT_FUNC:
case Item_func::GE_FUNC:
return -1; // <, <=, > and >= always fail on NULL
case Item_func::EQ_FUNC:
if (((Item_func_eq*)owner)->abort_on_null)
return -1; // We do not need correct NULL returning
break;
default:
DBUG_ASSERT(0);
break;
}
was_null= 1;
owner->null_value= 0;
res= 0; // continue comparison (maybe we will meet explicit difference)
}
else if (res)
return res;
}
if (was_null)
{
/*
There was NULL(s) in comparison in some parts, but there was no
explicit difference in other parts, so we have to return NULL.
*/
owner->null_value= 1;
return -1;
}
return 0;
}
int Arg_comparator::compare_e_row()
{
(*a)->bring_value();
(*b)->bring_value();
uint n= (*a)->cols();
for (uint i= 0; i<n; i++)
{
if (!comparators[i].compare())
return 0;
}
return 1;
}
int Arg_comparator::compare_json_str()
{
return compare_json_str_basic(*a, *b);
}
int Arg_comparator::compare_str_json()
{
return -compare_json_str_basic(*b, *a);
}
int Arg_comparator::compare_e_json_str()
{
return compare_e_json_str_basic(*a, *b);
}
int Arg_comparator::compare_e_str_json()
{
return compare_e_json_str_basic(*b, *a);
}
bool Item_func_truth::fix_length_and_dec()
{
maybe_null= 0;
null_value= 0;
decimals= 0;
max_length= 1;
return FALSE;
}
void Item_func_truth::print(String *str, enum_query_type query_type)
{
args[0]->print_parenthesised(str, query_type, precedence());
str->append(STRING_WITH_LEN(" is "));
if (! affirmative)
str->append(STRING_WITH_LEN("not "));
if (value)
str->append(STRING_WITH_LEN("true"));
else
str->append(STRING_WITH_LEN("false"));
}
bool Item_func_truth::val_bool()
{
bool val= args[0]->val_bool();
if (args[0]->null_value)
{
/*
NULL val IS {TRUE, FALSE} --> FALSE
NULL val IS NOT {TRUE, FALSE} --> TRUE
*/
return (! affirmative);
}
if (affirmative)
{
/* {TRUE, FALSE} val IS {TRUE, FALSE} value */
return (val == value);
}
/* {TRUE, FALSE} val IS NOT {TRUE, FALSE} value */
return (val != value);
}
longlong Item_func_truth::val_int()
{
return (val_bool() ? 1 : 0);
}
bool Item_in_optimizer::is_top_level_item() const
{
return args[1]->is_top_level_item();
}
void Item_in_optimizer::fix_after_pullout(st_select_lex *new_parent,
Item **ref, bool merge)
{
DBUG_ASSERT(fixed);
/* This will re-calculate attributes of our Item_in_subselect: */
Item_bool_func::fix_after_pullout(new_parent, ref, merge);
/* Then, re-calculate not_null_tables_cache: */
eval_not_null_tables(NULL);
}
bool Item_in_optimizer::eval_not_null_tables(void *opt_arg)
{
not_null_tables_cache= 0;
if (is_top_level_item())
{
/*
It is possible to determine NULL-rejectedness of the left arguments
of IN only if it is a top-level predicate.
*/
not_null_tables_cache= args[0]->not_null_tables();
}
return FALSE;
}
bool Item_in_optimizer::find_not_null_fields(table_map allowed)
{
if (!(~allowed & used_tables()) && is_top_level_item())
{
return args[0]->find_not_null_fields(allowed);
}
return false;
}
void Item_in_optimizer::print(String *str, enum_query_type query_type)
{
if (query_type & QT_PARSABLE)
args[1]->print(str, query_type);
else
{
restore_first_argument();
Item_func::print(str, query_type);
}
}
/**
"Restore" first argument before fix_fields() call (after it is harmless).
@Note: Main pointer to left part of IN/ALL/ANY subselect is subselect's
lest_expr (see Item_in_optimizer::fix_left) so changes made during
fix_fields will be rolled back there which can make
Item_in_optimizer::args[0] unusable on second execution before fix_left()
call. This call fix the pointer.
*/
void Item_in_optimizer::restore_first_argument()
{
Item_in_subselect *in_subs= args[1]->get_IN_subquery();
if (in_subs)
args[0]= in_subs->left_exp();
}
bool Item_in_optimizer::fix_left(THD *thd)
{
DBUG_ENTER("Item_in_optimizer::fix_left");
/*
Here we will store pointer on place of main storage of left expression.
For usual IN (ALL/ANY) it is subquery left_expr.
For other cases (MAX/MIN optimization, non-transformed EXISTS (10.0))
it is args[0].
*/
Item **ref0= args;
if (!invisible_mode())
{
/*
left_expr->fix_fields() may cause left_expr to be substituted for
another item. (e.g. an Item_field may be changed into Item_ref). This
transformation is undone at the end of statement execution (e.g. the
Item_ref is deleted). However, Item_in_optimizer::args[0] may keep
the pointer to the post-transformation item. Because of that, on the
next execution we need to copy args[1]->left_expr again.
*/
ref0= args[1]->get_IN_subquery()->left_exp_ptr();
args[0]= (*ref0);
}
if ((*ref0)->fix_fields_if_needed(thd, ref0))
DBUG_RETURN(1);
if (!cache)
{
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
bool rc= !(cache= (*ref0)->get_cache(thd));
if (arena)
thd->restore_active_arena(arena, &backup);
if (rc)
DBUG_RETURN(1);
cache->keep_array();
}
/*
During fix_field() expression could be substituted.
So we copy changes before use
*/
if (args[0] != (*ref0))
args[0]= (*ref0);
DBUG_PRINT("info", ("actual fix fields"));
cache->setup(thd, args[0]);
if (cache->cols() == 1)
{
DBUG_ASSERT(args[0]->type() != ROW_ITEM);
/*
Note: there can be cases when used_tables()==0 && !const_item(). See
Item_sum::update_used_tables for details.
*/
if ((used_tables_cache= args[0]->used_tables()) || !args[0]->const_item())
cache->set_used_tables(OUTER_REF_TABLE_BIT);
else
cache->set_used_tables(0);
}
else
{
uint n= cache->cols();
for (uint i= 0; i < n; i++)
{
/* Check that the expression (part of row) do not contain a subquery */
if (args[0]->element_index(i)->walk(&Item::is_subquery_processor, 0, 0))
{
my_error(ER_NOT_SUPPORTED_YET, MYF(0),
"SUBQUERY in ROW in left expression of IN/ALL/ANY");
DBUG_RETURN(1);
}
Item *element=args[0]->element_index(i);
if (element->used_tables() || !element->const_item())
{
((Item_cache *)cache->element_index(i))->
set_used_tables(OUTER_REF_TABLE_BIT);
cache->set_used_tables(OUTER_REF_TABLE_BIT);
}
else
((Item_cache *)cache->element_index(i))->set_used_tables(0);
}
used_tables_cache= args[0]->used_tables();
}
eval_not_null_tables(NULL);
copy_with_sum_func(args[0]);
with_param= args[0]->with_param || args[1]->with_param;
with_field= args[0]->with_field;
/*
If left expression is a constant, cache its value.
But don't do that if that involves computing a subquery, as we are in a
prepare-phase rewrite.
*/
if ((const_item_cache= args[0]->const_item()) && !args[0]->with_subquery())
{
cache->store(args[0]);
cache->cache_value();
}
if (args[1]->is_fixed())
{
/* to avoid overriding is called to update left expression */
used_tables_and_const_cache_join(args[1]);
join_with_sum_func(args[1]);
}
DBUG_RETURN(0);
}
bool Item_in_optimizer::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
Item_subselect *sub= 0;
uint col;
/*
MAX/MIN optimization can convert the subquery into
expr + Item_singlerow_subselect
*/
if (args[1]->type() == Item::SUBSELECT_ITEM)
sub= (Item_subselect *)args[1];
if (fix_left(thd))
return TRUE;
if (args[0]->maybe_null)
maybe_null=1;
if (args[1]->fix_fields_if_needed(thd, args + 1))
return TRUE;
if (!invisible_mode() &&
((sub && ((col= args[0]->cols()) != sub->engine->cols())) ||
(!sub && (args[1]->cols() != (col= 1)))))
{
my_error(ER_OPERAND_COLUMNS, MYF(0), col);
return TRUE;
}
if (args[1]->maybe_null)
maybe_null=1;
m_with_subquery= true;
join_with_sum_func(args[1]);
with_window_func= args[0]->with_window_func;
// The subquery cannot have window functions aggregated in this select
DBUG_ASSERT(!args[1]->with_window_func);
with_field= with_field || args[1]->with_field;
with_param= args[0]->with_param || args[1]->with_param;
used_tables_and_const_cache_join(args[1]);
fixed= 1;
return FALSE;
}
/**
Check if Item_in_optimizer should work as a pass-through item for its
arguments.
@note
Item_in_optimizer should work as pass-through for
- subqueries that were processed by ALL/ANY->MIN/MAX rewrite
- subqueries that were originally EXISTS subqueries (and were coinverted by
the EXISTS->IN rewrite)
When Item_in_optimizer is not not working as a pass-through, it
- caches its "left argument", args[0].
- makes adjustments to subquery item's return value for proper NULL
value handling
*/
bool Item_in_optimizer::invisible_mode()
{
/* MAX/MIN transformed or EXISTS->IN prepared => do nothing */
return (args[1]->get_IN_subquery() == NULL);
}
bool Item_in_optimizer::walk(Item_processor processor,
bool walk_subquery,
void *arg)
{
bool res= FALSE;
if (args[1]->type() == Item::SUBSELECT_ITEM &&
((Item_subselect *)args[1])->substype() != Item_subselect::EXISTS_SUBS &&
!(((Item_subselect *)args[1])->substype() == Item_subselect::IN_SUBS &&
((Item_in_subselect *)args[1])->test_strategy(SUBS_IN_TO_EXISTS)))
res= args[0]->walk(processor, walk_subquery, arg);
if (!res)
res= args[1]->walk(processor, walk_subquery, arg);
return res || (this->*processor)(arg);
}
/**
Add an expression cache for this subquery if it is needed
@param thd_arg Thread handle
@details
The function checks whether an expression cache is needed for this item
and if if so wraps the item into an item of the class
Item_cache_wrapper with an appropriate expression cache set up there.
@note
used from Item::transform()
@return
new wrapper item if an expression cache is needed,
this item - otherwise
*/
Item *Item_in_optimizer::expr_cache_insert_transformer(THD *thd, uchar *unused)
{
DBUG_ENTER("Item_in_optimizer::expr_cache_insert_transformer");
DBUG_ASSERT(fixed);
if (invisible_mode())
DBUG_RETURN(this);
if (expr_cache)
DBUG_RETURN(expr_cache);
if (args[1]->expr_cache_is_needed(thd) &&
(expr_cache= set_expr_cache(thd)))
DBUG_RETURN(expr_cache);
DBUG_RETURN(this);
}
/**
Collect and add to the list cache parameters for this Item.
@param parameters The list where to add parameters
*/
void Item_in_optimizer::get_cache_parameters(List<Item> &parameters)
{
DBUG_ASSERT(fixed);
/* Add left expression to the list of the parameters of the subquery */
if (!invisible_mode())
{
if (args[0]->cols() == 1)
parameters.add_unique(args[0], &cmp_items);
else
{
for (uint i= 0; i < args[0]->cols(); i++)
{
parameters.add_unique(args[0]->element_index(i), &cmp_items);
}
}
}
args[1]->get_cache_parameters(parameters);
}
/**
The implementation of optimized \<outer expression\> [NOT] IN \<subquery\>
predicates. The implementation works as follows.
For the current value of the outer expression
- If it contains only NULL values, the original (before rewrite by the
Item_in_subselect rewrite methods) inner subquery is non-correlated and
was previously executed, there is no need to re-execute it, and the
previous return value is returned.
- If it contains NULL values, check if there is a partial match for the
inner query block by evaluating it. For clarity we repeat here the
transformation previously performed on the sub-query. The expression
<tt>
( oc_1, ..., oc_n )
\<in predicate\>
( SELECT ic_1, ..., ic_n
FROM \<table\>
WHERE \<inner where\>
)
</tt>
was transformed into
<tt>
( oc_1, ..., oc_n )
\<in predicate\>
( SELECT ic_1, ..., ic_n
FROM \<table\>
WHERE \<inner where\> AND ... ( ic_k = oc_k OR ic_k IS NULL )
HAVING ... NOT ic_k IS NULL
)
</tt>
The evaluation will now proceed according to special rules set up
elsewhere. These rules include:
- The HAVING NOT \<inner column\> IS NULL conditions added by the
aforementioned rewrite methods will detect whether they evaluated (and
rejected) a NULL value and if so, will cause the subquery to evaluate
to NULL.
- The added WHERE and HAVING conditions are present only for those inner
columns that correspond to outer column that are not NULL at the moment.
- If there is an eligible index for executing the subquery, the special
access method "Full scan on NULL key" is employed which ensures that
the inner query will detect if there are NULL values resulting from the
inner query. This access method will quietly resort to table scan if it
needs to find NULL values as well.
- Under these conditions, the sub-query need only be evaluated in order to
find out whether it produced any rows.
- If it did, we know that there was a partial match since there are
NULL values in the outer row expression.
- If it did not, the result is FALSE or UNKNOWN. If at least one of the
HAVING sub-predicates rejected a NULL value corresponding to an outer
non-NULL, and hence the inner query block returns UNKNOWN upon
evaluation, there was a partial match and the result is UNKNOWN.
- If it contains no NULL values, the call is forwarded to the inner query
block.
@see Item_in_subselect::val_bool()
@see Item_is_not_null_test::val_int()
*/
longlong Item_in_optimizer::val_int()
{
bool tmp;
DBUG_ASSERT(fixed == 1);
cache->store(args[0]);
cache->cache_value();
DBUG_ENTER(" Item_in_optimizer::val_int");
if (invisible_mode())
{
longlong res= args[1]->val_int();
null_value= args[1]->null_value;
DBUG_PRINT("info", ("pass trough"));
DBUG_RETURN(res);
}
if (cache->null_value_inside)
{
DBUG_PRINT("info", ("Left NULL..."));
/*
We're evaluating
"<outer_value_list> [NOT] IN (SELECT <inner_value_list>...)"
where one or more of the outer values is NULL.
*/
if (args[1]->is_top_level_item())
{
/*
We're evaluating a top level item, e.g.
"<outer_value_list> IN (SELECT <inner_value_list>...)",
and in this case a NULL value in the outer_value_list means
that the result shall be NULL/FALSE (makes no difference for
top level items). The cached value is NULL, so just return
NULL.
*/
null_value= 1;
}
else
{
/*
We're evaluating an item where a NULL value in either the
outer or inner value list does not automatically mean that we
can return NULL/FALSE. An example of such a query is
"<outer_value_list> NOT IN (SELECT <inner_value_list>...)"
The result when there is at least one NULL value is: NULL if the
SELECT evaluated over the non-NULL values produces at least
one row, FALSE otherwise
*/
Item_in_subselect *item_subs= args[1]->get_IN_subquery();
bool all_left_cols_null= true;
const uint ncols= cache->cols();
/*
Turn off the predicates that are based on column compares for
which the left part is currently NULL
*/
for (uint i= 0; i < ncols; i++)
{
if (cache->element_index(i)->null_value)
item_subs->set_cond_guard_var(i, FALSE);
else
all_left_cols_null= false;
}
if (!item_subs->is_correlated &&
all_left_cols_null && result_for_null_param != UNKNOWN)
{
/*
This is a non-correlated subquery, all values in the outer
value list are NULL, and we have already evaluated the
subquery for all NULL values: Return the same result we
did last time without evaluating the subquery.
*/
null_value= result_for_null_param;
}
else
{
/* The subquery has to be evaluated */
(void) item_subs->val_bool_result();
if (item_subs->engine->no_rows())
null_value= item_subs->null_value;
else
null_value= TRUE;
if (all_left_cols_null)
result_for_null_param= null_value;
}
/* Turn all predicates back on */
for (uint i= 0; i < ncols; i++)
item_subs->set_cond_guard_var(i, TRUE);
}
DBUG_RETURN(0);
}
tmp= args[1]->val_bool_result();
null_value= args[1]->null_value;
DBUG_RETURN(tmp);
}
void Item_in_optimizer::cleanup()
{
DBUG_ENTER("Item_in_optimizer::cleanup");
Item_bool_func::cleanup();
expr_cache= 0;
DBUG_VOID_RETURN;
}
bool Item_in_optimizer::is_null()
{
val_int();
return null_value;
}
/**
Transform an Item_in_optimizer and its arguments with a callback function.
@param transformer the transformer callback function to be applied to the
nodes of the tree of the object
@param parameter to be passed to the transformer
@detail
Recursively transform the left and the right operand of this Item. The
Right operand is an Item_in_subselect or its subclass. To avoid the
creation of new Items, we use the fact the the left operand of the
Item_in_subselect is the same as the one of 'this', so instead of
transforming its operand, we just assign the left operand of the
Item_in_subselect to be equal to the left operand of 'this'.
The transformation is not applied further to the subquery operand
if the IN predicate.
@returns
@retval pointer to the transformed item
@retval NULL if an error occurred
*/
Item *Item_in_optimizer::transform(THD *thd, Item_transformer transformer,
uchar *argument)
{
Item *new_item;
DBUG_ASSERT(fixed);
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
DBUG_ASSERT(arg_count == 2);
/* Transform the left IN operand. */
new_item= (*args)->transform(thd, transformer, argument);
if (!new_item)
return 0;
/*
THD::change_item_tree() should be called only if the tree was
really transformed, i.e. when a new item has been created.
Otherwise we'll be allocating a lot of unnecessary memory for
change records at each execution.
*/
if ((*args) != new_item)
thd->change_item_tree(args, new_item);
if (invisible_mode())
{
/* MAX/MIN transformed => pass through */
new_item= args[1]->transform(thd, transformer, argument);
if (!new_item)
return 0;
if (args[1] != new_item)
thd->change_item_tree(args + 1, new_item);
}
else
{
/*
Transform the right IN operand which should be an Item_in_subselect or a
subclass of it. The left operand of the IN must be the same as the left
operand of this Item_in_optimizer, so in this case there is no further
transformation, we only make both operands the same.
TODO: is it the way it should be?
*/
DBUG_ASSERT((args[1])->type() == Item::SUBSELECT_ITEM &&
(((Item_subselect*)(args[1]))->substype() ==
Item_subselect::IN_SUBS ||
((Item_subselect*)(args[1]))->substype() ==
Item_subselect::ALL_SUBS ||
((Item_subselect*)(args[1]))->substype() ==
Item_subselect::ANY_SUBS));
thd->change_item_tree(args[1]->get_IN_subquery()->left_exp_ptr(), args[0]);
}
return (this->*transformer)(thd, argument);
}
bool Item_in_optimizer::is_expensive_processor(void *arg)
{
DBUG_ASSERT(fixed);
return args[0]->is_expensive_processor(arg) ||
args[1]->is_expensive_processor(arg);
}
bool Item_in_optimizer::is_expensive()
{
DBUG_ASSERT(fixed);
return args[0]->is_expensive() || args[1]->is_expensive();
}
longlong Item_func_eq::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
return value == 0 ? 1 : 0;
}
/** Same as Item_func_eq, but NULL = NULL. */
bool Item_func_equal::fix_length_and_dec()
{
bool rc= Item_bool_rowready_func2::fix_length_and_dec();
maybe_null=null_value=0;
return rc;
}
longlong Item_func_equal::val_int()
{
DBUG_ASSERT(fixed == 1);
return cmp.compare();
}
longlong Item_func_ne::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
return value != 0 && !null_value ? 1 : 0;
}
longlong Item_func_ge::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
return value >= 0 ? 1 : 0;
}
longlong Item_func_gt::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
return value > 0 ? 1 : 0;
}
longlong Item_func_le::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
return value <= 0 && !null_value ? 1 : 0;
}
longlong Item_func_lt::val_int()
{
DBUG_ASSERT(fixed == 1);
int value= cmp.compare();
return value < 0 && !null_value ? 1 : 0;
}
longlong Item_func_strcmp::val_int()
{
DBUG_ASSERT(fixed == 1);
String *a= args[0]->val_str(&value1);
String *b= args[1]->val_str(&value2);
if (!a || !b)
{
null_value=1;
return 0;
}
int value= cmp_collation.sortcmp(a, b);
null_value=0;
return !value ? 0 : (value < 0 ? (longlong) -1 : (longlong) 1);
}
bool Item_func_opt_neg::eq(const Item *item, bool binary_cmp) const
{
/* Assume we don't have rtti */
if (this == item)
return 1;
if (item->type() != FUNC_ITEM)
return 0;
Item_func *item_func=(Item_func*) item;
if (arg_count != item_func->argument_count() ||
functype() != item_func->functype())
return 0;
if (negated != ((Item_func_opt_neg *) item_func)->negated)
return 0;
return Item_args::eq(item_func, binary_cmp);
}
bool Item_func_interval::fix_fields(THD *thd, Item **ref)
{
if (Item_long_func::fix_fields(thd, ref))
return true;
for (uint i= 0 ; i < row->cols(); i++)
{
if (row->element_index(i)->check_cols(1))
return true;
}
return false;
}
bool Item_func_interval::fix_length_and_dec()
{
uint rows= row->cols();
use_decimal_comparison= ((row->element_index(0)->result_type() ==
DECIMAL_RESULT) ||
(row->element_index(0)->result_type() ==
INT_RESULT));
if (rows > 8)
{
bool not_null_consts= TRUE;
for (uint i= 1; not_null_consts && i < rows; i++)
{
Item *el= row->element_index(i);
not_null_consts&= el->const_item() && !el->is_null();
}
if (not_null_consts)
{
intervals= (interval_range*) current_thd->alloc(sizeof(interval_range) *
(rows - 1));
if (!intervals)
return TRUE;
if (use_decimal_comparison)
{
for (uint i= 1; i < rows; i++)
{
Item *el= row->element_index(i);
interval_range *range= intervals + (i-1);
if ((el->result_type() == DECIMAL_RESULT) ||
(el->result_type() == INT_RESULT))
{
range->type= DECIMAL_RESULT;
range->dec.init();
my_decimal *dec= el->val_decimal(&range->dec);
if (dec != &range->dec)
{
range->dec= *dec;
}
}
else
{
range->type= REAL_RESULT;
range->dbl= el->val_real();
}
}
}
else
{
for (uint i= 1; i < rows; i++)
{
intervals[i-1].dbl= row->element_index(i)->val_real();
}
}
}
}
maybe_null= 0;
max_length= 2;
used_tables_and_const_cache_join(row);
not_null_tables_cache= row->not_null_tables();
join_with_sum_func(row);
with_param= with_param || row->with_param;
with_field= with_field || row->with_field;
return FALSE;
}
/**
Execute Item_func_interval().
