mirror of
https://github.com/MariaDB/server.git
synced 2025-01-19 13:32:33 +01:00
4eac5df3fc
This patch introduces support for the system variable eq_range_index_dive_limit that existed in MySQL starting from 5.6. The variable sets a limit for index dives into equality ranges. Index dives are performed by optimizer to estimate the number of rows in range scans. Index dives usually provide good estimate but they are pretty expensive. To estimate the number of rows in equality ranges statistical data on indexes can be employed. Its usage gives not so good estimates but it's cheap. So if the number of equality dives required by an index scan exceeds the set limit no dives for equality ranges are performed by the optimizer for this index. As the new system variable is introduced in a stable version the default value for it is set to a special value meaning there is no limit for the number of index dives performed by the optimizer. The patch partially uses the MySQL code for WL 5957 'Statistics-based Range optimization for many ranges'.
400 lines
13 KiB
C++
400 lines
13 KiB
C++
/*
|
|
Copyright (c) 2009, 2011, Monty Program Ab
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1301 USA */
|
|
|
|
/****************************************************************************
|
|
MRR Range Sequence Interface implementation that walks a SEL_ARG* tree.
|
|
****************************************************************************/
|
|
|
|
/* MRR range sequence, SEL_ARG* implementation: stack entry */
|
|
typedef struct st_range_seq_entry
|
|
{
|
|
/*
|
|
Pointers in min and max keys. They point to right-after-end of key
|
|
images. The 0-th entry has these pointing to key tuple start.
|
|
*/
|
|
uchar *min_key, *max_key;
|
|
|
|
/*
|
|
Flags, for {keypart0, keypart1, ... this_keypart} subtuple.
|
|
min_key_flag may have NULL_RANGE set.
|
|
*/
|
|
uint min_key_flag, max_key_flag;
|
|
|
|
/* Number of key parts */
|
|
uint min_key_parts, max_key_parts;
|
|
SEL_ARG *key_tree;
|
|
} RANGE_SEQ_ENTRY;
|
|
|
|
|
|
/*
|
|
MRR range sequence, SEL_ARG* implementation: SEL_ARG graph traversal context
|
|
*/
|
|
typedef struct st_sel_arg_range_seq
|
|
{
|
|
uint keyno; /* index of used tree in SEL_TREE structure */
|
|
uint real_keyno; /* Number of the index in tables */
|
|
PARAM *param;
|
|
SEL_ARG *start; /* Root node of the traversed SEL_ARG* graph */
|
|
|
|
RANGE_SEQ_ENTRY stack[MAX_REF_PARTS];
|
|
int i; /* Index of last used element in the above array */
|
|
|
|
bool at_start; /* TRUE <=> The traversal has just started */
|
|
} SEL_ARG_RANGE_SEQ;
|
|
|
|
|
|
/*
|
|
Range sequence interface, SEL_ARG* implementation: Initialize the traversal
|
|
|
|
SYNOPSIS
|
|
init()
|
|
init_params SEL_ARG tree traversal context
|
|
n_ranges [ignored] The number of ranges obtained
|
|
flags [ignored] HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY
|
|
|
|
RETURN
|
|
Value of init_param
|
|
*/
|
|
|
|
range_seq_t sel_arg_range_seq_init(void *init_param, uint n_ranges, uint flags)
|
|
{
|
|
SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)init_param;
|
|
seq->param->range_count=0;
|
|
seq->at_start= TRUE;
|
|
seq->stack[0].key_tree= NULL;
|
|
