mariadb/bdb/btree/bt_delete.c
ram@mysql.r18.ru 5e09392faa BDB 4.1.24
2002-10-30 15:57:05 +04:00

460 lines
12 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996-2002
* Sleepycat Software. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995, 1996
* Keith Bostic. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Mike Olson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: bt_delete.c,v 11.44 2002/07/03 19:03:49 bostic Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/db_page.h"
#include "dbinc/db_shash.h"
#include "dbinc/btree.h"
#include "dbinc/lock.h"
/*
* __bam_ditem --
* Delete one or more entries from a page.
*
* PUBLIC: int __bam_ditem __P((DBC *, PAGE *, u_int32_t));
*/
int
__bam_ditem(dbc, h, indx)
DBC *dbc;
PAGE *h;
u_int32_t indx;
{
BINTERNAL *bi;
BKEYDATA *bk;
DB *dbp;
DB_MPOOLFILE *mpf;
u_int32_t nbytes;
int ret;
db_indx_t *inp;
dbp = dbc->dbp;
mpf = dbp->mpf;
inp = P_INP(dbp, h);
switch (TYPE(h)) {
case P_IBTREE:
bi = GET_BINTERNAL(dbp, h, indx);
switch (B_TYPE(bi->type)) {
case B_DUPLICATE:
case B_KEYDATA:
nbytes = BINTERNAL_SIZE(bi->len);
break;
case B_OVERFLOW:
nbytes = BINTERNAL_SIZE(bi->len);
if ((ret =
__db_doff(dbc, ((BOVERFLOW *)bi->data)->pgno)) != 0)
return (ret);
break;
default:
return (__db_pgfmt(dbp->dbenv, PGNO(h)));
}
break;
case P_IRECNO:
nbytes = RINTERNAL_SIZE;
break;
case P_LBTREE:
/*
* If it's a duplicate key, discard the index and don't touch
* the actual page item.
*
* !!!
* This works because no data item can have an index matching
* any other index so even if the data item is in a key "slot",
* it won't match any other index.
*/
if ((indx % 2) == 0) {
/*
* Check for a duplicate after us on the page. NOTE:
* we have to delete the key item before deleting the
* data item, otherwise the "indx + P_INDX" calculation
* won't work!
*/
if (indx + P_INDX < (u_int32_t)NUM_ENT(h) &&
inp[indx] == inp[indx + P_INDX])
return (__bam_adjindx(dbc,
h, indx, indx + O_INDX, 0));
/*
* Check for a duplicate before us on the page. It
* doesn't matter if we delete the key item before or
* after the data item for the purposes of this one.
*/
if (indx > 0 && inp[indx] == inp[indx - P_INDX])
return (__bam_adjindx(dbc,
h, indx, indx - P_INDX, 0));
}
/* FALLTHROUGH */
case P_LDUP:
case P_LRECNO:
bk = GET_BKEYDATA(dbp, h, indx);
switch (B_TYPE(bk->type)) {
case B_DUPLICATE:
nbytes = BOVERFLOW_SIZE;
break;
case B_OVERFLOW:
nbytes = BOVERFLOW_SIZE;
if ((ret = __db_doff(
dbc, (GET_BOVERFLOW(dbp, h, indx))->pgno)) != 0)
return (ret);
break;
case B_KEYDATA:
nbytes = BKEYDATA_SIZE(bk->len);
break;
default:
return (__db_pgfmt(dbp->dbenv, PGNO(h)));
}
break;
default:
return (__db_pgfmt(dbp->dbenv, PGNO(h)));
}
/* Delete the item and mark the page dirty. */
if ((ret = __db_ditem(dbc, h, indx, nbytes)) != 0)
return (ret);
if ((ret = mpf->set(mpf, h, DB_MPOOL_DIRTY)) != 0)
return (ret);
return (0);
}
/*
* __bam_adjindx --
* Adjust an index on the page.