@note
If we are doing a decimal comparison, we are evaluating the first
item twice.
@return
- -1 if null value,
- 0 if lower than lowest
- 1 - arg_count-1 if between args[n] and args[n+1]
- arg_count if higher than biggest argument
*/
longlong Item_func_interval::val_int()
{
DBUG_ASSERT(fixed == 1);
double value;
my_decimal dec_buf, *dec= NULL;
uint i;
if (use_decimal_comparison)
{
dec= row->element_index(0)->val_decimal(&dec_buf);
if (row->element_index(0)->null_value)
return -1;
my_decimal2double(E_DEC_FATAL_ERROR, dec, &value);
}
else
{
value= row->element_index(0)->val_real();
if (row->element_index(0)->null_value)
return -1;
}
if (intervals)
{ // Use binary search to find interval
uint start,end;
start= 0;
end= row->cols()-2;
while (start != end)
{
uint mid= (start + end + 1) / 2;
interval_range *range= intervals + mid;
my_bool cmp_result;
/*
The values in the range interval may have different types,
Only do a decimal comparison if the first argument is a decimal
and we are comparing against a decimal
*/
if (dec && range->type == DECIMAL_RESULT)
cmp_result= my_decimal_cmp(&range->dec, dec) <= 0;
else
cmp_result= (range->dbl <= value);
if (cmp_result)
start= mid;
else
end= mid - 1;
}
interval_range *range= intervals+start;
return ((dec && range->type == DECIMAL_RESULT) ?
my_decimal_cmp(dec, &range->dec) < 0 :
value < range->dbl) ? 0 : start + 1;
}
for (i=1 ; i < row->cols() ; i++)
{
Item *el= row->element_index(i);
if (use_decimal_comparison &&
((el->result_type() == DECIMAL_RESULT) ||
(el->result_type() == INT_RESULT)))
{
VDec e_dec(el);
/* Skip NULL ranges. */
if (e_dec.is_null())
continue;
if (e_dec.cmp(dec) > 0)
return i - 1;
}
else
{
double val= el->val_real();
/* Skip NULL ranges. */
if (el->null_value)
continue;
if (val > value)
return i - 1;
}
}
return i-1;
}
/**
Perform context analysis of a BETWEEN item tree.
This function performs context analysis (name resolution) and calculates
various attributes of the item tree with Item_func_between as its root.
The function saves in ref the pointer to the item or to a newly created
item that is considered as a replacement for the original one.
@param thd reference to the global context of the query thread
@param ref pointer to Item* variable where pointer to resulting "fixed"
item is to be assigned
@note
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
a predicate/function level. Then it's easy to show that:
@verbatim
T0(e BETWEEN e1 AND e2) = union(T1(e),T1(e1),T1(e2))
T1(e BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
T0(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
T1(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2)))
@endverbatim
@retval
0 ok
@retval
1 got error
*/
bool Item_func_between::eval_not_null_tables(void *opt_arg)
{
if (Item_func_opt_neg::eval_not_null_tables(NULL))
return 1;
/* not_null_tables_cache == union(T1(e),T1(e1),T1(e2)) */
if (pred_level && !negated)
return 0;
/* not_null_tables_cache == union(T1(e), intersection(T1(e1),T1(e2))) */
not_null_tables_cache= (args[0]->not_null_tables() |
(args[1]->not_null_tables() &
args[2]->not_null_tables()));
return 0;
}
bool Item_func_between::find_not_null_fields(table_map allowed)
{
if (negated || !is_top_level_item() || (~allowed & used_tables()))
return false;
return args[0]->find_not_null_fields(allowed) ||
args[1]->find_not_null_fields(allowed) ||
args[2]->find_not_null_fields(allowed);
}
bool Item_func_between::count_sargable_conds(void *arg)
{
SELECT_LEX *sel= (SELECT_LEX *) arg;
sel->cond_count++;
sel->between_count++;
return 0;
}
void Item_func_between::fix_after_pullout(st_select_lex *new_parent,
Item **ref, bool merge)
{
/* This will re-calculate attributes of the arguments */
Item_func_opt_neg::fix_after_pullout(new_parent, ref, merge);
/* Then, re-calculate not_null_tables_cache according to our special rules */
eval_not_null_tables(NULL);
}
bool Item_func_between::fix_length_and_dec()
{
max_length= 1;
/*
As some compare functions are generated after sql_yacc,
we have to check for out of memory conditions here
*/
if (!args[0] || !args[1] || !args[2])
return TRUE;
if (m_comparator.aggregate_for_comparison(Item_func_between::func_name(),
args, 3, false))
{
DBUG_ASSERT(current_thd->is_error());
return TRUE;
}
return m_comparator.type_handler()->
Item_func_between_fix_length_and_dec(this);
}
bool Item_func_between::fix_length_and_dec_numeric(THD *thd)
{
/* See the comment about the similar block in Item_bool_func2 */
if (args[0]->real_item()->type() == FIELD_ITEM &&
!thd->lex->is_ps_or_view_context_analysis())
{
Item_field *field_item= (Item_field*) (args[0]->real_item());
if (field_item->field_type() == MYSQL_TYPE_LONGLONG ||
field_item->field_type() == MYSQL_TYPE_YEAR)
{
const bool cvt_arg1= convert_const_to_int(thd, field_item, &args[1]);
const bool cvt_arg2= convert_const_to_int(thd, field_item, &args[2]);
if (cvt_arg1 && cvt_arg2)
{
// Works for all types
m_comparator.set_handler(&type_handler_slonglong);
}
}
}
return FALSE;
}
bool Item_func_between::fix_length_and_dec_temporal(THD *thd)
{
if (!thd->lex->is_ps_or_view_context_analysis())
{
for (uint i= 0; i < 3; i ++)
{
if (args[i]->const_item() &&
args[i]->type_handler_for_comparison() != m_comparator.type_handler())
{
Item_cache *cache= m_comparator.type_handler()->Item_get_cache(thd, args[i]);
if (!cache || cache->setup(thd, args[i]))
return true;
thd->change_item_tree(&args[i], cache);
}
}
}
return false;
}
longlong Item_func_between::val_int_cmp_datetime()
{
THD *thd= current_thd;
longlong value= args[0]->val_datetime_packed(thd), a, b;
if ((null_value= args[0]->null_value))
return 0;
a= args[1]->val_datetime_packed(thd);
b= args[2]->val_datetime_packed(thd);
return val_int_cmp_int_finalize(value, a, b);
}
longlong Item_func_between::val_int_cmp_time()
{
THD *thd= current_thd;
longlong value= args[0]->val_time_packed(thd), a, b;
if ((null_value= args[0]->null_value))
return 0;
a= args[1]->val_time_packed(thd);
b= args[2]->val_time_packed(thd);
return val_int_cmp_int_finalize(value, a, b);
}
longlong Item_func_between::val_int_cmp_native()
{
THD *thd= current_thd;
const Type_handler *h= m_comparator.type_handler();
NativeBuffer<STRING_BUFFER_USUAL_SIZE> value, a, b;
if (val_native_with_conversion_from_item(thd, args[0], &value, h))
return 0;
bool ra= args[1]->val_native_with_conversion(thd, &a, h);
bool rb= args[2]->val_native_with_conversion(thd, &b, h);
if (!ra && !rb)
return (longlong)
((h->cmp_native(value, a) >= 0 &&
h->cmp_native(value, b) <= 0) != negated);
if (ra && rb)
null_value= true;
else if (ra)
null_value= h->cmp_native(value, b) <= 0;
else
null_value= h->cmp_native(value, a) >= 0;
return (longlong) (!null_value && negated);
}
longlong Item_func_between::val_int_cmp_string()
{
String *value,*a,*b;
value=args[0]->val_str(&value0);
if ((null_value=args[0]->null_value))
return 0;
a= args[1]->val_str(&value1);
b= args[2]->val_str(&value2);
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((sortcmp(value,a,cmp_collation.collation) >= 0 &&
sortcmp(value,b,cmp_collation.collation) <= 0) !=
negated);
if (args[1]->null_value && args[2]->null_value)
null_value= true;
else if (args[1]->null_value)
{
// Set to not null if false range.
null_value= sortcmp(value,b,cmp_collation.collation) <= 0;
}
else
{
// Set to not null if false range.
null_value= sortcmp(value,a,cmp_collation.collation) >= 0;
}
return (longlong) (!null_value && negated);
}
longlong Item_func_between::val_int_cmp_int()
{
Longlong_hybrid value= args[0]->to_longlong_hybrid();
if ((null_value= args[0]->null_value))
return 0; /* purecov: inspected */
Longlong_hybrid a= args[1]->to_longlong_hybrid();
Longlong_hybrid b= args[2]->to_longlong_hybrid();
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((value.cmp(a) >= 0 && value.cmp(b) <= 0) != negated);
if (args[1]->null_value && args[2]->null_value)
null_value= true;
else if (args[1]->null_value)
null_value= value.cmp(b) <= 0; // not null if false range.
else
null_value= value.cmp(a) >= 0;
return (longlong) (!null_value && negated);
}
bool Item_func_between::val_int_cmp_int_finalize(longlong value,
longlong a,
longlong b)
{
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((value >= a && value <= b) != negated);
if (args[1]->null_value && args[2]->null_value)
null_value= true;
else if (args[1]->null_value)
null_value= value <= b; // not null if false range.
else
null_value= value >= a;
return (longlong) (!null_value && negated);
}
longlong Item_func_between::val_int_cmp_decimal()
{
VDec dec(args[0]);
if ((null_value= dec.is_null()))
return 0; /* purecov: inspected */
VDec a_dec(args[1]), b_dec(args[2]);
if (!a_dec.is_null() && !b_dec.is_null())
return (longlong) ((dec.cmp(a_dec) >= 0 &&
dec.cmp(b_dec) <= 0) != negated);
if (a_dec.is_null() && b_dec.is_null())
null_value= true;
else if (a_dec.is_null())
null_value= (dec.cmp(b_dec) <= 0);
else
null_value= (dec.cmp(a_dec) >= 0);
return (longlong) (!null_value && negated);
}
longlong Item_func_between::val_int_cmp_real()
{
double value= args[0]->val_real(),a,b;
if ((null_value=args[0]->null_value))
return 0; /* purecov: inspected */
a= args[1]->val_real();
b= args[2]->val_real();
if (!args[1]->null_value && !args[2]->null_value)
return (longlong) ((value >= a && value <= b) != negated);
if (args[1]->null_value && args[2]->null_value)
null_value= true;
else if (args[1]->null_value)
{
null_value= value <= b; // not null if false range.
}
else
{
null_value= value >= a;
}
return (longlong) (!null_value && negated);
}
void Item_func_between::print(String *str, enum_query_type query_type)
{
args[0]->print_parenthesised(str, query_type, higher_precedence());
if (negated)
str->append(STRING_WITH_LEN(" not"));
str->append(STRING_WITH_LEN(" between "));
args[1]->print_parenthesised(str, query_type, precedence());
str->append(STRING_WITH_LEN(" and "));
args[2]->print_parenthesised(str, query_type, precedence());
}
double
Item_func_ifnull::real_op()
{
DBUG_ASSERT(fixed == 1);
double value= args[0]->val_real();
if (!args[0]->null_value)
{
null_value=0;
return value;
}
value= args[1]->val_real();
if ((null_value=args[1]->null_value))
return 0.0;
return value;
}
longlong
Item_func_ifnull::int_op()
{
DBUG_ASSERT(fixed == 1);
longlong value=args[0]->val_int();
if (!args[0]->null_value)
{
null_value=0;
return value;
}
value=args[1]->val_int();
if ((null_value=args[1]->null_value))
return 0;
return value;
}
my_decimal *Item_func_ifnull::decimal_op(my_decimal *decimal_value)
{
DBUG_ASSERT(fixed == 1);
my_decimal *value= args[0]->val_decimal(decimal_value);
if (!args[0]->null_value)
{
null_value= 0;
return value;
}
value= args[1]->val_decimal(decimal_value);
if ((null_value= args[1]->null_value))
return 0;
return value;
}
String *
Item_func_ifnull::str_op(String *str)
{
DBUG_ASSERT(fixed == 1);
String *res =args[0]->val_str(str);
if (!args[0]->null_value)
{
null_value=0;
res->set_charset(collation.collation);
return res;
}
res=args[1]->val_str(str);
if ((null_value=args[1]->null_value))
return 0;
res->set_charset(collation.collation);
return res;
}
bool Item_func_ifnull::native_op(THD *thd, Native *to)
{
DBUG_ASSERT(fixed == 1);
if (!val_native_with_conversion_from_item(thd, args[0], to, type_handler()))
return false;
return val_native_with_conversion_from_item(thd, args[1], to, type_handler());
}
bool Item_func_ifnull::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
{
DBUG_ASSERT(fixed == 1);
for (uint i= 0; i < 2; i++)
{
Datetime_truncation_not_needed dt(thd, args[i],
fuzzydate & ~TIME_FUZZY_DATES);
if (!(dt.copy_to_mysql_time(ltime, mysql_timestamp_type())))
return (null_value= false);
}
return (null_value= true);
}
bool Item_func_ifnull::time_op(THD *thd, MYSQL_TIME *ltime)
{
DBUG_ASSERT(fixed == 1);
for (uint i= 0; i < 2; i++)
{
if (!Time(thd, args[i]).copy_to_mysql_time(ltime))
return (null_value= false);
}
return (null_value= true);
}
/**
Perform context analysis of an IF item tree.
This function performs context analysis (name resolution) and calculates
various attributes of the item tree with Item_func_if as its root.
The function saves in ref the pointer to the item or to a newly created
item that is considered as a replacement for the original one.
@param thd reference to the global context of the query thread
@param ref pointer to Item* variable where pointer to resulting "fixed"
item is to be assigned
@note
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
a predicate/function level. Then it's easy to show that:
@verbatim
T0(IF(e,e1,e2) = T1(IF(e,e1,e2))
T1(IF(e,e1,e2)) = intersection(T1(e1),T1(e2))
@endverbatim
@retval
0 ok
@retval
1 got error
*/
bool
Item_func_if::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
args[0]->top_level_item();
if (Item_func::fix_fields(thd, ref))
return 1;
return 0;
}
bool
Item_func_if::eval_not_null_tables(void *opt_arg)
{
if (Item_func::eval_not_null_tables(NULL))
return 1;
not_null_tables_cache= (args[1]->not_null_tables() &
args[2]->not_null_tables());
return 0;
}
void Item_func_if::fix_after_pullout(st_select_lex *new_parent,
Item **ref, bool merge)
{
/* This will re-calculate attributes of the arguments */
Item_func::fix_after_pullout(new_parent, ref, merge);
/* Then, re-calculate not_null_tables_cache according to our special rules */
eval_not_null_tables(NULL);
}
void Item_func_nullif::split_sum_func(THD *thd, Ref_ptr_array ref_pointer_array,
List<Item> &fields, uint flags)
{
if (m_cache)
{
flags|= SPLIT_SUM_SKIP_REGISTERED; // See Item_func::split_sum_func
m_cache->split_sum_func2_example(thd, ref_pointer_array, fields, flags);
args[1]->split_sum_func2(thd, ref_pointer_array, fields, &args[1], flags);
}
else
{
Item_func::split_sum_func(thd, ref_pointer_array, fields, flags);
}
}
bool Item_func_nullif::walk(Item_processor processor,
bool walk_subquery, void *arg)
{
/*
No needs to iterate through args[2] when it's just a copy of args[0].
See MDEV-9712 Performance degradation of nested NULLIF
*/
uint tmp_count= arg_count == 2 || args[0] == args[2] ? 2 : 3;
for (uint i= 0; i < tmp_count; i++)
{
if (args[i]->walk(processor, walk_subquery, arg))
return true;
}
return (this->*processor)(arg);
}
void Item_func_nullif::update_used_tables()
{
if (m_cache)
{
used_tables_and_const_cache_init();
used_tables_and_const_cache_update_and_join(m_cache->get_example());
used_tables_and_const_cache_update_and_join(arg_count, args);
}
else
{
/*
MDEV-9712 Performance degradation of nested NULLIF
No needs to iterate through args[2] when it's just a copy of args[0].
*/
DBUG_ASSERT(arg_count == 3);
used_tables_and_const_cache_init();
used_tables_and_const_cache_update_and_join(args[0] == args[2] ? 2 : 3,
args);
}
}
bool
Item_func_nullif::fix_length_and_dec()
{
/*
If this is the first invocation of fix_length_and_dec(), create the
third argument as a copy of the first. This cannot be done before
fix_fields(), because fix_fields() might replace items,
for exampe NOT x --> x==0, or (SELECT 1) --> 1.
See also class Item_func_nullif declaration.
*/
if (arg_count == 2)
args[arg_count++]= m_arg0 ? m_arg0 : args[0];
THD *thd= current_thd;
/*
At prepared statement EXECUTE time, args[0] can already
point to a different Item, created during PREPARE time fix_length_and_dec().
For example, if character set conversion was needed, arguments can look
like this:
args[0]= > Item_func_conv_charset \
l_expr
args[2]= >------------------------/
Otherwise (during PREPARE or convensional execution),
args[0] and args[2] should still point to the same original l_expr.
*/
DBUG_ASSERT(args[0] == args[2] || thd->stmt_arena->is_stmt_execute());
if (args[0]->type() == SUM_FUNC_ITEM &&
!thd->lex->is_ps_or_view_context_analysis())
{
/*
NULLIF(l_expr, r_expr)
is calculated in the way to return a result equal to:
CASE WHEN l_expr = r_expr THEN NULL ELSE r_expr END.
There's nothing special with r_expr, because it's referenced
only by args[1] and nothing else.
l_expr needs a special treatment, as it's referenced by both
args[0] and args[2] initially.
args[2] is used to return the value. Afrer all transformations
(e.g. in fix_length_and_dec(), equal field propagation, etc)
args[2] points to a an Item which preserves the exact data type and
attributes (e.g. collation) of the original l_expr.
It can point:
- to the original l_expr
- to an Item_cache pointing to l_expr
- to a constant of the same data type with l_expr.
args[0] is used for comparison. It can be replaced:
- to Item_func_conv_charset by character set aggregation routines
- to a constant Item by equal field propagation routines
(in case of Item_field)
The data type and/or the attributes of args[0] can differ from
the data type and the attributes of the original l_expr, to make
it comparable to args[1] (which points to r_expr or its replacement).
For aggregate functions we have to wrap the original args[0]/args[2]
into Item_cache (see MDEV-9181). In this case the Item_cache
instance becomes the subject to character set conversion instead of
the original args[0]/args[2], while the original args[0]/args[2] get
hidden inside the cache.
Some examples of what NULLIF can end up with after argument
substitution (we don't mention args[1] in some cases for simplicity):
1. l_expr is not an aggregate function:
a. No conversion happened.
args[0] and args[2] were not replaced to something else
(i.e. neither by character set conversion, nor by propagation):
args[1] > r_expr
args[0] \
l_expr
args[2] /
b. Conversion of args[0] happened:
CREATE OR REPLACE TABLE t1 (
a CHAR(10) CHARACTER SET latin1,
b CHAR(10) CHARACTER SET utf8);
SELECT * FROM t1 WHERE NULLIF(a,b);
args[1] > r_expr (Item_field for t1.b)
args[0] > Item_func_conv_charset\
l_expr (Item_field for t1.a)
args[2] > ----------------------/
c. Conversion of args[1] happened:
CREATE OR REPLACE TABLE t1 (
a CHAR(10) CHARACTER SET utf8,
b CHAR(10) CHARACTER SET latin1);
SELECT * FROM t1 WHERE NULLIF(a,b);
args[1] > Item_func_conv_charset -> r_expr (Item_field for t1.b)
args[0] \
l_expr (Item_field for t1.a)
args[2] /
d. Conversion of only args[0] happened (by equal field proparation):
CREATE OR REPLACE TABLE t1 (
a CHAR(10),
b CHAR(10));
SELECT * FROM t1 WHERE NULLIF(a,b) AND a='a';
args[1] > r_expr (Item_field for t1.b)
args[0] > Item_string('a') (constant replacement for t1.a)
args[2] > l_expr (Item_field for t1.a)
e. Conversion of both args[0] and args[2] happened
(by equal field propagation):
CREATE OR REPLACE TABLE t1 (a INT,b INT);
SELECT * FROM t1 WHERE NULLIF(a,b) AND a=5;
args[1] > r_expr (Item_field for "b")
args[0] \
Item_int (5) (constant replacement for "a")
args[2] /
2. In case if l_expr is an aggregate function:
a. No conversion happened:
args[0] \
Item_cache > l_expr
args[2] /
b. Conversion of args[0] happened:
args[0] > Item_func_conv_charset \
Item_cache > l_expr
args[2] >------------------------/
c. Conversion of both args[0] and args[2] happened.
(e.g. by equal expression propagation)
TODO: check if it's possible (and add an example query if so).
*/
m_cache= args[0]->cmp_type() == STRING_RESULT ?
new (thd->mem_root) Item_cache_str_for_nullif(thd, args[0]) :
args[0]->get_cache(thd);
if (!m_cache)
return TRUE;
m_cache->setup(thd, args[0]);
m_cache->store(args[0]);
m_cache->set_used_tables(args[0]->used_tables());
thd->change_item_tree(&args[0], m_cache);
thd->change_item_tree(&args[2], m_cache);
}
set_handler(args[2]->type_handler());
collation.set(args[2]->collation);
decimals= args[2]->decimals;
unsigned_flag= args[2]->unsigned_flag;
fix_char_length(args[2]->max_char_length());
maybe_null=1;
m_arg0= args[0];
convert_const_compared_to_int_field(thd);
if (cmp.set_cmp_func(thd, this, &args[0], &args[1], true/*set_null*/))
return true;
/*
A special code for EXECUTE..PREPARE.