seq->stack[0].min_key= seq->param->min_key;
|
|
seq->stack[0].min_key_flag= 0;
|
|
seq->stack[0].min_key_parts= 0;
|
|
|
|
seq->stack[0].max_key= seq->param->max_key;
|
|
seq->stack[0].max_key_flag= 0;
|
|
seq->stack[0].max_key_parts= 0;
|
|
seq->i= 0;
|
|
return init_param;
|
|
}
|
|
|
|
|
|
static void step_down_to(SEL_ARG_RANGE_SEQ *arg, SEL_ARG *key_tree)
|
|
{
|
|
RANGE_SEQ_ENTRY *cur= &arg->stack[arg->i+1];
|
|
RANGE_SEQ_ENTRY *prev= &arg->stack[arg->i];
|
|
|
|
cur->key_tree= key_tree;
|
|
cur->min_key= prev->min_key;
|
|
cur->max_key= prev->max_key;
|
|
cur->min_key_parts= prev->min_key_parts;
|
|
cur->max_key_parts= prev->max_key_parts;
|
|
|
|
uint16 stor_length= arg->param->key[arg->keyno][key_tree->part].store_length;
|
|
cur->min_key_parts += key_tree->store_min(stor_length, &cur->min_key,
|
|
prev->min_key_flag);
|
|
cur->max_key_parts += key_tree->store_max(stor_length, &cur->max_key,
|
|
prev->max_key_flag);
|
|
|
|
cur->min_key_flag= prev->min_key_flag | key_tree->min_flag;
|
|
cur->max_key_flag= prev->max_key_flag | key_tree->max_flag;
|
|
|
|
if (key_tree->is_null_interval())
|
|
cur->min_key_flag |= NULL_RANGE;
|
|
(arg->i)++;
|
|
}
|
|
|
|
|
|
/*
|
|
Range sequence interface, SEL_ARG* implementation: get the next interval
|
|
|
|
SYNOPSIS
|
|
sel_arg_range_seq_next()
|
|
rseq Value returned from sel_arg_range_seq_init
|
|
range OUT Store information about the range here
|
|
|
|
DESCRIPTION
|
|
This is "get_next" function for Range sequence interface implementation
|
|
for SEL_ARG* tree.
|
|
|
|
IMPLEMENTATION
|
|
The traversal also updates those param members:
|
|
- is_ror_scan
|
|
- range_count
|
|
- max_key_part
|
|
|
|
RETURN
|
|
FALSE Ok
|
|
TRUE No more ranges in the sequence
|
|
*/
|
|
|
|
#if (_MSC_FULL_VER == 160030319)
|
|
/*
|
|
Workaround Visual Studio 2010 RTM compiler backend bug, the function enters
|
|
infinite loop.
|
|
*/
|
|
#pragma optimize("g", off)
|
|
#endif
|
|
|
|
bool sel_arg_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
|
|
{
|
|
SEL_ARG *key_tree;
|
|
SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)rseq;
|
|
if (seq->at_start)
|
|
{
|
|
key_tree= seq->start;
|
|
seq->at_start= FALSE;
|
|
goto walk_up_n_right;
|
|
}
|
|
|
|
key_tree= seq->stack[seq->i].key_tree;
|
|
/* Ok, we're at some "full tuple" position in the tree */
|
|
|
|
/* Step down if we can */
|
|
if (key_tree->next && key_tree->next != &null_element)
|
|
{
|
|
//step down; (update the tuple, we'll step right and stay there)
|
|
seq->i--;
|
|
step_down_to(seq, key_tree->next);
|
|
key_tree= key_tree->next;
|
|
seq->param->is_ror_scan= FALSE;
|
|
goto walk_right_n_up;
|
|
}
|
|
|
|
/* Ok, can't step down, walk left until we can step down */
|
|
while (1)
|
|
{
|
|
if (seq->i == 1) // can't step left
|
|
return 1;
|
|
/* Step left */
|
|
seq->i--;
|
|
key_tree= seq->stack[seq->i].key_tree;
|
|
|
|
/* Step down if we can */
|
|
if (key_tree->next && key_tree->next != &null_element)
|
|
{
|
|
// Step down; update the tuple
|
|
seq->i--;
|
|
step_down_to(seq, key_tree->next);
|
|
key_tree= key_tree->next;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Ok, we've stepped down from the path to previous tuple.
