mirror of
https://github.com/MariaDB/server.git
synced 2025-01-17 20:42:30 +01:00
b01d8e1a33
For now, we will acquire the lock_sys.latch only in exclusive mode, that is, use it as a mutex. This is preparation for the next commit where we will introduce a less intrusive alternative, combining a shared lock_sys.latch with dict_table_t::lock_mutex or a mutex embedded in lock_sys.rec_hash, lock_sys.prdt_hash, or lock_sys.prdt_page_hash.
580 lines
24 KiB
C++
580 lines
24 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 2007, 2016, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2015, 2021, MariaDB Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/**************************************************//**
|
|
@file include/lock0priv.h
|
|
Lock module internal structures and methods.
|
|
|
|
Created July 12, 2007 Vasil Dimov
|
|
*******************************************************/
|
|
|
|
#ifndef lock0priv_h
|
|
#define lock0priv_h
|
|
|
|
#ifndef LOCK_MODULE_IMPLEMENTATION
|
|
/* If you need to access members of the structures defined in this
|
|
file, please write appropriate functions that retrieve them and put
|
|
those functions in lock/ */
|
|
#error Do not include lock0priv.h outside of the lock/ module
|
|
#endif
|
|
|
|
#include "hash0hash.h"
|
|
#include "rem0types.h"
|
|
#include "trx0trx.h"
|
|
|
|
#ifndef UINT32_MAX
|
|
#define UINT32_MAX (4294967295U)
|
|
#endif
|
|
|
|
/** Print the table lock into the given output stream
|
|
@param[in,out] out the output stream
|
|
@return the given output stream. */
|
|
inline
|
|
std::ostream& lock_table_t::print(std::ostream& out) const
|
|
{
|
|
out << "[lock_table_t: name=" << table->name << "]";
|
|
return(out);
|
|
}
|
|
|
|
/** The global output operator is overloaded to conveniently
|
|
print the lock_table_t object into the given output stream.
|
|
@param[in,out] out the output stream
|
|
@param[in] lock the table lock
|
|
@return the given output stream */
|
|
inline
|
|
std::ostream&
|
|
operator<<(std::ostream& out, const lock_table_t& lock)
|
|
{
|
|
return(lock.print(out));
|
|
}
|
|
|
|
inline
|
|
std::ostream&
|
|
ib_lock_t::print(std::ostream& out) const
|
|
{
|
|
static_assert(LOCK_MODE_MASK == 7, "compatibility");
|
|
static_assert(LOCK_IS == 0, "compatibility");
|
|
static_assert(LOCK_IX == 1, "compatibility");
|
|
static_assert(LOCK_S == 2, "compatibility");
|
|
static_assert(LOCK_X == 3, "compatibility");
|
|
static_assert(LOCK_AUTO_INC == 4, "compatibility");
|
|
static_assert(LOCK_NONE == 5, "compatibility");
|
|
static_assert(LOCK_NONE_UNSET == 7, "compatibility");
|
|
const char *const modes[8]=
|
|
{ "IS", "IX", "S", "X", "AUTO_INC", "NONE", "?", "NONE_UNSET" };
|
|
|
|
out << "[lock_t: type_mode=" << type_mode << "(" << type_string()
|
|
<< " | LOCK_" << modes[mode()];
|
|
|
|
if (is_record_not_gap())
|
|
out << " | LOCK_REC_NOT_GAP";
|
|
if (is_waiting())
|
|
out << " | LOCK_WAIT";
|
|
|
|
if (is_gap())
|
|
out << " | LOCK_GAP";
|
|
|
|
if (is_insert_intention())
|
|
out << " | LOCK_INSERT_INTENTION";
|
|
|
|
out << ")";
|
|
|
|
if (is_table())
|
|
out << un_member.tab_lock;
|
|
else
|
|
out << un_member.rec_lock;
|
|
|
|
out << "]";
|
|
return out;
|
|
}
|
|
|
|
inline
|
|
std::ostream&
|
|
operator<<(std::ostream& out, const ib_lock_t& lock)
|
|
{
|
|
return(lock.print(out));
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
extern ibool lock_print_waits;
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/* An explicit record lock affects both the record and the gap before it.
|
|
An implicit x-lock does not affect the gap, it only locks the index
|
|
record from read or update.
