mariadb/storage/innobase/include/dict0dict.ic
Marko Mäkelä a4948dafcd MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.

This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.

ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.

Some usability limitations will be addressed in subsequent work:

MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE

The format of the clustered index (PRIMARY KEY) is changed as follows:

(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.

(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.

(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.

(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)

We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.

This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.

The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.

Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.

When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.

UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.

len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.

dict_col_t::def_val: The 'default row' value of the column.  If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.

dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().

dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.

dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().

dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.

dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).

dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.

dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().

dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.

dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.

dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().

dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.

dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.

prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.

dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.

dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).

dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().

pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().

row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().

create_index_dict(): Replaces row_merge_create_index_graph().

innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.

btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.

dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.

dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.

dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().

row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.

commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)

PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.

page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.

page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.

page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.

page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.

rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.

rec_offs_make_valid(): Add the parameter 'leaf'.

rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.

dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().

rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.

cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.

trx_t::in_rollback: Make the field available in non-debug builds.

trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.

btr_index_rec_validate(): Account for instant ADD COLUMN

row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.

row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.

dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.

btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.

row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().

rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.

rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.

btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.

btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.

row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.

rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.

REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.

rec_comp_status_t: An enum of the status bit values.

rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 09:50:10 +03:00

1619 lines
44 KiB
Text

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2013, 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/******************************************************************//**
@file include/dict0dict.ic
Data dictionary system
Created 1/8/1996 Heikki Tuuri
***********************************************************************/
#include "data0type.h"
#include "dict0load.h"
#include "rem0types.h"
#include "fsp0fsp.h"
#include "srv0srv.h"
#include "sync0rw.h"
#include "fsp0sysspace.h"
/*********************************************************************//**
Gets the minimum number of bytes per character.
@return minimum multi-byte char size, in bytes */
UNIV_INLINE
ulint
dict_col_get_mbminlen(
/*==================*/
const dict_col_t* col) /*!< in: column */
{
return(DATA_MBMINLEN(col->mbminmaxlen));
}
/*********************************************************************//**
Gets the maximum number of bytes per character.
@return maximum multi-byte char size, in bytes */
UNIV_INLINE
ulint
dict_col_get_mbmaxlen(
/*==================*/
const dict_col_t* col) /*!< in: column */
{
return(DATA_MBMAXLEN(col->mbminmaxlen));
}
/*********************************************************************//**
Sets the minimum and maximum number of bytes per character. */
UNIV_INLINE
void
dict_col_set_mbminmaxlen(
/*=====================*/
dict_col_t* col, /*!< in/out: column */
