mariadb/storage/innobase/trx/trx0purge.cc
Marko Mäkelä e71e613353 MDEV-24671: Replace lock_wait_timeout_task with mysql_cond_timedwait()
lock_wait(): Replaces lock_wait_suspend_thread(). Wait for the lock to
be granted or the transaction to be killed using mysql_cond_timedwait()
or mysql_cond_wait().

lock_wait_end(): Replaces que_thr_end_lock_wait() and
lock_wait_release_thread_if_suspended().

lock_wait_timeout_task: Remove. The operating system kernel will
resume the mysql_cond_timedwait() in lock_wait(). An added benefit
is that innodb_lock_wait_timeout no longer has a 'jitter' of 1 second,
which was caused by this wake-up task waking up only once per second,
and then waking up any threads for which the timeout (which was only
measured in seconds) was exceeded.

innobase_kill_query(): Set trx->error_state=DB_INTERRUPTED,
so that a call trx_is_interrupted(trx) in lock_wait() can be avoided.

We will protect things more consistently with lock_sys.wait_mutex,
which will be moved below lock_sys.mutex in the latching order.

trx_lock_t::cond: Condition variable for !wait_lock, used with
lock_sys.wait_mutex.

srv_slot_t: Remove. Replaced by trx_lock_t::cond,

lock_grant_after_reset(): Merged to to lock_grant().

lock_rec_get_index_name(): Remove.

lock_sys_t: Introduce wait_pending, wait_count, wait_time, wait_time_max
that are protected by wait_mutex.

trx_lock_t::que_state: Remove.

que_thr_state_t: Remove QUE_THR_COMMAND_WAIT, QUE_THR_LOCK_WAIT.

que_thr_t: Remove is_active, start_running(), stop_no_error().

que_fork_t::n_active_thrs, trx_lock_t::n_active_thrs: Remove.
2021-01-27 15:45:39 +02:00

1312 lines
36 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, 2021, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file trx/trx0purge.cc
Purge old versions
Created 3/26/1996 Heikki Tuuri
*******************************************************/
#include "trx0purge.h"
#include "fsp0fsp.h"
#include "fut0fut.h"
#include "mach0data.h"
#include "mtr0log.h"
#include "os0thread.h"
#include "que0que.h"
#include "row0purge.h"
#include "row0upd.h"
#include "srv0mon.h"
#include "srv0srv.h"
#include "srv0start.h"
#include "trx0rec.h"
#include "trx0roll.h"
#include "trx0rseg.h"
#include "trx0trx.h"
#include <mysql/service_wsrep.h>
#include <unordered_map>
#ifdef UNIV_PFS_RWLOCK
extern mysql_pfs_key_t trx_purge_latch_key;
#endif /* UNIV_PFS_RWLOCK */
/** Maximum allowable purge history length. <=0 means 'infinite'. */
ulong srv_max_purge_lag = 0;
/** Max DML user threads delay in micro-seconds. */
ulong srv_max_purge_lag_delay = 0;
/** The global data structure coordinating a purge */
purge_sys_t purge_sys;
/** A dummy undo record used as a return value when we have a whole undo log
which needs no purge */
trx_undo_rec_t trx_purge_dummy_rec;
#ifdef UNIV_DEBUG
my_bool srv_purge_view_update_only_debug;
#endif /* UNIV_DEBUG */
/** Sentinel value */
static const TrxUndoRsegs NullElement;
/** Default constructor */
TrxUndoRsegsIterator::TrxUndoRsegsIterator()
: m_rsegs(NullElement), m_iter(m_rsegs.begin())
{
}
/** Sets the next rseg to purge in purge_sys.
Executed in the purge coordinator thread.
@return whether anything is to be purged */
inline bool TrxUndoRsegsIterator::set_next()
{
mysql_mutex_lock(&purge_sys.pq_mutex);
/* Only purge consumes events from the priority queue, user
threads only produce the events. */
/* Check if there are more rsegs to process in the
current element. */
if (m_iter != m_rsegs.end()) {
/* We are still processing rollback segment from
the same transaction and so expected transaction
number shouldn't increase. Undo the increment of
expected commit done by caller assuming rollback
segments from given transaction are done. */
purge_sys.tail.commit = (*m_iter)->last_commit;
} else if (!purge_sys.purge_queue.empty()) {
m_rsegs = purge_sys.purge_queue.top();
purge_sys.purge_queue.pop();
ut_ad(purge_sys.purge_queue.empty()
|| purge_sys.purge_queue.top() != m_rsegs);
m_iter = m_rsegs.begin();
} else {
/* Queue is empty, reset iterator. */
purge_sys.rseg = NULL;
mysql_mutex_unlock(&purge_sys.pq_mutex);
m_rsegs = NullElement;
m_iter = m_rsegs.begin();
return false;
}
purge_sys.rseg = *m_iter++;
mysql_mutex_unlock(&purge_sys.pq_mutex);
mysql_mutex_lock(&purge_sys.rseg->mutex);
ut_a(purge_sys.rseg->last_page_no != FIL_NULL);
ut_ad(purge_sys.rseg->last_trx_no() == m_rsegs.trx_no());
/* We assume in purge of externally stored fields that space id is
in the range of UNDO tablespace space ids */
ut_ad(purge_sys.rseg->space->id == TRX_SYS_SPACE
|| srv_is_undo_tablespace(purge_sys.rseg->space->id));
ut_a(purge_sys.tail.commit <= purge_sys.rseg->last_commit);
purge_sys.tail.commit = purge_sys.rseg->last_commit;
purge_sys.hdr_offset = purge_sys.rseg->last_offset;
purge_sys.hdr_page_no = purge_sys.rseg->last_page_no;
mysql_mutex_unlock(&purge_sys.rseg->mutex);
return(true);
}
/** Build a purge 'query' graph. The actual purge is performed by executing
this query graph.