|
|
Walk right-up while we can
|
|
*/
|
|
walk_right_n_up:
|
|
while (key_tree->next_key_part && key_tree->next_key_part != &null_element &&
|
|
key_tree->next_key_part->part == key_tree->part + 1 &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
{
|
|
{
|
|
RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i];
|
|
size_t min_key_length= cur->min_key - seq->param->min_key;
|
|
size_t max_key_length= cur->max_key - seq->param->max_key;
|
|
size_t len= cur->min_key - cur[-1].min_key;
|
|
if (!(min_key_length == max_key_length &&
|
|
!memcmp(cur[-1].min_key, cur[-1].max_key, len) &&
|
|
!key_tree->min_flag && !key_tree->max_flag))
|
|
{
|
|
seq->param->is_ror_scan= FALSE;
|
|
if (!key_tree->min_flag)
|
|
cur->min_key_parts +=
|
|
key_tree->next_key_part->store_min_key(seq->param->key[seq->keyno],
|
|
&cur->min_key,
|
|
&cur->min_key_flag, MAX_KEY);
|
|
if (!key_tree->max_flag)
|
|
cur->max_key_parts +=
|
|
key_tree->next_key_part->store_max_key(seq->param->key[seq->keyno],
|
|
&cur->max_key,
|
|
&cur->max_key_flag, MAX_KEY);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Ok, current atomic interval is in form "t.field=const" and there is
|
|
next_key_part interval. Step right, and walk up from there.
|
|
*/
|
|
key_tree= key_tree->next_key_part;
|
|
|
|
walk_up_n_right:
|
|
while (key_tree->prev && key_tree->prev != &null_element)
|
|
{
|
|
/* Step up */
|
|
key_tree= key_tree->prev;
|
|
}
|
|
step_down_to(seq, key_tree);
|
|
}
|
|
|
|
/* Ok got a tuple */
|
|
RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i];
|
|
uint min_key_length= (uint)(cur->min_key - seq->param->min_key);
|
|
|
|
range->ptr= (char*)(intptr)(key_tree->part);
|
|
if (cur->min_key_flag & GEOM_FLAG)
|
|
{
|
|
range->range_flag= cur->min_key_flag;
|
|
|
|
/* Here minimum contains also function code bits, and maximum is +inf */
|
|
range->start_key.key= seq->param->min_key;
|
|
range->start_key.length= min_key_length;
|
|
range->start_key.keypart_map= make_prev_keypart_map(cur->min_key_parts);
|
|
range->start_key.flag= (ha_rkey_function) (cur->min_key_flag ^ GEOM_FLAG);
|
|
}
|
|
else
|
|
{
|
|
range->range_flag= cur->min_key_flag | cur->max_key_flag;
|
|
|
|
range->start_key.key= seq->param->min_key;
|
|
range->start_key.length= (uint)(cur->min_key - seq->param->min_key);
|
|
range->start_key.keypart_map= make_prev_keypart_map(cur->min_key_parts);
|
|
range->start_key.flag= (cur->min_key_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
|
|
HA_READ_KEY_EXACT);
|
|
|
|
range->end_key.key= seq->param->max_key;
|
|
range->end_key.length= (uint)(cur->max_key - seq->param->max_key);
|
|
range->end_key.flag= (cur->max_key_flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
|
|
HA_READ_AFTER_KEY);
|
|
range->end_key.keypart_map= make_prev_keypart_map(cur->max_key_parts);
|
|
|
|
KEY *key_info;
|
|
if (seq->real_keyno== MAX_KEY)
|
|
key_info= NULL;
|
|
else
|
|
key_info= &seq->param->table->key_info[seq->real_keyno];
|
|
|
|
/*
|
|
This is an equality range (keypart_0=X and ... and keypart_n=Z) if
|
|
(1) - There are no flags indicating open range (e.g.,
|
|
"keypart_x > y") or GIS.
|
|
(2) - The lower bound and the upper bound of the range has the
|
|
same value (min_key == max_key).
|
|
*/
|
|
const uint is_open_range =
|
|
(NO_MIN_RANGE | NO_MAX_RANGE | NEAR_MIN | NEAR_MAX | GEOM_FLAG);
|
|
const bool is_eq_range_pred =
|
|
!(cur->min_key_flag & is_open_range) && // (1)
|
|
!(cur->max_key_flag & is_open_range) && // (1)
|
|
range->start_key.length == range->end_key.length && // (2)
|
|
!memcmp(seq->param->min_key, seq->param->max_key, // (2)
|
|
range->start_key.length);
|
|
|
|
if (is_eq_range_pred)
|
|
{
|
|
range->range_flag = EQ_RANGE;
|
|
|
|
/*
|
|
Conditions below:
|
|
(1) - Range analysis is used for estimating condition selectivity
|
|
(2) - This is a unique key, and we have conditions for all its
|
|
user-defined key parts.