If args[0] did not change, then we don't remember it, as it can point
to a temporary Item object which will be destroyed between PREPARE
and EXECUTE. EXECUTE time fix_length_and_dec() will correctly set args[2]
from args[0] again.
If args[0] changed, then it can be Item_func_conv_charset() for the
original args[0], which was permanently installed during PREPARE time
into the item tree as a wrapper for args[0], using change_item_tree(), i.e.
NULLIF(latin1_field, 'a' COLLATE utf8_bin)
was "rewritten" to:
CASE WHEN CONVERT(latin1_field USING utf8) = 'a' COLLATE utf8_bin
THEN NULL
ELSE latin1_field
- m_args0 points to Item_field corresponding to latin1_field
- args[0] points to Item_func_conv_charset
- args[0]->args[0] is equal to m_args0
- args[1] points to Item_func_set_collation
- args[2] points is eqial to m_args0
In this case we remember and reuse m_arg0 during EXECUTE time as args[2].
QQ: How to make sure that m_args0 does not point
to something temporary which will be destroyed between PREPARE and EXECUTE.
The condition below should probably be more strict and somehow check that:
- change_item_tree() was called for the new args[0]
- m_args0 is referenced from inside args[0], e.g. as a function argument,
and therefore it is also something that won't be destroyed between
PREPARE and EXECUTE.
Any ideas?
*/
if (args[0] == m_arg0)
m_arg0= NULL;
return FALSE;
}
void Item_func_nullif::print(String *str, enum_query_type query_type)
{
/*
NULLIF(a,b) is implemented according to the SQL standard as a short for
CASE WHEN a=b THEN NULL ELSE a END
The constructor of Item_func_nullif sets args[0] and args[2] to the
same item "a", and sets args[1] to "b".
If "this" is a part of a WHERE or ON condition, then:
- the left "a" is a subject to equal field propagation with ANY_SUBST.
- the right "a" is a subject to equal field propagation with IDENTITY_SUBST.
Therefore, after equal field propagation args[0] and args[2] can point
to different items.
*/
if ((query_type & QT_ITEM_ORIGINAL_FUNC_NULLIF) ||
(arg_count == 2) ||
(args[0] == args[2]))
{
/*
If QT_ITEM_ORIGINAL_FUNC_NULLIF is requested,
that means we want the original NULLIF() representation,
e.g. when we are in:
SHOW CREATE {VIEW|FUNCTION|PROCEDURE}
The original representation is possible only if
args[0] and args[2] still point to the same Item.
The caller must never pass call print() with QT_ITEM_ORIGINAL_FUNC_NULLIF
if an expression has undergone some optimization
(e.g. equal field propagation done in optimize_cond()) already and
NULLIF() potentially has two different representations of "a":
- one "a" for comparison
- another "a" for the returned value!
*/
DBUG_ASSERT(arg_count == 2 ||
args[0] == args[2] || current_thd->lex->context_analysis_only);
str->append(func_name());
str->append('(');
if (arg_count == 2)
args[0]->print(str, query_type);
else
args[2]->print(str, query_type);
str->append(',');
args[1]->print(str, query_type);
str->append(')');
}
else
{
/*
args[0] and args[2] are different items.
This is possible after WHERE optimization (equal fields propagation etc),
e.g. in EXPLAIN EXTENDED or EXPLAIN FORMAT=JSON.
As it's not possible to print as a function with 2 arguments any more,
do it in the CASE style.
*/
str->append(STRING_WITH_LEN("(case when "));
args[0]->print(str, query_type);
str->append(STRING_WITH_LEN(" = "));
args[1]->print(str, query_type);
str->append(STRING_WITH_LEN(" then NULL else "));
args[2]->print(str, query_type);
str->append(STRING_WITH_LEN(" end)"));
}
}
int Item_func_nullif::compare()
{
if (m_cache)
m_cache->cache_value();
return cmp.compare();
}
/**
@note
Note that we have to evaluate the first argument twice as the compare
may have been done with a different type than return value
@return
NULL if arguments are equal
@return
the first argument if not equal
*/
double
Item_func_nullif::real_op()
{
DBUG_ASSERT(fixed == 1);
double value;
if (!compare())
{
null_value=1;
return 0.0;
}
value= args[2]->val_real();
null_value= args[2]->null_value;
return value;
}
longlong
Item_func_nullif::int_op()
{
DBUG_ASSERT(fixed == 1);
longlong value;
if (!compare())
{
null_value=1;
return 0;
}
value= args[2]->val_int();
null_value= args[2]->null_value;
return value;
}
String *
Item_func_nullif::str_op(String *str)
{
DBUG_ASSERT(fixed == 1);
String *res;
if (!compare())
{
null_value=1;
return 0;
}
res= args[2]->val_str(str);
null_value= args[2]->null_value;
return res;
}
my_decimal *
Item_func_nullif::decimal_op(my_decimal * decimal_value)
{
DBUG_ASSERT(fixed == 1);
my_decimal *res;
if (!compare())
{
null_value=1;
return 0;
}
res= args[2]->val_decimal(decimal_value);
null_value= args[2]->null_value;
return res;
}
bool
Item_func_nullif::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
{
DBUG_ASSERT(fixed == 1);
if (!compare())
return (null_value= true);
Datetime_truncation_not_needed dt(thd, args[2], fuzzydate);
return (null_value= dt.copy_to_mysql_time(ltime, mysql_timestamp_type()));
}
bool
Item_func_nullif::time_op(THD *thd, MYSQL_TIME *ltime)
{
DBUG_ASSERT(fixed == 1);
if (!compare())
return (null_value= true);
return (null_value= Time(thd, args[2]).copy_to_mysql_time(ltime));
}
bool
Item_func_nullif::native_op(THD *thd, Native *to)
{
DBUG_ASSERT(fixed == 1);
if (!compare())
return (null_value= true);
return val_native_with_conversion_from_item(thd, args[2], to, type_handler());
}
bool
Item_func_nullif::is_null()
{
return (null_value= (!compare() ? 1 : args[2]->is_null()));
}
void Item_func_case::reorder_args(uint start)
{
/*
Reorder args, to have at first the optional CASE expression, then all WHEN
expressions, then all THEN expressions. And the optional ELSE expression
at the end.
We reorder an even number of arguments, starting from start.
*/
uint count = (arg_count - start) / 2;
const size_t size= sizeof(Item*) * count * 2;
Item **arg_buffer= (Item **)my_safe_alloca(size);
memcpy(arg_buffer, &args[start], size);
for (uint i= 0; i < count; i++)
{
args[start + i]= arg_buffer[i*2];
args[start + i + count]= arg_buffer[i*2 + 1];
}
my_safe_afree(arg_buffer, size);
}
/**
Find and return matching items for CASE or ELSE item if all compares
are failed or NULL if ELSE item isn't defined.
IMPLEMENTATION
In order to do correct comparisons of the CASE expression (the expression
between CASE and the first WHEN) with each WHEN expression several
comparators are used. One for each result type. CASE expression can be
evaluated up to # of different result types are used. To check whether
the CASE expression already was evaluated for a particular result type
a bit mapped variable value_added_map is used. Result types are mapped
to it according to their int values i.e. STRING_RESULT is mapped to bit
0, REAL_RESULT to bit 1, so on.
@retval
NULL Nothing found and there is no ELSE expression defined
@retval
item Found item or ELSE item if defined and all comparisons are
failed
*/
Item *Item_func_case_searched::find_item()
{
uint count= when_count();
for (uint i= 0 ; i < count ; i++)
{
if (args[i]->val_bool())
return args[i + count];
}
Item **pos= Item_func_case_searched::else_expr_addr();
return pos ? pos[0] : 0;
}
Item *Item_func_case_simple::find_item()
{
/* Compare every WHEN argument with it and return the first match */
uint idx;
if (!Predicant_to_list_comparator::cmp(this, &idx, NULL))
return args[idx + when_count()];
Item **pos= Item_func_case_simple::else_expr_addr();
return pos ? pos[0] : 0;
}
Item *Item_func_decode_oracle::find_item()
{
uint idx;
if (!Predicant_to_list_comparator::cmp_nulls_equal(current_thd, this, &idx))
return args[idx + when_count()];
Item **pos= Item_func_decode_oracle::else_expr_addr();
return pos ? pos[0] : 0;
}
String *Item_func_case::str_op(String *str)
{
DBUG_ASSERT(fixed == 1);
String *res;
Item *item= find_item();
if (!item)
{
null_value=1;
return 0;
}
null_value= 0;
if (!(res=item->val_str(str)))
null_value= 1;
return res;
}
longlong Item_func_case::int_op()
{
DBUG_ASSERT(fixed == 1);
Item *item= find_item();
longlong res;
if (!item)
{
null_value=1;
return 0;
}
res=item->val_int();
null_value=item->null_value;
return res;
}
double Item_func_case::real_op()
{
DBUG_ASSERT(fixed == 1);
Item *item= find_item();
double res;
if (!item)
{
null_value=1;
return 0;
}
res= item->val_real();
null_value=item->null_value;
return res;
}
my_decimal *Item_func_case::decimal_op(my_decimal *decimal_value)
{
DBUG_ASSERT(fixed == 1);
Item *item= find_item();
my_decimal *res;
if (!item)
{
null_value=1;
return 0;
}
res= item->val_decimal(decimal_value);
null_value= item->null_value;
return res;
}
bool Item_func_case::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
{
DBUG_ASSERT(fixed == 1);
Item *item= find_item();
if (!item)
return (null_value= true);
Datetime_truncation_not_needed dt(thd, item, fuzzydate);
return (null_value= dt.copy_to_mysql_time(ltime, mysql_timestamp_type()));
}
bool Item_func_case::time_op(THD *thd, MYSQL_TIME *ltime)
{
DBUG_ASSERT(fixed == 1);
Item *item= find_item();
if (!item)
return (null_value= true);
return (null_value= Time(thd, item).copy_to_mysql_time(ltime));
}
bool Item_func_case::native_op(THD *thd, Native *to)
{
DBUG_ASSERT(fixed == 1);
Item *item= find_item();
if (!item)
return (null_value= true);
return val_native_with_conversion_from_item(thd, item, to, type_handler());
}
bool Item_func_case::fix_fields(THD *thd, Item **ref)
{
bool res= Item_func::fix_fields(thd, ref);
Item **pos= else_expr_addr();
if (!pos || pos[0]->maybe_null)
maybe_null= 1;
return res;
}
/**
Check if (*place) and new_value points to different Items and call
THD::change_item_tree() if needed.
*/
static void propagate_and_change_item_tree(THD *thd, Item **place,
COND_EQUAL *cond,
const Item::Context &ctx)
{
Item *new_value= (*place)->propagate_equal_fields(thd, ctx, cond);
if (new_value && *place != new_value)
thd->change_item_tree(place, new_value);
}
bool Item_func_case_simple::prepare_predicant_and_values(THD *thd,
uint *found_types,
bool nulls_equal)
{
bool have_null= false;
uint type_cnt;
Type_handler_hybrid_field_type tmp;
uint ncases= when_count();
add_predicant(this, 0);
for (uint i= 0 ; i < ncases; i++)
{
if (nulls_equal ?
add_value("case..when", this, i + 1) :
add_value_skip_null("case..when", this, i + 1, &have_null))
return true;
}
all_values_added(&tmp, &type_cnt, &m_found_types);
#ifndef DBUG_OFF
Predicant_to_list_comparator::debug_print(thd);
#endif
return false;
}
bool Item_func_case_searched::fix_length_and_dec()
{
THD *thd= current_thd;
return aggregate_then_and_else_arguments(thd, when_count());
}
bool Item_func_case_simple::fix_length_and_dec()
{
THD *thd= current_thd;
return (aggregate_then_and_else_arguments(thd, when_count() + 1) ||
aggregate_switch_and_when_arguments(thd, false));
}
bool Item_func_decode_oracle::fix_length_and_dec()
{
THD *thd= current_thd;
return (aggregate_then_and_else_arguments(thd, when_count() + 1) ||
aggregate_switch_and_when_arguments(thd, true));
}
/*
Aggregate all THEN and ELSE expression types
and collations when string result
@param THD - current thd
@param start - an element in args to start aggregating from
*/
bool Item_func_case::aggregate_then_and_else_arguments(THD *thd, uint start)
{
if (aggregate_for_result(func_name(), args + start, arg_count - start, true))
return true;
if (fix_attributes(args + start, arg_count - start))
return true;
return false;
}
/*
Aggregate the predicant expression and all WHEN expression types
and collations when string comparison
*/
bool Item_func_case_simple::aggregate_switch_and_when_arguments(THD *thd,
bool nulls_eq)
{
uint ncases= when_count();
m_found_types= 0;
if (prepare_predicant_and_values(thd, &m_found_types, nulls_eq))
{
/*
If Predicant_to_list_comparator() fails to prepare components,
it must put an error into the diagnostics area. This is needed
to make fix_fields() catches such errors.
*/
DBUG_ASSERT(thd->is_error());
return true;
}
if (!(m_found_types= collect_cmp_types(args, ncases + 1)))
return true;
if (m_found_types & (1U << STRING_RESULT))
{
/*
If we'll do string comparison, we also need to aggregate
character set and collation for first/WHEN items and
install converters for some of them to cmp_collation when necessary.
This is done because cmp_item compatators cannot compare
strings in two different character sets.
Some examples when we install converters:
1. Converter installed for the first expression:
CASE latin1_item WHEN utf16_item THEN ... END
is replaced to:
CASE CONVERT(latin1_item USING utf16) WHEN utf16_item THEN ... END
2. Converter installed for the left WHEN item:
CASE utf16_item WHEN latin1_item THEN ... END
is replaced to:
CASE utf16_item WHEN CONVERT(latin1_item USING utf16) THEN ... END
*/
if (agg_arg_charsets_for_comparison(cmp_collation, args, ncases + 1))
return true;
}
if (make_unique_cmp_items(thd, cmp_collation.collation))
return true;
return false;
}
Item* Item_func_case_simple::propagate_equal_fields(THD *thd,
const Context &ctx,
COND_EQUAL *cond)
{
const Type_handler *first_expr_cmp_handler;
first_expr_cmp_handler= args[0]->type_handler_for_comparison();
/*
Cannot replace the CASE (the switch) argument if
there are multiple comparison types were found, or found a single
comparison type that is not equal to args[0]->cmp_type().
- Example: multiple comparison types, can't propagate:
WHERE CASE str_column
WHEN 'string' THEN TRUE
WHEN 1 THEN TRUE
ELSE FALSE END;
- Example: a single incompatible comparison type, can't propagate:
WHERE CASE str_column
WHEN DATE'2001-01-01' THEN TRUE
ELSE FALSE END;
- Example: a single incompatible comparison type, can't propagate:
WHERE CASE str_column
WHEN 1 THEN TRUE
ELSE FALSE END;
- Example: a single compatible comparison type, ok to propagate:
WHERE CASE str_column
WHEN 'str1' THEN TRUE
WHEN 'str2' THEN TRUE
ELSE FALSE END;
*/
if (m_found_types == (1UL << first_expr_cmp_handler->cmp_type()))
propagate_and_change_item_tree(thd, &args[0], cond,
Context(ANY_SUBST, first_expr_cmp_handler, cmp_collation.collation));
/*
These arguments are in comparison.
Allow invariants of the same value during propagation.
Note, as we pass ANY_SUBST, none of the WHEN arguments will be
replaced to zero-filled constants (only IDENTITY_SUBST allows this).
Such a change for WHEN arguments would require rebuilding cmp_items.
*/
uint i, count= when_count();
for (i= 1; i <= count; i++)
{
Type_handler_hybrid_field_type tmp(first_expr_cmp_handler);
if (!tmp.aggregate_for_comparison(args[i]->type_handler_for_comparison()))
propagate_and_change_item_tree(thd, &args[i], cond,
Context(ANY_SUBST, tmp.type_handler(), cmp_collation.collation));
}
// THEN and ELSE arguments (they are not in comparison)
for (; i < arg_count; i++)
propagate_and_change_item_tree(thd, &args[i], cond, Context_identity());
return this;
}
inline void Item_func_case::print_when_then_arguments(String *str,
enum_query_type
query_type,
Item **items, uint count)
{
for (uint i= 0; i < count; i++)
{
str->append(STRING_WITH_LEN("when "));
items[i]->print(str, query_type);
str->append(STRING_WITH_LEN(" then "));
items[i + count]->print(str, query_type);
str->append(' ');
}
}
inline void Item_func_case::print_else_argument(String *str,
enum_query_type query_type,
Item *item)
{
str->append(STRING_WITH_LEN("else "));
item->print(str, query_type);
str->append(' ');
}
void Item_func_case_searched::print(String *str, enum_query_type query_type)
{
Item **pos;
str->append(STRING_WITH_LEN("case "));
print_when_then_arguments(str, query_type, &args[0], when_count());
if ((pos= Item_func_case_searched::else_expr_addr()))
print_else_argument(str, query_type, pos[0]);
str->append(STRING_WITH_LEN("end"));
}
void Item_func_case_simple::print(String *str, enum_query_type query_type)
{
Item **pos;
str->append(STRING_WITH_LEN("case "));
args[0]->print_parenthesised(str, query_type, precedence());
str->append(' ');
print_when_then_arguments(str, query_type, &args[1], when_count());
if ((pos= Item_func_case_simple::else_expr_addr()))
print_else_argument(str, query_type, pos[0]);
str->append(STRING_WITH_LEN("end"));
}
void Item_func_decode_oracle::print(String *str, enum_query_type query_type)
{
if (query_type & QT_FOR_FRM)
{
// 10.3 downgrade compatibility for FRM
str->append(STRING_WITH_LEN("decode_oracle"));
}
else
print_sql_mode_qualified_name(str, query_type);
str->append('(');
args[0]->print(str, query_type);
for (uint i= 1, count= when_count() ; i <= count; i++)
{
str->append(',');
args[i]->print(str, query_type);
str->append(',');
args[i+count]->print(str, query_type);
}
Item **else_expr= Item_func_case_simple::else_expr_addr();
if (else_expr)
{
str->append(',');
(*else_expr)->print(str, query_type);
}
str->append(')');
}
/**
Coalesce - return first not NULL argument.
*/
String *Item_func_coalesce::str_op(String *str)
{
DBUG_ASSERT(fixed == 1);
null_value=0;
for (uint i=0 ; i < arg_count ; i++)
{
String *res;
if ((res=args[i]->val_str(str)))
return res;
}
null_value=1;
return 0;
}
longlong Item_func_coalesce::int_op()
{
DBUG_ASSERT(fixed == 1);
null_value=0;
for (uint i=0 ; i < arg_count ; i++)
{
longlong res=args[i]->val_int();
if (!args[i]->null_value)
return res;
}
null_value=1;
return 0;
}
double Item_func_coalesce::real_op()
{
DBUG_ASSERT(fixed == 1);
null_value=0;
for (uint i=0 ; i < arg_count ; i++)
{
double res= args[i]->val_real();
if (!args[i]->null_value)
return res;
}
null_value=1;
return 0;
}
bool Item_func_coalesce::date_op(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate)
{
DBUG_ASSERT(fixed == 1);
for (uint i= 0; i < arg_count; i++)
{
Datetime_truncation_not_needed dt(thd, args[i],
fuzzydate & ~TIME_FUZZY_DATES);
if (!dt.copy_to_mysql_time(ltime, mysql_timestamp_type()))
return (null_value= false);
}
return (null_value= true);
}
bool Item_func_coalesce::time_op(THD *thd, MYSQL_TIME *ltime)
{
DBUG_ASSERT(fixed == 1);
for (uint i= 0; i < arg_count; i++)
{
if (!Time(thd, args[i]).copy_to_mysql_time(ltime))
return (null_value= false);
}
return (null_value= true);
}
bool Item_func_coalesce::native_op(THD *thd, Native *to)
{
DBUG_ASSERT(fixed == 1);
for (uint i= 0; i < arg_count; i++)
{
if (!val_native_with_conversion_from_item(thd, args[i], to, type_handler()))
return false;
}
return (null_value= true);
}
my_decimal *Item_func_coalesce::decimal_op(my_decimal *decimal_value)
{
DBUG_ASSERT(fixed == 1);
null_value= 0;
for (uint i= 0; i < arg_count; i++)
{
my_decimal *res= args[i]->val_decimal(decimal_value);
if (!args[i]->null_value)
return res;
}
null_value=1;
return 0;
}
/****************************************************************************
Classes and function for the IN operator
****************************************************************************/
/*
Determine which of the signed longlong arguments is bigger
SYNOPSIS
cmp_longs()
a_val left argument
b_val right argument
DESCRIPTION
This function will compare two signed longlong arguments
and will return -1, 0, or 1 if left argument is smaller than,
equal to or greater than the right argument.
RETURN VALUE
-1 left argument is smaller than the right argument.
0 left argument is equal to the right argument.
1 left argument is greater than the right argument.
*/
static inline int cmp_longs (longlong a_val, longlong b_val)
{
return a_val < b_val ? -1 : a_val == b_val ? 0 : 1;
}
/*
Determine which of the unsigned longlong arguments is bigger
SYNOPSIS
cmp_ulongs()
a_val left argument
b_val right argument
DESCRIPTION
This function will compare two unsigned longlong arguments
and will return -1, 0, or 1 if left argument is smaller than,
equal to or greater than the right argument.
RETURN VALUE
-1 left argument is smaller than the right argument.
0 left argument is equal to the right argument.
1 left argument is greater than the right argument.
*/
static inline int cmp_ulongs (ulonglong a_val, ulonglong b_val)
{
return a_val < b_val ? -1 : a_val == b_val ? 0 : 1;
}
/*
Compare two integers in IN value list format (packed_longlong)
SYNOPSIS
cmp_longlong()
cmp_arg an argument passed to the calling function (my_qsort2)
a left argument
b right argument
DESCRIPTION
This function will compare two integer arguments in the IN value list
format and will return -1, 0, or 1 if left argument is smaller than,
equal to or greater than the right argument.
It's used in sorting the IN values list and finding an element in it.
Depending on the signedness of the arguments cmp_longlong() will
compare them as either signed (using cmp_longs()) or unsigned (using
cmp_ulongs()).
RETURN VALUE
-1 left argument is smaller than the right argument.
0 left argument is equal to the right argument.
1 left argument is greater than the right argument.