@return own: the query graph */
static
que_t*
purge_graph_build()
{
ut_a(srv_n_purge_threads > 0);
trx_t* trx = trx_create();
ut_ad(!trx->id);
trx->start_time = time(NULL);
trx->start_time_micro = microsecond_interval_timer();
trx->state = TRX_STATE_ACTIVE;
trx->op_info = "purge trx";
mem_heap_t* heap = mem_heap_create(512);
que_fork_t* fork = que_fork_create(heap);
fork->trx = trx;
for (auto i = innodb_purge_threads_MAX; i; i--) {
que_thr_t* thr = que_thr_create(fork, heap, NULL);
thr->child = new(mem_heap_alloc(heap, sizeof(purge_node_t)))
purge_node_t(thr);
}
return(fork);
}
/** Initialise the purge system. */
void purge_sys_t::create()
{
ut_ad(this == &purge_sys);
ut_ad(!heap);
ut_ad(!enabled());
m_paused= 0;
query= purge_graph_build();
next_stored= false;
rseg= NULL;
page_no= 0;
offset= 0;
hdr_page_no= 0;
hdr_offset= 0;
latch.SRW_LOCK_INIT(trx_purge_latch_key);
mysql_mutex_init(purge_sys_pq_mutex_key, &pq_mutex, nullptr);
truncate.current= NULL;
truncate.last= NULL;
heap= mem_heap_create(4096);
}
/** Close the purge subsystem on shutdown. */
void purge_sys_t::close()
{
ut_ad(this == &purge_sys);
if (!heap)
return;
ut_ad(!enabled());
trx_t* trx = query->trx;
que_graph_free(query);
ut_ad(!trx->id);
ut_ad(trx->state == TRX_STATE_ACTIVE);
trx->state= TRX_STATE_NOT_STARTED;
trx->free();
latch.destroy();
mysql_mutex_destroy(&pq_mutex);
mem_heap_free(heap);
heap= nullptr;
}
/*================ UNDO LOG HISTORY LIST =============================*/
/** Prepend the history list with an undo log.
Remove the undo log segment from the rseg slot if it is too big for reuse.
@param[in] trx transaction
@param[in,out] undo undo log
@param[in,out] mtr mini-transaction */
void
trx_purge_add_undo_to_history(const trx_t* trx, trx_undo_t*& undo, mtr_t* mtr)
{
DBUG_PRINT("trx", ("commit(" TRX_ID_FMT "," TRX_ID_FMT ")",
trx->id, trx_id_t{trx->rw_trx_hash_element->no}));
ut_ad(undo == trx->rsegs.m_redo.undo
|| undo == trx->rsegs.m_redo.old_insert);
trx_rseg_t* rseg = trx->rsegs.m_redo.rseg;
ut_ad(undo->rseg == rseg);
buf_block_t* rseg_header = trx_rsegf_get(
rseg->space, rseg->page_no, mtr);
buf_block_t* undo_page = trx_undo_set_state_at_finish(
undo, mtr);
trx_ulogf_t* undo_header = undo_page->frame + undo->hdr_offset;
ut_ad(mach_read_from_2(undo_header + TRX_UNDO_NEEDS_PURGE) <= 1);
if (UNIV_UNLIKELY(mach_read_from_4(TRX_RSEG + TRX_RSEG_FORMAT
+ rseg_header->frame))) {
/* This database must have been upgraded from
before MariaDB 10.3.5. */
trx_rseg_format_upgrade(rseg_header, mtr);
}
if (undo->state != TRX_UNDO_CACHED) {
/* The undo log segment will not be reused */
ut_a(undo->id < TRX_RSEG_N_SLOTS);
compile_time_assert(FIL_NULL == 0xffffffff);
mtr->memset(rseg_header,
TRX_RSEG + TRX_RSEG_UNDO_SLOTS
+ undo->id * TRX_RSEG_SLOT_SIZE, 4, 0xff);
MONITOR_DEC(MONITOR_NUM_UNDO_SLOT_USED);
uint32_t hist_size = mach_read_from_4(TRX_RSEG_HISTORY_SIZE
+ TRX_RSEG
+ rseg_header->frame);
ut_ad(undo->size == flst_get_len(TRX_UNDO_SEG_HDR
+ TRX_UNDO_PAGE_LIST
+ undo_page->frame));
mtr->write<4>(*rseg_header, TRX_RSEG + TRX_RSEG_HISTORY_SIZE
+ rseg_header->frame,
hist_size + undo->size);
mtr->write<8>(*rseg_header, TRX_RSEG + TRX_RSEG_MAX_TRX_ID
+ rseg_header->frame,
trx_sys.get_max_trx_id());
}
/* After the purge thread has been given permission to exit,
we may roll back transactions (trx->undo_no==0)
in THD::cleanup() invoked from unlink_thd() in fast shutdown,
or in trx_rollback_recovered() in slow shutdown.
Before any transaction-generating background threads or the
purge have been started, we can
start transactions in row_merge_drop_temp_indexes() and
fts_drop_orphaned_tables(), and roll back recovered transactions.
Arbitrary user transactions may be executed when all the undo log
related background processes (including purge) are disabled due to
innodb_force_recovery=2 or innodb_force_recovery=3.
DROP TABLE may be executed at any innodb_force_recovery level.
