mariadb/storage/tokudb/PerconaFT/ft/tests/test-flushes-on-cleaner.cc
Sergei Golubchik 2c8c652978 5.6.26-74.0
2015-10-26 12:57:57 +01:00

331 lines
9.1 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
/* The goal of this test. Make sure that inserts stay behind deletes. */
#include "test.h"
#include <ft-cachetable-wrappers.h>
#include "ft-flusher.h"
#include "cachetable/checkpoint.h"
static TOKUTXN const null_txn = 0;
enum { NODESIZE = 1024, KSIZE=NODESIZE-100, TOKU_PSIZE=20 };
CACHETABLE ct;
FT_HANDLE ft;
const char *fname = TOKU_TEST_FILENAME;
static int update_func(
DB* UU(db),
const DBT* key,
const DBT* old_val,
const DBT* UU(extra),
void (*set_val)(const DBT *new_val, void *set_extra),
void *set_extra)
{
DBT new_val;
assert(old_val->size > 0);
if (verbose) {
printf("applying update to %s\n", (char *)key->data);
}
toku_init_dbt(&new_val);
set_val(&new_val, set_extra);
return 0;
}
static void
doit (bool keep_other_bn_in_memory) {
BLOCKNUM node_leaf;
BLOCKNUM node_internal, node_root;
int r;
toku_cachetable_create(&ct, 500*1024*1024, ZERO_LSN, nullptr);
unlink(fname);
r = toku_open_ft_handle(fname, 1, &ft, NODESIZE, NODESIZE/2, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun);
assert(r==0);
ft->options.update_fun = update_func;
ft->ft->update_fun = update_func;
toku_testsetup_initialize(); // must precede any other toku_testsetup calls
char* pivots[1];
pivots[0] = toku_strdup("kkkkk");
int pivot_len = 6;
r = toku_testsetup_leaf(ft, &node_leaf, 2, pivots, &pivot_len);
assert(r==0);
r = toku_testsetup_nonleaf(ft, 1, &node_internal, 1, &node_leaf, 0, 0);
assert(r==0);
r = toku_testsetup_nonleaf(ft, 2, &node_root, 1, &node_internal, 0, 0);
assert(r==0);
r = toku_testsetup_root(ft, node_root);
assert(r==0);
//
// at this point we have created a tree with a root, an internal node,
// and two leaf nodes, the pivot being "kkkkk"
//
// now we insert a row into each leaf node
r = toku_testsetup_insert_to_leaf (
ft,
node_leaf,
"a", // key
2, // keylen
"aa",
3
);
assert(r==0);
r = toku_testsetup_insert_to_leaf (
ft,
node_leaf,
"z", // key
2, // keylen
"zz",
3
);
assert(r==0);
char filler[400];
memset(filler, 0, sizeof(filler));
// now we insert filler data so that the rebalance
// keeps it at two nodes
r = toku_testsetup_insert_to_leaf (
ft,
node_leaf,
"b", // key
2, // keylen
filler,
sizeof(filler)
);
assert(r==0);
r = toku_testsetup_insert_to_leaf (
ft,
node_leaf,
"y", // key
2, // keylen
filler,
sizeof(filler)
);
assert(r==0);
//
// now insert a bunch of dummy delete messages
// into the internal node, to get its cachepressure size up
//
for (int i = 0; i < 100000; i++) {
r = toku_testsetup_insert_to_nonleaf (
ft,
node_internal,
FT_DELETE_ANY,
"jj", // this key does not exist, so its message application should be a no-op
3,
NULL,
0
);
assert(r==0);
}
//
// now insert a broadcast message into the root
//
r = toku_testsetup_insert_to_nonleaf (
ft,
node_root,
FT_UPDATE_BROADCAST_ALL,
NULL,
0,
NULL,
0
);
assert(r==0);
//
// now run a checkpoint to get everything clean
//
CHECKPOINTER cp = toku_cachetable_get_checkpointer(ct);
r = toku_checkpoint(cp, NULL, NULL, NULL, NULL, NULL, CLIENT_CHECKPOINT);
assert_zero(r);
// now lock and release the leaf node to make sure it is what we expect it to be.
