mariadb/sql/sql_analyze_stmt.h
Sergei Petrunia 68ed3a81f2 MDEV-20854: ANALYZE for statements: not clear where the time is spent
Count the "gap" time between table accesses and display it as
r_other_time_ms in the "table" element.

* The advantage of this approach is that it doesn't add any new
  my_timer_cycles() calls.
* The disadvantage is that the definition of what is done during
  "other time" is not that clear: it includes checking the WHERE
  (for this table), constructing index lookup tuple (for the next table)
  writing to GROUP BY temporary table (as we dont account for that time
  separately [yet], etc)
2019-11-12 14:40:00 +03:00

405 lines
11 KiB
C++

/*
Copyright (c) 2015 MariaDB Corporation Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
/*
== ANALYZE-stmt classes ==
This file contains classes for supporting "ANALYZE statement" feature. These are
a set of data structures that can be used to store the data about how the
statement executed.
There are two kinds of data collection:
1. Various counters. We assume that incrementing counters has very low
overhead. Because of that, execution code increments counters unconditionally
(even when not running "ANALYZE $statement" commands. You run regular SELECT/
UPDATE/DELETE/etc and the counters are incremented).
As a free bonus, this lets us print detailed information into the slow query
log, should the query be slow.
2. Timing data. Measuring the time it took to run parts of query has noticeable
overhead. Because of that, we measure the time only when running "ANALYZE
$stmt").
*/
class Gap_time_tracker;
void attach_gap_time_tracker(THD *thd, Gap_time_tracker *gap_tracker, ulonglong timeval);
void process_gap_time_tracker(THD *thd, ulonglong timeval);
/*
A class for tracking time it takes to do a certain action
*/
class Exec_time_tracker
{
protected:
ulonglong count;
ulonglong cycles;
ulonglong last_start;
void cycles_stop_tracking(THD *thd)
{
ulonglong end= my_timer_cycles();
cycles += end - last_start;
if (unlikely(end < last_start))
cycles += ULONGLONG_MAX;
process_gap_time_tracker(thd, end);
if (my_gap_tracker)
attach_gap_time_tracker(thd, my_gap_tracker, end);
}
public:
Exec_time_tracker() : count(0), cycles(0), my_gap_tracker(NULL) {}
/*
The time spent between stop_tracking() call on this object and any
other time measurement will be billed to this tracker.
*/
Gap_time_tracker *my_gap_tracker;
// interface for collecting time
void start_tracking(THD *thd)
{
last_start= my_timer_cycles();
process_gap_time_tracker(thd, last_start);
}
void stop_tracking(THD *thd)
{
count++;
cycles_stop_tracking(thd);
}
// interface for getting the time
ulonglong get_loops() const { return count; }
double get_time_ms() const
{
// convert 'cycles' to milliseconds.
return 1000 * ((double)cycles) / sys_timer_info.cycles.frequency;
}
};
/*
Tracker for time spent between the calls to Exec_time_tracker's {start|
stop}_tracking().
@seealso Gap_time_tracker_data in sql_class.h
*/
class Gap_time_tracker
{
ulonglong cycles;
public:
Gap_time_tracker() : cycles(0) {}
void log_time(ulonglong start, ulonglong end) {
cycles += end - start;
}
double get_time_ms() const
{
// convert 'cycles' to milliseconds.
return 1000 * ((double)cycles) / sys_timer_info.cycles.frequency;
}
};
/*
A class for counting certain actions (in all queries), and optionally
collecting the timings (in ANALYZE queries).
*/
class Time_and_counter_tracker: public Exec_time_tracker
{
public:
const bool timed;
Time_and_counter_tracker(bool timed_arg) : timed(timed_arg)
{}
/* Loops are counted in both ANALYZE and regular queries, as this is cheap */
void incr_loops() { count++; }
/*
Unlike Exec_time_tracker::stop_tracking, we don't increase loops.
*/
void stop_tracking(THD *thd)
{
cycles_stop_tracking(thd);
}
};
#define ANALYZE_START_TRACKING(thd, tracker) \
{ \
(tracker)->incr_loops(); \
if (unlikely((tracker)->timed)) \
{ (tracker)->start_tracking(thd); } \
}
#define ANALYZE_STOP_TRACKING(thd, tracker) \
if (unlikely((tracker)->timed)) \
{ (tracker)->stop_tracking(thd); }
/*
A class for collecting read statistics.
The idea is that we run several scans. Each scans gets rows, and then filters
some of them out. We count scans, rows, and rows left after filtering.
(note: at the moment, the class is not actually tied to a physical table.
It can be used to track reading from files, buffers, etc).
*/
class Table_access_tracker
{
public:
Table_access_tracker() :
r_scans(0), r_rows(0), /*r_rows_after_table_cond(0),*/
r_rows_after_where(0)
{}
ha_rows r_scans; /* How many scans were ran on this join_tab */
ha_rows r_rows; /* How many rows we've got after that */
ha_rows r_rows_after_where; /* Rows after applying attached part of WHERE */
bool has_scans() { return (r_scans != 0); }
ha_rows get_loops() { return r_scans; }
double get_avg_rows()
{
return r_scans ? ((double)r_rows / r_scans): 0;
}
double get_filtered_after_where()
{
double r_filtered;
if (r_rows > 0)
r_filtered= (double)r_rows_after_where / r_rows;
else
r_filtered= 1.0;
return r_filtered;