During fast shutdown, we may also continue to execute
user transactions. */
ut_ad(srv_undo_sources
|| trx->undo_no == 0
|| (!purge_sys.enabled()
&& (srv_is_being_started
|| trx_rollback_is_active
|| srv_force_recovery >= SRV_FORCE_NO_BACKGROUND))
|| ((trx->mysql_thd || trx->internal)
&& srv_fast_shutdown));
#ifdef WITH_WSREP
if (wsrep_is_wsrep_xid(trx->xid)) {
trx_rseg_update_wsrep_checkpoint(rseg_header, trx->xid, mtr);
}
#endif
if (trx->mysql_log_file_name && *trx->mysql_log_file_name) {
/* Update the latest MySQL binlog name and offset info
in rollback segment header if MySQL binlogging is on
or the database server is a MySQL replication save. */
trx_rseg_update_binlog_offset(rseg_header, trx, mtr);
}
/* Add the log as the first in the history list */
flst_add_first(rseg_header, TRX_RSEG + TRX_RSEG_HISTORY, undo_page,
static_cast<uint16_t>(undo->hdr_offset
+ TRX_UNDO_HISTORY_NODE), mtr);
mtr->write<8,mtr_t::MAYBE_NOP>(*undo_page,
undo_header + TRX_UNDO_TRX_NO,
trx->rw_trx_hash_element->no);
/* This is needed for upgrading old undo log pages from
before MariaDB 10.3.1. */
if (UNIV_UNLIKELY(!mach_read_from_2(undo_header
+ TRX_UNDO_NEEDS_PURGE))) {
mtr->write<2>(*undo_page, undo_header + TRX_UNDO_NEEDS_PURGE,
1U);
}
if (rseg->last_page_no == FIL_NULL) {
rseg->last_page_no = undo->hdr_page_no;
rseg->last_offset = undo->hdr_offset;
rseg->set_last_trx_no(trx->rw_trx_hash_element->no,
undo == trx->rsegs.m_redo.undo);
rseg->needs_purge = true;
}
trx_sys.rseg_history_len++;
if (undo->state == TRX_UNDO_CACHED) {
UT_LIST_ADD_FIRST(rseg->undo_cached, undo);
MONITOR_INC(MONITOR_NUM_UNDO_SLOT_CACHED);
} else {
ut_ad(undo->state == TRX_UNDO_TO_PURGE);
ut_free(undo);
}
undo = NULL;
}
/** Remove undo log header from the history list.
@param[in,out] rseg rollback segment header page
@param[in] log undo log segment header page
@param[in] offset byte offset in the undo log segment header page
@param[in,out] mtr mini-transaction */
static void trx_purge_remove_log_hdr(buf_block_t *rseg, buf_block_t* log,
uint16_t offset, mtr_t *mtr)
{
flst_remove(rseg, TRX_RSEG + TRX_RSEG_HISTORY,
log, static_cast<uint16_t>(offset + TRX_UNDO_HISTORY_NODE), mtr);
trx_sys.rseg_history_len--;
}
/** Free an undo log segment, and remove the header from the history list.
@param[in,out] rseg rollback segment
@param[in] hdr_addr file address of log_hdr */
static
void
trx_purge_free_segment(trx_rseg_t* rseg, fil_addr_t hdr_addr)
{
mtr_t mtr;
mtr.start();
mysql_mutex_lock(&rseg->mutex);
buf_block_t* rseg_hdr = trx_rsegf_get(rseg->space, rseg->page_no, &mtr);
buf_block_t* block = trx_undo_page_get(
page_id_t(rseg->space->id, hdr_addr.page), &mtr);
/* Mark the last undo log totally purged, so that if the
system crashes, the tail of the undo log will not get accessed
again. The list of pages in the undo log tail gets
inconsistent during the freeing of the segment, and therefore
purge should not try to access them again. */
mtr.write<2,mtr_t::MAYBE_NOP>(*block, block->frame + hdr_addr.boffset
+ TRX_UNDO_NEEDS_PURGE, 0U);
while (!fseg_free_step_not_header(
TRX_UNDO_SEG_HDR + TRX_UNDO_FSEG_HEADER
+ block->frame, &mtr)) {
mysql_mutex_unlock(&rseg->mutex);
mtr.commit();
mtr.start();
mysql_mutex_lock(&rseg->mutex);
rseg_hdr = trx_rsegf_get(rseg->space, rseg->page_no, &mtr);
block = trx_undo_page_get(
page_id_t(rseg->space->id, hdr_addr.page), &mtr);
}
/* The page list may now be inconsistent, but the length field
stored in the list base node tells us how big it was before we
started the freeing. */
const uint32_t seg_size = flst_get_len(
TRX_UNDO_SEG_HDR + TRX_UNDO_PAGE_LIST + block->frame);
/* We may free the undo log segment header page; it must be freed
within the same mtr as the undo log header is removed from the
history list: otherwise, in case of a database crash, the segment
could become inaccessible garbage in the file space. */
trx_purge_remove_log_hdr(rseg_hdr, block, hdr_addr.boffset, &mtr);
do {
/* Here we assume that a file segment with just the header
page can be freed in a few steps, so that the buffer pool
is not flooded with bufferfixed pages: see the note in
fsp0fsp.cc. */
} while (!fseg_free_step(TRX_UNDO_SEG_HDR + TRX_UNDO_FSEG_HEADER
+ block->frame, &mtr));
byte* hist = TRX_RSEG + TRX_RSEG_HISTORY_SIZE + rseg_hdr->frame;
ut_ad(mach_read_from_4(hist) >= seg_size);
mtr.write<4>(*rseg_hdr, hist, mach_read_from_4(hist) - seg_size);
ut_ad(rseg->curr_size >= seg_size);
rseg->curr_size -= seg_size;
mysql_mutex_unlock(&rseg->mutex);
mtr_commit(&mtr);
}
/** Remove unnecessary history data from a rollback segment.