ulint mbminlen, /*!< in: minimum multi-byte
character size, in bytes */
ulint mbmaxlen) /*!< in: minimum multi-byte
character size, in bytes */
{
ut_ad(mbminlen < DATA_MBMAX);
ut_ad(mbmaxlen < DATA_MBMAX);
ut_ad(mbminlen <= mbmaxlen);
col->mbminmaxlen = DATA_MBMINMAXLEN(mbminlen, mbmaxlen);
}
/*********************************************************************//**
Gets the column data type. */
UNIV_INLINE
void
dict_col_copy_type(
/*===============*/
const dict_col_t* col, /*!< in: column */
dtype_t* type) /*!< out: data type */
{
ut_ad(col != NULL);
ut_ad(type != NULL);
type->mtype = col->mtype;
type->prtype = col->prtype;
type->len = col->len;
type->mbminmaxlen = col->mbminmaxlen;
}
#ifdef UNIV_DEBUG
/*********************************************************************//**
Assert that a column and a data type match.
@return TRUE */
UNIV_INLINE
ibool
dict_col_type_assert_equal(
/*=======================*/
const dict_col_t* col, /*!< in: column */
const dtype_t* type) /*!< in: data type */
{
ut_ad(col);
ut_ad(type);
ut_ad(col->mtype == type->mtype);
ut_ad(col->prtype == type->prtype);
//ut_ad(col->len == type->len);
ut_ad(col->mbminmaxlen == type->mbminmaxlen);
return(TRUE);
}
#endif /* UNIV_DEBUG */
/***********************************************************************//**
Returns the minimum size of the column.
@return minimum size */
UNIV_INLINE
ulint
dict_col_get_min_size(
/*==================*/
const dict_col_t* col) /*!< in: column */
{
return(dtype_get_min_size_low(col->mtype, col->prtype, col->len,
col->mbminmaxlen));
}
/***********************************************************************//**
Returns the maximum size of the column.
@return maximum size */
UNIV_INLINE
ulint
dict_col_get_max_size(
/*==================*/
const dict_col_t* col) /*!< in: column */
{
return(dtype_get_max_size_low(col->mtype, col->len));
}
/***********************************************************************//**
Returns the size of a fixed size column, 0 if not a fixed size column.
@return fixed size, or 0 */
UNIV_INLINE
ulint
dict_col_get_fixed_size(
/*====================*/
const dict_col_t* col, /*!< in: column */
ulint comp) /*!< in: nonzero=ROW_FORMAT=COMPACT */
{
return(dtype_get_fixed_size_low(col->mtype, col->prtype, col->len,
col->mbminmaxlen, comp));
}
/***********************************************************************//**
Returns the ROW_FORMAT=REDUNDANT stored SQL NULL size of a column.
For fixed length types it is the fixed length of the type, otherwise 0.
@return SQL null storage size in ROW_FORMAT=REDUNDANT */
UNIV_INLINE
ulint
dict_col_get_sql_null_size(
/*=======================*/
const dict_col_t* col, /*!< in: column */
ulint comp) /*!< in: nonzero=ROW_FORMAT=COMPACT */
{
return(dict_col_get_fixed_size(col, comp));
}
/*********************************************************************//**
Gets the column number.
@return col->ind, table column position (starting from 0) */
UNIV_INLINE
ulint
dict_col_get_no(
/*============*/
const dict_col_t* col) /*!< in: column */
{
ut_ad(col);
return(col->ind);
}
/*********************************************************************//**
Gets the column position in the clustered index. */
UNIV_INLINE
ulint
dict_col_get_clust_pos(
/*===================*/
const dict_col_t* col, /*!< in: table column */
const dict_index_t* clust_index) /*!< in: clustered index */
{
ulint i;
ut_ad(col);
ut_ad(clust_index);
ut_ad(dict_index_is_clust(clust_index));
for (i = 0; i < clust_index->n_def; i++) {
const dict_field_t* field = &clust_index->fields[i];
if (!field->prefix_len && field->col == col) {
return(i);
}
}
return(ULINT_UNDEFINED);
}
/** Gets the column position in the given index.
@param[in] col table column
@param[in] index index to be searched for column
@return position of column in the given index. */
UNIV_INLINE
ulint
dict_col_get_index_pos(
const dict_col_t* col,
const dict_index_t* index)
{
ulint i;
ut_ad(col);
for (i = 0; i < index->n_def; i++) {
const dict_field_t* field = &index->fields[i];
if (!field->prefix_len && field->col == col) {
return(i);
}
}
return(ULINT_UNDEFINED);
}
#ifdef UNIV_DEBUG
/********************************************************************//**
Gets the first index on the table (the clustered index).
@return index, NULL if none exists */
UNIV_INLINE
dict_index_t*
dict_table_get_first_index(
/*=======================*/
const dict_table_t* table) /*!< in: table */
{
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return(UT_LIST_GET_FIRST(((dict_table_t*) table)->indexes));
}
/********************************************************************//**
Gets the last index on the table.
@return index, NULL if none exists */
UNIV_INLINE
dict_index_t*
dict_table_get_last_index(
/*=======================*/
const dict_table_t* table) /*!< in: table */
{
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return(UT_LIST_GET_LAST((const_cast<dict_table_t*>(table))
->indexes));
}
/********************************************************************//**
Gets the next index on the table.
@return index, NULL if none left */
UNIV_INLINE
dict_index_t*
dict_table_get_next_index(
/*======================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(UT_LIST_GET_NEXT(indexes, (dict_index_t*) index));
}
#endif /* UNIV_DEBUG */
/********************************************************************//**
Check whether the index is the clustered index.
@return nonzero for clustered index, zero for other indexes */
UNIV_INLINE
ulint
dict_index_is_clust(
/*================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->is_clust());
}
/** Check if index is auto-generated clustered index.
@param[in] index index
@return true if index is auto-generated clustered index. */
UNIV_INLINE
bool
dict_index_is_auto_gen_clust(