*
* PUBLIC: int __bam_adjindx __P((DBC *, PAGE *, u_int32_t, u_int32_t, int));
*/
int
__bam_adjindx(dbc, h, indx, indx_copy, is_insert)
DBC *dbc;
PAGE *h;
u_int32_t indx, indx_copy;
int is_insert;
{
DB *dbp;
DB_MPOOLFILE *mpf;
db_indx_t copy, *inp;
int ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
inp = P_INP(dbp, h);
/* Log the change. */
if (DBC_LOGGING(dbc)) {
if ((ret = __bam_adj_log(dbp, dbc->txn, &LSN(h), 0,
PGNO(h), &LSN(h), indx, indx_copy, (u_int32_t)is_insert)) != 0)
return (ret);
} else
LSN_NOT_LOGGED(LSN(h));
/* Shuffle the indices and mark the page dirty. */
if (is_insert) {
copy = inp[indx_copy];
if (indx != NUM_ENT(h))
memmove(&inp[indx + O_INDX], &inp[indx],
sizeof(db_indx_t) * (NUM_ENT(h) - indx));
inp[indx] = copy;
++NUM_ENT(h);
} else {
--NUM_ENT(h);
if (indx != NUM_ENT(h))
memmove(&inp[indx], &inp[indx + O_INDX],
sizeof(db_indx_t) * (NUM_ENT(h) - indx));
}
if ((ret = mpf->set(mpf, h, DB_MPOOL_DIRTY)) != 0)
return (ret);
return (0);
}
/*
* __bam_dpages --
* Delete a set of locked pages.
*
* PUBLIC: int __bam_dpages __P((DBC *, EPG *));
*/
int
__bam_dpages(dbc, stack_epg)
DBC *dbc;
EPG *stack_epg;
{
BTREE_CURSOR *cp;
BINTERNAL *bi;
DB *dbp;
DBT a, b;
DB_LOCK c_lock, p_lock;
DB_MPOOLFILE *mpf;
EPG *epg;
PAGE *child, *parent;
db_indx_t nitems;
db_pgno_t pgno, root_pgno;
db_recno_t rcnt;
int done, ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* We have the entire stack of deletable pages locked.
*
* Btree calls us with a pointer to the beginning of a stack, where
* the first page in the stack is to have a single item deleted, and
* the rest of the pages are to be removed.
*
* Recno calls us with a pointer into the middle of the stack, where
* the referenced page is to have a single item deleted, and pages
* after the stack reference are to be removed.
*
* First, discard any pages that we don't care about.
*/
ret = 0;
for (epg = cp->sp; epg < stack_epg; ++epg) {
if ((t_ret = mpf->put(mpf, epg->page, 0)) != 0 && ret == 0)
ret = t_ret;
(void)__TLPUT(dbc, epg->lock);
}
if (ret != 0)
goto err;
/*
* !!!
* There is an interesting deadlock situation here. We have to relink
* the leaf page chain around the leaf page being deleted. Consider
* a cursor walking through the leaf pages, that has the previous page
* read-locked and is waiting on a lock for the page we're deleting.
* It will deadlock here. Before we unlink the subtree, we relink the
* leaf page chain.
*/
if ((ret = __db_relink(dbc, DB_REM_PAGE, cp->csp->page, NULL, 1)) != 0)
goto err;
/*
* Delete the last item that references the underlying pages that are
* to be deleted, and adjust cursors that reference that page. Then,
* save that page's page number and item count and release it. If
* the application isn't retaining locks because it's running without
* transactions, this lets the rest of the tree get back to business
* immediately.
*/
if ((ret = __bam_ditem(dbc, epg->page, epg->indx)) != 0)
goto err;
if ((ret = __bam_ca_di(dbc, PGNO(epg->page), epg->indx, -1)) != 0)
goto err;
pgno = PGNO(epg->page);
nitems = NUM_ENT(epg->page);
if ((ret = mpf->put(mpf, epg->page, 0)) != 0)
goto err_inc;
(void)__TLPUT(dbc, epg->lock);
/* Free the rest of the pages in the stack. */
while (++epg <= cp->csp) {
/*
* Delete page entries so they will be restored as part of
* recovery. We don't need to do cursor adjustment here as
* the pages are being emptied by definition and so cannot
* be referenced by a cursor.
*/
if (NUM_ENT(epg->page) != 0) {
DB_ASSERT(NUM_ENT(epg->page) == 1);
if ((ret = __bam_ditem(dbc, epg->page, epg->indx)) != 0)
goto err;
}
if ((ret = __db_free(dbc, epg->page)) != 0) {
epg->page = NULL;
goto err_inc;
}
(void)__TLPUT(dbc, epg->lock);
}
if (0) {
err_inc: ++epg;
err: for (; epg <= cp->csp; ++epg) {
if (epg->page != NULL)
(void)mpf->put(mpf, epg->page, 0);
(void)__TLPUT(dbc, epg->lock);
}
BT_STK_CLR(cp);
return (ret);
}
BT_STK_CLR(cp);
/*
* If we just deleted the next-to-last item from the root page, the
* tree can collapse one or more levels. While there remains only a
* single item on the root page, write lock the last page referenced
* by the root page and copy it over the root page.