@param[in,out] rseg rollback segment
@param[in] limit truncate anything before this */
static
void
trx_purge_truncate_rseg_history(
trx_rseg_t& rseg,
const purge_sys_t::iterator& limit)
{
fil_addr_t hdr_addr;
fil_addr_t prev_hdr_addr;
mtr_t mtr;
trx_id_t undo_trx_no;
mtr.start();
ut_ad(rseg.is_persistent());
mysql_mutex_lock(&rseg.mutex);
buf_block_t* rseg_hdr = trx_rsegf_get(rseg.space, rseg.page_no, &mtr);
hdr_addr = flst_get_last(TRX_RSEG + TRX_RSEG_HISTORY
+ rseg_hdr->frame);
hdr_addr.boffset = static_cast<uint16_t>(hdr_addr.boffset
- TRX_UNDO_HISTORY_NODE);
loop:
if (hdr_addr.page == FIL_NULL) {
func_exit:
mysql_mutex_unlock(&rseg.mutex);
mtr.commit();
return;
}
buf_block_t* block = trx_undo_page_get(page_id_t(rseg.space->id,
hdr_addr.page),
&mtr);
undo_trx_no = mach_read_from_8(block->frame + hdr_addr.boffset
+ TRX_UNDO_TRX_NO);
if (undo_trx_no >= limit.trx_no()) {
if (undo_trx_no == limit.trx_no()) {
trx_undo_truncate_start(
&rseg, hdr_addr.page,
hdr_addr.boffset, limit.undo_no);
}
goto func_exit;
}
prev_hdr_addr = flst_get_prev_addr(block->frame + hdr_addr.boffset
+ TRX_UNDO_HISTORY_NODE);
prev_hdr_addr.boffset = static_cast<uint16_t>(prev_hdr_addr.boffset
- TRX_UNDO_HISTORY_NODE);
if (mach_read_from_2(TRX_UNDO_SEG_HDR + TRX_UNDO_STATE + block->frame)
== TRX_UNDO_TO_PURGE
&& !mach_read_from_2(block->frame + hdr_addr.boffset
+ TRX_UNDO_NEXT_LOG)) {
/* We can free the whole log segment */
mysql_mutex_unlock(&rseg.mutex);
mtr.commit();
/* calls the trx_purge_remove_log_hdr()
inside trx_purge_free_segment(). */
trx_purge_free_segment(&rseg, hdr_addr);
} else {
/* Remove the log hdr from the rseg history. */
trx_purge_remove_log_hdr(rseg_hdr, block, hdr_addr.boffset,
&mtr);
mysql_mutex_unlock(&rseg.mutex);
mtr.commit();
}
mtr.start();
mysql_mutex_lock(&rseg.mutex);
rseg_hdr = trx_rsegf_get(rseg.space, rseg.page_no, &mtr);
hdr_addr = prev_hdr_addr;
goto loop;
}
/** Cleanse purge queue to remove the rseg that reside in undo-tablespace
marked for truncate.
@param[in] space undo tablespace being truncated */
static void trx_purge_cleanse_purge_queue(const fil_space_t& space)
{
typedef std::vector<TrxUndoRsegs> purge_elem_list_t;
purge_elem_list_t purge_elem_list;
mysql_mutex_lock(&purge_sys.pq_mutex);
/* Remove rseg instances that are in the purge queue before we start
truncate of corresponding UNDO truncate. */
while (!purge_sys.purge_queue.empty()) {
purge_elem_list.push_back(purge_sys.purge_queue.top());
purge_sys.purge_queue.pop();
}
for (purge_elem_list_t::iterator it = purge_elem_list.begin();
it != purge_elem_list.end();
++it) {
for (TrxUndoRsegs::iterator it2 = it->begin();
it2 != it->end();
++it2) {
if ((*it2)->space == &space) {
it->erase(it2);
break;
}
}
if (!it->empty()) {
purge_sys.purge_queue.push(*it);
}
}
mysql_mutex_unlock(&purge_sys.pq_mutex);
}
/**
Removes unnecessary history data from rollback segments. NOTE that when this
function is called, the caller must not have any latches on undo log pages!