*/
int cmp_longlong(void *cmp_arg,
in_longlong::packed_longlong *a,
in_longlong::packed_longlong *b)
{
if (a->unsigned_flag != b->unsigned_flag)
{
/*
One of the args is unsigned and is too big to fit into the
positive signed range. Report no match.
*/
if ((a->unsigned_flag && ((ulonglong) a->val) > (ulonglong) LONGLONG_MAX)
||
(b->unsigned_flag && ((ulonglong) b->val) > (ulonglong) LONGLONG_MAX))
return a->unsigned_flag ? 1 : -1;
/*
Although the signedness differs both args can fit into the signed
positive range. Make them signed and compare as usual.
*/
return cmp_longs(a->val, b->val);
}
if (a->unsigned_flag)
return cmp_ulongs((ulonglong) a->val, (ulonglong) b->val);
return cmp_longs(a->val, b->val);
}
static int cmp_double(void *cmp_arg, double *a,double *b)
{
return *a < *b ? -1 : *a == *b ? 0 : 1;
}
static int cmp_row(void *cmp_arg, cmp_item_row *a, cmp_item_row *b)
{
return a->compare(b);
}
static int cmp_decimal(void *cmp_arg, my_decimal *a, my_decimal *b)
{
/*
We need call of fixing buffer pointer, because fast sort just copy
decimal buffers in memory and pointers left pointing on old buffer place
*/
a->fix_buffer_pointer();
b->fix_buffer_pointer();
return my_decimal_cmp(a, b);
}
bool in_vector::find(Item *item)
{
uchar *result=get_value(item);
if (!result || !used_count)
return false; // Null value
uint start,end;
start=0; end=used_count-1;
while (start != end)
{
uint mid=(start+end+1)/2;
int res;
if ((res=(*compare)(collation, base+mid*size, result)) == 0)
return true;
if (res < 0)
start=mid;
else
end=mid-1;
}
return ((*compare)(collation, base+start*size, result) == 0);
}
in_string::in_string(THD *thd, uint elements, qsort2_cmp cmp_func,
CHARSET_INFO *cs)
:in_vector(thd, elements, sizeof(String), cmp_func, cs),
tmp(buff, sizeof(buff), &my_charset_bin)
{}
in_string::~in_string()
{
if (base)
{
// base was allocated on THD::mem_root => following is OK
for (uint i=0 ; i < count ; i++)
((String*) base)[i].free();
}
}
bool in_string::set(uint pos, Item *item)
{
String *str=((String*) base)+pos;
String *res=item->val_str(str);
if (res && res != str)
{
if (res->uses_buffer_owned_by(str))
res->copy();
if (item->type() == Item::FUNC_ITEM)
str->copy(*res);
else
*str= *res;
}
if (!str->charset())
{
CHARSET_INFO *cs;
if (!(cs= item->collation.collation))
cs= &my_charset_bin; // Should never happen for STR items
str->set_charset(cs);
}
return res == NULL;
}
uchar *in_string::get_value(Item *item)
{
return (uchar*) item->val_str(&tmp);
}
Item *in_string::create_item(THD *thd)
{
return new (thd->mem_root) Item_string_for_in_vector(thd, collation);
}
in_row::in_row(THD *thd, uint elements, Item * item)
{
base= (char*) new (thd->mem_root) cmp_item_row[count= elements];
size= sizeof(cmp_item_row);
compare= (qsort2_cmp) cmp_row;
/*
We need to reset these as otherwise we will call sort() with
uninitialized (even if not used) elements
*/
used_count= elements;
collation= 0;
}
in_row::~in_row()
{
if (base)
delete [] (cmp_item_row*) base;
}
uchar *in_row::get_value(Item *item)
{
tmp.store_value(item);
if (item->is_null())
return 0;
return (uchar *)&tmp;
}
bool in_row::set(uint pos, Item *item)
{
DBUG_ENTER("in_row::set");
DBUG_PRINT("enter", ("pos: %u item: %p", pos,item));
DBUG_RETURN(((cmp_item_row*) base)[pos].store_value_by_template(current_thd,
&tmp, item));
}
in_longlong::in_longlong(THD *thd, uint elements)
:in_vector(thd, elements, sizeof(packed_longlong),
(qsort2_cmp) cmp_longlong, 0)
{}
bool in_longlong::set(uint pos, Item *item)
{
struct packed_longlong *buff= &((packed_longlong*) base)[pos];
buff->val= item->val_int();
buff->unsigned_flag= item->unsigned_flag;
return item->null_value;
}
uchar *in_longlong::get_value(Item *item)
{
tmp.val= item->val_int();
if (item->null_value)
return 0;
tmp.unsigned_flag= item->unsigned_flag;
return (uchar*) &tmp;
}
Item *in_longlong::create_item(THD *thd)
{
/*
We're created a signed INT, this may not be correct in
general case (see BUG#19342).
*/
return new (thd->mem_root) Item_int(thd, (longlong)0);
}
static int cmp_timestamp(void *cmp_arg,
Timestamp_or_zero_datetime *a,
Timestamp_or_zero_datetime *b)
{
return a->cmp(*b);
}
in_timestamp::in_timestamp(THD *thd, uint elements)
:in_vector(thd, elements, sizeof(Value), (qsort2_cmp) cmp_timestamp, 0)
{}
bool in_timestamp::set(uint pos, Item *item)
{
Timestamp_or_zero_datetime *buff= &((Timestamp_or_zero_datetime *) base)[pos];
Timestamp_or_zero_datetime_native_null native(current_thd, item, true);
if (native.is_null())
{
*buff= Timestamp_or_zero_datetime();
return true;
}
*buff= Timestamp_or_zero_datetime(native);
return false;
}
uchar *in_timestamp::get_value(Item *item)
{
Timestamp_or_zero_datetime_native_null native(current_thd, item, true);
if (native.is_null())
return 0;
tmp= Timestamp_or_zero_datetime(native);
return (uchar*) &tmp;
}
Item *in_timestamp::create_item(THD *thd)
{
return new (thd->mem_root) Item_timestamp_literal(thd);
}
void in_timestamp::value_to_item(uint pos, Item *item)
{
const Timestamp_or_zero_datetime &buff= (((Timestamp_or_zero_datetime*) base)[pos]);
static_cast<Item_timestamp_literal*>(item)->set_value(buff);
}
bool in_datetime::set(uint pos, Item *item)
{
struct packed_longlong *buff= &((packed_longlong*) base)[pos];
buff->val= item->val_datetime_packed(current_thd);
buff->unsigned_flag= 1L;
return item->null_value;
}
bool in_time::set(uint pos, Item *item)
{
struct packed_longlong *buff= &((packed_longlong*) base)[pos];
buff->val= item->val_time_packed(current_thd);
buff->unsigned_flag= 1L;
return item->null_value;
}
uchar *in_datetime::get_value(Item *item)
{
tmp.val= item->val_datetime_packed(current_thd);
if (item->null_value)
return 0;
tmp.unsigned_flag= 1L;
return (uchar*) &tmp;
}
uchar *in_time::get_value(Item *item)
{
tmp.val= item->val_time_packed(current_thd);
if (item->null_value)
return 0;
tmp.unsigned_flag= 1L;
return (uchar*) &tmp;
}
Item *in_temporal::create_item(THD *thd)
{
return new (thd->mem_root) Item_datetime(thd);
}
in_double::in_double(THD *thd, uint elements)
:in_vector(thd, elements, sizeof(double), (qsort2_cmp) cmp_double, 0)
{}
bool in_double::set(uint pos, Item *item)
{
((double*) base)[pos]= item->val_real();
return item->null_value;
}
uchar *in_double::get_value(Item *item)
{
tmp= item->val_real();
if (item->null_value)
return 0; /* purecov: inspected */
return (uchar*) &tmp;
}
Item *in_double::create_item(THD *thd)
{
return new (thd->mem_root) Item_float(thd, 0.0, 0);
}
in_decimal::in_decimal(THD *thd, uint elements)
:in_vector(thd, elements, sizeof(my_decimal), (qsort2_cmp) cmp_decimal, 0)
{}
bool in_decimal::set(uint pos, Item *item)
{
/* as far as 'item' is constant, we can store reference on my_decimal */
my_decimal *dec= ((my_decimal *)base) + pos;
dec->len= DECIMAL_BUFF_LENGTH;
dec->fix_buffer_pointer();
my_decimal *res= item->val_decimal(dec);
/* if item->val_decimal() is evaluated to NULL then res == 0 */
if (!item->null_value && res != dec)
my_decimal2decimal(res, dec);
return item->null_value;
}
uchar *in_decimal::get_value(Item *item)
{
my_decimal *result= item->val_decimal(&val);
if (item->null_value)
return 0;
return (uchar *)result;
}
Item *in_decimal::create_item(THD *thd)
{
return new (thd->mem_root) Item_decimal(thd, 0, FALSE);
}
bool Predicant_to_list_comparator::alloc_comparators(THD *thd, uint nargs)
{
size_t nbytes= sizeof(Predicant_to_value_comparator) * nargs;
if (!(m_comparators= (Predicant_to_value_comparator *) thd->alloc(nbytes)))
return true;
memset(m_comparators, 0, nbytes);
return false;
}
bool Predicant_to_list_comparator::add_value(const char *funcname,
Item_args *args,
uint value_index)
{
DBUG_ASSERT(m_predicant_index < args->argument_count());
DBUG_ASSERT(value_index < args->argument_count());
Type_handler_hybrid_field_type tmp;
Item *tmpargs[2];
tmpargs[0]= args->arguments()[m_predicant_index];
tmpargs[1]= args->arguments()[value_index];
if (tmp.aggregate_for_comparison(funcname, tmpargs, 2, true))
{
DBUG_ASSERT(current_thd->is_error());
return true;
}
m_comparators[m_comparator_count].m_handler= tmp.type_handler();
m_comparators[m_comparator_count].m_arg_index= value_index;
m_comparator_count++;
return false;
}
bool Predicant_to_list_comparator::add_value_skip_null(const char *funcname,
Item_args *args,
uint value_index,
bool *nulls_found)
{
/*
Skip explicit NULL constant items.
Using real_item() to correctly detect references to explicit NULLs
in HAVING clause, e.g. in this example "b" is skipped:
SELECT a,NULL AS b FROM t1 GROUP BY a HAVING 'A' IN (b,'A');
*/
if (args->arguments()[value_index]->real_item()->type() == Item::NULL_ITEM)
{
*nulls_found= true;
return false;
}
return add_value(funcname, args, value_index);
}
void Predicant_to_list_comparator::
detect_unique_handlers(Type_handler_hybrid_field_type *compatible,
uint *unique_count,
uint *found_types)
{
*unique_count= 0;
*found_types= 0;
for (uint i= 0; i < m_comparator_count; i++)
{
uint idx;
if (find_handler(&idx, m_comparators[i].m_handler, i))
{
m_comparators[i].m_handler_index= i; // New unique handler
(*unique_count)++;
(*found_types)|= 1U << m_comparators[i].m_handler->cmp_type();
compatible->set_handler(m_comparators[i].m_handler);
}
else
{
m_comparators[i].m_handler_index= idx; // Non-unique handler
}
}
}
bool Predicant_to_list_comparator::make_unique_cmp_items(THD *thd,
CHARSET_INFO *cs)
{
for (uint i= 0; i < m_comparator_count; i++)
{
if (m_comparators[i].m_handler && // Skip implicit NULLs
m_comparators[i].m_handler_index == i && // Skip non-unuque
!(m_comparators[i].m_cmp_item=
m_comparators[i].m_handler->make_cmp_item(thd, cs)))
return true;
}
return false;
}
cmp_item* cmp_item_sort_string::make_same()
{
return new cmp_item_sort_string_in_static(cmp_charset);
}
cmp_item* cmp_item_int::make_same()
{
return new cmp_item_int();
}
cmp_item* cmp_item_real::make_same()
{
return new cmp_item_real();
}
cmp_item* cmp_item_row::make_same()
{
return new cmp_item_row();
}
cmp_item_row::~cmp_item_row()
{
DBUG_ENTER("~cmp_item_row");
DBUG_PRINT("enter",("this: %p", this));
if (comparators)
{
for (uint i= 0; i < n; i++)
{
if (comparators[i])
delete comparators[i];
}
}
DBUG_VOID_RETURN;
}
bool cmp_item_row::alloc_comparators(THD *thd, uint cols)
{
if (comparators)
{
DBUG_ASSERT(cols == n);
return false;
}
return
!(comparators= (cmp_item **) thd->calloc(sizeof(cmp_item *) * (n= cols)));
}
void cmp_item_row::store_value(Item *item)
{
DBUG_ENTER("cmp_item_row::store_value");
DBUG_ASSERT(comparators);
DBUG_ASSERT(n == item->cols());
item->bring_value();
item->null_value= 0;
for (uint i=0; i < n; i++)
{
DBUG_ASSERT(comparators[i]);
comparators[i]->store_value(item->element_index(i));
item->null_value|= item->element_index(i)->null_value;
}
DBUG_VOID_RETURN;
}
bool cmp_item_row::store_value_by_template(THD *thd, cmp_item *t, Item *item)
{
cmp_item_row *tmpl= (cmp_item_row*) t;
if (tmpl->n != item->cols())
{
my_error(ER_OPERAND_COLUMNS, MYF(0), tmpl->n);
return 1;
}
n= tmpl->n;
bool rc= false;
if ((comparators= (cmp_item **) thd->alloc(sizeof(cmp_item *)*n)))
{
item->bring_value();
item->null_value= 0;
for (uint i=0; i < n; i++)
{
if (!(comparators[i]= tmpl->comparators[i]->make_same()))
break; // new failed
rc|= comparators[i]->store_value_by_template(thd, tmpl->comparators[i],
item->element_index(i));
}
}
return rc;
}
int cmp_item_row::cmp(Item *arg)
{
arg->null_value= 0;
if (arg->cols() != n)
{
my_error(ER_OPERAND_COLUMNS, MYF(0), n);
return 1;
}
bool was_null= 0;
arg->bring_value();
for (uint i=0; i < n; i++)
{
const int rc= comparators[i]->cmp(arg->element_index(i));
switch (rc)
{
case UNKNOWN:
was_null= true;
break;
case TRUE:
return TRUE;
case FALSE:
break; // elements #i are equal
}
arg->null_value|= arg->element_index(i)->null_value;
}
return was_null ? UNKNOWN : FALSE;
}
int cmp_item_row::compare(cmp_item *c)
{
cmp_item_row *l_cmp= (cmp_item_row *) c;
for (uint i=0; i < n; i++)
{
int res;
if ((res= comparators[i]->compare(l_cmp->comparators[i])))
return res;
}
return 0;
}
void cmp_item_decimal::store_value(Item *item)
{
my_decimal *val= item->val_decimal(&value);
/* val may be zero if item is nnull */
if (val && val != &value)
my_decimal2decimal(val, &value);
m_null_value= item->null_value;
}
int cmp_item_decimal::cmp_not_null(const Value *val)
{
DBUG_ASSERT(!val->is_null());
DBUG_ASSERT(val->is_decimal());
return my_decimal_cmp(&value, &val->m_decimal);
}
int cmp_item_decimal::cmp(Item *arg)
{
VDec tmp(arg);
return m_null_value || tmp.is_null() ? UNKNOWN : (tmp.cmp(&value) != 0);
}
int cmp_item_decimal::compare(cmp_item *arg)
{
cmp_item_decimal *l_cmp= (cmp_item_decimal*) arg;
return my_decimal_cmp(&value, &l_cmp->value);
}
cmp_item* cmp_item_decimal::make_same()
{
return new cmp_item_decimal();
}
int cmp_item_datetime::cmp_not_null(const Value *val)
{
DBUG_ASSERT(!val->is_null());
DBUG_ASSERT(val->is_temporal());
return value != pack_time(&val->value.m_time);
}
int cmp_item_datetime::cmp(Item *arg)
{
const bool rc= value != arg->val_datetime_packed(current_thd);
return (m_null_value || arg->null_value) ? UNKNOWN : rc;
}
int cmp_item_time::cmp_not_null(const Value *val)
{
DBUG_ASSERT(!val->is_null());
DBUG_ASSERT(val->is_temporal());
return value != pack_time(&val->value.m_time);
}
int cmp_item_time::cmp(Item *arg)
{
const bool rc= value != arg->val_time_packed(current_thd);
return (m_null_value || arg->null_value) ? UNKNOWN : rc;
}
int cmp_item_temporal::compare(cmp_item *ci)
{
cmp_item_temporal *l_cmp= (cmp_item_temporal *)ci;
return (value < l_cmp->value) ? -1 : ((value == l_cmp->value) ? 0 : 1);
}
cmp_item *cmp_item_datetime::make_same()
{
return new cmp_item_datetime();
}
cmp_item *cmp_item_time::make_same()
{
return new cmp_item_time();
}
void cmp_item_timestamp::store_value(Item *item)
{
item->val_native_with_conversion(current_thd, &m_native,
&type_handler_timestamp2);
m_null_value= item->null_value;
}
int cmp_item_timestamp::cmp_not_null(const Value *val)
{
/*
This method will be implemented when we add this syntax:
SELECT TIMESTAMP WITH LOCAL TIME ZONE '2001-01-01 10:20:30'
For now TIMESTAMP is compared to non-TIMESTAMP using DATETIME.
*/
DBUG_ASSERT(0);
return 0;
}
int cmp_item_timestamp::cmp(Item *arg)
{
THD *thd= current_thd;
Timestamp_or_zero_datetime_native_null tmp(thd, arg, true);
return m_null_value || tmp.is_null() ? UNKNOWN :
type_handler_timestamp2.cmp_native(m_native, tmp) != 0;
}
int cmp_item_timestamp::compare(cmp_item *arg)
{
cmp_item_timestamp *tmp= static_cast<cmp_item_timestamp*>(arg);
return type_handler_timestamp2.cmp_native(m_native, tmp->m_native);
}
cmp_item* cmp_item_timestamp::make_same()
{
return new cmp_item_timestamp();
}
bool Item_func_in::count_sargable_conds(void *arg)
{
((SELECT_LEX*) arg)->cond_count++;
return 0;
}
bool Item_func_in::list_contains_null()
{
Item **arg,**arg_end;
for (arg= args + 1, arg_end= args+arg_count; arg != arg_end ; arg++)
{
if ((*arg)->null_inside())
return 1;
}
return 0;
}
/**
Perform context analysis of an IN item tree.
This function performs context analysis (name resolution) and calculates
various attributes of the item tree with Item_func_in as its root.
The function saves in ref the pointer to the item or to a newly created
item that is considered as a replacement for the original one.
@param thd reference to the global context of the query thread
@param ref pointer to Item* variable where pointer to resulting "fixed"
item is to be assigned
@note
Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on
a predicate/function level. Then it's easy to show that:
@verbatim
T0(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
T1(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
T0(e NOT IN(e1,...,en)) = union(T1(e),union(T1(ei)))
T1(e NOT IN(e1,...,en)) = union(T1(e),intersection(T1(ei)))
@endverbatim
@retval
0 ok
@retval
1 got error
*/
bool
Item_func_in::fix_fields(THD *thd, Item **ref)
{
if (Item_func_opt_neg::fix_fields(thd, ref))
return 1;
return 0;
}
bool
Item_func_in::eval_not_null_tables(void *opt_arg)
{
Item **arg, **arg_end;
if (Item_func_opt_neg::eval_not_null_tables(NULL))
return 1;
/* not_null_tables_cache == union(T1(e),union(T1(ei))) */
if (pred_level && negated)
return 0;
/* not_null_tables_cache = union(T1(e),intersection(T1(ei))) */
not_null_tables_cache= ~(table_map) 0;
for (arg= args + 1, arg_end= args + arg_count; arg != arg_end; arg++)
not_null_tables_cache&= (*arg)->not_null_tables();
not_null_tables_cache|= (*args)->not_null_tables();
return 0;
}
bool
Item_func_in::find_not_null_fields(table_map allowed)
{
if (negated || !is_top_level_item() || (~allowed & used_tables()))
return 0;
return args[0]->find_not_null_fields(allowed);
}
void Item_func_in::fix_after_pullout(st_select_lex *new_parent, Item **ref,
bool merge)
{
/* This will re-calculate attributes of the arguments */
Item_func_opt_neg::fix_after_pullout(new_parent, ref, merge);
/* Then, re-calculate not_null_tables_cache according to our special rules */
eval_not_null_tables(NULL);
}
bool Item_func_in::prepare_predicant_and_values(THD *thd, uint *found_types)
{
uint type_cnt;
have_null= false;
add_predicant(this, 0);
for (uint i= 1 ; i < arg_count; i++)
{
if (add_value_skip_null(Item_func_in::func_name(), this, i, &have_null))
return true;
}
all_values_added(&m_comparator, &type_cnt, found_types);
arg_types_compatible= type_cnt < 2;
#ifndef DBUG_OFF
Predicant_to_list_comparator::debug_print(thd);
#endif
return false;
}
bool Item_func_in::fix_length_and_dec()
{
THD *thd= current_thd;
uint found_types;
m_comparator.set_handler(type_handler_varchar.type_handler_for_comparison());
max_length= 1;
if (prepare_predicant_and_values(thd, &found_types))
{
DBUG_ASSERT(thd->is_error()); // Must set error
return TRUE;
}
if (!arg_types_compatible && comparator_count() == 2)
{
/*
Catch a special case: a mixture of signed and unsigned integer types.
in_longlong can handle such cases.
Note, prepare_predicant_and_values() aggregates this mixture as follows:
- signed+unsigned produce &type_handler_newdecimal.
- signed+signed or unsigned+unsigned produce &type_handler_slonglong
So we have extactly two distinct handlers.
The code below assumes that unsigned longlong is handled
by &type_handler_slonglong in comparison context,
which may change in the future to &type_handler_ulonglong.
The DBUG_ASSERT is needed to address this change here properly.