const dict_index_t* index)
{
return(index->type == DICT_CLUSTERED);
}
/********************************************************************//**
Check whether the index is unique.
@return nonzero for unique index, zero for other indexes */
UNIV_INLINE
ulint
dict_index_is_unique(
/*=================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->type & DICT_UNIQUE);
}
/********************************************************************//**
Check whether the index is a Spatial Index.
@return nonzero for Spatial Index, zero for other indexes */
UNIV_INLINE
ulint
dict_index_is_spatial(
/*==================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->type & DICT_SPATIAL);
}
/** Check whether the index contains a virtual column
@param[in] index index
@return nonzero for the index has virtual column, zero for other indexes */
UNIV_INLINE
ulint
dict_index_has_virtual(
const dict_index_t* index)
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->type & DICT_VIRTUAL);
}
/********************************************************************//**
Check whether the index is the insert buffer tree.
@return nonzero for insert buffer, zero for other indexes */
UNIV_INLINE
ulint
dict_index_is_ibuf(
/*===============*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->type & DICT_IBUF);
}
/********************************************************************//**
Check whether the index is a secondary index or the insert buffer tree.
@return nonzero for insert buffer, zero for other indexes */
UNIV_INLINE
ulint
dict_index_is_sec_or_ibuf(
/*======================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return((index->type & (DICT_CLUSTERED | DICT_IBUF)) != DICT_CLUSTERED);
}
/********************************************************************//**
Gets the number of user-defined non-virtual columns in a table in the
dictionary cache.
@return number of user-defined (e.g., not ROW_ID) non-virtual
columns of a table */
UNIV_INLINE
ulint
dict_table_get_n_user_cols(
/*=======================*/
const dict_table_t* table) /*!< in: table */
{
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
/* n_cols counts stored columns only. A table may contain
virtual columns and no user-specified stored columns at all. */
ut_ad(table->n_cols >= DATA_N_SYS_COLS);
return(table->n_cols - DATA_N_SYS_COLS);
}
/** Gets the number of user-defined virtual and non-virtual columns in a table
in the dictionary cache.
@param[in] table table
@return number of user-defined (e.g., not ROW_ID) columns of a table */
UNIV_INLINE
ulint
dict_table_get_n_tot_u_cols(
const dict_table_t* table)
{
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return(dict_table_get_n_user_cols(table)
+ dict_table_get_n_v_cols(table));
}
/********************************************************************//**
Gets the number of all non-virtual columns (also system) in a table
in the dictionary cache.
@return number of non-virtual columns of a table */
UNIV_INLINE
ulint
dict_table_get_n_cols(
/*==================*/
const dict_table_t* table) /*!< in: table */
{
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return(table->n_cols);
}
/** Gets the number of virtual columns in a table in the dictionary cache.
@param[in] table the table to check
@return number of virtual columns of a table */
UNIV_INLINE
ulint
dict_table_get_n_v_cols(
const dict_table_t* table)
{
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return(table->n_v_cols);
}
/** Check if a table has indexed virtual columns
@param[in] table the table to check
@return true is the table has indexed virtual columns */
UNIV_INLINE
bool
dict_table_has_indexed_v_cols(
const dict_table_t* table)
{
for (ulint i = 0; i < table->n_v_cols; i++) {
const dict_v_col_t* col = dict_table_get_nth_v_col(table, i);
if (col->m_col.ord_part) {
return(true);
}
}
return(false);
}
/********************************************************************//**
Gets the approximately estimated number of rows in the table.
@return estimated number of rows */
UNIV_INLINE
ib_uint64_t
dict_table_get_n_rows(
/*==================*/
const dict_table_t* table) /*!< in: table */
{
ut_ad(table->stat_initialized);
return(table->stat_n_rows);
}
/********************************************************************//**
Increment the number of rows in the table by one.
Notice that this operation is not protected by any latch, the number is
approximate. */
UNIV_INLINE
void
dict_table_n_rows_inc(
/*==================*/
dict_table_t* table) /*!< in/out: table */
{
if (table->stat_initialized) {
ib_uint64_t n_rows = table->stat_n_rows;
if (n_rows < 0xFFFFFFFFFFFFFFFFULL) {
table->stat_n_rows = n_rows + 1;
}
}
}
/********************************************************************//**
Decrement the number of rows in the table by one.
Notice that this operation is not protected by any latch, the number is
approximate. */
UNIV_INLINE
void
dict_table_n_rows_dec(
/*==================*/
dict_table_t* table) /*!< in/out: table */
{
if (table->stat_initialized) {
ib_uint64_t n_rows = table->stat_n_rows;
if (n_rows > 0) {
table->stat_n_rows = n_rows - 1;
}
}
}
#ifdef UNIV_DEBUG
/********************************************************************//**
Gets the nth column of a table.
@return pointer to column object */
UNIV_INLINE
dict_col_t*
dict_table_get_nth_col(
/*===================*/
const dict_table_t* table, /*!< in: table */
ulint pos) /*!< in: position of column */
{
ut_ad(table);
ut_ad(pos < table->n_def);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return((dict_col_t*) (table->cols) + pos);
}
/** Gets the nth virtual column of a table.
@param[in] table table
@param[in] pos position of virtual column
@return pointer to virtual column object */
UNIV_INLINE
dict_v_col_t*
dict_table_get_nth_v_col(