*/
static void trx_purge_truncate_history()
{
ut_ad(purge_sys.head <= purge_sys.tail);
purge_sys_t::iterator& head = purge_sys.head.commit
? purge_sys.head : purge_sys.tail;
if (head.trx_no() >= purge_sys.low_limit_no()) {
/* This is sometimes necessary. TODO: find out why. */
head.reset_trx_no(purge_sys.low_limit_no());
head.undo_no = 0;
}
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
if (trx_rseg_t* rseg = trx_sys.rseg_array[i]) {
ut_ad(rseg->id == i);
trx_purge_truncate_rseg_history(*rseg, head);
}
}
if (srv_undo_tablespaces_active < 2) {
return;
}
while (srv_undo_log_truncate) {
if (!purge_sys.truncate.current) {
const ulint threshold = ulint(srv_max_undo_log_size
>> srv_page_size_shift);
for (ulint i = purge_sys.truncate.last
? purge_sys.truncate.last->id
- srv_undo_space_id_start
: 0, j = i;; ) {
ulint space_id = srv_undo_space_id_start + i;
ut_ad(srv_is_undo_tablespace(space_id));
fil_space_t* space= fil_space_get(space_id);
if (space && space->get_size() > threshold) {
purge_sys.truncate.current = space;
break;
}
++i;
i %= srv_undo_tablespaces_active;
if (i == j) {
break;
}
}
}
if (!purge_sys.truncate.current) {
return;
}
const fil_space_t& space = *purge_sys.truncate.current;
/* Undo tablespace always are a single file. */
ut_a(UT_LIST_GET_LEN(space.chain) == 1);
fil_node_t* file = UT_LIST_GET_FIRST(space.chain);
/* The undo tablespace files are never closed. */
ut_ad(file->is_open());
DBUG_LOG("undo", "marking for truncate: " << file->name);
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
if (trx_rseg_t* rseg = trx_sys.rseg_array[i]) {
ut_ad(rseg->is_persistent());
if (rseg->space == &space) {
/* Once set, this rseg will
not be allocated to subsequent
transactions, but we will wait
for existing active
transactions to finish. */
rseg->skip_allocation = true;
}
}
}
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
trx_rseg_t* rseg = trx_sys.rseg_array[i];
if (!rseg || rseg->space != &space) {
continue;
}
mysql_mutex_lock(&rseg->mutex);
ut_ad(rseg->skip_allocation);
if (rseg->trx_ref_count) {
not_free:
mysql_mutex_unlock(&rseg->mutex);
return;
}
if (rseg->curr_size != 1) {
/* Check if all segments are
cached and safe to remove. */
ulint cached = 0;
for (trx_undo_t* undo = UT_LIST_GET_FIRST(
rseg->undo_cached);
undo;
undo = UT_LIST_GET_NEXT(undo_list,
undo)) {
if (head.trx_no() < undo->trx_id) {
goto not_free;
} else {
cached += undo->size;
}
}
ut_ad(rseg->curr_size > cached);
if (rseg->curr_size > cached + 1) {
goto not_free;
}
}
mysql_mutex_unlock(&rseg->mutex);
}
ib::info() << "Truncating " << file->name;
trx_purge_cleanse_purge_queue(space);
/* Flush all to-be-discarded pages of the tablespace.
During truncation, we do not want any writes to the
to-be-discarded area, because we must set the space.size
early in order to have deterministic page allocation.
If a log checkpoint was completed at LSN earlier than our
mini-transaction commit and the server was killed, then
discarding the to-be-trimmed pages without flushing would
break crash recovery. So, we cannot avoid the write. */
while (buf_flush_dirty_pages(space.id));
log_free_check();
/* Adjust the tablespace metadata. */
if (!fil_truncate_prepare(space.id)) {
ib::error() << "Failed to find UNDO tablespace "
<< file->name;
return;
}
/* Re-initialize tablespace, in a single mini-transaction. */
mtr_t mtr;
const ulint size = SRV_UNDO_TABLESPACE_SIZE_IN_PAGES;
mtr.start();
mtr.x_lock_space(purge_sys.truncate.current);
/* Associate the undo tablespace with mtr.
During mtr::commit(), InnoDB can use the undo
tablespace object to clear all freed ranges */
mtr.set_named_space(purge_sys.truncate.current);
mtr.trim_pages(page_id_t(space.id, size));
fsp_header_init(purge_sys.truncate.current, size, &mtr);
mysql_mutex_lock(&fil_system.mutex);
purge_sys.truncate.current->size = file->size = size;
mysql_mutex_unlock(&fil_system.mutex);
buf_block_t* sys_header = trx_sysf_get(&mtr);
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
trx_rseg_t* rseg = trx_sys.rseg_array[i];
if (!rseg || rseg->space != &space) {
continue;
}
ut_ad(rseg->is_persistent());
ut_d(const ulint old_page = rseg->page_no);
buf_block_t* rblock = trx_rseg_header_create(
purge_sys.truncate.current,
rseg->id, sys_header, &mtr);
ut_ad(rblock);
rseg->page_no = rblock
? rblock->page.id().page_no() : FIL_NULL;
ut_ad(old_page == rseg->page_no);
/* Before re-initialization ensure that we
free the existing structure. There can't be
any active transactions. */
ut_a(UT_LIST_GET_LEN(rseg->undo_list) == 0);
ut_a(UT_LIST_GET_LEN(rseg->old_insert_list) == 0);
trx_undo_t* next_undo;
for (trx_undo_t* undo = UT_LIST_GET_FIRST(
rseg->undo_cached);
undo; undo = next_undo) {
next_undo = UT_LIST_GET_NEXT(undo_list, undo);
UT_LIST_REMOVE(rseg->undo_cached, undo);
MONITOR_DEC(MONITOR_NUM_UNDO_SLOT_CACHED);
ut_free(undo);
}
UT_LIST_INIT(rseg->undo_list,
&trx_undo_t::undo_list);
UT_LIST_INIT(rseg->undo_cached,
&trx_undo_t::undo_list);
UT_LIST_INIT(rseg->old_insert_list,
&trx_undo_t::undo_list);
/* These were written by trx_rseg_header_create(). */
ut_ad(!mach_read_from_4(TRX_RSEG + TRX_RSEG_FORMAT
+ rblock->frame));
ut_ad(!mach_read_from_4(TRX_RSEG + TRX_RSEG_HISTORY_SIZE
+ rblock->frame));
/* Initialize the undo log lists according to
the rseg header */
rseg->curr_size = 1;
rseg->trx_ref_count = 0;
rseg->last_page_no = FIL_NULL;
rseg->last_offset = 0;
rseg->last_commit = 0;
rseg->needs_purge = false;
}
mtr.commit();
/* Write-ahead the redo log record. */