}
inline void on_scan_init() { r_scans++; }
inline void on_record_read() { r_rows++; }
inline void on_record_after_where() { r_rows_after_where++; }
};
class Json_writer;
/*
This stores the data about how filesort executed.
A few things from here (e.g. r_used_pq, r_limit) belong to the query plan,
however, these parameters are calculated right during the execution so we
can't easily put them into the query plan.
The class is designed to handle multiple invocations of filesort().
*/
class Filesort_tracker : public Sql_alloc
{
public:
Filesort_tracker(bool do_timing) :
time_tracker(do_timing), r_limit(0), r_used_pq(0),
r_examined_rows(0), r_sorted_rows(0), r_output_rows(0),
sort_passes(0),
sort_buffer_size(0)
{}
/* Functions that filesort uses to report various things about its execution */
inline void report_use(THD *thd, ha_rows r_limit_arg)
{
if (!time_tracker.get_loops())
r_limit= r_limit_arg;
else
r_limit= (r_limit != r_limit_arg)? 0: r_limit_arg;
ANALYZE_START_TRACKING(thd, &time_tracker);
}
inline void incr_pq_used() { r_used_pq++; }
inline void report_row_numbers(ha_rows examined_rows,
ha_rows sorted_rows,
ha_rows returned_rows)
{
r_examined_rows += examined_rows;
r_sorted_rows += sorted_rows;
r_output_rows += returned_rows;
}
inline void report_merge_passes_at_start(ulong passes)
{
sort_passes -= passes;
}
inline void report_merge_passes_at_end(THD *thd, ulong passes)
{
ANALYZE_STOP_TRACKING(thd, &time_tracker);
sort_passes += passes;
}
inline void report_sort_buffer_size(size_t bufsize)
{
if (sort_buffer_size)
sort_buffer_size= ulonglong(-1); // multiple buffers of different sizes
else
sort_buffer_size= bufsize;
}
/* Functions to get the statistics */
void print_json_members(Json_writer *writer);
ulonglong get_r_loops() const { return time_tracker.get_loops(); }
double get_avg_examined_rows()
{
return ((double)r_examined_rows) / get_r_loops();
}
double get_avg_returned_rows()
{
return ((double)r_output_rows) / get_r_loops();
}
double get_r_filtered()
{
if (r_examined_rows > 0)
return ((double)r_sorted_rows / r_examined_rows);
else
return 1.0;
}
private:
Time_and_counter_tracker time_tracker;
//ulonglong r_loops; /* How many times filesort was invoked */
/*
LIMIT is typically a constant. There is never "LIMIT 0".
HA_POS_ERROR means we never had a limit
0 means different values of LIMIT were used in
different filesort invocations
other value means the same LIMIT value was used every time.
*/
ulonglong r_limit;
ulonglong r_used_pq; /* How many times PQ was used */
/* How many rows were examined (before checking the select->cond) */
ulonglong r_examined_rows;
/*
How many rows were put into sorting (this is examined_rows minus rows that
didn't pass the WHERE condition)
*/
ulonglong r_sorted_rows;
/*
How many rows were returned. This is equal to r_sorted_rows, unless there
was a LIMIT N clause in which case filesort would not have returned more
than N rows.
*/
ulonglong r_output_rows;
/* How many sorts in total (divide by r_count to get the average) */
ulonglong sort_passes;
/*
0 - means not used (or not known
(ulonglong)-1 - multiple
other - value
*/
ulonglong sort_buffer_size;
};
/**
A class to collect data about how rowid filter is executed.
It stores information about how rowid filter container is filled,
containers size and observed selectivity.
The observed selectivity is calculated in this way.
Some elements elem_set are checked if they belong to container.
Observed selectivity is calculated as the count of elem_set
elements that belong to container devided by all elem_set elements.
*/
class Rowid_filter_tracker : public Sql_alloc
{
private:
/* A member to track the time to fill the rowid filter */
Time_and_counter_tracker time_tracker;
/* Size of the rowid filter container buffer */
size_t container_buff_size;
/* Count of elements that were used to fill the rowid filter container */
uint container_elements;
/* Elements counts used for observed selectivity calculation */
uint n_checks;
uint n_positive_checks;
public:
Rowid_filter_tracker(bool do_timing) :
time_tracker(do_timing), container_buff_size(0),
container_elements(0), n_checks(0), n_positive_checks(0)
{}
inline void start_tracking(THD *thd)
{
ANALYZE_START_TRACKING(thd, &time_tracker);
}
inline void stop_tracking(THD *thd)
{
ANALYZE_STOP_TRACKING(thd, &time_tracker);
}
/* Save container buffer size in bytes */
inline void report_container_buff_size(uint elem_size)
{
container_buff_size= container_elements * elem_size / 8;
}
Time_and_counter_tracker *get_time_tracker()
{
return &time_tracker;
}
double get_time_fill_container_ms()
{
return time_tracker.get_time_ms();
}
void increment_checked_elements_count(bool was_checked)
{
n_checks++;
if (was_checked)
n_positive_checks++;
}
inline void increment_container_elements_count() { container_elements++; }
uint get_container_elements() { return container_elements; }
double get_r_selectivity_pct()
{
return (double)n_positive_checks/(double)n_checks;
}
size_t get_container_buff_size() { return container_buff_size; }
};