*/
DBUG_ASSERT(type_handler_ulonglong.type_handler_for_comparison() ==
&type_handler_slonglong);
// Let's check if all arguments are of integer types
uint found_int_args= 0;
for (uint i= 0; i < arg_count; i++, found_int_args++)
{
if (args[i]->type_handler_for_comparison() != &type_handler_slonglong)
break;
}
if (found_int_args == arg_count)
{
// All arguments are integers. Switch to integer comparison.
arg_types_compatible= true;
DBUG_EXECUTE_IF("Item_func_in",
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_UNKNOWN_ERROR, "DBUG: found a mix of UINT and SINT"););
m_comparator.set_handler(&type_handler_slonglong);
}
}
if (arg_types_compatible) // Bisection condition #1
{
if (m_comparator.type_handler()->
Item_func_in_fix_comparator_compatible_types(thd, this))
return TRUE;
}
else
{
DBUG_ASSERT(m_comparator.cmp_type() != ROW_RESULT);
if ( fix_for_scalar_comparison_using_cmp_items(thd, found_types))
return TRUE;
}
DBUG_EXECUTE_IF("Item_func_in",
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_UNKNOWN_ERROR, "DBUG: types_compatible=%s bisect=%s",
arg_types_compatible ? "yes" : "no",
array != NULL ? "yes" : "no"););
return FALSE;
}
/**
Populate Item_func_in::array with constant not-NULL arguments and sort them.
Sets "have_null" to true if some of the values appeared to be NULL.
Note, explicit NULLs were found during prepare_predicant_and_values().
So "have_null" can already be true before the fix_in_vector() call.
Here we additionally catch implicit NULLs.
*/
void Item_func_in::fix_in_vector()
{
DBUG_ASSERT(array);
uint j=0;
for (uint i=1 ; i < arg_count ; i++)
{
if (!array->set(j,args[i]))
j++; // include this cell in the array.
else
{
/*
We don't put NULL values in array, to avoid erronous matches in
bisection.
*/
have_null= 1;
}
}
if ((array->used_count= j))
array->sort();
}
/**
Convert all items in <in value list> to INT.
IN must compare INT columns and constants as int values (the same
way as equality does).
So we must check here if the column on the left and all the constant
values on the right can be compared as integers and adjust the
comparison type accordingly.
See the comment about the similar block in Item_bool_func2
*/
bool Item_func_in::value_list_convert_const_to_int(THD *thd)
{
if (args[0]->real_item()->type() == FIELD_ITEM &&
!thd->lex->is_view_context_analysis())
{
Item_field *field_item= (Item_field*) (args[0]->real_item());
if (field_item->field_type() == MYSQL_TYPE_LONGLONG ||
field_item->field_type() == MYSQL_TYPE_YEAR)
{
bool all_converted= true;
Item **arg, **arg_end;
for (arg=args+1, arg_end=args+arg_count; arg != arg_end ; arg++)
{
/*
Explicit NULLs should not affect data cmp_type resolution:
- we ignore NULLs when calling collect_cmp_type()
- we ignore NULLs here
So this expression:
year_column IN (DATE'2001-01-01', NULL)
switches from TIME_RESULT to INT_RESULT.
*/
if (arg[0]->type() != Item::NULL_ITEM &&
!convert_const_to_int(thd, field_item, &arg[0]))
all_converted= false;
}
if (all_converted)
m_comparator.set_handler(&type_handler_slonglong);
}
}
return thd->is_fatal_error; // Catch errrors in convert_const_to_int
}
bool cmp_item_row::
aggregate_row_elements_for_comparison(THD *thd,
Type_handler_hybrid_field_type *cmp,
Item_args *tmp,
const char *funcname,
uint col,
uint level)
{
DBUG_EXECUTE_IF("cmp_item",
{
for (uint i= 0 ; i < tmp->argument_count(); i++)
{
Item *arg= tmp->arguments()[i];
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_UNKNOWN_ERROR, "DBUG: %s[%d,%d] handler=%s",
String_space(level).c_ptr(), col, i,
arg->type_handler()->name().ptr());
}
}
);
bool err= cmp->aggregate_for_comparison(funcname, tmp->arguments(),
tmp->argument_count(), true);
DBUG_EXECUTE_IF("cmp_item",
{
if (!err)
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_UNKNOWN_ERROR, "DBUG: %s=> handler=%s",
String_space(level).c_ptr(),
cmp->type_handler()->name().ptr());
}
);
return err;
}
bool cmp_item_row::prepare_comparators(THD *thd, const char *funcname,
const Item_args *args, uint level)
{
DBUG_EXECUTE_IF("cmp_item",
push_warning_printf(thd, Sql_condition::WARN_LEVEL_NOTE,
ER_UNKNOWN_ERROR, "DBUG: %sROW(%d args) level=%d",
String_space(level).c_ptr(),
args->argument_count(), level););
DBUG_ASSERT(args->argument_count() > 0);
if (alloc_comparators(thd, args->arguments()[0]->cols()))
return true;
DBUG_ASSERT(n == args->arguments()[0]->cols());
for (uint col= 0; col < n; col++)
{
Item_args tmp;
Type_handler_hybrid_field_type cmp;
if (tmp.alloc_and_extract_row_elements(thd, args, col) ||
aggregate_row_elements_for_comparison(thd, &cmp, &tmp,
funcname, col, level + 1))
return true;
/*
There is a legacy bug (MDEV-11511) in the code below,
which should be fixed eventually.
When performing:
(predicant0,predicant1) IN ((value00,value01),(value10,value11))
It uses only the data type and the collation of the predicant
elements only. It should be fixed to take into account the data type and
the collation for all elements at the N-th positions of the
predicate and all values:
- predicate0, value00, value01
- predicate1, value10, value11
*/
Item *item0= args->arguments()[0]->element_index(col);
CHARSET_INFO *collation= item0->collation.collation;
if (!(comparators[col]= cmp.type_handler()->make_cmp_item(thd, collation)))
return true;
if (cmp.type_handler() == &type_handler_row)
{
// Prepare comparators for ROW elements recursively
cmp_item_row *row= static_cast<cmp_item_row*>(comparators[col]);
if (row->prepare_comparators(thd, funcname, &tmp, level + 1))
return true;
}
}
return false;
}
bool Item_func_in::fix_for_row_comparison_using_bisection(THD *thd)
{
if (unlikely(!(array= new (thd->mem_root) in_row(thd, arg_count-1, 0))))
return true;
cmp_item_row *cmp= &((in_row*)array)->tmp;
if (cmp->prepare_comparators(thd, func_name(), this, 0))
return true;
fix_in_vector();
return false;
}
/**
This method is called for scalar data types when bisection is not possible,
for example:
- Some of args[1..arg_count] are not constants.
- args[1..arg_count] are constants, but pairs {args[0],args[1..arg_count]}
are compared by different data types, e.g.:
WHERE decimal_expr IN (1, 1e0)
The pair {args[0],args[1]} is compared by type_handler_decimal.
The pair {args[0],args[2]} is compared by type_handler_double.
*/
bool Item_func_in::fix_for_scalar_comparison_using_cmp_items(THD *thd,
uint found_types)
{
if (found_types & (1U << STRING_RESULT) &&
agg_arg_charsets_for_comparison(cmp_collation, args, arg_count))
return true;
if (make_unique_cmp_items(thd, cmp_collation.collation))
return true;
return false;
}
/**
This method is called for the ROW data type when bisection is not possible.
*/
bool Item_func_in::fix_for_row_comparison_using_cmp_items(THD *thd)
{
if (make_unique_cmp_items(thd, cmp_collation.collation))
return true;
DBUG_ASSERT(get_comparator_type_handler(0) == &type_handler_row);
DBUG_ASSERT(get_comparator_cmp_item(0));
cmp_item_row *cmp_row= (cmp_item_row*) get_comparator_cmp_item(0);
return cmp_row->prepare_comparators(thd, func_name(), this, 0);
}
void Item_func_in::print(String *str, enum_query_type query_type)
{
args[0]->print_parenthesised(str, query_type, precedence());
if (negated)
str->append(STRING_WITH_LEN(" not"));
str->append(STRING_WITH_LEN(" in ("));
print_args(str, 1, query_type);
str->append(STRING_WITH_LEN(")"));
}
/*
Evaluate the function and return its value.
SYNOPSIS
val_int()
DESCRIPTION
Evaluate the function and return its value.
IMPLEMENTATION
If the array object is defined then the value of the function is
calculated by means of this array.
Otherwise several cmp_item objects are used in order to do correct
comparison of left expression and an expression from the values list.
One cmp_item object correspond to one used comparison type. Left
expression can be evaluated up to number of different used comparison
types. A bit mapped variable value_added_map is used to check whether
the left expression already was evaluated for a particular result type.
Result types are mapped to it according to their integer values i.e.
STRING_RESULT is mapped to bit 0, REAL_RESULT to bit 1, so on.
RETURN
Value of the function
*/
longlong Item_func_in::val_int()
{
DBUG_ASSERT(fixed == 1);
if (array)
{
bool tmp=array->find(args[0]);
/*
NULL on left -> UNKNOWN.
Found no match, and NULL on right -> UNKNOWN.
NULL on right can never give a match, as it is not stored in
array.
See also the 'bisection_possible' variable in fix_length_and_dec().
*/
null_value=args[0]->null_value || (!tmp && have_null);
return (longlong) (!null_value && tmp != negated);
}
if ((null_value= args[0]->real_item()->type() == NULL_ITEM))
return 0;
null_value= have_null;
uint idx;
if (!Predicant_to_list_comparator::cmp(this, &idx, &null_value))
{
null_value= false;
return (longlong) (!negated);
}
return (longlong) (!null_value && negated);
}
void Item_func_in::mark_as_condition_AND_part(TABLE_LIST *embedding)
{
THD *thd= current_thd;
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
if (!transform_into_subq_checked)
{
if ((transform_into_subq= to_be_transformed_into_in_subq(thd)))
thd->lex->current_select->in_funcs.push_back(this, thd->mem_root);
transform_into_subq_checked= true;
}
if (arena)
thd->restore_active_arena(arena, &backup);
emb_on_expr_nest= embedding;
}
class Func_handler_bit_or_int_to_ulonglong:
public Item_handled_func::Handler_ulonglong
{
public:
Longlong_null to_longlong_null(Item_handled_func *item) const
{
DBUG_ASSERT(item->is_fixed());
Longlong_null a= item->arguments()[0]->to_longlong_null();
return a.is_null() ? a : a | item->arguments()[1]->to_longlong_null();
}
};
class Func_handler_bit_or_dec_to_ulonglong:
public Item_handled_func::Handler_ulonglong
{
public:
Longlong_null to_longlong_null(Item_handled_func *item) const
{
DBUG_ASSERT(item->is_fixed());
VDec a(item->arguments()[0]);
return a.is_null() ? Longlong_null() :
a.to_xlonglong_null() | VDec(item->arguments()[1]).to_xlonglong_null();
}
};
bool Item_func_bit_or::fix_length_and_dec()
{
static Func_handler_bit_or_int_to_ulonglong ha_int_to_ull;
static Func_handler_bit_or_dec_to_ulonglong ha_dec_to_ull;
return fix_length_and_dec_op2_std(&ha_int_to_ull, &ha_dec_to_ull);
}
class Func_handler_bit_and_int_to_ulonglong:
public Item_handled_func::Handler_ulonglong
{
public:
Longlong_null to_longlong_null(Item_handled_func *item) const
{
DBUG_ASSERT(item->is_fixed());
Longlong_null a= item->arguments()[0]->to_longlong_null();
return a.is_null() ? a : a & item->arguments()[1]->to_longlong_null();
}
};
class Func_handler_bit_and_dec_to_ulonglong:
public Item_handled_func::Handler_ulonglong
{
public:
Longlong_null to_longlong_null(Item_handled_func *item) const
{
DBUG_ASSERT(item->is_fixed());
VDec a(item->arguments()[0]);
return a.is_null() ? Longlong_null() :
a.to_xlonglong_null() & VDec(item->arguments()[1]).to_xlonglong_null();
}
};
bool Item_func_bit_and::fix_length_and_dec()
{
static Func_handler_bit_and_int_to_ulonglong ha_int_to_ull;
static Func_handler_bit_and_dec_to_ulonglong ha_dec_to_ull;
return fix_length_and_dec_op2_std(&ha_int_to_ull, &ha_dec_to_ull);
}
Item_cond::Item_cond(THD *thd, Item_cond *item)
:Item_bool_func(thd, item),
abort_on_null(item->abort_on_null),
and_tables_cache(item->and_tables_cache)
{
/*
item->list will be copied by copy_andor_arguments() call
*/
}
Item_cond::Item_cond(THD *thd, Item *i1, Item *i2):
Item_bool_func(thd), abort_on_null(0)
{
list.push_back(i1, thd->mem_root);
list.push_back(i2, thd->mem_root);
}
Item *Item_cond_and::copy_andor_structure(THD *thd)
{
Item_cond_and *item;
if ((item= new (thd->mem_root) Item_cond_and(thd, this)))
item->copy_andor_arguments(thd, this);
return item;
}
void Item_cond::copy_andor_arguments(THD *thd, Item_cond *item)
{
List_iterator_fast<Item> li(item->list);
while (Item *it= li++)
list.push_back(it->copy_andor_structure(thd), thd->mem_root);
}
bool
Item_cond::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
List_iterator<Item> li(list);
Item *item;
uchar buff[sizeof(char*)]; // Max local vars in function
bool is_and_cond= functype() == Item_func::COND_AND_FUNC;
not_null_tables_cache= 0;
used_tables_and_const_cache_init();
/*
and_table_cache is the value that Item_cond_or() returns for
not_null_tables()
*/
and_tables_cache= ~(table_map) 0;
if (check_stack_overrun(thd, STACK_MIN_SIZE, buff))
return TRUE; // Fatal error flag is set!
while (li++)
{
merge_sub_condition(li);
item= *li.ref();
if (abort_on_null)
item->top_level_item();
/*
replace degraded condition:
was: <field>
become: <field> != 0
*/
Item::Type type= item->type();
if (type == Item::FIELD_ITEM || type == Item::REF_ITEM)
{
Query_arena backup, *arena;
Item *new_item;
arena= thd->activate_stmt_arena_if_needed(&backup);
if ((new_item= new (thd->mem_root) Item_func_ne(thd, item, new (thd->mem_root) Item_int(thd, 0, 1))))
li.replace(item= new_item);
if (arena)
thd->restore_active_arena(arena, &backup);
}
if (item->fix_fields_if_needed_for_bool(thd, li.ref()))
return TRUE; /* purecov: inspected */
merge_sub_condition(li);
item= *li.ref(); // may be substituted in fix_fields/merge_item_if_possible
used_tables_cache|= item->used_tables();
if (item->const_item() && !item->with_param &&
!item->is_expensive() && !cond_has_datetime_is_null(item))
{
if (item->eval_const_cond() == is_and_cond && top_level())
{
/*
a. This is "... AND true_cond AND ..."
In this case, true_cond has no effect on cond_and->not_null_tables()
b. This is "... OR false_cond/null cond OR ..."
In this case, false_cond has no effect on cond_or->not_null_tables()
*/
}
else
{
/*
a. This is "... AND false_cond/null_cond AND ..."
The whole condition is FALSE/UNKNOWN.
b. This is "... OR const_cond OR ..."
In this case, cond_or->not_null_tables()=0, because the condition
const_cond might evaluate to true (regardless of whether some tables
were NULL-complemented).
*/
not_null_tables_cache= (table_map) 0;
and_tables_cache= (table_map) 0;
}
if (thd->is_error())
return TRUE;
}
else
{
table_map tmp_table_map= item->not_null_tables();
not_null_tables_cache|= tmp_table_map;
and_tables_cache&= tmp_table_map;
const_item_cache= FALSE;
}
join_with_sum_func(item);
with_param|= item->with_param;
with_field|= item->with_field;
m_with_subquery|= item->with_subquery();
with_window_func|= item->with_window_func;
maybe_null|= item->maybe_null;
}
if (fix_length_and_dec())
return TRUE;
fixed= 1;
return FALSE;
}
/**
@brief
Merge a lower-level condition pointed by the iterator into this Item_cond
if possible
@param li list iterator pointing to condition that must be
examined and merged if possible.
@details
If an item pointed by the iterator is an instance of Item_cond with the
same functype() as this Item_cond (i.e. both are Item_cond_and or both are
Item_cond_or) then the arguments of that lower-level item can be merged
into the list of arguments of this upper-level Item_cond.
This optimization reduces the depth of an AND-OR tree.
E.g. a WHERE clause like
F1 AND (F2 AND (F2 AND F4))
is parsed into a tree with the same nested structure as defined
by braces. This optimization will transform such tree into
AND (F1, F2, F3, F4).
Trees of OR items are flattened as well:
((F1 OR F2) OR (F3 OR F4)) => OR (F1, F2, F3, F4)
Items for removed AND/OR levels will dangle until the death of the
entire statement.
The optimization is currently prepared statements and stored procedures
friendly as it doesn't allocate any memory and its effects are durable
(i.e. do not depend on PS/SP arguments).
*/
void Item_cond::merge_sub_condition(List_iterator<Item>& li)
{
Item *item= *li.ref();
/*
The check for list.is_empty() is to catch empty Item_cond_and() items.
We may encounter Item_cond_and with an empty list, because optimizer code
strips multiple equalities, combines items, then adds multiple equalities
back
*/
while (item->type() == Item::COND_ITEM &&
((Item_cond*) item)->functype() == functype() &&
!((Item_cond*) item)->list.is_empty())
{
li.replace(((Item_cond*) item)->list);
((Item_cond*) item)->list.empty();
item= *li.ref();
}
}
bool
Item_cond::eval_not_null_tables(void *opt_arg)
{
Item *item;
bool is_and_cond= functype() == Item_func::COND_AND_FUNC;
List_iterator<Item> li(list);
not_null_tables_cache= (table_map) 0;
and_tables_cache= ~(table_map) 0;
while ((item=li++))
{
table_map tmp_table_map;
if (item->const_item() && !item->with_param &&
!item->is_expensive() && !cond_has_datetime_is_null(item))
{
if (item->eval_const_cond() == is_and_cond && top_level())
{
/*
a. This is "... AND true_cond AND ..."
In this case, true_cond has no effect on cond_and->not_null_tables()
b. This is "... OR false_cond/null cond OR ..."
In this case, false_cond has no effect on cond_or->not_null_tables()
*/
}
else
{
/*
a. This is "... AND false_cond/null_cond AND ..."
The whole condition is FALSE/UNKNOWN.
b. This is "... OR const_cond OR ..."
In this case, cond_or->not_null_tables()=0, because the condition
const_cond might evaluate to true (regardless of whether some tables
were NULL-complemented).
*/
not_null_tables_cache= (table_map) 0;
and_tables_cache= (table_map) 0;
}
}
else
{
tmp_table_map= item->not_null_tables();
not_null_tables_cache|= tmp_table_map;
and_tables_cache&= tmp_table_map;
}
}
return 0;
}
/**
@note
This implementation of the virtual function find_not_null_fields()
infers null-rejectedness if fields from tables marked in 'allowed' from
this condition.
Currently only top level AND conjuncts that are not disjunctions are used
for the inference. Usage of any top level and-or formula with l OR levels
would require a stack of bitmaps for fields of the height h=2*l+1 So we
would have to allocate h-1 additional field bitmaps for each table marked
in 'allowed'.
*/
bool
Item_cond::find_not_null_fields(table_map allowed)
{
Item *item;
bool is_and_cond= functype() == Item_func::COND_AND_FUNC;
if (!is_and_cond)
{
/* Now only fields of top AND level conjuncts are taken into account */
return false;
}
uint isnull_func_cnt= 0;
List_iterator<Item> li(list);
while ((item=li++))
{
bool is_mult_eq= item->type() == Item::FUNC_ITEM &&
((Item_func *) item)->functype() == Item_func::MULT_EQUAL_FUNC;
if (is_mult_eq)
{
if (!item->find_not_null_fields(allowed))
continue;
}
if (~allowed & item->used_tables())
continue;
/* It is assumed that all constant conjuncts are already eliminated */
/*
First infer null-rejectedness of fields from all conjuncts but
IS NULL predicates
*/
bool isnull_func= item->type() == Item::FUNC_ITEM &&
((Item_func *) item)->functype() == Item_func::ISNULL_FUNC;
if (isnull_func)
{
isnull_func_cnt++;
continue;
}
if (!item->find_not_null_fields(allowed))
continue;
}
/* Now try no get contradictions using IS NULL conjuncts */
if (isnull_func_cnt)
{
li.rewind();
while ((item=li++) && isnull_func_cnt)
{
if (~allowed & item->used_tables())
continue;
bool isnull_func= item->type() == Item::FUNC_ITEM &&
((Item_func *) item)->functype() == Item_func::ISNULL_FUNC;
if (isnull_func)
{
if (item->find_not_null_fields(allowed))
return true;
isnull_func_cnt--;
}
}
}
return false;
}
void Item_cond::fix_after_pullout(st_select_lex *new_parent, Item **ref,
bool merge)
{
List_iterator<Item> li(list);
Item *item;
used_tables_and_const_cache_init();
and_tables_cache= ~(table_map) 0; // Here and below we do as fix_fields does
not_null_tables_cache= 0;
while ((item=li++))
{
table_map tmp_table_map;
item->fix_after_pullout(new_parent, li.ref(), merge);
item= *li.ref();
used_tables_and_const_cache_join(item);
if (item->const_item())
and_tables_cache= (table_map) 0;
else
{
tmp_table_map= item->not_null_tables();
not_null_tables_cache|= tmp_table_map;
and_tables_cache&= tmp_table_map;
const_item_cache= FALSE;
}
}
}
bool Item_cond::walk(Item_processor processor, bool walk_subquery, void *arg)
{
List_iterator_fast<Item> li(list);
Item *item;
while ((item= li++))
if (item->walk(processor, walk_subquery, arg))
return 1;
return Item_func::walk(processor, walk_subquery, arg);
}
/**
Transform an Item_cond object with a transformer callback function.
The function recursively applies the transform method to each
member item of the condition list.
If the call of the method for a member item returns a new item
the old item is substituted for a new one.
After this the transformer is applied to the root node
of the Item_cond object.
@param transformer the transformer callback function to be applied to
the nodes of the tree of the object
@param arg parameter to be passed to the transformer
@return
Item returned as the result of transformation of the root node
*/
Item *Item_cond::do_transform(THD *thd, Item_transformer transformer, uchar *arg,
bool toplevel)
{
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
List_iterator<Item> li(list);
Item *item;
while ((item= li++))
{
Item *new_item= toplevel ? item->top_level_transform(thd, transformer, arg)
: item->transform(thd, transformer, arg);
if (!new_item)
return 0;
/*
THD::change_item_tree() should be called only if the tree was
really transformed, i.e. when a new item has been created.