log_write_up_to(mtr.commit_lsn(), true);
/* Trim the file size. */
os_file_truncate(file->name, file->handle,
os_offset_t(size) << srv_page_size_shift,
true);
/* This is only executed by srv_purge_coordinator_thread. */
export_vars.innodb_undo_truncations++;
/* In MDEV-8319 (10.5) we will PUNCH_HOLE the garbage
(with write-ahead logging). */
mysql_mutex_lock(&fil_system.mutex);
ut_ad(&space == purge_sys.truncate.current);
ut_ad(space.is_being_truncated);
purge_sys.truncate.current->set_stopping(false);
purge_sys.truncate.current->is_being_truncated = false;
mysql_mutex_unlock(&fil_system.mutex);
if (purge_sys.rseg != NULL
&& purge_sys.rseg->last_page_no == FIL_NULL) {
/* If purge_sys.rseg is pointing to rseg that
was recently truncated then move to next rseg
element. Note: Ideally purge_sys.rseg should
be NULL because purge should complete
processing of all the records but there is
purge_batch_size that can force the purge loop
to exit before all the records are purged and
in this case purge_sys.rseg could point to a
valid rseg waiting for next purge cycle. */
purge_sys.next_stored = false;
purge_sys.rseg = NULL;
}
DBUG_EXECUTE_IF("ib_undo_trunc",
ib::info() << "ib_undo_trunc";
log_write_up_to(LSN_MAX, true);
DBUG_SUICIDE(););
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
if (trx_rseg_t* rseg = trx_sys.rseg_array[i]) {
ut_ad(rseg->is_persistent());
if (rseg->space == &space) {
rseg->skip_allocation = false;
}
}
}
ib::info() << "Truncated " << file->name;
purge_sys.truncate.last = purge_sys.truncate.current;
purge_sys.truncate.current = NULL;
}
}
/***********************************************************************//**
Updates the last not yet purged history log info in rseg when we have purged
a whole undo log. Advances also purge_sys.purge_trx_no past the purged log. */
static void trx_purge_rseg_get_next_history_log(
ulint* n_pages_handled)/*!< in/out: number of UNDO pages
handled */
{
fil_addr_t prev_log_addr;
trx_id_t trx_no;
mtr_t mtr;
mysql_mutex_lock(&purge_sys.rseg->mutex);
ut_a(purge_sys.rseg->last_page_no != FIL_NULL);
purge_sys.tail.commit = purge_sys.rseg->last_commit + 1;
purge_sys.tail.undo_no = 0;
purge_sys.next_stored = false;
mtr.start();
const buf_block_t* undo_page = trx_undo_page_get_s_latched(
page_id_t(purge_sys.rseg->space->id,
purge_sys.rseg->last_page_no), &mtr);
const trx_ulogf_t* log_hdr = undo_page->frame
+ purge_sys.rseg->last_offset;
/* Increase the purge page count by one for every handled log */
(*n_pages_handled)++;
prev_log_addr = flst_get_prev_addr(log_hdr + TRX_UNDO_HISTORY_NODE);
prev_log_addr.boffset = static_cast<uint16_t>(prev_log_addr.boffset
- TRX_UNDO_HISTORY_NODE);
const bool empty = prev_log_addr.page == FIL_NULL;
if (empty) {
/* No logs left in the history list */
purge_sys.rseg->last_page_no = FIL_NULL;
}
mysql_mutex_unlock(&purge_sys.rseg->mutex);
mtr.commit();
if (empty) {
return;
}
/* Read the previous log header. */
mtr.start();
log_hdr = trx_undo_page_get_s_latched(
page_id_t(purge_sys.rseg->space->id, prev_log_addr.page),
&mtr)->frame
+ prev_log_addr.boffset;
trx_no = mach_read_from_8(log_hdr + TRX_UNDO_TRX_NO);
unsigned purge = mach_read_from_2(log_hdr + TRX_UNDO_NEEDS_PURGE);
ut_ad(purge <= 1);
mtr_commit(&mtr);
mysql_mutex_lock(&purge_sys.rseg->mutex);
purge_sys.rseg->last_page_no = prev_log_addr.page;
purge_sys.rseg->last_offset = prev_log_addr.boffset;
purge_sys.rseg->set_last_trx_no(trx_no, purge != 0);
purge_sys.rseg->needs_purge = purge != 0;
/* Purge can also produce events, however these are already ordered
in the rollback segment and any user generated event will be greater
than the events that Purge produces. ie. Purge can never produce
events from an empty rollback segment. */
mysql_mutex_lock(&purge_sys.pq_mutex);
purge_sys.purge_queue.push(*purge_sys.rseg);
mysql_mutex_unlock(&purge_sys.pq_mutex);
mysql_mutex_unlock(&purge_sys.rseg->mutex);
}
/** Position the purge sys "iterator" on the undo record to use for purging. */
static
void
trx_purge_read_undo_rec()
{
uint16_t offset;
uint32_t page_no;
ib_uint64_t undo_no;
purge_sys.hdr_offset = purge_sys.rseg->last_offset;
page_no = purge_sys.hdr_page_no = purge_sys.rseg->last_page_no;
if (purge_sys.rseg->needs_purge) {
mtr_t mtr;
mtr.start();
buf_block_t* undo_page;
if (trx_undo_rec_t* undo_rec = trx_undo_get_first_rec(
*purge_sys.rseg->space, purge_sys.hdr_page_no,
purge_sys.hdr_offset, RW_S_LATCH,
undo_page, &mtr)) {
offset = page_offset(undo_rec);
undo_no = trx_undo_rec_get_undo_no(undo_rec);
page_no = undo_page->page.id().page_no();
} else {
offset = 0;
undo_no = 0;
}
mtr.commit();
} else {
offset = 0;
undo_no = 0;
}
purge_sys.offset = offset;
purge_sys.page_no = page_no;
purge_sys.tail.undo_no = undo_no;
purge_sys.next_stored = true;
}
/***********************************************************************//**
Chooses the next undo log to purge and updates the info in purge_sys. This
function is used to initialize purge_sys when the next record to purge is
not known, and also to update the purge system info on the next record when
purge has handled the whole undo log for a transaction. */
static
void
trx_purge_choose_next_log(void)
/*===========================*/
{
ut_ad(!purge_sys.next_stored);
if (purge_sys.rseg_iter.set_next()) {
trx_purge_read_undo_rec();
} else {
/* There is nothing to do yet. */
os_thread_yield();
}
}
/***********************************************************************//**
Gets the next record to purge and updates the info in the purge system.