const dict_table_t* table,
ulint pos)
{
ut_ad(table);
ut_ad(pos < table->n_v_def);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
ut_ad(!table->v_cols[pos].m_col.is_instant());
return &table->v_cols[pos];
}
/********************************************************************//**
Gets the given system column of a table.
@return pointer to column object */
UNIV_INLINE
dict_col_t*
dict_table_get_sys_col(
/*===================*/
const dict_table_t* table, /*!< in: table */
ulint sys) /*!< in: DATA_ROW_ID, ... */
{
dict_col_t* col;
ut_ad(table);
ut_ad(sys < DATA_N_SYS_COLS);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
col = dict_table_get_nth_col(table, table->n_cols - DATA_N_SYS_COLS
+ sys);
ut_ad(col->mtype == DATA_SYS);
ut_ad(col->prtype == (sys | DATA_NOT_NULL));
return(col);
}
#endif /* UNIV_DEBUG */
/********************************************************************//**
Gets the given system column number of a table.
@return column number */
UNIV_INLINE
ulint
dict_table_get_sys_col_no(
/*======================*/
const dict_table_t* table, /*!< in: table */
ulint sys) /*!< in: DATA_ROW_ID, ... */
{
ut_ad(table);
ut_ad(sys < DATA_N_SYS_COLS);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return(table->n_cols - DATA_N_SYS_COLS + sys);
}
/********************************************************************//**
Check whether the table uses the compact page format.
@return TRUE if table uses the compact page format */
UNIV_INLINE
ibool
dict_table_is_comp(
/*===============*/
const dict_table_t* table) /*!< in: table */
{
ut_ad(table);
#if DICT_TF_COMPACT != 1
#error "DICT_TF_COMPACT must be 1"
#endif
return(table->flags & DICT_TF_COMPACT);
}
/************************************************************************
Check if the table has an FTS index. */
UNIV_INLINE
ibool
dict_table_has_fts_index(
/*=====================*/
/* out: TRUE if table has an FTS index */
dict_table_t* table) /* in: table */
{
ut_ad(table);
return(DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS));
}
/** Validate the flags for tables that are not ROW_FORMAT=REDUNDANT.
@param[in] flags table flags
@return whether the flags are valid */
inline
bool
dict_tf_is_valid_not_redundant(ulint flags)
{
const bool atomic_blobs = DICT_TF_HAS_ATOMIC_BLOBS(flags);
ulint zip_ssize = DICT_TF_GET_ZIP_SSIZE(flags);
if (!zip_ssize) {
/* Not ROW_FORMAT=COMPRESSED */
} else if (!atomic_blobs) {
/* ROW_FORMAT=COMPRESSED implies ROW_FORMAT=DYNAMIC
for the uncompressed page format */
return(false);
} else if (zip_ssize > PAGE_ZIP_SSIZE_MAX
|| zip_ssize > UNIV_PAGE_SIZE_SHIFT
|| UNIV_PAGE_SIZE_SHIFT > UNIV_ZIP_SIZE_SHIFT_MAX) {
/* KEY_BLOCK_SIZE is out of bounds, or
ROW_FORMAT=COMPRESSED is not supported with this
innodb_page_size (only up to 16KiB) */
return(false);
}
switch (DICT_TF_GET_PAGE_COMPRESSION_LEVEL(flags)) {
case 0:
/* PAGE_COMPRESSION_LEVEL=0 should imply PAGE_COMPRESSED=NO */
return(!DICT_TF_GET_PAGE_COMPRESSION(flags));
case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9:
/* PAGE_COMPRESSION_LEVEL requires
ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC
(not ROW_FORMAT=COMPRESSED or ROW_FORMAT=REDUNDANT)
and PAGE_COMPRESSED=YES */
return(!zip_ssize && DICT_TF_GET_PAGE_COMPRESSION(flags));
default:
/* Invalid PAGE_COMPRESSION_LEVEL value */
return(false);
}
}
/** Validate the table flags.
@param[in] flags Table flags
@return true if valid. */
UNIV_INLINE
bool
dict_tf_is_valid(
ulint flags)
{
ut_ad(flags < 1U << DICT_TF_BITS);
/* The DATA_DIRECTORY flag can be assigned fully independently
of all other persistent table flags. */
flags &= ~DICT_TF_MASK_DATA_DIR;
if (!(flags & 1)) {
/* Only ROW_FORMAT=REDUNDANT has 0 in the least significant
bit. For ROW_FORMAT=REDUNDANT, only the DATA_DIR flag
(which we cleared above) can be set. If any other flags
are set, the flags are invalid. */
return(flags == 0);
}
return(dict_tf_is_valid_not_redundant(flags));
}
/** Validate both table flags and table flags2 and make sure they
are compatible.
@param[in] flags Table flags
@param[in] flags2 Table flags2
@return true if valid. */
UNIV_INLINE
bool
dict_tf2_is_valid(
ulint flags,
ulint flags2)
{
if (!dict_tf_is_valid(flags)) {
return(false);
}
if ((flags2 & DICT_TF2_UNUSED_BIT_MASK) != 0) {
return(false);
}
return(true);
}
/********************************************************************//**
Determine the file format from dict_table_t::flags
The low order bit will be zero for REDUNDANT and 1 for COMPACT. For any
other row_format, file_format is > 0 and DICT_TF_COMPACT will also be set.
@return file format version */
UNIV_INLINE
rec_format_t
dict_tf_get_rec_format(
/*===================*/
ulint flags) /*!< in: dict_table_t::flags */
{
ut_a(dict_tf_is_valid(flags));
if (!DICT_TF_GET_COMPACT(flags)) {
return(REC_FORMAT_REDUNDANT);
}
if (!DICT_TF_HAS_ATOMIC_BLOBS(flags)) {
return(REC_FORMAT_COMPACT);
}
if (DICT_TF_GET_ZIP_SSIZE(flags)) {
return(REC_FORMAT_COMPRESSED);
}
return(REC_FORMAT_DYNAMIC);
}
/** Set the various values in a dict_table_t::flags pointer.
@param[in,out] flags, Pointer to a 4 byte Table Flags
@param[in] format File Format
@param[in] zip_ssize Zip Shift Size
@param[in] use_data_dir Table uses DATA DIRECTORY
@param[in] page_compressed Table uses page compression
@param[in] page_compression_level Page compression level
@param[in] not_used For future */
UNIV_INLINE
void
dict_tf_set(
/*========*/
ulint* flags,
rec_format_t format,
ulint zip_ssize,
bool use_data_dir,
bool page_compressed,
ulint page_compression_level,
ulint not_used)
{
switch (format) {
case REC_FORMAT_REDUNDANT:
*flags = 0;
ut_ad(zip_ssize == 0);
break;
case REC_FORMAT_COMPACT:
*flags = DICT_TF_COMPACT;
ut_ad(zip_ssize == 0);
break;
case REC_FORMAT_COMPRESSED:
*flags = DICT_TF_COMPACT
| (1 << DICT_TF_POS_ATOMIC_BLOBS)