Otherwise we'll be allocating a lot of unnecessary memory for
change records at each execution.
*/
if (toplevel)
*li.ref()= new_item;
else if (new_item != item)
thd->change_item_tree(li.ref(), new_item);
}
return Item_func::transform(thd, transformer, arg);
}
/**
Compile Item_cond object with a processor and a transformer
callback functions.
First the function applies the analyzer to the root node of
the Item_func object. Then if the analyzer succeeeds (returns TRUE)
the function recursively applies the compile method to member
item of the condition list.
If the call of the method for a member item returns a new item
the old item is substituted for a new one.
After this the transformer is applied to the root node
of the Item_cond object.
@param analyzer the analyzer callback function to be applied to the
nodes of the tree of the object
@param[in,out] arg_p parameter to be passed to the analyzer
@param transformer the transformer callback function to be applied to the
nodes of the tree of the object
@param arg_t parameter to be passed to the transformer
@return
Item returned as the result of transformation of the root node
*/
Item *Item_cond::do_compile(THD *thd, Item_analyzer analyzer, uchar **arg_p,
Item_transformer transformer, uchar *arg_t, bool toplevel)
{
if (!(this->*analyzer)(arg_p))
return 0;
List_iterator<Item> li(list);
Item *item;
while ((item= li++))
{
/*
The same parameter value of arg_p must be passed
to analyze any argument of the condition formula.
*/
uchar *arg_v= *arg_p;
Item *new_item= item->compile(thd, analyzer, &arg_v, transformer, arg_t);
if (!new_item || new_item == item)
continue;
if (toplevel)
*li.ref()= new_item;
else
thd->change_item_tree(li.ref(), new_item);
}
return Item_func::transform(thd, transformer, arg_t);
}
Item *Item_cond::propagate_equal_fields(THD *thd,
const Context &ctx,
COND_EQUAL *cond)
{
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
DBUG_ASSERT(arg_count == 0);
List_iterator<Item> li(list);
while (li++)
{
/*
The exact value of the last parameter to propagate_and_change_item_tree()
is not important at this point. Item_func derivants will create and
pass their own context to the arguments.
*/
propagate_and_change_item_tree(thd, li.ref(), cond, Context_boolean());
}
return this;
}
void Item_cond::traverse_cond(Cond_traverser traverser,
void *arg, traverse_order order)
{
List_iterator<Item> li(list);
Item *item;
switch(order) {
case(PREFIX):
(*traverser)(this, arg);
while ((item= li++))
{
item->traverse_cond(traverser, arg, order);
}
(*traverser)(NULL, arg);
break;
case(POSTFIX):
while ((item= li++))
{
item->traverse_cond(traverser, arg, order);
}
(*traverser)(this, arg);
}
}
/**
Move SUM items out from item tree and replace with reference.
The split is done to get an unique item for each SUM function
so that we can easily find and calculate them.
(Calculation done by update_sum_func() and copy_sum_funcs() in
sql_select.cc)
@param thd Thread handler
@param ref_pointer_array Pointer to array of reference fields
@param fields All fields in select
@note
This function is run on all expression (SELECT list, WHERE, HAVING etc)
that have or refer (HAVING) to a SUM expression.
*/
void Item_cond::split_sum_func(THD *thd, Ref_ptr_array ref_pointer_array,
List<Item> &fields, uint flags)
{
List_iterator<Item> li(list);
Item *item;
while ((item= li++))
item->split_sum_func2(thd, ref_pointer_array, fields, li.ref(),
flags | SPLIT_SUM_SKIP_REGISTERED);
}
table_map
Item_cond::used_tables() const
{ // This caches used_tables
return used_tables_cache;
}
void Item_cond::print(String *str, enum_query_type query_type)
{
List_iterator_fast<Item> li(list);
Item *item;
if ((item=li++))
item->print_parenthesised(str, query_type, precedence());
while ((item=li++))
{
str->append(' ');
str->append(func_name());
str->append(' ');
item->print_parenthesised(str, query_type, precedence());
}
}
void Item_cond::neg_arguments(THD *thd)
{
List_iterator<Item> li(list);
Item *item;
while ((item= li++)) /* Apply not transformation to the arguments */
{
Item *new_item= item->neg_transformer(thd);
if (!new_item)
{
if (!(new_item= new (thd->mem_root) Item_func_not(thd, item)))
return; // Fatal OEM error
}
(void) li.replace(new_item);
}
}
/**
@brief
Building clone for Item_cond
@param thd thread handle
@param mem_root part of the memory for the clone
@details
This method gets copy of the current item and also
build clones for its elements. For this elements
build_copy is called again.
@retval
clone of the item
0 if an error occurred
*/
Item *Item_cond::build_clone(THD *thd)
{
List_iterator_fast<Item> li(list);
Item *item;
Item_cond *copy= (Item_cond *) get_copy(thd);
if (!copy)
return 0;
copy->list.empty();
while ((item= li++))
{
Item *arg_clone= item->build_clone(thd);
if (!arg_clone)
return 0;
if (copy->list.push_back(arg_clone, thd->mem_root))
return 0;
}
return copy;
}
bool Item_cond::excl_dep_on_table(table_map tab_map)
{
if (used_tables() & OUTER_REF_TABLE_BIT)
return false;
if (!(used_tables() & ~tab_map))
return true;
List_iterator_fast<Item> li(list);
Item *item;
while ((item= li++))
{
if (!item->excl_dep_on_table(tab_map))
return false;
}
return true;
}
bool Item_cond::excl_dep_on_grouping_fields(st_select_lex *sel)
{
if (has_rand_bit())
return false;
List_iterator_fast<Item> li(list);
Item *item;
while ((item= li++))
{
if (!item->excl_dep_on_grouping_fields(sel))
return false;
}
return true;
}
void Item_cond_and::mark_as_condition_AND_part(TABLE_LIST *embedding)
{
List_iterator<Item> li(list);
Item *item;
while ((item=li++))
{
item->mark_as_condition_AND_part(embedding);
}
}
/**
Evaluation of AND(expr, expr, expr ...).
@note
abort_if_null is set for AND expressions for which we don't care if the
result is NULL or 0. This is set for:
- WHERE clause
- HAVING clause
- IF(expression)
@retval
1 If all expressions are true
@retval
0 If all expressions are false or if we find a NULL expression and
'abort_on_null' is set.
@retval
NULL if all expression are either 1 or NULL
*/
longlong Item_cond_and::val_int()
{
DBUG_ASSERT(fixed == 1);
List_iterator_fast<Item> li(list);
Item *item;
null_value= 0;
while ((item=li++))
{
if (!item->val_bool())
{
if (abort_on_null || !(null_value= item->null_value))
return 0; // return FALSE
}
}
return null_value ? 0 : 1;
}
longlong Item_cond_or::val_int()
{
DBUG_ASSERT(fixed == 1);
List_iterator_fast<Item> li(list);
Item *item;
null_value=0;
while ((item=li++))
{
if (item->val_bool())
{
null_value=0;
return 1;
}
if (item->null_value)
null_value=1;
}
return 0;
}
Item *Item_cond_or::copy_andor_structure(THD *thd)
{
Item_cond_or *item;
if ((item= new (thd->mem_root) Item_cond_or(thd, this)))
item->copy_andor_arguments(thd, this);
return item;
}
/**
Create an AND expression from two expressions.
@param a expression or NULL
@param b expression.
@param org_item Don't modify a if a == *org_item.
If a == NULL, org_item is set to point at b,
to ensure that future calls will not modify b.
@note
This will not modify item pointed to by org_item or b
The idea is that one can call this in a loop and create and
'and' over all items without modifying any of the original items.
@retval
NULL Error
@retval
Item
*/
Item *and_expressions(THD *thd, Item *a, Item *b, Item **org_item)
{
if (!a)
return (*org_item= (Item*) b);
if (a == *org_item)
{
Item_cond *res;
if ((res= new (thd->mem_root) Item_cond_and(thd, a, (Item*) b)))
{
res->used_tables_cache= a->used_tables() | b->used_tables();
res->not_null_tables_cache= a->not_null_tables() | b->not_null_tables();
}
return res;
}
if (((Item_cond_and*) a)->add((Item*) b, thd->mem_root))
return 0;
((Item_cond_and*) a)->used_tables_cache|= b->used_tables();
((Item_cond_and*) a)->not_null_tables_cache|= b->not_null_tables();
return a;
}
bool Item_func_null_predicate::count_sargable_conds(void *arg)
{
((SELECT_LEX*) arg)->cond_count++;
return 0;
}
longlong Item_func_isnull::val_int()
{
DBUG_ASSERT(fixed == 1);
if (const_item() && !args[0]->maybe_null)
return 0;
return args[0]->is_null() ? 1: 0;
}
bool Item_func_isnull::find_not_null_fields(table_map allowed)
{
if (!(~allowed & used_tables()) &&
args[0]->real_item()->type() == Item::FIELD_ITEM)
{
Field *field= ((Item_field *)(args[0]->real_item()))->field;
if (bitmap_is_set(&field->table->tmp_set, field->field_index))
return true;
}
return false;
}
void Item_func_isnull::print(String *str, enum_query_type query_type)
{
if (const_item() && !args[0]->maybe_null &&
!(query_type & (QT_NO_DATA_EXPANSION | QT_VIEW_INTERNAL)))
str->append("/*always not null*/ 1");
else
args[0]->print_parenthesised(str, query_type, precedence());
str->append(STRING_WITH_LEN(" is null"));
}
longlong Item_is_not_null_test::val_int()
{
DBUG_ASSERT(fixed == 1);
DBUG_ENTER("Item_is_not_null_test::val_int");
if (const_item() && !args[0]->maybe_null)
DBUG_RETURN(1);
if (args[0]->is_null())
{
DBUG_PRINT("info", ("null"));
owner->was_null|= 1;
DBUG_RETURN(0);
}
else
DBUG_RETURN(1);
}
/**
Optimize case of not_null_column IS NULL.
*/
void Item_is_not_null_test::update_used_tables()
{
if (!args[0]->maybe_null)
used_tables_cache= 0; /* is always true */
else
args[0]->update_used_tables();
}
longlong Item_func_isnotnull::val_int()
{
DBUG_ASSERT(fixed == 1);
return args[0]->is_null() ? 0 : 1;
}
void Item_func_isnotnull::print(String *str, enum_query_type query_type)
{
args[0]->print_parenthesised(str, query_type, precedence());
str->append(STRING_WITH_LEN(" is not null"));
}
bool Item_bool_func2::count_sargable_conds(void *arg)
{
((SELECT_LEX*) arg)->cond_count++;
return 0;
}
void Item_func_like::print(String *str, enum_query_type query_type)
{
args[0]->print_parenthesised(str, query_type, precedence());
str->append(' ');
if (negated)
str->append(STRING_WITH_LEN(" not "));
str->append(func_name());
str->append(' ');
if (escape_used_in_parsing)
{
args[1]->print_parenthesised(str, query_type, precedence());
str->append(STRING_WITH_LEN(" escape "));
escape_item->print_parenthesised(str, query_type, higher_precedence());
}
else
args[1]->print_parenthesised(str, query_type, higher_precedence());
}
longlong Item_func_like::val_int()
{
DBUG_ASSERT(fixed == 1);
DBUG_ASSERT(escape != ESCAPE_NOT_INITIALIZED);
String* res= args[0]->val_str(&cmp_value1);
if (args[0]->null_value)
{
null_value=1;
return 0;
}
String* res2= args[1]->val_str(&cmp_value2);
if (args[1]->null_value)
{
null_value=1;
return 0;
}
null_value=0;
if (canDoTurboBM)
return turboBM_matches(res->ptr(), res->length()) ? !negated : negated;
return cmp_collation.collation->wildcmp(
res->ptr(),res->ptr()+res->length(),
res2->ptr(),res2->ptr()+res2->length(),
escape,wild_one,wild_many) ? negated : !negated;
}
/**
We can optimize a where if first character isn't a wildcard
*/
bool Item_func_like::with_sargable_pattern() const
{
if (negated)
return false;
if (!args[1]->const_item() || args[1]->is_expensive())
return false;
String* res2= args[1]->val_str((String *) &cmp_value2);
if (!res2)
return false;
if (!res2->length()) // Can optimize empty wildcard: column LIKE ''
return true;
DBUG_ASSERT(res2->ptr());
char first= res2->ptr()[0];
return first != wild_many && first != wild_one;
}
/*
subject LIKE pattern
removes subject's dependency on PAD_CHAR_TO_FULL_LENGTH
if pattern ends with the '%' wildcard.
*/
Sql_mode_dependency Item_func_like::value_depends_on_sql_mode() const
{
if (!args[1]->value_depends_on_sql_mode_const_item())
return Item_func::value_depends_on_sql_mode();
StringBuffer<64> patternbuf;
String *pattern= args[1]->val_str_ascii(&patternbuf);
if (!pattern || !pattern->length())
return Sql_mode_dependency(); // Will return NULL or 0
DBUG_ASSERT(pattern->charset()->mbminlen == 1);
if (pattern->ptr()[pattern->length() - 1] != '%')
return Item_func::value_depends_on_sql_mode();
return ((args[0]->value_depends_on_sql_mode() |
args[1]->value_depends_on_sql_mode()) &
Sql_mode_dependency(~0, ~MODE_PAD_CHAR_TO_FULL_LENGTH)).
soft_to_hard();
}
SEL_TREE *Item_func_like::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
{
MEM_ROOT *tmp_root= param->mem_root;
param->thd->mem_root= param->old_root;
bool sargable_pattern= with_sargable_pattern();
param->thd->mem_root= tmp_root;
return sargable_pattern ?
Item_bool_func2::get_mm_tree(param, cond_ptr) :
Item_func::get_mm_tree(param, cond_ptr);
}
bool fix_escape_item(THD *thd, Item *escape_item, String *tmp_str,
bool escape_used_in_parsing, CHARSET_INFO *cmp_cs,
int *escape)
{
/*
ESCAPE clause accepts only constant arguments and Item_param.
Subqueries during context_analysis_only might decide they're
const_during_execution, but not quite const yet, not evaluate-able.
This is fine, as most of context_analysis_only modes will never
reach val_int(), so we won't need the value.
CONTEXT_ANALYSIS_ONLY_DERIVED being a notable exception here.
*/
if (!escape_item->const_during_execution() ||
(!escape_item->const_item() &&
!(thd->lex->context_analysis_only & ~CONTEXT_ANALYSIS_ONLY_DERIVED)))
{
my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE");
return TRUE;
}
IF_DBUG(*escape= ESCAPE_NOT_INITIALIZED,);
if (escape_item->const_item())
{
/* If we are on execution stage */
/* XXX is it safe to evaluate is_expensive() items here? */
String *escape_str= escape_item->val_str(tmp_str);
if (escape_str)
{
const char *escape_str_ptr= escape_str->ptr();
if (escape_used_in_parsing && (
(((thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES) &&
escape_str->numchars() != 1) ||
escape_str->numchars() > 1)))
{
my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE");
return TRUE;
}
if (cmp_cs->use_mb())
{
CHARSET_INFO *cs= escape_str->charset();
my_wc_t wc;
int rc= cs->mb_wc(&wc,
(const uchar*) escape_str_ptr,
(const uchar*) escape_str_ptr +
escape_str->length());
*escape= (int) (rc > 0 ? wc : '\\');
}
else
{
/*
In the case of 8bit character set, we pass native
code instead of Unicode code as "escape" argument.
Convert to "cs" if charset of escape differs.
*/
uint32 unused;
if (escape_str->needs_conversion(escape_str->length(),
escape_str->charset(),cmp_cs,&unused))
{
char ch;
uint errors;
uint32 cnvlen= copy_and_convert(&ch, 1, cmp_cs, escape_str_ptr,
escape_str->length(),
escape_str->charset(), &errors);
*escape= cnvlen ? ch : '\\';
}
else
*escape= escape_str_ptr ? *escape_str_ptr : '\\';
}
}
else
*escape= '\\';
}
return FALSE;
}
bool Item_func_like::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
if (Item_bool_func2::fix_fields(thd, ref) ||
escape_item->fix_fields_if_needed_for_scalar(thd, &escape_item) ||
fix_escape_item(thd, escape_item, &cmp_value1, escape_used_in_parsing,
cmp_collation.collation, &escape))
return TRUE;
if (escape_item->const_item())
{
/*
We could also do boyer-more for non-const items, but as we would have to
recompute the tables for each row it's not worth it.
*/
if (args[1]->const_item() && !use_strnxfrm(collation.collation) &&
!args[1]->is_expensive())
{
String* res2= args[1]->val_str(&cmp_value2);
if (!res2)
return FALSE; // Null argument
const size_t len= res2->length();
/*
len must be > 2 ('%pattern%')
heuristic: only do TurboBM for pattern_len > 2
*/
if (len <= 2)
return FALSE;
const char* first= res2->ptr();
const char* last= first + len - 1;
if (len > MIN_TURBOBM_PATTERN_LEN + 2 &&
*first == wild_many &&
*last == wild_many)
{
const char* tmp = first + 1;
for (; *tmp != wild_many && *tmp != wild_one && *tmp != escape; tmp++) ;
canDoTurboBM = (tmp == last) && !args[0]->collation.collation->use_mb();
}
if (canDoTurboBM)
{
pattern_len = (int) len - 2;
pattern = thd->strmake(first + 1, pattern_len);
DBUG_PRINT("info", ("Initializing pattern: '%s'", first));
int *suff = (int*) thd->alloc((int) (sizeof(int)*
((pattern_len + 1)*2+
alphabet_size)));
bmGs = suff + pattern_len + 1;
bmBc = bmGs + pattern_len + 1;
turboBM_compute_good_suffix_shifts(suff);
turboBM_compute_bad_character_shifts();
DBUG_PRINT("info",("done"));
}
use_sampling= (len > 2 && (*first == wild_many || *first == wild_one));
}
}
return FALSE;
}
void Item_func_like::cleanup()
{
canDoTurboBM= FALSE;
Item_bool_func2::cleanup();
}
bool Item_func_like::find_selective_predicates_list_processor(void *arg)
{
find_selective_predicates_list_processor_data *data=
(find_selective_predicates_list_processor_data *) arg;
if (use_sampling && used_tables() == data->table->map)
{
THD *thd= data->table->in_use;
COND_STATISTIC *stat;
Item *arg0;
if (!(stat= (COND_STATISTIC *) thd->alloc(sizeof(COND_STATISTIC))))
return TRUE;
stat->cond= this;
arg0= args[0]->real_item();
if (args[1]->const_item() && arg0->type() == FIELD_ITEM)
stat->field_arg= ((Item_field *)arg0)->field;
else
stat->field_arg= NULL;
data->list.push_back(stat, thd->mem_root);
}
return FALSE;
}
int Regexp_processor_pcre::default_regex_flags()
{
return default_regex_flags_pcre(current_thd);
}
void Regexp_processor_pcre::cleanup()
{
pcre2_match_data_free(m_pcre_match_data);
pcre2_code_free(m_pcre);
reset();
}
void Regexp_processor_pcre::init(CHARSET_INFO *data_charset, int extra_flags)
{
m_library_flags= default_regex_flags() | extra_flags |
(data_charset != &my_charset_bin ?
(PCRE2_UTF | PCRE2_UCP) : 0) |
((data_charset->state &
(MY_CS_BINSORT | MY_CS_CSSORT)) ? 0 : PCRE2_CASELESS);
// Convert text data to utf-8.
m_library_charset= data_charset == &my_charset_bin ?
&my_charset_bin : &my_charset_utf8mb3_general_ci;
m_conversion_is_needed= (data_charset != &my_charset_bin) &&
!my_charset_same(data_charset, m_library_charset);
}
/**
Convert string to lib_charset, if needed.
*/
String *Regexp_processor_pcre::convert_if_needed(String *str, String *converter)
{
if (m_conversion_is_needed)
{
uint dummy_errors;
if (converter->copy(str->ptr(), str->length(), str->charset(),
m_library_charset, &dummy_errors))
return NULL;
str= converter;
}
return str;
}
/**
@brief Compile regular expression.
@param[in] pattern the pattern to compile from.
@param[in] send_error send error message if any.
@details Make necessary character set conversion then
compile regular expression passed in the args[1].
@retval false success.
@retval true error occurred.
*/
bool Regexp_processor_pcre::compile(String *pattern, bool send_error)
{
int pcreErrorNumber;
PCRE2_SIZE pcreErrorOffset;
if (is_compiled())
{
if (!stringcmp(pattern, &m_prev_pattern))
return false;
cleanup();
}
m_prev_pattern.copy(*pattern);
if (!(pattern= convert_if_needed(pattern, &pattern_converter)))
return true;
pcre2_compile_context *cctx= NULL;
#ifndef pcre2_set_depth_limit
// old pcre2 uses stack - put a limit on that (new pcre2 prefers heap)
cctx= pcre2_compile_context_create(NULL);
pcre2_set_compile_recursion_guard(cctx, [](uint32_t cur, void *end) -> int
{ return available_stack_size(&cur, end) < STACK_MIN_SIZE; },
current_thd->mysys_var->stack_ends_here);
#endif
m_pcre= pcre2_compile((PCRE2_SPTR8) pattern->ptr(), pattern->length(),
m_library_flags,
&pcreErrorNumber, &pcreErrorOffset, cctx);
pcre2_compile_context_free(cctx); // NULL is ok here
if (unlikely(m_pcre == NULL))
{
if (send_error)
{
char buff[MAX_FIELD_WIDTH];
int lmsg= pcre2_get_error_message(pcreErrorNumber,
(PCRE2_UCHAR8 *)buff, sizeof(buff));
if (lmsg >= 0)
my_snprintf(buff+lmsg, sizeof(buff)-lmsg,
" at offset %d", pcreErrorOffset);
my_error(ER_REGEXP_ERROR, MYF(0), buff);
}
return true;
}
m_pcre_match_data= pcre2_match_data_create_from_pattern(m_pcre, NULL);
if (m_pcre_match_data == NULL)
{
my_error(ER_OUT_OF_RESOURCES, MYF(0));
return true;
}
return false;
}
bool Regexp_processor_pcre::compile(Item *item, bool send_error)
{
char buff[MAX_FIELD_WIDTH];
String tmp(buff, sizeof(buff), &my_charset_bin);
String *pattern= item->val_str(&tmp);
if (unlikely(item->null_value) || (unlikely(compile(pattern, send_error))))
return true;
return false;
}
/**
Send a warning explaining an error code returned by pcre_exec().