@return copy of an undo log record or pointer to the dummy undo log record */
static
trx_undo_rec_t*
trx_purge_get_next_rec(
/*===================*/
ulint* n_pages_handled,/*!< in/out: number of UNDO pages
handled */
mem_heap_t* heap) /*!< in: memory heap where copied */
{
mtr_t mtr;
ut_ad(purge_sys.next_stored);
ut_ad(purge_sys.tail.trx_no() < purge_sys.low_limit_no());
const ulint space = purge_sys.rseg->space->id;
const uint32_t page_no = purge_sys.page_no;
const uint16_t offset = purge_sys.offset;
if (offset == 0) {
/* It is the dummy undo log record, which means that there is
no need to purge this undo log */
trx_purge_rseg_get_next_history_log(n_pages_handled);
/* Look for the next undo log and record to purge */
trx_purge_choose_next_log();
return(&trx_purge_dummy_rec);
}
mtr_start(&mtr);
buf_block_t* undo_page = trx_undo_page_get_s_latched(
page_id_t(space, page_no), &mtr);
buf_block_t* rec2_page = undo_page;
const trx_undo_rec_t* rec2 = trx_undo_page_get_next_rec(
undo_page, offset, purge_sys.hdr_page_no, purge_sys.hdr_offset);
if (rec2 == NULL) {
rec2 = trx_undo_get_next_rec(rec2_page, offset,
purge_sys.hdr_page_no,
purge_sys.hdr_offset, &mtr);
}
if (rec2 == NULL) {
mtr_commit(&mtr);
trx_purge_rseg_get_next_history_log(n_pages_handled);
/* Look for the next undo log and record to purge */
trx_purge_choose_next_log();
mtr_start(&mtr);
undo_page = trx_undo_page_get_s_latched(
page_id_t(space, page_no), &mtr);
} else {
purge_sys.offset = page_offset(rec2);
purge_sys.page_no = rec2_page->page.id().page_no();
purge_sys.tail.undo_no = trx_undo_rec_get_undo_no(rec2);
if (undo_page != rec2_page) {
/* We advance to a new page of the undo log: */
(*n_pages_handled)++;
}
}
trx_undo_rec_t* rec_copy = trx_undo_rec_copy(undo_page->frame + offset,
heap);
mtr_commit(&mtr);
return(rec_copy);
}
/********************************************************************//**
Fetches the next undo log record from the history list to purge. It must be
released with the corresponding release function.
@return copy of an undo log record or pointer to trx_purge_dummy_rec,
if the whole undo log can skipped in purge; NULL if none left */
static MY_ATTRIBUTE((warn_unused_result))
trx_undo_rec_t*
trx_purge_fetch_next_rec(
/*=====================*/
roll_ptr_t* roll_ptr, /*!< out: roll pointer to undo record */
ulint* n_pages_handled,/*!< in/out: number of UNDO log pages
handled */
mem_heap_t* heap) /*!< in: memory heap where copied */
{
if (!purge_sys.next_stored) {
trx_purge_choose_next_log();
if (!purge_sys.next_stored) {
DBUG_PRINT("ib_purge",
("no logs left in the history list"));
return(NULL);
}
}
if (purge_sys.tail.trx_no() >= purge_sys.low_limit_no()) {
return(NULL);
}
/* fprintf(stderr, "Thread %lu purging trx %llu undo record %llu\n",
os_thread_get_curr_id(), iter->trx_no, iter->undo_no); */
*roll_ptr = trx_undo_build_roll_ptr(
/* row_purge_record_func() will later set
ROLL_PTR_INSERT_FLAG for TRX_UNDO_INSERT_REC */
false,
purge_sys.rseg->id,
purge_sys.page_no, purge_sys.offset);
/* The following call will advance the stored values of the
purge iterator. */
return(trx_purge_get_next_rec(n_pages_handled, heap));
}
/** Run a purge batch.