FTNODE node = NULL;
ftnode_fetch_extra bfe;
bfe.create_for_min_read(ft->ft);
toku_pin_ftnode(
ft->ft,
node_leaf,
toku_cachetable_hash(ft->ft->cf, node_leaf),
&bfe,
PL_WRITE_EXPENSIVE,
&node,
true
);
assert(!node->dirty);
assert(node->n_children == 2);
// a hack to get the basement nodes evicted
for (int i = 0; i < 20; i++) {
toku_ftnode_pe_callback(node, make_pair_attr(0xffffffff), ft->ft, def_pe_finalize_impl, nullptr);
}
// this ensures that when we do the lookups below,
// that the data is read off disk
assert(BP_STATE(node,0) == PT_ON_DISK);
assert(BP_STATE(node,1) == PT_ON_DISK);
toku_unpin_ftnode(ft->ft, node);
// now do a lookup on one of the keys, this should bring a leaf node up to date
DBT k;
struct check_pair pair = {2, "a", 0, NULL, 0};
r = toku_ft_lookup(ft, toku_fill_dbt(&k, "a", 2), lookup_checkf, &pair);
assert(r==0);
if (keep_other_bn_in_memory) {
//
// pin the leaf one more time
// and make sure that one basement
// both basement nodes are in memory,
// but only one should have broadcast message
// applied.
//
bfe.create_for_full_read(ft->ft);
}
else {
//
// pin the leaf one more time
// and make sure that one basement
// node is in memory and another is
// on disk
//
bfe.create_for_min_read(ft->ft);
}
toku_pin_ftnode(
ft->ft,
node_leaf,
toku_cachetable_hash(ft->ft->cf, node_leaf),
&bfe,
PL_WRITE_EXPENSIVE,
&node,
true
);
assert(!node->dirty);
assert(node->n_children == 2);
assert(BP_STATE(node,0) == PT_AVAIL);
if (keep_other_bn_in_memory) {
assert(BP_STATE(node,1) == PT_AVAIL);
}
else {
assert(BP_STATE(node,1) == PT_ON_DISK);
}
toku_unpin_ftnode(ft->ft, node);
//
// now let us induce a clean on the internal node
//
bfe.create_for_min_read(ft->ft);
toku_pin_ftnode(
ft->ft,
node_internal,
toku_cachetable_hash(ft->ft->cf, node_internal),
&bfe,
PL_WRITE_EXPENSIVE,
&node,
true
);
assert(!node->dirty);
// we expect that this flushes its buffer, that
// a merge is not done, and that the lookup
// of values "a" and "z" still works
r = toku_ftnode_cleaner_callback(
node,
node_internal,
toku_cachetable_hash(ft->ft->cf, node_internal),
ft->ft
);
// verify that node_internal's buffer is empty
bfe.create_for_min_read(ft->ft);
toku_pin_ftnode(
ft->ft,
node_internal,
toku_cachetable_hash(ft->ft->cf, node_internal),
&bfe,
PL_WRITE_EXPENSIVE,
&node,
true
);
// check that buffers are empty
assert(toku_bnc_nbytesinbuf(BNC(node, 0)) == 0);
toku_unpin_ftnode(ft->ft, node);
//
// now run a checkpoint to get everything clean,
// and to get the rebalancing to happen
//
r = toku_checkpoint(cp, NULL, NULL, NULL, NULL, NULL, CLIENT_CHECKPOINT);
assert_zero(r);
// check that lookups on the two keys is still good
struct check_pair pair1 = {2, "a", 0, NULL, 0};
r = toku_ft_lookup(ft, toku_fill_dbt(&k, "a", 2), lookup_checkf, &pair1);
assert(r==0);
struct check_pair pair2 = {2, "z", 0, NULL, 0};
r = toku_ft_lookup(ft, toku_fill_dbt(&k, "z", 2), lookup_checkf, &pair2);
assert(r==0);
r = toku_close_ft_handle_nolsn(ft, 0); assert(r==0);
toku_cachetable_close(&ct);
toku_free(pivots[0]);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
default_parse_args(argc, argv);
doit(false);
doit(true);
return 0;
}