*/
root_pgno = cp->root;
if (pgno != root_pgno || nitems != 1)
return (0);
for (done = 0; !done;) {
/* Initialize. */
parent = child = NULL;
LOCK_INIT(p_lock);
LOCK_INIT(c_lock);
/* Lock the root. */
pgno = root_pgno;
if ((ret =
__db_lget(dbc, 0, pgno, DB_LOCK_WRITE, 0, &p_lock)) != 0)
goto stop;
if ((ret = mpf->get(mpf, &pgno, 0, &parent)) != 0)
goto stop;
if (NUM_ENT(parent) != 1)
goto stop;
switch (TYPE(parent)) {
case P_IBTREE:
/*
* If this is overflow, then try to delete it.
* The child may or may not still point at it.
*/
bi = GET_BINTERNAL(dbp, parent, 0);
if (B_TYPE(bi->type) == B_OVERFLOW)
if ((ret = __db_doff(dbc,
((BOVERFLOW *)bi->data)->pgno)) != 0)
goto stop;
pgno = bi->pgno;
break;
case P_IRECNO:
pgno = GET_RINTERNAL(dbp, parent, 0)->pgno;
break;
default:
goto stop;
}
/* Lock the child page. */
if ((ret =
__db_lget(dbc, 0, pgno, DB_LOCK_WRITE, 0, &c_lock)) != 0)
goto stop;
if ((ret = mpf->get(mpf, &pgno, 0, &child)) != 0)
goto stop;
/* Log the change. */
if (DBC_LOGGING(dbc)) {
memset(&a, 0, sizeof(a));
a.data = child;
a.size = dbp->pgsize;
memset(&b, 0, sizeof(b));
b.data = P_ENTRY(dbp, parent, 0);
b.size = TYPE(parent) == P_IRECNO ? RINTERNAL_SIZE :
BINTERNAL_SIZE(((BINTERNAL *)b.data)->len);
if ((ret = __bam_rsplit_log(dbp, dbc->txn,
&child->lsn, 0, PGNO(child), &a, PGNO(parent),
RE_NREC(parent), &b, &parent->lsn)) != 0)
goto stop;
} else
LSN_NOT_LOGGED(child->lsn);
/*
* Make the switch.
*
* One fixup -- internal pages below the top level do not store
* a record count, so we have to preserve it if we're not
* converting to a leaf page. Note also that we are about to
* overwrite the parent page, including its LSN. This is OK
* because the log message we wrote describing this update
* stores its LSN on the child page. When the child is copied
* onto the parent, the correct LSN is copied into place.
*/
COMPQUIET(rcnt, 0);
if (F_ISSET(cp, C_RECNUM) && LEVEL(child) > LEAFLEVEL)
rcnt = RE_NREC(parent);
memcpy(parent, child, dbp->pgsize);
PGNO(parent) = root_pgno;
if (F_ISSET(cp, C_RECNUM) && LEVEL(child) > LEAFLEVEL)
RE_NREC_SET(parent, rcnt);
/* Mark the pages dirty. */
if ((ret = mpf->set(mpf, parent, DB_MPOOL_DIRTY)) != 0)
goto stop;
if ((ret = mpf->set(mpf, child, DB_MPOOL_DIRTY)) != 0)
goto stop;
/* Adjust the cursors. */
if ((ret = __bam_ca_rsplit(dbc, PGNO(child), root_pgno)) != 0)
goto stop;
/*
* Free the page copied onto the root page and discard its
* lock. (The call to __db_free() discards our reference
* to the page.)
*/
if ((ret = __db_free(dbc, child)) != 0) {
child = NULL;
goto stop;
}
child = NULL;
if (0) {
stop: done = 1;
}
(void)__TLPUT(dbc, p_lock);
if (parent != NULL &&
(t_ret = mpf->put(mpf, parent, 0)) != 0 && ret == 0)
ret = t_ret;
(void)__TLPUT(dbc, c_lock);
if (child != NULL &&
(t_ret = mpf->put(mpf, child, 0)) != 0 && ret == 0)
ret = t_ret;
}
return (ret);
}