|
|
|
|
If a transaction has modified or inserted an index record, then
|
|
it owns an implicit x-lock on the record. On a secondary index record,
|
|
a transaction has an implicit x-lock also if it has modified the
|
|
clustered index record, the max trx id of the page where the secondary
|
|
index record resides is >= trx id of the transaction (or database recovery
|
|
is running), and there are no explicit non-gap lock requests on the
|
|
secondary index record.
|
|
|
|
This complicated definition for a secondary index comes from the
|
|
implementation: we want to be able to determine if a secondary index
|
|
record has an implicit x-lock, just by looking at the present clustered
|
|
index record, not at the historical versions of the record. The
|
|
complicated definition can be explained to the user so that there is
|
|
nondeterminism in the access path when a query is answered: we may,
|
|
or may not, access the clustered index record and thus may, or may not,
|
|
bump into an x-lock set there.
|
|
|
|
Different transaction can have conflicting locks set on the gap at the
|
|
same time. The locks on the gap are purely inhibitive: an insert cannot
|
|
be made, or a select cursor may have to wait if a different transaction
|
|
has a conflicting lock on the gap. An x-lock on the gap does not give
|
|
the right to insert into the gap.
|
|
|
|
An explicit lock can be placed on a user record or the supremum record of
|
|
a page. The locks on the supremum record are always thought to be of the gap
|
|
type, though the gap bit is not set. When we perform an update of a record
|
|
where the size of the record changes, we may temporarily store its explicit
|
|
locks on the infimum record of the page, though the infimum otherwise never
|
|
carries locks.
|
|
|
|
A waiting record lock can also be of the gap type. A waiting lock request
|
|
can be granted when there is no conflicting mode lock request by another
|
|
transaction ahead of it in the explicit lock queue.
|
|
|
|
In version 4.0.5 we added yet another explicit lock type: LOCK_REC_NOT_GAP.
|
|
It only locks the record it is placed on, not the gap before the record.
|
|
This lock type is necessary to emulate an Oracle-like READ COMMITTED isolation
|
|
level.
|
|
|
|
-------------------------------------------------------------------------
|
|
RULE 1: If there is an implicit x-lock on a record, and there are non-gap
|
|
-------
|
|
lock requests waiting in the queue, then the transaction holding the implicit
|
|
x-lock also has an explicit non-gap record x-lock. Therefore, as locks are
|
|
released, we can grant locks to waiting lock requests purely by looking at
|
|
the explicit lock requests in the queue.
|
|
|
|
RULE 3: Different transactions cannot have conflicting granted non-gap locks
|
|
-------
|
|
on a record at the same time. However, they can have conflicting granted gap
|
|
locks.
|
|
RULE 4: If a there is a waiting lock request in a queue, no lock request,
|
|
-------
|
|
gap or not, can be inserted ahead of it in the queue. In record deletes
|
|
and page splits new gap type locks can be created by the database manager
|
|
for a transaction, and without rule 4, the waits-for graph of transactions
|
|
might become cyclic without the database noticing it, as the deadlock check
|
|
is only performed when a transaction itself requests a lock!
|
|
-------------------------------------------------------------------------
|
|
|
|
An insert is allowed to a gap if there are no explicit lock requests by
|
|
other transactions on the next record. It does not matter if these lock
|
|
requests are granted or waiting, gap bit set or not, with the exception
|
|
that a gap type request set by another transaction to wait for
|
|
its turn to do an insert is ignored. On the other hand, an
|
|
implicit x-lock by another transaction does not prevent an insert, which
|
|
allows for more concurrency when using an Oracle-style sequence number
|
|
generator for the primary key with many transactions doing inserts
|
|
concurrently.
|
|
|
|
A modify of a record is allowed if the transaction has an x-lock on the
|
|
record, or if other transactions do not have any non-gap lock requests on the
|
|
record.
|
|
|
|
A read of a single user record with a cursor is allowed if the transaction
|
|
has a non-gap explicit, or an implicit lock on the record, or if the other
|
|
transactions have no x-lock requests on the record. At a page supremum a
|
|
read is always allowed.
|
|
|
|
In summary, an implicit lock is seen as a granted x-lock only on the
|
|
record, not on the gap. An explicit lock with no gap bit set is a lock
|
|
both on the record and the gap. If the gap bit is set, the lock is only
|
|
on the gap. Different transaction cannot own conflicting locks on the
|
|
record at the same time, but they may own conflicting locks on the gap.
|
|
Granted locks on a record give an access right to the record, but gap type
|
|
locks just inhibit operations.