| (zip_ssize << DICT_TF_POS_ZIP_SSIZE);
break;
case REC_FORMAT_DYNAMIC:
*flags = DICT_TF_COMPACT
| (1 << DICT_TF_POS_ATOMIC_BLOBS);
ut_ad(zip_ssize == 0);
break;
}
if (use_data_dir) {
*flags |= (1 << DICT_TF_POS_DATA_DIR);
}
if (page_compressed) {
*flags |= (1 << DICT_TF_POS_ATOMIC_BLOBS)
| (1 << DICT_TF_POS_PAGE_COMPRESSION)
| (page_compression_level << DICT_TF_POS_PAGE_COMPRESSION_LEVEL);
ut_ad(zip_ssize == 0);
ut_ad(dict_tf_get_page_compression(*flags) == TRUE);
ut_ad(dict_tf_get_page_compression_level(*flags) == page_compression_level);
}
}
/** Convert a 32 bit integer table flags to the 32 bit FSP Flags.
Fsp Flags are written into the tablespace header at the offset
FSP_SPACE_FLAGS and are also stored in the fil_space_t::flags field.
The following chart shows the translation of the low order bit.
Other bits are the same.
========================= Low order bit ==========================
| REDUNDANT | COMPACT | COMPRESSED | DYNAMIC
dict_table_t::flags | 0 | 1 | 1 | 1
fil_space_t::flags | 0 | 0 | 1 | 1
==================================================================
@param[in] table_flags dict_table_t::flags
@return tablespace flags (fil_space_t::flags) */
UNIV_INLINE
ulint
dict_tf_to_fsp_flags(ulint table_flags)
{
ulint fsp_flags;
ulint page_compression_level = DICT_TF_GET_PAGE_COMPRESSION_LEVEL(
table_flags);
ut_ad((DICT_TF_GET_PAGE_COMPRESSION(table_flags) == 0)
== (page_compression_level == 0));
DBUG_EXECUTE_IF("dict_tf_to_fsp_flags_failure",
return(ULINT_UNDEFINED););
/* Adjust bit zero. */
fsp_flags = DICT_TF_HAS_ATOMIC_BLOBS(table_flags) ? 1 : 0;
/* ZIP_SSIZE and ATOMIC_BLOBS are at the same position. */
fsp_flags |= table_flags
& (DICT_TF_MASK_ZIP_SSIZE | DICT_TF_MASK_ATOMIC_BLOBS);
fsp_flags |= FSP_FLAGS_PAGE_SSIZE();
if (page_compression_level) {
fsp_flags |= FSP_FLAGS_MASK_PAGE_COMPRESSION;
}
ut_a(fsp_flags_is_valid(fsp_flags, false));
if (DICT_TF_HAS_DATA_DIR(table_flags)) {
fsp_flags |= 1U << FSP_FLAGS_MEM_DATA_DIR;
}
fsp_flags |= page_compression_level << FSP_FLAGS_MEM_COMPRESSION_LEVEL;
return(fsp_flags);
}
/********************************************************************//**
Convert a 32 bit integer table flags to the 32bit integer that is written
to a SYS_TABLES.TYPE field. The following chart shows the translation of
the low order bit. Other bits are the same.
========================= Low order bit ==========================
| REDUNDANT | COMPACT | COMPRESSED and DYNAMIC
dict_table_t::flags | 0 | 1 | 1
SYS_TABLES.TYPE | 1 | 1 | 1
==================================================================
@return ulint containing SYS_TABLES.TYPE */
UNIV_INLINE
ulint
dict_tf_to_sys_tables_type(
/*=======================*/
ulint flags) /*!< in: dict_table_t::flags */
{
ulint type;
ut_a(dict_tf_is_valid(flags));
/* Adjust bit zero. It is always 1 in SYS_TABLES.TYPE */
type = 1;
/* ZIP_SSIZE, ATOMIC_BLOBS, DATA_DIR, PAGE_COMPRESSION,
PAGE_COMPRESSION_LEVEL are the same. */
type |= flags & (DICT_TF_MASK_ZIP_SSIZE
| DICT_TF_MASK_ATOMIC_BLOBS
| DICT_TF_MASK_DATA_DIR
| DICT_TF_MASK_PAGE_COMPRESSION
| DICT_TF_MASK_PAGE_COMPRESSION_LEVEL
| DICT_TF_MASK_NO_ROLLBACK);
return(type);
}
/** Extract the page size info from table flags.
@param[in] flags flags
@return a structure containing the compressed and uncompressed
page sizes and a boolean indicating if the page is compressed. */
UNIV_INLINE
const page_size_t
dict_tf_get_page_size(
ulint flags)
{
const ulint zip_ssize = DICT_TF_GET_ZIP_SSIZE(flags);
if (zip_ssize == 0) {
return(univ_page_size);
}
const ulint zip_size = (UNIV_ZIP_SIZE_MIN >> 1) << zip_ssize;
ut_ad(zip_size <= UNIV_ZIP_SIZE_MAX);
return(page_size_t(zip_size, univ_page_size.logical(), true));
}
/** Get the table page size.
@param[in] table table
@return a structure containing the compressed and uncompressed
page sizes and a boolean indicating if the page is compressed */
UNIV_INLINE
const page_size_t
dict_table_page_size(
const dict_table_t* table)
{
ut_ad(table != NULL);
return(dict_tf_get_page_size(table->flags));
}
/*********************************************************************//**
Obtain exclusive locks on all index trees of the table. This is to prevent
accessing index trees while InnoDB is updating internal metadata for
operations such as truncate tables. */
UNIV_INLINE
void
dict_table_x_lock_indexes(
/*======================*/
dict_table_t* table) /*!< in: table */
{
dict_index_t* index;
ut_a(table);
ut_ad(mutex_own(&dict_sys->mutex));
/* Loop through each index of the table and lock them */
for (index = dict_table_get_first_index(table);
index != NULL;
index = dict_table_get_next_index(index)) {
rw_lock_x_lock(dict_index_get_lock(index));
}
}
/*********************************************************************//**
Release the exclusive locks on all index tree. */
UNIV_INLINE
void
dict_table_x_unlock_indexes(
/*========================*/
dict_table_t* table) /*!< in: table */
{
dict_index_t* index;
ut_a(table);
ut_ad(mutex_own(&dict_sys->mutex));
for (index = dict_table_get_first_index(table);
index != NULL;
index = dict_table_get_next_index(index)) {
rw_lock_x_unlock(dict_index_get_lock(index));
}
}
/********************************************************************//**
Gets the number of fields in the internal representation of an index,
including fields added by the dictionary system.
@return number of fields */
UNIV_INLINE
ulint
dict_index_get_n_fields(
/*====================*/
const dict_index_t* index) /*!< in: an internal
representation of index (in
the dictionary cache) */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->n_fields);
}
/********************************************************************//**
Gets the number of fields in the internal representation of an index
that uniquely determine the position of an index entry in the index, if
