mariadb/mysys/my_wincond.c
Kristofer Pettersson dfed28e750 Bug#47768 pthread_cond_timedwait() is broken on windows
The pthread_cond_wait implementations for windows might
dead lock in some rare circumstances.

1) One thread (I) enter a timed wait and at a point in
   time ends up after mutex unlock and before
   WaitForMultipleObjects(...)
2) Another thread (II) enters pthread_cond_broadcast.
   Grabs the mutex and discovers one waiter. It set
   the broadcast event and closes the broadcast gate
   then unlocks the mutex.
3) A third thread (III) issues a pthread_cond_signal.
   It grabs the mutex, discovers one waiter, sets the
   signal event then unlock the mutex.
4) The first threads (I) enters WaitForMultipleObjects
   and finds out that the signal object is in a
   signalled state and exits the wait.
5) Thread (I) grabs the mutex and checks result status.
   The number of waiters is decreased and becomes equal
   to 0. The event returned was a signal event so the
   broadcast gate isn't opened. The mutex is released.
6) Thread (II) issues a new broadcast. The mutex is
   acquired but the number of waiters are 0 hence
   the broadcast gate remains closed.
7) Thread (I) enters the wait again but is blocked by
   the broadcast gate.

      This fix resolves the above issue by always resetting
      broadcast gate when there are no more waiters in th queue.
2009-10-06 09:38:44 +02:00

230 lines
6.2 KiB
C

/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*****************************************************************************
** The following is a simple implementation of posix conditions
*****************************************************************************/
#undef SAFE_MUTEX /* Avoid safe_mutex redefinitions */
#include "mysys_priv.h"
#if defined(THREAD) && defined(__WIN__)
#include <m_string.h>
#undef getpid
#include <process.h>
#include <sys/timeb.h>
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr)
{
cond->waiting= 0;
InitializeCriticalSection(&cond->lock_waiting);
cond->events[SIGNAL]= CreateEvent(NULL, /* no security */
FALSE, /* auto-reset event */
FALSE, /* non-signaled initially */
NULL); /* unnamed */
/* Create a manual-reset event. */
cond->events[BROADCAST]= CreateEvent(NULL, /* no security */
TRUE, /* manual-reset */
FALSE, /* non-signaled initially */
NULL); /* unnamed */
cond->broadcast_block_event= CreateEvent(NULL, /* no security */
TRUE, /* manual-reset */
TRUE, /* signaled initially */
NULL); /* unnamed */
if( cond->events[SIGNAL] == NULL ||
cond->events[BROADCAST] == NULL ||
cond->broadcast_block_event == NULL )
return ENOMEM;
return 0;
}
int pthread_cond_destroy(pthread_cond_t *cond)
{
DeleteCriticalSection(&cond->lock_waiting);
if (CloseHandle(cond->events[SIGNAL]) == 0 ||
CloseHandle(cond->events[BROADCAST]) == 0 ||
CloseHandle(cond->broadcast_block_event) == 0)
return EINVAL;
return 0;
}
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
return pthread_cond_timedwait(cond,mutex,NULL);
}
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
struct timespec *abstime)
{
int result;
long timeout;
union ft64 now;
if( abstime != NULL )
{
GetSystemTimeAsFileTime(&now.ft);
/*
Calculate time left to abstime
- subtract start time from current time(values are in 100ns units)
- convert to millisec by dividing with 10000
*/
timeout= (long)((abstime->tv.i64 - now.i64) / 10000);
/* Don't allow the timeout to be negative */
if (timeout < 0)
timeout= 0L;
/*
Make sure the calucated timeout does not exceed original timeout
value which could cause "wait for ever" if system time changes
*/
if (timeout > abstime->max_timeout_msec)
timeout= abstime->max_timeout_msec;
}
else
{
/* No time specified; don't expire */
timeout= INFINITE;
}
/*
Block access if previous broadcast hasn't finished.
This is just for safety and should normally not
affect the total time spent in this function.
*/
WaitForSingleObject(cond->broadcast_block_event, INFINITE);
EnterCriticalSection(&cond->lock_waiting);
cond->waiting++;
LeaveCriticalSection(&cond->lock_waiting);
LeaveCriticalSection(mutex);
result= WaitForMultipleObjects(2, cond->events, FALSE, timeout);
EnterCriticalSection(&cond->lock_waiting);
cond->waiting--;
if (cond->waiting == 0)
{
/*
We're the last waiter to be notified or to stop waiting, so
reset the manual event.
*/
/* Close broadcast gate */
ResetEvent(cond->events[BROADCAST]);
/* Open block gate */
SetEvent(cond->broadcast_block_event);
}
LeaveCriticalSection(&cond->lock_waiting);
EnterCriticalSection(mutex);
return result == WAIT_TIMEOUT ? ETIMEDOUT : 0;
}
int pthread_cond_signal(pthread_cond_t *cond)
{
EnterCriticalSection(&cond->lock_waiting);
if(cond->waiting > 0)
SetEvent(cond->events[SIGNAL]);
LeaveCriticalSection(&cond->lock_waiting);
return 0;
}
int pthread_cond_broadcast(pthread_cond_t *cond)
{
EnterCriticalSection(&cond->lock_waiting);
/*
The mutex protect us from broadcasting if
there isn't any thread waiting to open the
block gate after this call has closed it.
*/
if(cond->waiting > 0)
{
/* Close block gate */
ResetEvent(cond->broadcast_block_event);
/* Open broadcast gate */
SetEvent(cond->events[BROADCAST]);
}
LeaveCriticalSection(&cond->lock_waiting);
return 0;
}
int pthread_attr_init(pthread_attr_t *connect_att)
{
connect_att->dwStackSize = 0;
connect_att->dwCreatingFlag = 0;
connect_att->priority = 0;
return 0;
}
int pthread_attr_setstacksize(pthread_attr_t *connect_att,DWORD stack)
{
connect_att->dwStackSize=stack;
return 0;
}
int pthread_attr_setprio(pthread_attr_t *connect_att,int priority)
{
connect_att->priority=priority;
return 0;
}
int pthread_attr_destroy(pthread_attr_t *connect_att)
{
bzero((gptr) connect_att,sizeof(*connect_att));
return 0;
}
/****************************************************************************
** Fix localtime_r() to be a bit safer
****************************************************************************/
struct tm *localtime_r(const time_t *timep,struct tm *tmp)
{
if (*timep == (time_t) -1) /* This will crash win32 */
{
bzero(tmp,sizeof(*tmp));
}
else
{
struct tm *res=localtime(timep);
if (!res) /* Wrong date */
{
bzero(tmp,sizeof(*tmp)); /* Keep things safe */
return 0;
}
*tmp= *res;
}
return tmp;
}
#endif /* __WIN__ */