|
|
|
|
NOTE: Finding out if some transaction has an implicit x-lock on a secondary
|
|
index record can be cumbersome. We may have to look at previous versions of
|
|
the corresponding clustered index record to find out if a delete marked
|
|
secondary index record was delete marked by an active transaction, not by
|
|
a committed one.
|
|
|
|
FACT A: If a transaction has inserted a row, it can delete it any time
|
|
without need to wait for locks.
|
|
|
|
PROOF: The transaction has an implicit x-lock on every index record inserted
|
|
for the row, and can thus modify each record without the need to wait. Q.E.D.
|
|
|
|
FACT B: If a transaction has read some result set with a cursor, it can read
|
|
it again, and retrieves the same result set, if it has not modified the
|
|
result set in the meantime. Hence, there is no phantom problem. If the
|
|
biggest record, in the alphabetical order, touched by the cursor is removed,
|
|
a lock wait may occur, otherwise not.
|
|
|
|
PROOF: When a read cursor proceeds, it sets an s-lock on each user record
|
|
it passes, and a gap type s-lock on each page supremum. The cursor must
|
|
wait until it has these locks granted. Then no other transaction can
|
|
have a granted x-lock on any of the user records, and therefore cannot
|
|
modify the user records. Neither can any other transaction insert into
|
|
the gaps which were passed over by the cursor. Page splits and merges,
|
|
and removal of obsolete versions of records do not affect this, because
|
|
when a user record or a page supremum is removed, the next record inherits
|
|
its locks as gap type locks, and therefore blocks inserts to the same gap.
|
|
Also, if a page supremum is inserted, it inherits its locks from the successor
|
|
record. When the cursor is positioned again at the start of the result set,
|
|
the records it will touch on its course are either records it touched
|
|
during the last pass or new inserted page supremums. It can immediately
|
|
access all these records, and when it arrives at the biggest record, it
|
|
notices that the result set is complete. If the biggest record was removed,
|
|
lock wait can occur because the next record only inherits a gap type lock,
|
|
and a wait may be needed. Q.E.D. */
|
|
|
|
/* If an index record should be changed or a new inserted, we must check
|
|
the lock on the record or the next. When a read cursor starts reading,
|
|
we will set a record level s-lock on each record it passes, except on the
|
|
initial record on which the cursor is positioned before we start to fetch
|
|
records. Our index tree search has the convention that the B-tree
|
|
cursor is positioned BEFORE the first possibly matching record in
|
|
the search. Optimizations are possible here: if the record is searched
|
|
on an equality condition to a unique key, we could actually set a special
|
|
lock on the record, a lock which would not prevent any insert before
|
|
this record. In the next key locking an x-lock set on a record also
|
|
prevents inserts just before that record.
|
|
There are special infimum and supremum records on each page.
|
|
A supremum record can be locked by a read cursor. This records cannot be
|
|
updated but the lock prevents insert of a user record to the end of
|
|
the page.
|
|
Next key locks will prevent the phantom problem where new rows
|
|
could appear to SELECT result sets after the select operation has been
|
|
performed. Prevention of phantoms ensures the serilizability of
|
|
transactions.
|
|
What should we check if an insert of a new record is wanted?
|
|
Only the lock on the next record on the same page, because also the
|
|
supremum record can carry a lock. An s-lock prevents insertion, but
|
|
what about an x-lock? If it was set by a searched update, then there
|
|
is implicitly an s-lock, too, and the insert should be prevented.
|
|
What if our transaction owns an x-lock to the next record, but there is
|
|
a waiting s-lock request on the next record? If this s-lock was placed
|
|
by a read cursor moving in the ascending order in the index, we cannot
|
|
do the insert immediately, because when we finally commit our transaction,
|
|
the read cursor should see also the new inserted record. So we should
|
|
move the read cursor backward from the next record for it to pass over
|
|
the new inserted record. This move backward may be too cumbersome to
|
|
implement. If we in this situation just enqueue a second x-lock request
|
|
for our transaction on the next record, then the deadlock mechanism
|
|
notices a deadlock between our transaction and the s-lock request
|
|
transaction. This seems to be an ok solution.
|
|
We could have the convention that granted explicit record locks,
|
|
lock the corresponding records from changing, and also lock the gaps
|
|
before them from inserting. A waiting explicit lock request locks the gap
|
|
before from inserting. Implicit record x-locks, which we derive from the
|
|
transaction id in the clustered index record, only lock the record itself
|
|
from modification, not the gap before it from inserting.