we do not take multiversioning into account: in the B-tree use the value
returned by dict_index_get_n_unique_in_tree.
@return number of fields */
UNIV_INLINE
ulint
dict_index_get_n_unique(
/*====================*/
const dict_index_t* index) /*!< in: an internal representation
of index (in the dictionary cache) */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
ut_ad(index->cached);
return(index->n_uniq);
}
/********************************************************************//**
Gets the number of fields in the internal representation of an index
which uniquely determine the position of an index entry in the index, if
we also take multiversioning into account.
@return number of fields */
UNIV_INLINE
ulint
dict_index_get_n_unique_in_tree(
/*============================*/
const dict_index_t* index) /*!< in: an internal representation
of index (in the dictionary cache) */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
ut_ad(index->cached);
if (dict_index_is_clust(index)) {
return(dict_index_get_n_unique(index));
}
return(dict_index_get_n_fields(index));
}
/**
Gets the number of fields on nonleaf page level in the internal representation
of an index which uniquely determine the position of an index entry in the
index, if we also take multiversioning into account. Note, it doesn't
include page no field.
@param[in] index index
@return number of fields */
UNIV_INLINE
ulint
dict_index_get_n_unique_in_tree_nonleaf(
const dict_index_t* index)
{
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
ut_ad(index->cached);
if (dict_index_is_spatial(index)) {
/* For spatial index, on non-leaf page, we have only
2 fields(mbr+page_no). So, except page no field,
there's one field there. */
return(DICT_INDEX_SPATIAL_NODEPTR_SIZE);
} else {
return(dict_index_get_n_unique_in_tree(index));
}
}
/********************************************************************//**
Gets the number of user-defined ordering fields in the index. In the internal
representation of clustered indexes we add the row id to the ordering fields
to make a clustered index unique, but this function returns the number of
fields the user defined in the index as ordering fields.
@return number of fields */
UNIV_INLINE
ulint
dict_index_get_n_ordering_defined_by_user(
/*======================================*/
const dict_index_t* index) /*!< in: an internal representation
of index (in the dictionary cache) */
{
return(index->n_user_defined_cols);
}
#ifdef UNIV_DEBUG
/********************************************************************//**
Gets the nth field of an index.
@return pointer to field object */
UNIV_INLINE
dict_field_t*
dict_index_get_nth_field(
/*=====================*/
const dict_index_t* index, /*!< in: index */
ulint pos) /*!< in: position of field */
{
ut_ad(index);
ut_ad(pos < index->n_def);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return((dict_field_t*) (index->fields) + pos);
}
#endif /* UNIV_DEBUG */
/********************************************************************//**
Returns the position of a system column in an index.
@return position, ULINT_UNDEFINED if not contained */
UNIV_INLINE
ulint
dict_index_get_sys_col_pos(
/*=======================*/
const dict_index_t* index, /*!< in: index */
ulint type) /*!< in: DATA_ROW_ID, ... */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
ut_ad(!dict_index_is_ibuf(index));
if (dict_index_is_clust(index)) {
return(dict_col_get_clust_pos(
dict_table_get_sys_col(index->table, type),
index));
}
return(dict_index_get_nth_col_pos(
index, dict_table_get_sys_col_no(index->table, type), NULL));
}
/*********************************************************************//**
Gets the field column.
@return field->col, pointer to the table column */
UNIV_INLINE
const dict_col_t*
dict_field_get_col(
/*===============*/
const dict_field_t* field) /*!< in: index field */
{
ut_ad(field);
return(field->col);
}
/********************************************************************//**
Gets pointer to the nth column in an index.
@return column */
UNIV_INLINE
const dict_col_t*
dict_index_get_nth_col(
/*===================*/
const dict_index_t* index, /*!< in: index */
ulint pos) /*!< in: position of the field */
{
return(dict_field_get_col(dict_index_get_nth_field(index, pos)));
}
/********************************************************************//**
Gets the column number the nth field in an index.
@return column number */
UNIV_INLINE
ulint
dict_index_get_nth_col_no(
/*======================*/
const dict_index_t* index, /*!< in: index */
ulint pos) /*!< in: position of the field */
{
return(dict_col_get_no(dict_index_get_nth_col(index, pos)));
}
/********************************************************************//**
Looks for column n in an index.
@return position in internal representation of the index;
ULINT_UNDEFINED if not contained */
UNIV_INLINE
ulint
dict_index_get_nth_col_pos(
/*=======================*/
const dict_index_t* index, /*!< in: index */
ulint n, /*!< in: column number */
ulint* prefix_col_pos) /*!< out: col num if prefix */
{
return(dict_index_get_nth_col_or_prefix_pos(index, n, false, false,
prefix_col_pos));
}
/********************************************************************//**
Returns the minimum data size of an index record.
@return minimum data size in bytes */
UNIV_INLINE
ulint
dict_index_get_min_size(
/*====================*/
const dict_index_t* index) /*!< in: index */
{
ulint n = dict_index_get_n_fields(index);
ulint size = 0;
while (n--) {
size += dict_col_get_min_size(dict_index_get_nth_col(index,
n));
}
return(size);
}
/*********************************************************************//**
Gets the space id of the root of the index tree.
@return space id */
UNIV_INLINE
ulint
dict_index_get_space(