|
|
(3) - The table uses extended keys, this key covers all components,
|
|
and we have conditions for all key parts.
|
|
*/
|
|
if (
|
|
!key_info || // (1)
|
|
((uint)key_tree->part+1 == key_info->user_defined_key_parts && // (2)
|
|
key_info->flags & HA_NOSAME) || // (2)
|
|
((key_info->flags & HA_EXT_NOSAME) && // (3)
|
|
(uint)key_tree->part+1 == key_info->ext_key_parts) // (3)
|
|
)
|
|
range->range_flag |= UNIQUE_RANGE | (cur->min_key_flag & NULL_RANGE);
|
|
}
|
|
|
|
if (seq->param->is_ror_scan)
|
|
{
|
|
/*
|
|
If we get here, the condition on the key was converted to form
|
|
"(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
|
|
somecond(keyXpart{key_tree->part})"
|
|
Check if
|
|
somecond is "keyXpart{key_tree->part} = const" and
|
|
uncovered "tail" of KeyX parts is either empty or is identical to
|
|
first members of clustered primary key.
|
|
*/
|
|
if (!(!(cur->min_key_flag & ~NULL_RANGE) && !cur->max_key_flag &&
|
|
(range->start_key.length == range->end_key.length) &&
|
|
!memcmp(range->start_key.key, range->end_key.key, range->start_key.length) &&
|
|
is_key_scan_ror(seq->param, seq->real_keyno, key_tree->part + 1)))
|
|
seq->param->is_ror_scan= FALSE;
|
|
}
|
|
}
|
|
seq->param->range_count++;
|
|
seq->param->max_key_part=MY_MAX(seq->param->max_key_part,key_tree->part);
|
|
return 0;
|
|
}
|
|
|
|
#if (_MSC_FULL_VER == 160030319)
|
|
/* VS2010 compiler bug workaround */
|
|
#pragma optimize("g", on)
|
|
#endif
|
|
|
|
|
|
/****************************************************************************
|
|
MRR Range Sequence Interface implementation that walks array<QUICK_RANGE>
|
|
****************************************************************************/
|
|
|
|
/*
|
|
Range sequence interface implementation for array<QUICK_RANGE>: initialize
|
|
|
|
SYNOPSIS
|
|
quick_range_seq_init()
|
|
init_param Caller-opaque paramenter: QUICK_RANGE_SELECT* pointer
|
|
n_ranges Number of ranges in the sequence (ignored)
|
|
flags MRR flags (currently not used)
|
|
|
|
RETURN
|
|
Opaque value to be passed to quick_range_seq_next
|
|
*/
|
|
|
|
range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags)
|
|
{
|
|
QUICK_RANGE_SELECT *quick= (QUICK_RANGE_SELECT*)init_param;
|
|
quick->qr_traversal_ctx.first= (QUICK_RANGE**)quick->ranges.buffer;
|
|
quick->qr_traversal_ctx.cur= (QUICK_RANGE**)quick->ranges.buffer;
|
|
quick->qr_traversal_ctx.last= quick->qr_traversal_ctx.cur +
|
|
quick->ranges.elements;
|
|
return &quick->qr_traversal_ctx;
|
|
}
|
|
|
|
|
|
/*
|
|
Range sequence interface implementation for array<QUICK_RANGE>: get next
|
|
|
|
SYNOPSIS
|
|
quick_range_seq_next()
|
|
rseq Value returned from quick_range_seq_init
|
|
range OUT Store information about the range here
|
|
|
|
RETURN
|
|
0 Ok
|
|
1 No more ranges in the sequence
|
|
*/
|
|
|
|
bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
|
|
{
|
|
QUICK_RANGE_SEQ_CTX *ctx= (QUICK_RANGE_SEQ_CTX*)rseq;
|
|
|
|
if (ctx->cur == ctx->last)
|
|
return 1; /* no more ranges */
|
|
|
|
QUICK_RANGE *cur= *(ctx->cur);
|
|
cur->make_min_endpoint(&range->start_key);
|
|
cur->make_max_endpoint(&range->end_key);
|
|
range->range_flag= cur->flag;
|
|
ctx->cur++;
|
|
return 0;
|
|
}
|
|
|
|
|