|
|
How should we store update locks? If the search is done by a unique
|
|
key, we could just modify the record trx id. Otherwise, we could put a record
|
|
x-lock on the record. If the update changes ordering fields of the
|
|
clustered index record, the inserted new record needs no record lock in
|
|
lock table, the trx id is enough. The same holds for a secondary index
|
|
record. Searched delete is similar to update.
|
|
|
|
PROBLEM:
|
|
What about waiting lock requests? If a transaction is waiting to make an
|
|
update to a record which another modified, how does the other transaction
|
|
know to send the end-lock-wait signal to the waiting transaction? If we have
|
|
the convention that a transaction may wait for just one lock at a time, how
|
|
do we preserve it if lock wait ends?
|
|
|
|
PROBLEM:
|
|
Checking the trx id label of a secondary index record. In the case of a
|
|
modification, not an insert, is this necessary? A secondary index record
|
|
is modified only by setting or resetting its deleted flag. A secondary index
|
|
record contains fields to uniquely determine the corresponding clustered
|
|
index record. A secondary index record is therefore only modified if we
|
|
also modify the clustered index record, and the trx id checking is done
|
|
on the clustered index record, before we come to modify the secondary index
|
|
record. So, in the case of delete marking or unmarking a secondary index
|
|
record, we do not have to care about trx ids, only the locks in the lock
|
|
table must be checked. In the case of a select from a secondary index, the
|
|
trx id is relevant, and in this case we may have to search the clustered
|
|
index record.
|
|
|
|
PROBLEM: How to update record locks when page is split or merged, or
|
|
--------------------------------------------------------------------
|
|
a record is deleted or updated?
|
|
If the size of fields in a record changes, we perform the update by
|
|
a delete followed by an insert. How can we retain the locks set or
|
|
waiting on the record? Because a record lock is indexed in the bitmap
|
|
by the heap number of the record, when we remove the record from the
|
|
record list, it is possible still to keep the lock bits. If the page
|
|
is reorganized, we could make a table of old and new heap numbers,
|
|
and permute the bitmaps in the locks accordingly. We can add to the
|
|
table a row telling where the updated record ended. If the update does
|
|
not require a reorganization of the page, we can simply move the lock
|
|
bits for the updated record to the position determined by its new heap
|
|
number (we may have to allocate a new lock, if we run out of the bitmap
|
|
in the old one).
|
|
A more complicated case is the one where the reinsertion of the
|
|
updated record is done pessimistically, because the structure of the
|
|
tree may change.
|
|
|
|
PROBLEM: If a supremum record is removed in a page merge, or a record
|
|
---------------------------------------------------------------------
|
|
removed in a purge, what to do to the waiting lock requests? In a split to
|
|
the right, we just move the lock requests to the new supremum. If a record
|
|
is removed, we could move the waiting lock request to its inheritor, the
|
|
next record in the index. But, the next record may already have lock
|
|
requests on its own queue. A new deadlock check should be made then. Maybe
|
|
it is easier just to release the waiting transactions. They can then enqueue
|
|
new lock requests on appropriate records.
|
|
|
|
PROBLEM: When a record is inserted, what locks should it inherit from the
|
|
-------------------------------------------------------------------------
|
|
upper neighbor? An insert of a new supremum record in a page split is
|
|
always possible, but an insert of a new user record requires that the upper
|
|
neighbor does not have any lock requests by other transactions, granted or
|
|
waiting, in its lock queue. Solution: We can copy the locks as gap type
|
|
locks, so that also the waiting locks are transformed to granted gap type
|
|
locks on the inserted record. */
|
|
|
|
/* LOCK COMPATIBILITY MATRIX
|
|
* IS IX S X AI
|
|
* IS + + + - +
|
|
* IX + + - - +
|
|
* S + - + - -
|
|
* X - - - - -
|
|
* AI + + - - -
|
|
*
|
|
* Note that for rows, InnoDB only acquires S or X locks.
|
|
* For tables, InnoDB normally acquires IS or IX locks.
|
|
* S or X table locks are only acquired for LOCK TABLES.
|
|
* Auto-increment (AI) locks are needed because of
|
|
* statement-level MySQL binlog.
|
|
* See also lock_mode_compatible().