/*=================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->space);
}
/*********************************************************************//**
Sets the space id of the root of the index tree. */
UNIV_INLINE
void
dict_index_set_space(
/*=================*/
dict_index_t* index, /*!< in/out: index */
ulint space) /*!< in: space id */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
index->space = unsigned(space);
}
/*********************************************************************//**
Gets the page number of the root of the index tree.
@return page number */
UNIV_INLINE
ulint
dict_index_get_page(
/*================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(index->page);
}
/*********************************************************************//**
Gets the read-write lock of the index tree.
@return read-write lock */
UNIV_INLINE
rw_lock_t*
dict_index_get_lock(
/*================*/
dict_index_t* index) /*!< in: index */
{
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return(&(index->lock));
}
/********************************************************************//**
Returns free space reserved for future updates of records. This is
relevant only in the case of many consecutive inserts, as updates
which make the records bigger might fragment the index.
@return number of free bytes on page, reserved for updates */
UNIV_INLINE
ulint
dict_index_get_space_reserve(void)
/*==============================*/
{
return(UNIV_PAGE_SIZE / 16);
}
/********************************************************************//**
Gets the status of online index creation.
@return the status */
UNIV_INLINE
enum online_index_status
dict_index_get_online_status(
/*=========================*/
const dict_index_t* index) /*!< in: secondary index */
{
enum online_index_status status;
status = (enum online_index_status) index->online_status;
/* Without the index->lock protection, the online
status can change from ONLINE_INDEX_CREATION to
ONLINE_INDEX_COMPLETE (or ONLINE_INDEX_ABORTED) in
row_log_apply() once log application is done. So to make
sure the status is ONLINE_INDEX_CREATION or ONLINE_INDEX_COMPLETE
you should always do the recheck after acquiring index->lock */
#ifdef UNIV_DEBUG
switch (status) {
case ONLINE_INDEX_COMPLETE:
case ONLINE_INDEX_CREATION:
case ONLINE_INDEX_ABORTED:
case ONLINE_INDEX_ABORTED_DROPPED:
return(status);
}
ut_error;
#endif /* UNIV_DEBUG */
return(status);
}
/********************************************************************//**
Sets the status of online index creation. */
UNIV_INLINE
void
dict_index_set_online_status(
/*=========================*/
dict_index_t* index, /*!< in/out: index */
enum online_index_status status) /*!< in: status */
{
ut_ad(!(index->type & DICT_FTS));
ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X));
#ifdef UNIV_DEBUG
switch (dict_index_get_online_status(index)) {
case ONLINE_INDEX_COMPLETE:
case ONLINE_INDEX_CREATION:
break;
case ONLINE_INDEX_ABORTED:
ut_ad(status == ONLINE_INDEX_ABORTED_DROPPED);
break;
case ONLINE_INDEX_ABORTED_DROPPED:
ut_error;
}
#endif /* UNIV_DEBUG */
index->online_status = status;
ut_ad(dict_index_get_online_status(index) == status);
}
/********************************************************************//**
Determines if a secondary index is being or has been created online,
or if the table is being rebuilt online, allowing concurrent modifications
to the table.
@retval true if the index is being or has been built online, or
if this is a clustered index and the table is being or has been rebuilt online
@retval false if the index has been created or the table has been
rebuilt completely */
UNIV_INLINE
bool
dict_index_is_online_ddl(
/*=====================*/
const dict_index_t* index) /*!< in: index */
{
#ifdef UNIV_DEBUG
if (dict_index_is_clust(index)) {
switch (dict_index_get_online_status(index)) {
case ONLINE_INDEX_CREATION:
return(true);
case ONLINE_INDEX_COMPLETE:
return(false);
case ONLINE_INDEX_ABORTED:
case ONLINE_INDEX_ABORTED_DROPPED:
break;
}
ut_ad(0);
return(false);
}
#endif /* UNIV_DEBUG */
return(UNIV_UNLIKELY(dict_index_get_online_status(index)
!= ONLINE_INDEX_COMPLETE));
}
/**********************************************************************//**
Check whether a column exists in an FTS index.
@return ULINT_UNDEFINED if no match else the offset within the vector */
UNIV_INLINE
ulint
dict_table_is_fts_column(
/*=====================*/
ib_vector_t* indexes,/*!< in: vector containing only FTS indexes */
ulint col_no, /*!< in: col number to search for */
bool is_virtual) /*!< in: whether it is a virtual column */
{
ulint i;
for (i = 0; i < ib_vector_size(indexes); ++i) {
dict_index_t* index;
index = (dict_index_t*) ib_vector_getp(indexes, i);
if (dict_index_contains_col_or_prefix(
index, col_no, is_virtual)) {
return(i);
}
}
return(ULINT_UNDEFINED);
}
/**********************************************************************//**
Determine bytes of column prefix to be stored in the undo log. Please
note that if !dict_table_has_atomic_blobs(table), no prefix
needs to be stored in the undo log.
@return bytes of column prefix to be stored in the undo log */
UNIV_INLINE
ulint
dict_max_field_len_store_undo(
/*==========================*/
dict_table_t* table, /*!< in: table */
const dict_col_t* col) /*!< in: column which index prefix
is based on */
{
if (!dict_table_has_atomic_blobs(table)) {
return(0);
}
if (col->max_prefix != 0) {
return(col->max_prefix);
}
return(REC_VERSION_56_MAX_INDEX_COL_LEN);
}
/** Determine maximum bytes of a virtual column need to be stored
in the undo log.
@param[in] table dict_table_t for the table
@param[in] col_no virtual column number
@return maximum bytes of virtual column to be stored in the undo log */
UNIV_INLINE
ulint