*/
void Regexp_processor_pcre::pcre_exec_warn(int rc) const
{
PCRE2_UCHAR8 buf[128];
THD *thd= current_thd;
int errlen= pcre2_get_error_message(rc, buf, sizeof(buf));
if (errlen <= 0)
{
my_snprintf((char *)buf, sizeof(buf), "pcre_exec: Internal error (%d)", rc);
}
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_REGEXP_ERROR, ER_THD(thd, ER_REGEXP_ERROR), buf);
}
/**
Call pcre_exec() and send a warning if pcre_exec() returned with an error.
*/
int Regexp_processor_pcre::pcre_exec_with_warn(const pcre2_code *code,
pcre2_match_data *data,
const char *subject,
int length, int startoffset,
int options)
{
pcre2_match_context *mctx= NULL;
#ifndef pcre2_set_depth_limit
// old pcre2 uses stack - put a limit on that (new pcre2 prefers heap)
mctx= pcre2_match_context_create(NULL);
pcre2_set_recursion_limit(mctx,
available_stack_size(&mctx, current_thd->mysys_var->stack_ends_here)/544);
#endif
int rc= pcre2_match(code, (PCRE2_SPTR8) subject, (PCRE2_SIZE) length,
(PCRE2_SIZE) startoffset, options, data, mctx);
pcre2_match_context_free(mctx); // NULL is ok here
DBUG_EXECUTE_IF("pcre_exec_error_123", rc= -123;);
if (unlikely(rc < PCRE2_ERROR_NOMATCH))
{
m_SubStrVec= NULL;
pcre_exec_warn(rc);
}
else
m_SubStrVec= pcre2_get_ovector_pointer(data);
return rc;
}
bool Regexp_processor_pcre::exec(const char *str, size_t length, size_t offset)
{
m_pcre_exec_rc= pcre_exec_with_warn(m_pcre, m_pcre_match_data,
str, (int)length, (int)offset, 0);
return false;
}
bool Regexp_processor_pcre::exec(String *str, int offset,
uint n_result_offsets_to_convert)
{
if (!(str= convert_if_needed(str, &subject_converter)))
return true;
m_pcre_exec_rc= pcre_exec_with_warn(m_pcre, m_pcre_match_data,
str->ptr(), str->length(), offset, 0);
if (m_pcre_exec_rc > 0)
{
uint i;
for (i= 0; i < n_result_offsets_to_convert; i++)
{
/*
Convert byte offset into character offset.
*/
m_SubStrVec[i]= (int) str->charset()->numchars(str->ptr(),
str->ptr() +
m_SubStrVec[i]);
}
}
return false;
}
bool Regexp_processor_pcre::exec(Item *item, int offset,
uint n_result_offsets_to_convert)
{
char buff[MAX_FIELD_WIDTH];
String tmp(buff,sizeof(buff),&my_charset_bin);
String *res= item->val_str(&tmp);
if (item->null_value)
return true;
return exec(res, offset, n_result_offsets_to_convert);
}
void Regexp_processor_pcre::fix_owner(Item_func *owner,
Item *subject_arg,
Item *pattern_arg)
{
if (!is_compiled() &&
pattern_arg->const_item() &&
!pattern_arg->is_expensive())
{
if (compile(pattern_arg, true))
{
owner->maybe_null= 1; // Will always return NULL
return;
}
set_const(true);
owner->maybe_null= subject_arg->maybe_null;
}
else
owner->maybe_null= 1;
}
bool
Item_func_regex::fix_length_and_dec()
{
if (Item_bool_func::fix_length_and_dec() ||
agg_arg_charsets_for_comparison(cmp_collation, args, 2))
return TRUE;
re.init(cmp_collation.collation, 0);
re.fix_owner(this, args[0], args[1]);
return FALSE;
}
longlong Item_func_regex::val_int()
{
DBUG_ASSERT(fixed == 1);
if ((null_value= re.recompile(args[1])))
return 0;
if ((null_value= re.exec(args[0], 0, 0)))
return 0;
return re.match();
}
bool
Item_func_regexp_instr::fix_length_and_dec()
{
if (agg_arg_charsets_for_comparison(cmp_collation, args, 2))
return TRUE;
re.init(cmp_collation.collation, 0);
re.fix_owner(this, args[0], args[1]);
max_length= MY_INT32_NUM_DECIMAL_DIGITS; // See also Item_func_locate
return FALSE;
}
longlong Item_func_regexp_instr::val_int()
{
DBUG_ASSERT(fixed == 1);
if ((null_value= re.recompile(args[1])))
return 0;
if ((null_value= re.exec(args[0], 0, 1)))
return 0;
return re.match() ? (longlong) (re.subpattern_start(0) + 1) : 0;
}
#ifdef LIKE_CMP_TOUPPER
#define likeconv(cs,A) (uchar) (cs)->toupper(A)
#else
#define likeconv(cs,A) (uchar) (cs)->sort_order[(uchar) (A)]
#endif
/**
Precomputation dependent only on pattern_len.
*/
void Item_func_like::turboBM_compute_suffixes(int *suff)
{
const int plm1 = pattern_len - 1;
int f = 0;
int g = plm1;
int *const splm1 = suff + plm1;
CHARSET_INFO *cs= cmp_collation.collation;
*splm1 = pattern_len;
if (!cs->sort_order)
{
int i;
for (i = pattern_len - 2; i >= 0; i--)
{
int tmp = *(splm1 + i - f);
if (g < i && tmp < i - g)
suff[i] = tmp;
else
{
if (i < g)
g = i; // g = MY_MIN(i, g)
f = i;
while (g >= 0 && pattern[g] == pattern[g + plm1 - f])
g--;
suff[i] = f - g;
}
}
}
else
{
int i;
for (i = pattern_len - 2; 0 <= i; --i)
{
int tmp = *(splm1 + i - f);
if (g < i && tmp < i - g)
suff[i] = tmp;
else
{
if (i < g)
g = i; // g = MY_MIN(i, g)
f = i;
while (g >= 0 &&
likeconv(cs, pattern[g]) == likeconv(cs, pattern[g + plm1 - f]))
g--;
suff[i] = f - g;
}
}
}
}
/**
Precomputation dependent only on pattern_len.
*/
void Item_func_like::turboBM_compute_good_suffix_shifts(int *suff)
{
turboBM_compute_suffixes(suff);
int *end = bmGs + pattern_len;
int *k;
for (k = bmGs; k < end; k++)
*k = pattern_len;
int tmp;
int i;
int j = 0;
const int plm1 = pattern_len - 1;
for (i = plm1; i > -1; i--)
{
if (suff[i] == i + 1)
{
for (tmp = plm1 - i; j < tmp; j++)
{
int *tmp2 = bmGs + j;
if (*tmp2 == pattern_len)
*tmp2 = tmp;
}
}
}
int *tmp2;
for (tmp = plm1 - i; j < tmp; j++)
{
tmp2 = bmGs + j;
if (*tmp2 == pattern_len)
*tmp2 = tmp;
}
tmp2 = bmGs + plm1;
for (i = 0; i <= pattern_len - 2; i++)
*(tmp2 - suff[i]) = plm1 - i;
}
/**
Precomputation dependent on pattern_len.
*/
void Item_func_like::turboBM_compute_bad_character_shifts()
{
int *i;
int *end = bmBc + alphabet_size;
int j;
const int plm1 = pattern_len - 1;
CHARSET_INFO *cs= cmp_collation.collation;
for (i = bmBc; i < end; i++)
*i = pattern_len;
if (!cs->sort_order)
{
for (j = 0; j < plm1; j++)
bmBc[(uint) (uchar) pattern[j]] = plm1 - j;
}
else
{
for (j = 0; j < plm1; j++)
bmBc[(uint) likeconv(cs,pattern[j])] = plm1 - j;
}
}
/**
Search for pattern in text.
@return
returns true/false for match/no match
*/
bool Item_func_like::turboBM_matches(const char* text, int text_len) const
{
int bcShift;
int turboShift;
int shift = pattern_len;
int j = 0;
int u = 0;
CHARSET_INFO *cs= cmp_collation.collation;
const int plm1= pattern_len - 1;
const int tlmpl= text_len - pattern_len;
/* Searching */
if (!cs->sort_order)
{
while (j <= tlmpl)
{
int i= plm1;
while (i >= 0 && pattern[i] == text[i + j])
{
i--;
if (i == plm1 - shift)
i-= u;
}
if (i < 0)
return 1;
const int v= plm1 - i;
turboShift = u - v;
bcShift = bmBc[(uint) (uchar) text[i + j]] - plm1 + i;
shift = MY_MAX(turboShift, bcShift);
shift = MY_MAX(shift, bmGs[i]);
if (shift == bmGs[i])
u = MY_MIN(pattern_len - shift, v);
else
{
if (turboShift < bcShift)
shift = MY_MAX(shift, u + 1);
u = 0;
}
j+= shift;
}
return 0;
}
else
{
while (j <= tlmpl)
{
int i= plm1;
while (i >= 0 && likeconv(cs,pattern[i]) == likeconv(cs,text[i + j]))
{
i--;
if (i == plm1 - shift)
i-= u;
}
if (i < 0)
return 1;
const int v= plm1 - i;
turboShift = u - v;
bcShift = bmBc[(uint) likeconv(cs, text[i + j])] - plm1 + i;
shift = MY_MAX(turboShift, bcShift);
shift = MY_MAX(shift, bmGs[i]);
if (shift == bmGs[i])
u = MY_MIN(pattern_len - shift, v);
else
{
if (turboShift < bcShift)
shift = MY_MAX(shift, u + 1);
u = 0;
}
j+= shift;
}
return 0;
}
}
/**
Make a logical XOR of the arguments.
If either operator is NULL, return NULL.
@todo
(low priority) Change this to be optimized as: @n
A XOR B -> (A) == 1 AND (B) <> 1) OR (A <> 1 AND (B) == 1) @n
To be able to do this, we would however first have to extend the MySQL
range optimizer to handle OR better.
@note
As we don't do any index optimization on XOR this is not going to be
very fast to use.
*/
longlong Item_func_xor::val_int()
{
DBUG_ASSERT(fixed == 1);
int result= 0;
null_value= false;
for (uint i= 0; i < arg_count; i++)
{
result^= (args[i]->val_int() != 0);
if (args[i]->null_value)
{
null_value= true;
return 0;
}
}
return result;
}
/**
Apply NOT transformation to the item and return a new one.
Transform the item using next rules:
@verbatim
a AND b AND ... -> NOT(a) OR NOT(b) OR ...
a OR b OR ... -> NOT(a) AND NOT(b) AND ...
NOT(a) -> a
a = b -> a != b
a != b -> a = b
a < b -> a >= b
a >= b -> a < b
a > b -> a <= b
a <= b -> a > b
IS NULL(a) -> IS NOT NULL(a)
IS NOT NULL(a) -> IS NULL(a)
@endverbatim
@param thd thread handler
@return
New item or
NULL if we cannot apply NOT transformation (see Item::neg_transformer()).
*/
Item *Item_func_not::neg_transformer(THD *thd) /* NOT(x) -> x */
{
return args[0];
}
bool Item_func_not::fix_fields(THD *thd, Item **ref)
{
args[0]->under_not(this);
if (args[0]->type() == FIELD_ITEM)
{
/* replace "NOT <field>" with "<field> == 0" */
Query_arena backup, *arena;
Item *new_item;
bool rc= TRUE;
arena= thd->activate_stmt_arena_if_needed(&backup);
if ((new_item= new (thd->mem_root) Item_func_eq(thd, args[0], new (thd->mem_root) Item_int(thd, 0, 1))))
{
new_item->name= name;
rc= (*ref= new_item)->fix_fields(thd, ref);
}
if (arena)
thd->restore_active_arena(arena, &backup);
return rc;
}
return Item_func::fix_fields(thd, ref);
}
Item *Item_bool_rowready_func2::neg_transformer(THD *thd)
{
Item *item= negated_item(thd);
return item;
}
/**
XOR can be negated by negating one of the operands:
NOT (a XOR b) => (NOT a) XOR b
=> a XOR (NOT b)
@param thd Thread handle
@return New negated item
*/
Item *Item_func_xor::neg_transformer(THD *thd)
{
Item *neg_operand;
Item_func_xor *new_item;
if ((neg_operand= args[0]->neg_transformer(thd)))
// args[0] has neg_tranformer
new_item= new(thd->mem_root) Item_func_xor(thd, neg_operand, args[1]);
else if ((neg_operand= args[1]->neg_transformer(thd)))
// args[1] has neg_tranformer
new_item= new(thd->mem_root) Item_func_xor(thd, args[0], neg_operand);
else
{
neg_operand= new(thd->mem_root) Item_func_not(thd, args[0]);
new_item= new(thd->mem_root) Item_func_xor(thd, neg_operand, args[1]);
}
return new_item;
}
/**
a IS NULL -> a IS NOT NULL.
*/
Item *Item_func_isnull::neg_transformer(THD *thd)
{
Item *item= new (thd->mem_root) Item_func_isnotnull(thd, args[0]);
return item;
}
/**
a IS NOT NULL -> a IS NULL.
*/
Item *Item_func_isnotnull::neg_transformer(THD *thd)
{
Item *item= new (thd->mem_root) Item_func_isnull(thd, args[0]);
return item;
}
Item *Item_cond_and::neg_transformer(THD *thd) /* NOT(a AND b AND ...) -> */
/* NOT a OR NOT b OR ... */
{
neg_arguments(thd);
Item *item= new (thd->mem_root) Item_cond_or(thd, list);
return item;
}
bool
Item_cond_and::set_format_by_check_constraint(
Send_field_extended_metadata *to) const
{
List_iterator_fast<Item> li(const_cast<List<Item>&>(list));
Item *item;
while ((item= li++))
{
if (item->set_format_by_check_constraint(to))
return true;
}
return false;
}
Item *Item_cond_or::neg_transformer(THD *thd) /* NOT(a OR b OR ...) -> */
/* NOT a AND NOT b AND ... */
{
neg_arguments(thd);
Item *item= new (thd->mem_root) Item_cond_and(thd, list);
return item;
}
Item *Item_func_nop_all::neg_transformer(THD *thd)
{
/* "NOT (e $cmp$ ANY (SELECT ...)) -> e $rev_cmp$" ALL (SELECT ...) */
Item_func_not_all *new_item= new (thd->mem_root) Item_func_not_all(thd, args[0]);
Item_allany_subselect *allany= (Item_allany_subselect*)args[0];
allany->create_comp_func(FALSE);
allany->all= !allany->all;
allany->upper_item= new_item;
return new_item;
}
Item *Item_func_not_all::neg_transformer(THD *thd)
{
/* "NOT (e $cmp$ ALL (SELECT ...)) -> e $rev_cmp$" ANY (SELECT ...) */
Item_func_nop_all *new_item= new (thd->mem_root) Item_func_nop_all(thd, args[0]);
Item_allany_subselect *allany= (Item_allany_subselect*)args[0];
allany->all= !allany->all;
allany->create_comp_func(TRUE);
allany->upper_item= new_item;
return new_item;
}
Item *Item_func_eq::negated_item(THD *thd) /* a = b -> a != b */
{
return new (thd->mem_root) Item_func_ne(thd, args[0], args[1]);
}
Item *Item_func_ne::negated_item(THD *thd) /* a != b -> a = b */
{
return new (thd->mem_root) Item_func_eq(thd, args[0], args[1]);
}
Item *Item_func_lt::negated_item(THD *thd) /* a < b -> a >= b */
{
return new (thd->mem_root) Item_func_ge(thd, args[0], args[1]);
}
Item *Item_func_ge::negated_item(THD *thd) /* a >= b -> a < b */
{
return new (thd->mem_root) Item_func_lt(thd, args[0], args[1]);
}
Item *Item_func_gt::negated_item(THD *thd) /* a > b -> a <= b */
{
return new (thd->mem_root) Item_func_le(thd, args[0], args[1]);
}
Item *Item_func_le::negated_item(THD *thd) /* a <= b -> a > b */
{
return new (thd->mem_root) Item_func_gt(thd, args[0], args[1]);
}
/**
just fake method, should never be called.
*/
Item *Item_bool_rowready_func2::negated_item(THD *thd)
{
DBUG_ASSERT(0);
return 0;
}
/**
Construct a minimal multiple equality item
@param f1 the first equal item
@param f2 the second equal item
@param with_const_item TRUE if the first item is constant
@details
The constructor builds a new item equal object for the equality f1=f2.
One of the equal items can be constant. If this is the case it is passed
always as the first parameter and the parameter with_const_item serves
as an indicator of this case.
Currently any non-constant parameter items must point to an item of the
of the type Item_field or Item_direct_view_ref(Item_field).
*/
Item_equal::Item_equal(THD *thd, const Type_handler *handler,
Item *f1, Item *f2, bool with_const_item):
Item_bool_func(thd), eval_item(0), cond_false(0), cond_true(0),
context_field(NULL), link_equal_fields(FALSE),
m_compare_handler(handler),
m_compare_collation(f2->collation.collation)
{
const_item_cache= 0;
with_const= with_const_item;
equal_items.push_back(f1, thd->mem_root);
equal_items.push_back(f2, thd->mem_root);
upper_levels= NULL;
}
/**
Copy constructor for a multiple equality
@param item_equal source item for the constructor
@details
The function creates a copy of an Item_equal object.
This constructor is used when an item belongs to a multiple equality
of an upper level (an upper AND/OR level or an upper level of a nested
outer join).
*/
Item_equal::Item_equal(THD *thd, Item_equal *item_equal):
Item_bool_func(thd), eval_item(0), cond_false(0), cond_true(0),
context_field(NULL), link_equal_fields(FALSE),
m_compare_handler(item_equal->m_compare_handler),
m_compare_collation(item_equal->m_compare_collation)
{
const_item_cache= 0;
List_iterator_fast<Item> li(item_equal->equal_items);
Item *item;
while ((item= li++))
{
equal_items.push_back(item, thd->mem_root);
}
with_const= item_equal->with_const;
cond_false= item_equal->cond_false;
upper_levels= item_equal->upper_levels;
}
/**
@brief
Add a constant item to the Item_equal object
@param[in] c the constant to add
@param[in] f item from the list equal_items the item c is equal to
(this parameter is optional)
@details
The method adds the constant item c to the equal_items list. If the list
doesn't have any constant item yet the item c is just put in the front
the list. Otherwise the value of c is compared with the value of the
constant item from equal_items. If they are not equal cond_false is set
to TRUE. This serves as an indicator that this Item_equal is always FALSE.
*/
void Item_equal::add_const(THD *thd, Item *c)
{
if (cond_false)
return;
if (!with_const)
{
with_const= TRUE;
equal_items.push_front(c, thd->mem_root);
return;
}
/*
Suppose we have an expression (with a string type field) like this:
WHERE field=const1 AND field=const2 ...
For all pairs field=constXXX we know that:
- Item_func_eq::fix_length_and_dec() performed collation and character
set aggregation and added character set converters when needed.
Note, the case like:
WHERE field=const1 COLLATE latin1_bin AND field=const2
is not handled here, because the field would be replaced to
Item_func_set_collation, which cannot get into Item_equal.
So all constXXX that are handled by Item_equal
already have compatible character sets with "field".
- Also, Field_str::test_if_equality_guarantees_uniqueness() guarantees
that the comparison collation of all equalities handled by Item_equal
match the the collation of the field.
Therefore, at Item_equal::add_const() time all constants constXXX
should be directly comparable to each other without an additional
character set conversion.
It's safe to do val_str() for "const_item" and "c" and compare
them according to the collation of the *field*.
So in a script like this:
CREATE TABLE t1 (a VARCHAR(10) COLLATE xxx);
INSERT INTO t1 VALUES ('a'),('A');
SELECT * FROM t1 WHERE a='a' AND a='A';
Item_equal::add_const() effectively rewrites the condition to:
SELECT * FROM t1 WHERE a='a' AND 'a' COLLATE xxx='A';
and then to:
SELECT * FROM t1 WHERE a='a'; // if the two constants were equal
// e.g. in case of latin1_swedish_ci
or to:
SELECT * FROM t1 WHERE FALSE; // if the two constants were not equal
// e.g. in case of latin1_bin
Note, both "const_item" and "c" can return NULL, e.g.:
SELECT * FROM t1 WHERE a=NULL AND a='const';
SELECT * FROM t1 WHERE a='const' AND a=NULL;
SELECT * FROM t1 WHERE a='const' AND a=(SELECT MAX(a) FROM t2)
*/
cond_false= !Item_equal::compare_type_handler()->Item_eq_value(thd, this, c,
get_const());
if (with_const && equal_items.elements == 1)
cond_true= TRUE;
if (cond_false || cond_true)
const_item_cache= 1;
}
/**
@brief
Check whether a field is referred to in the multiple equality
@param field field whose occurrence is to be checked
@details
The function checks whether field is referred to by one of the
items from the equal_items list.
@retval
1 if multiple equality contains a reference to field
@retval
0 otherwise
*/
bool Item_equal::contains(Field *field)
{
Item_equal_fields_iterator it(*this);
while (it++)
{
if (field->eq(it.get_curr_field()))
return 1;
}
return 0;
}
/**
@brief
Join members of another Item_equal object
@param item multiple equality whose members are to be joined
@details
The function actually merges two multiple equalities. After this operation
the Item_equal object additionally contains the field items of another item of
the type Item_equal.
If the optional constant items are not equal the cond_false flag is set to TRUE.
@notes
The function is called for any equality f1=f2 such that f1 and f2 are items
of the type Item_field or Item_direct_view_ref(Item_field), and, f1->field is
referred to in the list this->equal_items, while the list item->equal_items
contains a reference to f2->field.
*/
void Item_equal::merge(THD *thd, Item_equal *item)
{
Item *c= item->get_const();
if (c)
item->equal_items.pop();
equal_items.append(&item->equal_items);
if (c)
{
/*
The flag cond_false will be set to TRUE after this if
the multiple equality already contains a constant and its
value is not equal to the value of c.
*/
add_const(thd, c);
}
cond_false|= item->cond_false;
}
/**
@brief
Merge members of another Item_equal object into this one
@param item multiple equality whose members are to be merged
@param save_merged keep the list of equalities in 'item' intact
(e.g. for other merges)
@details
If the Item_equal 'item' happens to have some elements of the list
of equal items belonging to 'this' object then the function merges
the equal items from 'item' into this list.