|
|
*/
|
|
static const byte lock_compatibility_matrix[5][5] = {
|
|
/** IS IX S X AI */
|
|
/* IS */ { TRUE, TRUE, TRUE, FALSE, TRUE},
|
|
/* IX */ { TRUE, TRUE, FALSE, FALSE, TRUE},
|
|
/* S */ { TRUE, FALSE, TRUE, FALSE, FALSE},
|
|
/* X */ { FALSE, FALSE, FALSE, FALSE, FALSE},
|
|
/* AI */ { TRUE, TRUE, FALSE, FALSE, FALSE}
|
|
};
|
|
|
|
/* STRONGER-OR-EQUAL RELATION (mode1=row, mode2=column)
|
|
* IS IX S X AI
|
|
* IS + - - - -
|
|
* IX + + - - -
|
|
* S + - + - -
|
|
* X + + + + +
|
|
* AI - - - - +
|
|
* See lock_mode_stronger_or_eq().
|
|
*/
|
|
static const byte lock_strength_matrix[5][5] = {
|
|
/** IS IX S X AI */
|
|
/* IS */ { TRUE, FALSE, FALSE, FALSE, FALSE},
|
|
/* IX */ { TRUE, TRUE, FALSE, FALSE, FALSE},
|
|
/* S */ { TRUE, FALSE, TRUE, FALSE, FALSE},
|
|
/* X */ { TRUE, TRUE, TRUE, TRUE, TRUE},
|
|
/* AI */ { FALSE, FALSE, FALSE, FALSE, TRUE}
|
|
};
|
|
|
|
#define PRDT_HEAPNO PAGE_HEAP_NO_INFIMUM
|
|
/** Record locking request status */
|
|
enum lock_rec_req_status {
|
|
/** Failed to acquire a lock */
|
|
LOCK_REC_FAIL,
|
|
/** Succeeded in acquiring a lock (implicit or already acquired) */
|
|
LOCK_REC_SUCCESS,
|
|
/** Explicitly created a new lock */
|
|
LOCK_REC_SUCCESS_CREATED
|
|
};
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/** The count of the types of locks. */
|
|
static const ulint lock_types = UT_ARR_SIZE(lock_compatibility_matrix);
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/*********************************************************************//**
|
|
Gets the previous record lock set on a record.
|
|
@return previous lock on the same record, NULL if none exists */
|
|
const lock_t*
|
|
lock_rec_get_prev(
|
|
/*==============*/
|
|
const lock_t* in_lock,/*!< in: record lock */
|
|
ulint heap_no);/*!< in: heap number of the record */
|
|
|
|
/*********************************************************************//**
|
|
Cancels a waiting lock request and releases possible other transactions
|
|
waiting behind it. */
|
|
void
|
|
lock_cancel_waiting_and_release(
|
|
/*============================*/
|
|
lock_t* lock); /*!< in/out: waiting lock request */
|
|
|
|
/*********************************************************************//**
|
|
Checks if some transaction has an implicit x-lock on a record in a clustered
|
|
index.
|
|
@return transaction id of the transaction which has the x-lock, or 0 */
|
|
UNIV_INLINE
|
|
trx_id_t
|
|
lock_clust_rec_some_has_impl(
|
|
/*=========================*/
|
|
const rec_t* rec, /*!< in: user record */
|
|
const dict_index_t* index, /*!< in: clustered index */
|
|
const rec_offs* offsets)/*!< in: rec_get_offsets(rec, index) */
|
|
MY_ATTRIBUTE((warn_unused_result));
|
|
|
|
/*********************************************************************//**
|
|
Gets the first or next record lock on a page.
|
|
@return next lock, NULL if none exists */
|
|
UNIV_INLINE
|
|
const lock_t*
|
|
lock_rec_get_next_on_page_const(
|
|
/*============================*/
|
|
const lock_t* lock); /*!< in: a record lock */
|
|
|
|
/*********************************************************************//**
|
|
Gets the nth bit of a record lock.
|
|
@return TRUE if bit set also if i == ULINT_UNDEFINED return FALSE*/
|
|
UNIV_INLINE
|
|
ibool
|
|
lock_rec_get_nth_bit(
|
|
/*=================*/
|
|
const lock_t* lock, /*!< in: record lock */
|
|
ulint i); /*!< in: index of the bit */
|
|
|
|
/*********************************************************************//**
|
|
Gets the number of bits in a record lock bitmap.
|
|
@return number of bits */
|
|
UNIV_INLINE
|
|
ulint
|
|
lock_rec_get_n_bits(
|
|
/*================*/
|
|
const lock_t* lock); /*!< in: record lock */
|
|
|
|
/**********************************************************************//**
|
|
Sets the nth bit of a record lock to TRUE. */
|
|
UNIV_INLINE
|
|
void
|
|
lock_rec_set_nth_bit(
|
|
/*=================*/
|
|
lock_t* lock, /*!< in: record lock */
|
|
ulint i); /*!< in: index of the bit */
|
|
|
|
/** Reset the nth bit of a record lock.