@param n_purge_threads number of purge threads
@return number of undo log pages handled in the batch */
static
ulint
trx_purge_attach_undo_recs(ulint n_purge_threads)
{
que_thr_t* thr;
ulint i;
ulint n_pages_handled = 0;
ulint n_thrs = UT_LIST_GET_LEN(purge_sys.query->thrs);
ut_a(n_purge_threads > 0);
purge_sys.head = purge_sys.tail;
#ifdef UNIV_DEBUG
i = 0;
/* Debug code to validate some pre-requisites and reset done flag. */
for (thr = UT_LIST_GET_FIRST(purge_sys.query->thrs);
thr != NULL && i < n_purge_threads;
thr = UT_LIST_GET_NEXT(thrs, thr), ++i) {
purge_node_t* node;
/* Get the purge node. */
node = (purge_node_t*) thr->child;
ut_ad(que_node_get_type(node) == QUE_NODE_PURGE);
ut_ad(node->undo_recs.empty());
ut_ad(!node->in_progress);
ut_d(node->in_progress = true);
}
/* There should never be fewer nodes than threads, the inverse
however is allowed because we only use purge threads as needed. */
ut_ad(i == n_purge_threads);
#endif
/* Fetch and parse the UNDO records. The UNDO records are added
to a per purge node vector. */
thr = UT_LIST_GET_FIRST(purge_sys.query->thrs);
ut_a(n_thrs > 0 && thr != NULL);
ut_ad(purge_sys.head <= purge_sys.tail);
i = 0;
const ulint batch_size = srv_purge_batch_size;
std::unordered_map<table_id_t, purge_node_t*> table_id_map;
mem_heap_empty(purge_sys.heap);
while (UNIV_LIKELY(srv_undo_sources) || !srv_fast_shutdown) {
purge_node_t* node;
trx_purge_rec_t purge_rec;
/* Get the purge node. */
node = (purge_node_t*) thr->child;
ut_a(que_node_get_type(node) == QUE_NODE_PURGE);
/* Track the max {trx_id, undo_no} for truncating the
UNDO logs once we have purged the records. */
if (purge_sys.head <= purge_sys.tail) {
purge_sys.head = purge_sys.tail;
}
/* Fetch the next record, and advance the purge_sys.tail. */
purge_rec.undo_rec = trx_purge_fetch_next_rec(
&purge_rec.roll_ptr, &n_pages_handled,
purge_sys.heap);
if (purge_rec.undo_rec == NULL) {
break;
} else if (purge_rec.undo_rec == &trx_purge_dummy_rec) {
continue;
}
table_id_t table_id = trx_undo_rec_get_table_id(
purge_rec.undo_rec);
purge_node_t *& table_node = table_id_map[table_id];
if (table_node) {
node = table_node;
} else {
thr = UT_LIST_GET_NEXT(thrs, thr);
if (!(++i % n_purge_threads)) {
thr = UT_LIST_GET_FIRST(
purge_sys.query->thrs);
}
ut_a(thr != NULL);
table_node = node;
}
node->undo_recs.push(purge_rec);
if (n_pages_handled >= batch_size) {
break;
}
}
ut_ad(purge_sys.head <= purge_sys.tail);
return(n_pages_handled);
}
/*******************************************************************//**
Calculate the DML delay required.
@return delay in microseconds or ULINT_MAX */
static
ulint
trx_purge_dml_delay(void)
/*=====================*/
{
/* Determine how much data manipulation language (DML) statements
need to be delayed in order to reduce the lagging of the purge
thread. */
ulint delay = 0; /* in microseconds; default: no delay */
/* If purge lag is set then calculate the new DML delay. */
if (srv_max_purge_lag > 0) {
double ratio = static_cast<double>(trx_sys.rseg_history_len) /
static_cast<double>(srv_max_purge_lag);
if (ratio > 1.0) {
/* If the history list length exceeds the
srv_max_purge_lag, the data manipulation
statements are delayed by at least 5000
microseconds. */
delay = (ulint) ((ratio - .5) * 10000);
}
if (delay > srv_max_purge_lag_delay) {
delay = srv_max_purge_lag_delay;
}
MONITOR_SET(MONITOR_DML_PURGE_DELAY, delay);
}
return(delay);
}
extern tpool::waitable_task purge_worker_task;
/** Wait for pending purge jobs to complete. */
static void trx_purge_wait_for_workers_to_complete()
{
bool notify_wait = purge_worker_task.is_running();
if (notify_wait)
tpool::tpool_wait_begin();
purge_worker_task.wait();
if(notify_wait)
tpool::tpool_wait_end();
/* There should be no outstanding tasks as long
as the worker threads are active. */
ut_ad(srv_get_task_queue_length() == 0);
}
/**
Run a purge batch.
@param n_tasks number of purge tasks to submit to the queue
@param truncate whether to truncate the history at the end of the batch
@return number of undo log pages handled in the batch */
ulint trx_purge(ulint n_tasks, bool truncate)
{
que_thr_t* thr = NULL;
ulint n_pages_handled;
ut_ad(n_tasks > 0);
srv_dml_needed_delay = trx_purge_dml_delay();
purge_sys.clone_oldest_view();
#ifdef UNIV_DEBUG
if (srv_purge_view_update_only_debug) {
return(0);
}
#endif /* UNIV_DEBUG */
/* Fetch the UNDO recs that need to be purged. */
n_pages_handled = trx_purge_attach_undo_recs(n_tasks);
/* Submit tasks to workers queue if using multi-threaded purge. */
for (ulint i = n_tasks; --i; ) {
thr = que_fork_scheduler_round_robin(purge_sys.query, thr);
ut_a(thr);
srv_que_task_enqueue_low(thr);
srv_thread_pool->submit_task(&purge_worker_task);
}
thr = que_fork_scheduler_round_robin(purge_sys.query, thr);
que_run_threads(thr);
trx_purge_wait_for_workers_to_complete();
if (truncate) {
trx_purge_truncate_history();
}
MONITOR_INC_VALUE(MONITOR_PURGE_INVOKED, 1);
MONITOR_INC_VALUE(MONITOR_PURGE_N_PAGE_HANDLED, n_pages_handled);
return(n_pages_handled);
}