If both lists contains constants and they are different then
the value of the cond_false flag is set to TRUE.
@retval
1 the lists of equal items in 'item' and 'this' contain common elements
@retval
0 otherwise
@notes
The method 'merge' just joins the list of equal items belonging to 'item'
to the list of equal items belonging to this object assuming that the lists
are disjoint. It would be more correct to call the method 'join'.
The method 'merge_into_with_check' really merges two lists of equal items if
they have common members.
*/
bool Item_equal::merge_with_check(THD *thd, Item_equal *item, bool save_merged)
{
bool intersected= FALSE;
Item_equal_fields_iterator_slow fi(*item);
while (fi++)
{
if (contains(fi.get_curr_field()))
{
intersected= TRUE;
if (!save_merged)
fi.remove();
}
}
if (intersected)
{
if (!save_merged)
merge(thd, item);
else
{
Item *c= item->get_const();
if (c)
add_const(thd, c);
if (!cond_false)
{
Item *item;
fi.rewind();
while ((item= fi++))
{
if (!contains(fi.get_curr_field()))
add(item, thd->mem_root);
}
}
}
}
return intersected;
}
/**
@brief
Merge this object into a list of Item_equal objects
@param list the list of Item_equal objects to merge into
@param save_merged keep the list of equalities in 'this' intact
(e.g. for other merges)
@param only_intersected do not merge if there are no common members
in any of Item_equal objects from the list
and this Item_equal
@details
If the list of equal items from 'this' object contains common members
with the lists of equal items belonging to Item_equal objects from 'list'
then all involved Item_equal objects e1,...,ek are merged into one
Item equal that replaces e1,...,ek in the 'list'. Otherwise, in the case
when the value of the parameter only_if_intersected is false, this
Item_equal is joined to the 'list'.
*/
void Item_equal::merge_into_list(THD *thd, List<Item_equal> *list,
bool save_merged,
bool only_intersected)
{
Item_equal *item;
List_iterator<Item_equal> it(*list);
Item_equal *merge_into= NULL;
while((item= it++))
{
if (!merge_into)
{
if (item->merge_with_check(thd, this, save_merged))
merge_into= item;
}
else
{
if (merge_into->merge_with_check(thd, item, false))
it.remove();
}
}
if (!only_intersected && !merge_into)
list->push_back(this, thd->mem_root);
}
/**
@brief
Order equal items of the multiple equality according to a sorting criteria
@param compare function to compare items from the equal_items list
@param arg context extra parameter for the cmp function
@details
The function performs ordering of the items from the equal_items list
according to the criteria determined by the cmp callback parameter.
If cmp(item1,item2,arg)<0 than item1 must be placed after item2.
@notes
The function sorts equal items by the bubble sort algorithm.
The list of field items is looked through and whenever two neighboring
members follow in a wrong order they are swapped. This is performed
again and again until we get all members in a right order.
*/
void Item_equal::sort(Item_field_cmpfunc compare, void *arg)
{
bubble_sort<Item>(&equal_items, compare, arg);
}
/**
@brief
Check appearance of new constant items in the multiple equality object
@details
The function checks appearance of new constant items among the members
of the equal_items list. Each new constant item is compared with
the constant item from the list if there is any. If there is none the first
new constant item is placed at the very beginning of the list and
with_const is set to TRUE. If it happens that the compared constant items
are unequal then the flag cond_false is set to TRUE.
@notes
Currently this function is called only after substitution of constant tables.
*/
void Item_equal::update_const(THD *thd)
{
List_iterator<Item> it(equal_items);
if (with_const)
it++;
Item *item;
while ((item= it++))
{
if (item->const_item() && !item->is_expensive() &&
/*
Don't propagate constant status of outer-joined column.
Such a constant status here is a result of:
a) empty outer-joined table: in this case such a column has a
value of NULL; but at the same time other arguments of
Item_equal don't have to be NULLs and the value of the whole
multiple equivalence expression doesn't have to be NULL or FALSE
because of the outer join nature;
or
b) outer-joined table contains only 1 row: the result of
this column is equal to a row field value *or* NULL.
Both values are inacceptable as Item_equal constants.
*/
!item->is_outer_field())
{
if (item == equal_items.head())
with_const= TRUE;
else
{
it.remove();
add_const(thd, item);
}
}
}
}
/**
@brief
Fix fields in a completely built multiple equality
@param thd currently not used thread handle
@param ref not used
@details
This function is called once the multiple equality has been built out of
the WHERE/ON condition and no new members are expected to be added to the
equal_items list anymore.
As any implementation of the virtual fix_fields method the function
calculates the cached values of not_null_tables_cache, used_tables_cache,
const_item_cache and calls fix_length_and_dec().
Additionally the function sets a reference to the Item_equal object in
the non-constant items of the equal_items list unless such a reference has
been already set.
@notes
Currently this function is called only in the function
build_equal_items_for_cond.
@retval
FALSE always
*/
bool Item_equal::fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
Item_equal_fields_iterator it(*this);
Item *item;
Field *first_equal_field= NULL;
Field *last_equal_field= NULL;
Field *prev_equal_field= NULL;
not_null_tables_cache= used_tables_cache= 0;
const_item_cache= 0;
while ((item= it++))
{
table_map tmp_table_map;
used_tables_cache|= item->used_tables();
tmp_table_map= item->not_null_tables();
not_null_tables_cache|= tmp_table_map;
DBUG_ASSERT(!item->with_sum_func() && !item->with_subquery());
if (item->maybe_null)
maybe_null= 1;
if (!item->get_item_equal())
item->set_item_equal(this);
if (link_equal_fields && item->real_item()->type() == FIELD_ITEM)
{
last_equal_field= ((Item_field *) (item->real_item()))->field;
if (!prev_equal_field)
first_equal_field= last_equal_field;
else
prev_equal_field->next_equal_field= last_equal_field;
prev_equal_field= last_equal_field;
}
}
if (prev_equal_field && last_equal_field != first_equal_field)
last_equal_field->next_equal_field= first_equal_field;
if (fix_length_and_dec())
return TRUE;
fixed= 1;
return FALSE;
}
/**
Update the value of the used table attribute and other attributes
*/
void Item_equal::update_used_tables()
{
not_null_tables_cache= used_tables_cache= 0;
if ((const_item_cache= cond_false || cond_true))
return;
Item_equal_fields_iterator it(*this);
Item *item;
const_item_cache= 1;
while ((item= it++))
{
item->update_used_tables();
used_tables_cache|= item->used_tables();
/* see commentary at Item_equal::update_const() */
const_item_cache&= item->const_item() && !item->is_outer_field();
}
}
/**
@note
This multiple equality can contains elements belonging not to tables {T}
marked in 'allowed' . So we can ascertain null-rejectedness of field f
belonging to table t from {T} only if one of the following equality
predicate can be extracted from this multiple equality:
- f=const
- f=f' where f' is a field of some table from {T}
*/
bool Item_equal::find_not_null_fields(table_map allowed)
{
if (!(allowed & used_tables()))
return false;
bool checked= false;
Item_equal_fields_iterator it(*this);
Item *item;
while ((item= it++))
{
if (~allowed & item->used_tables())
continue;
if ((with_const || checked) && !item->find_not_null_fields(allowed))
continue;
Item_equal_fields_iterator it1(*this);
Item *item1;
while ((item1= it1++) && item1 != item)
{
if (~allowed & item1->used_tables())
continue;
if (!item->find_not_null_fields(allowed) &&
!item1->find_not_null_fields(allowed))
{
checked= true;
break;
}
}
}
return false;
}
bool Item_equal::count_sargable_conds(void *arg)
{
SELECT_LEX *sel= (SELECT_LEX *) arg;
uint m= equal_items.elements;
sel->cond_count+= m*(m-1);
return 0;
}
/**
@brief
Evaluate multiple equality
@details
The function evaluate multiple equality to a boolean value.
The function ignores non-constant items from the equal_items list.
The function returns 1 if all constant items from the list are equal.
It returns 0 if there are unequal constant items in the list or
one of the constant items is evaluated to NULL.
@notes
Currently this function can be called only at the optimization
stage after the constant table substitution, since all Item_equals
are eliminated before the execution stage.
@retval
0 multiple equality is always FALSE or NULL
1 otherwise
*/
longlong Item_equal::val_int()
{
if (cond_false)
return 0;
if (cond_true)
return 1;
Item *item= get_const();
Item_equal_fields_iterator it(*this);
if (!item)
item= it++;
eval_item->store_value(item);
if ((null_value= item->null_value))
return 0;
while ((item= it++))
{
Field *field= it.get_curr_field();
/* Skip fields of tables that has not been read yet */
if (!field->table->status || (field->table->status & STATUS_NULL_ROW))
{
const int rc= eval_item->cmp(item);
if ((rc == TRUE) || (null_value= (rc == UNKNOWN)))
return 0;
}
}
return 1;
}
bool Item_equal::fix_length_and_dec()
{
Item *item= get_first(NO_PARTICULAR_TAB, NULL);
const Type_handler *handler= item->type_handler();
eval_item= handler->make_cmp_item(current_thd, item->collation.collation);
return eval_item == NULL;
}
bool Item_equal::walk(Item_processor processor, bool walk_subquery, void *arg)
{
Item *item;
Item_equal_fields_iterator it(*this);
while ((item= it++))
{
if (item->walk(processor, walk_subquery, arg))
return 1;
}
return Item_func::walk(processor, walk_subquery, arg);
}
Item *Item_equal::transform(THD *thd, Item_transformer transformer, uchar *arg)
{
DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare());
Item *item;
Item_equal_fields_iterator it(*this);
while ((item= it++))
{
Item *new_item= item->transform(thd, transformer, arg);
if (!new_item)
return 0;
/*
THD::change_item_tree() should be called only if the tree was
really transformed, i.e. when a new item has been created.
Otherwise we'll be allocating a lot of unnecessary memory for
change records at each execution.
*/
if (new_item != item)
thd->change_item_tree((Item **) it.ref(), new_item);
}
return Item_func::transform(thd, transformer, arg);
}
void Item_equal::print(String *str, enum_query_type query_type)
{
if (cond_false)
{
str->append('0');
return;
}
str->append(func_name());
str->append('(');
List_iterator_fast<Item> it(equal_items);
Item *item;
item= it++;
item->print(str, query_type);
while ((item= it++))
{
str->append(',');
str->append(' ');
item->print(str, query_type);
}
str->append(')');
}
/*
@brief Get the first equal field of multiple equality.
@param[in] field the field to get equal field to
@details Get the first field of multiple equality that is equal to the
given field. In order to make semi-join materialization strategy work
correctly we can't propagate equal fields from upper select to a
materialized semi-join.
Thus the fields is returned according to following rules:
1) If the given field belongs to a semi-join then the first field in
multiple equality which belong to the same semi-join is returned.
Otherwise NULL is returned.
2) If the given field doesn't belong to a semi-join then
the first field in the multiple equality that doesn't belong to any
semi-join is returned.
If all fields in the equality are belong to semi-join(s) then NULL
is returned.
3) If no field is given then the first field in the multiple equality
is returned without regarding whether it belongs to a semi-join or not.
@retval Found first field in the multiple equality.
@retval 0 if no field found.
*/
Item* Item_equal::get_first(JOIN_TAB *context, Item *field_item)
{
Item_equal_fields_iterator it(*this);
Item *item;
if (!field_item)
return (it++);
Field *field= ((Item_field *) (field_item->real_item()))->field;
/*
Of all equal fields, return the first one we can use. Normally, this is the
field which belongs to the table that is the first in the join order.
There is one exception to this: When semi-join materialization strategy is
used, and the given field belongs to a table within the semi-join nest, we
must pick the first field in the semi-join nest.
Example: suppose we have a join order:
ot1 ot2 SJ-Mat(it1 it2 it3) ot3
and equality ot2.col = it1.col = it2.col
If we're looking for best substitute for 'it2.col', we should pick it1.col
and not ot2.col.
eliminate_item_equal() also has code that deals with equality substitution
in presence of SJM nests.
*/
TABLE_LIST *emb_nest;
if (context != NO_PARTICULAR_TAB)
emb_nest= context->emb_sj_nest;
else
emb_nest= field->table->pos_in_table_list->embedding;
if (emb_nest && emb_nest->sj_mat_info && emb_nest->sj_mat_info->is_used)
{
/*
It's a field from an materialized semi-join. We can substitute it for
- a constant item
- a field from the same semi-join
Find the first of such items:
*/
while ((item= it++))
{
if (item->const_item() ||
it.get_curr_field()->table->pos_in_table_list->embedding == emb_nest)
{
/*
If we found given field then return NULL to avoid unnecessary
substitution.
*/
return (item != field_item) ? item : NULL;
}
}
}
else
{
/*
The field is not in SJ-Materialization nest. We must return the first
field in the join order. The field may be inside a semi-join nest, i.e
a join order may look like this:
SJ-Mat(it1 it2) ot1 ot2
where we're looking what to substitute ot2.col for. In this case we must
still return it1.col, here's a proof why:
First let's note that either it1.col or it2.col participates in
subquery's IN-equality. It can't be otherwise, because materialization is
only applicable to uncorrelated subqueries, so the only way we could
infer "it1.col=ot1.col" is from the IN-equality. Ok, so IN-eqality has
it1.col or it2.col on its inner side. it1.col is first such item in the
join order, so it's not possible for SJ-Mat to be
SJ-Materialization-lookup, it is SJ-Materialization-Scan. The scan part
of this strategy will unpack value of it1.col=it2.col into it1.col
(that's the first equal item inside the subquery), and we'll be able to
get it from there. qed.
*/
return equal_items.head();
}
// Shouldn't get here.
DBUG_ASSERT(0);
return NULL;
}
longlong Item_func_dyncol_check::val_int()
{
char buff[STRING_BUFFER_USUAL_SIZE];
String tmp(buff, sizeof(buff), &my_charset_bin);
DYNAMIC_COLUMN col;
String *str;
enum enum_dyncol_func_result rc;
str= args[0]->val_str(&tmp);
if (args[0]->null_value)
goto null;
col.length= str->length();
/* We do not change the string, so could do this trick */
col.str= (char *)str->ptr();
rc= mariadb_dyncol_check(&col);
if (rc < 0 && rc != ER_DYNCOL_FORMAT)
{
dynamic_column_error_message(rc);
goto null;
}
null_value= FALSE;
return rc == ER_DYNCOL_OK;
null:
null_value= TRUE;
return 0;
}
longlong Item_func_dyncol_exists::val_int()
{
char buff[STRING_BUFFER_USUAL_SIZE], nmstrbuf[11];
String tmp(buff, sizeof(buff), &my_charset_bin),
nmbuf(nmstrbuf, sizeof(nmstrbuf), system_charset_info);
DYNAMIC_COLUMN col;
String *str;
LEX_STRING buf, *name= NULL;
ulonglong num= 0;
enum enum_dyncol_func_result rc;
if (args[1]->result_type() == INT_RESULT)
num= args[1]->val_int();
else
{
String *nm= args[1]->val_str(&nmbuf);
if (!nm || args[1]->null_value)
{
null_value= 1;
return 1;
}
if (my_charset_same(nm->charset(), DYNCOL_UTF))
{
buf.str= (char *) nm->ptr();
buf.length= nm->length();
}
else
{
uint strlen= nm->length() * DYNCOL_UTF->mbmaxlen + 1;
uint dummy_errors;
buf.str= (char *) current_thd->alloc(strlen);
if (buf.str)
{
buf.length=
copy_and_convert(buf.str, strlen, DYNCOL_UTF,
nm->ptr(), nm->length(), nm->charset(),
&dummy_errors);
}
else
buf.length= 0;
}
name= &buf;
}
str= args[0]->val_str(&tmp);
if (args[0]->null_value || args[1]->null_value || num > UINT_MAX16)
goto null;
col.length= str->length();
/* We do not change the string, so could do this trick */
col.str= (char *)str->ptr();
rc= ((name == NULL) ?
mariadb_dyncol_exists_num(&col, (uint) num) :
mariadb_dyncol_exists_named(&col, name));
if (rc < 0)
{
dynamic_column_error_message(rc);
goto null;
}
null_value= FALSE;
return rc == ER_DYNCOL_YES;
null:
null_value= TRUE;
return 0;
}
Item_bool_rowready_func2 *Eq_creator::create(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_eq(thd, a, b);
}
Item_bool_rowready_func2* Eq_creator::create_swap(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_eq(thd, b, a);
}
Item_bool_rowready_func2* Ne_creator::create(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_ne(thd, a, b);
}
Item_bool_rowready_func2* Ne_creator::create_swap(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_ne(thd, b, a);
}
Item_bool_rowready_func2* Gt_creator::create(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_gt(thd, a, b);
}
Item_bool_rowready_func2* Gt_creator::create_swap(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_lt(thd, b, a);
}
Item_bool_rowready_func2* Lt_creator::create(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_lt(thd, a, b);
}
Item_bool_rowready_func2* Lt_creator::create_swap(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_gt(thd, b, a);
}
Item_bool_rowready_func2* Ge_creator::create(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_ge(thd, a, b);
}
Item_bool_rowready_func2* Ge_creator::create_swap(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_le(thd, b, a);
}
Item_bool_rowready_func2* Le_creator::create(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_le(thd, a, b);
}
Item_bool_rowready_func2* Le_creator::create_swap(THD *thd, Item *a, Item *b) const
{
return new(thd->mem_root) Item_func_ge(thd, b, a);
}
bool
Item_equal::excl_dep_on_grouping_fields(st_select_lex *sel)
{
Item_equal_fields_iterator it(*this);
Item *item;
while ((item=it++))
{
if (item->excl_dep_on_grouping_fields(sel))
{
set_extraction_flag(FULL_EXTRACTION_FL);
return true;
}
}
return false;
}
/**
@brief
Transform multiple equality into list of equalities
@param thd the thread handle
@param equalities the list where created equalities are stored
@param checker the checker callback function to be applied to the nodes
of the tree of the object to check if multiple equality
elements can be used to create equalities
@param arg parameter to be passed to the checker
@param clone_const true <=> clone the constant member if there is any
@details
How the method works on examples:
Example 1:
It takes MULT_EQ(x,a,b) and tries to create from its elements a set of
equalities {(x=a),(x=b)}.
Example 2:
It takes MULT_EQ(1,a,b) and tries to create from its elements a set of
equalities {(a=1),(a=b)}.
How it is done:
1. If there is a constant member c the first non-constant member x for
which the function checker returns true is taken and an item for
the equality x=c is created. When constructing the equality item
the left part of the equality is always taken as a clone of x while
the right part is taken as a clone of c only if clone_const == true.
2. After this all equalities of the form x=a (where x designates the first
non-constant member for which checker returns true and a is some other
such member of the multiplle equality) are created. When constructing
an equality item both its parts are taken as clones of x and a.
Suppose in the examples above that for 'x', 'a', and 'b' the function
checker returns true.
Example 1:
the equality (x=a) is built
the equality (x=b) is built
Example 2:
the equality (a=1) is built
the equality (a=b) is built
3. As a result we get a set of equalities built with the elements of
this multiple equality. They are saved in the equality list.
Example 1:
{(x=a),(x=b)}
Example 2:
{(a=1),(a=b)}
@note
This method is called for condition pushdown into materialized
derived table/view, and IN subquery, and pushdown from HAVING into WHERE.
When it is called for pushdown from HAVING the empty checker is passed.
This is because in this case the elements of the multiple equality don't
need to be checked if they can be used to build equalities: either all
equalities can be pushed or none of them can be pushed.
When the function is called for pushdown from HAVING the value of the
parameter clone_const is always false. In other cases it's always true.
@retval true if an error occurs
@retval false otherwise
*/
bool Item_equal::create_pushable_equalities(THD *thd,
List<Item> *equalities,
Pushdown_checker checker,
uchar *arg,
bool clone_const)
{
Item *item;
Item *left_item= NULL;
Item *right_item = get_const();
Item_equal_fields_iterator it(*this);
while ((item=it++))
{
left_item= item;
if (checker && !((item->*checker) (arg)))
continue;
break;
}
if (!left_item)
return false;
if (right_item)
{
Item_func_eq *eq= 0;
Item *left_item_clone= left_item->build_clone(thd);
Item *right_item_clone= !clone_const ?
right_item : right_item->build_clone(thd);
if (!left_item_clone || !right_item_clone)
return true;
eq= new (thd->mem_root) Item_func_eq(thd,
left_item_clone,
right_item_clone);
if (!eq || equalities->push_back(eq, thd->mem_root))
return true;
if (!clone_const)
{
/*
Also set IMMUTABLE_FL for any sub-items of the right_item.
This is needed to prevent Item::cleanup_excluding_immutables_processor
from peforming cleanup of the sub-items and so creating an item tree
where a fixed item has non-fixed items inside it.
*/
int new_flag= IMMUTABLE_FL;
right_item->walk(&Item::set_extraction_flag_processor, false,
(void*)&new_flag);
}
}
while ((item=it++))
{
if (checker && !((item->*checker) (arg)))
continue;
Item_func_eq *eq= 0;
Item *left_item_clone= left_item->build_clone(thd);
Item *right_item_clone= item->build_clone(thd);
if (!(left_item_clone && right_item_clone))
return true;
left_item_clone->set_item_equal(NULL);
right_item_clone->set_item_equal(NULL);
eq= new (thd->mem_root) Item_func_eq(thd,
right_item_clone,
left_item_clone);
if (!eq || equalities->push_back(eq, thd->mem_root))
return true;
}
return false;
}
/**
Transform multiple equality into the AND condition of equalities.
Example:
MULT_EQ(x,a,b)
=>
(x=a) AND (x=b)
Equalities are built in Item_equal::create_pushable_equalities() method
using elements of this multiple equality. The result of this method is
saved in an equality list.
This method returns the condition where the elements of the equality list
are anded.
*/
Item *Item_equal::multiple_equality_transformer(THD *thd, uchar *arg)
{
List<Item> equalities;
if (create_pushable_equalities(thd, &equalities, 0, 0, false))
return 0;
switch (equalities.elements)
{
case 0:
return 0;
case 1:
return equalities.head();
break;
default:
return new (thd->mem_root) Item_cond_and(thd, equalities);
break;
}
}