dict_max_v_field_len_store_undo(
dict_table_t* table,
ulint col_no)
{
const dict_col_t* col
= &dict_table_get_nth_v_col(table, col_no)->m_col;
ulint max_log_len;
/* This calculation conforms to the non-virtual column
maximum log length calculation:
1) if No atomic BLOB, upto REC_ANTELOPE_MAX_INDEX_COL_LEN
2) if atomic BLOB, upto col->max_prefix or
REC_VERSION_56_MAX_INDEX_COL_LEN, whichever is less */
if (dict_table_has_atomic_blobs(table)) {
if (DATA_BIG_COL(col) && col->max_prefix > 0) {
max_log_len = col->max_prefix;
} else {
max_log_len = DICT_MAX_FIELD_LEN_BY_FORMAT(table);
}
} else {
max_log_len = REC_ANTELOPE_MAX_INDEX_COL_LEN;
}
return(max_log_len);
}
/**********************************************************************//**
Prevent table eviction by moving a table to the non-LRU list from the
LRU list if it is not already there. */
UNIV_INLINE
void
dict_table_prevent_eviction(
/*========================*/
dict_table_t* table) /*!< in: table to prevent eviction */
{
ut_ad(mutex_own(&dict_sys->mutex));
if (table->can_be_evicted) {
dict_table_move_from_lru_to_non_lru(table);
}
}
/********************************************************************//**
Check whether the table is corrupted.
@return nonzero for corrupted table, zero for valid tables */
UNIV_INLINE
ulint
dict_table_is_corrupted(
/*====================*/
const dict_table_t* table) /*!< in: table */
{
ut_ad(table);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
return(table->corrupted);
}
/********************************************************************//**
Check whether the index is corrupted.
@return nonzero for corrupted index, zero for valid indexes */
UNIV_INLINE
ulint
dict_index_is_corrupted(
/*====================*/
const dict_index_t* index) /*!< in: index */
{
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
return((index->type & DICT_CORRUPT)
|| (index->table && index->table->corrupted));
}
/********************************************************************//**
Check if the tablespace for the table has been discarded.
@return true if the tablespace has been discarded. */
UNIV_INLINE
bool
dict_table_is_discarded(
/*====================*/
const dict_table_t* table) /*!< in: table to check */
{
return(DICT_TF2_FLAG_IS_SET(table, DICT_TF2_DISCARDED));
}
/** Check if the table is found is a file_per_table tablespace.
This test does not use table flags2 since some REDUNDANT tables in the
system tablespace may have garbage in the MIX_LEN field where flags2 is
stored. These garbage MIX_LEN fields were written before v3.23.52.
A patch was added to v3.23.52 which initializes the MIX_LEN field to 0.
Since file-per-table tablespaces were added in 4.1, any SYS_TABLES
record with a non-zero space ID will have a reliable MIX_LEN field.
However, this test does not use flags2 from SYS_TABLES.MIX_LEN. Instead,
assume that if the tablespace is not a predefined system tablespace,
then it must be file-per-table.
Also, during ALTER TABLE, the DICT_TF2_USE_FILE_PER_TABLE flag may not be
set on one of the file-per-table tablespaces.
This test cannot be done on a table in the process of being created
because the space_id will be zero until the tablespace is created.
@param[in] table An existing open table to check
@return true if this table was created as a file-per-table tablespace. */
UNIV_INLINE
bool
dict_table_is_file_per_table(
const dict_table_t* table) /*!< in: table to check */
{
bool is_file_per_table =
!is_system_tablespace(table->space);
/* If the table is file-per-table and it is not redundant, then
it should have the flags2 bit for DICT_TF2_USE_FILE_PER_TABLE. */
ut_ad(!is_file_per_table
|| !DICT_TF_GET_COMPACT(table->flags)
|| DICT_TF2_FLAG_IS_SET(table, DICT_TF2_USE_FILE_PER_TABLE));
return(is_file_per_table);
}
/** Get reference count.
@return current value of n_ref_count */
inline
ulint
dict_table_t::get_ref_count() const
{
ut_ad(mutex_own(&dict_sys->mutex));
return(n_ref_count);
}
/** Acquire the table handle. */
inline
void
dict_table_t::acquire()
{
ut_ad(mutex_own(&dict_sys->mutex));
++n_ref_count;
}
/** Release the table handle. */
inline
void
dict_table_t::release()
{
ut_ad(mutex_own(&dict_sys->mutex));
ut_ad(n_ref_count > 0);
--n_ref_count;
}
/** Encode the number of columns and number of virtual columns in a
4 bytes value. We could do this because the number of columns in
InnoDB is limited to 1017
@param[in] n_col number of non-virtual column
@param[in] n_v_col number of virtual column
@return encoded value */
UNIV_INLINE
ulint
dict_table_encode_n_col(
ulint n_col,
ulint n_v_col)
{
return(n_col + (n_v_col<<16));
}
/** decode number of virtual and non-virtual columns in one 4 bytes value.
@param[in] encoded encoded value
@param[in,out] n_col number of non-virtual column
@param[in,out] n_v_col number of virtual column */
UNIV_INLINE
void
dict_table_decode_n_col(
ulint encoded,
ulint* n_col,
ulint* n_v_col)
{
ulint num = encoded & ~DICT_N_COLS_COMPACT;
*n_v_col = num >> 16;
*n_col = num & 0xFFFF;
}
/** Free the virtual column template
@param[in,out] vc_templ virtual column template */
void
dict_free_vc_templ(
dict_vcol_templ_t* vc_templ)
{
if (vc_templ->vtempl != NULL) {
ut_ad(vc_templ->n_v_col > 0);
for (ulint i = 0; i < vc_templ->n_col
+ vc_templ->n_v_col; i++) {
if (vc_templ->vtempl[i] != NULL) {
ut_free(vc_templ->vtempl[i]);
}
}
ut_free(vc_templ->vtempl);
vc_templ->vtempl = NULL;
}
}
/** Check whether the table have virtual index.
@param[in] table InnoDB table
@return true if the table have virtual index, false otherwise. */
UNIV_INLINE
bool
dict_table_have_virtual_index(
dict_table_t* table)
{
for (ulint col_no = 0; col_no < dict_table_get_n_v_cols(table);
col_no++) {
const dict_v_col_t* col
= dict_table_get_nth_v_col(table, col_no);
if (col->m_col.ord_part) {
return(true);
}
}
return(false);
}