|
|
@param[in,out] lock record lock
|
|
@param[in] i index of the bit that will be reset
|
|
@return previous value of the bit */
|
|
inline byte lock_rec_reset_nth_bit(lock_t* lock, ulint i)
|
|
{
|
|
ut_ad(!lock->is_table());
|
|
lock_sys.assert_locked();
|
|
ut_ad(i < lock->un_member.rec_lock.n_bits);
|
|
|
|
byte* b = reinterpret_cast<byte*>(&lock[1]) + (i >> 3);
|
|
byte mask = byte(1U << (i & 7));
|
|
byte bit = *b & mask;
|
|
*b &= byte(~mask);
|
|
|
|
if (bit != 0) {
|
|
ut_d(auto n=)
|
|
lock->trx->lock.n_rec_locks--;
|
|
ut_ad(n);
|
|
}
|
|
|
|
return(bit);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Gets the first or next record lock on a page.
|
|
@return next lock, NULL if none exists */
|
|
UNIV_INLINE
|
|
lock_t*
|
|
lock_rec_get_next_on_page(
|
|
/*======================*/
|
|
lock_t* lock); /*!< in: a record lock */
|
|
|
|
/*********************************************************************//**
|
|
Gets the next explicit lock request on a record.
|
|
@return next lock, NULL if none exists or if heap_no == ULINT_UNDEFINED */
|
|
UNIV_INLINE
|
|
lock_t*
|
|
lock_rec_get_next(
|
|
/*==============*/
|
|
ulint heap_no,/*!< in: heap number of the record */
|
|
lock_t* lock); /*!< in: lock */
|
|
|
|
/*********************************************************************//**
|
|
Gets the next explicit lock request on a record.
|
|
@return next lock, NULL if none exists or if heap_no == ULINT_UNDEFINED */
|
|
UNIV_INLINE
|
|
const lock_t*
|
|
lock_rec_get_next_const(
|
|
/*====================*/
|
|
ulint heap_no,/*!< in: heap number of the record */
|
|
const lock_t* lock); /*!< in: lock */
|
|
|
|
/** Get the first explicit lock request on a record.
|
|
@param hash lock hash table
|
|
@param id page identifier
|
|
@param heap_no record identifier in page
|
|
@return first lock
|
|
@retval nullptr if none exists */
|
|
inline lock_t*
|
|
lock_rec_get_first(hash_table_t *hash, const page_id_t id, ulint heap_no)
|
|
{
|
|
for (lock_t *lock= lock_sys.get_first(*hash, id);
|
|
lock; lock= lock_rec_get_next_on_page(lock))
|
|
if (lock_rec_get_nth_bit(lock, heap_no))
|
|
return lock;
|
|
return nullptr;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Calculates if lock mode 1 is compatible with lock mode 2.
|
|
@return nonzero if mode1 compatible with mode2 */
|
|
UNIV_INLINE
|
|
ulint
|
|
lock_mode_compatible(
|
|
/*=================*/
|
|
enum lock_mode mode1, /*!< in: lock mode */
|
|
enum lock_mode mode2); /*!< in: lock mode */
|
|
|
|
/*********************************************************************//**
|
|
Calculates if lock mode 1 is stronger or equal to lock mode 2.
|
|
@return nonzero if mode1 stronger or equal to mode2 */
|
|
UNIV_INLINE
|
|
ulint
|
|
lock_mode_stronger_or_eq(
|
|
/*=====================*/
|
|
enum lock_mode mode1, /*!< in: lock mode */
|
|
enum lock_mode mode2); /*!< in: lock mode */
|
|
|
|
/*********************************************************************//**
|
|
Checks if a transaction has the specified table lock, or stronger. This
|
|
function should only be called by the thread that owns the transaction.
|
|
@return lock or NULL */
|
|
UNIV_INLINE
|
|
const lock_t*
|
|
lock_table_has(
|
|
/*===========*/
|
|
const trx_t* trx, /*!< in: transaction */
|
|
const dict_table_t* table, /*!< in: table */
|
|
enum lock_mode mode); /*!< in: lock mode */
|
|
|
|
#include "lock0priv.ic"
|
|
|
|
#endif /* lock0priv_h */
|