mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 04:53:01 +01:00
afd15c43a9
Add a wait-for graph based deadlock detector to the MDL subsystem. Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and bug #37346 "innodb does not detect deadlock between update and alter table". The first bug manifested itself as an unwarranted abort of a transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER statement, when this transaction tried to repeat use of a table, which it has already used in a similar fashion before ALTER started. The second bug showed up as a deadlock between table-level locks and InnoDB row locks, which was "detected" only after innodb_lock_wait_timeout timeout. A transaction would start using the table and modify a few rows. Then ALTER TABLE would come in, and start copying rows into a temporary table. Eventually it would stumble on the modified records and get blocked on a row lock. The first transaction would try to do more updates, and get blocked on thr_lock.c lock. This situation of circular wait would only get resolved by a timeout. Both these bugs stemmed from inadequate solutions to the problem of deadlocks occurring between different locking subsystems. In the first case we tried to avoid deadlocks between metadata locking and table-level locking subsystems, when upgrading shared metadata lock to exclusive one. Transactions holding the shared lock on the table and waiting for some table-level lock used to be aborted too aggressively. We also allowed ALTER TABLE to start in presence of transactions that modify the subject table. ALTER TABLE acquires TL_WRITE_ALLOW_READ lock at start, and that block all writes against the table (naturally, we don't want any writes to be lost when switching the old and the new table). TL_WRITE_ALLOW_READ lock, in turn, would block the started transaction on thr_lock.c lock, should they do more updates. This, again, lead to the need to abort such transactions. The second bug occurred simply because we didn't have any mechanism to detect deadlocks between the table-level locks in thr_lock.c and row-level locks in InnoDB, other than innodb_lock_wait_timeout. This patch solves both these problems by moving lock conflicts which are causing these deadlocks into the metadata locking subsystem, thus making it possible to avoid or detect such deadlocks inside MDL. To do this we introduce new type-of-operation-aware metadata locks, which allow MDL subsystem to know not only the fact that transaction has used or is going to use some object but also what kind of operation it has carried out or going to carry out on the object. This, along with the addition of a special kind of upgradable metadata lock, allows ALTER TABLE to wait until all transactions which has updated the table to go away. This solves the second issue. Another special type of upgradable metadata lock is acquired by LOCK TABLE WRITE. This second lock type allows to solve the first issue, since abortion of table-level locks in event of DDL under LOCK TABLES becomes also unnecessary. Below follows the list of incompatible changes introduced by this patch: - From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those statements that acquire TL_WRITE_ALLOW_READ lock) wait for all transactions which has *updated* the table to complete. - From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE (i.e. all statements which acquire TL_WRITE table-level lock) wait for all transaction which *updated or read* from the table to complete. As a consequence, innodb_table_locks=0 option no longer applies to LOCK TABLES ... WRITE. - DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort statements or transactions which use tables being dropped or renamed, and instead wait for these transactions to complete. - Since LOCK TABLES WRITE now takes a special metadata lock, not compatible with with reads or writes against the subject table and transaction-wide, thr_lock.c deadlock avoidance algorithm that used to ensure absence of deadlocks between LOCK TABLES WRITE and other statements is no longer sufficient, even for MyISAM. The wait-for graph based deadlock detector of MDL subsystem may sometimes be necessary and is involved. This may lead to ER_LOCK_DEADLOCK error produced for multi-statement transactions even if these only use MyISAM: session 1: session 2: begin; update t1 ... lock table t2 write, t1 write; -- gets a lock on t2, blocks on t1 update t2 ... (ER_LOCK_DEADLOCK) - Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE was abandoned. LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same priority as the usual LOCK TABLE ... WRITE. SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in the wait queue. - We do not take upgradable metadata locks on implicitly locked tables. So if one has, say, a view v1 that uses table t1, and issues: LOCK TABLE v1 WRITE; FLUSH TABLE t1; -- (or just 'FLUSH TABLES'), an error is produced. In order to be able to perform DDL on a table under LOCK TABLES, the table must be locked explicitly in the LOCK TABLES list.
2226 lines
62 KiB
C++
2226 lines
62 KiB
C++
/* Copyright (C) 2007-2008 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
#include "mdl.h"
|
|
#include "debug_sync.h"
|
|
#include <hash.h>
|
|
#include <mysqld_error.h>
|
|
|
|
|
|
void notify_shared_lock(THD *thd, MDL_ticket *conflicting_ticket);
|
|
|
|
|
|
static bool mdl_initialized= 0;
|
|
|
|
|
|
/**
|
|
A collection of all MDL locks. A singleton,
|
|
there is only one instance of the map in the server.
|
|
Maps MDL_key to MDL_lock instances.
|
|
*/
|
|
|
|
class MDL_map
|
|
{
|
|
public:
|
|
void init();
|
|
void destroy();
|
|
MDL_lock *find(const MDL_key *key);
|
|
MDL_lock *find_or_insert(const MDL_key *key);
|
|
void remove(MDL_lock *lock);
|
|
private:
|
|
bool move_from_hash_to_lock_mutex(MDL_lock *lock);
|
|
private:
|
|
/** All acquired locks in the server. */
|
|
HASH m_locks;
|
|
/* Protects access to m_locks hash. */
|
|
pthread_mutex_t m_mutex;
|
|
};
|
|
|
|
|
|
enum enum_deadlock_weight
|
|
{
|
|
MDL_DEADLOCK_WEIGHT_DML= 0,
|
|
MDL_DEADLOCK_WEIGHT_DDL= 100
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
A context of the recursive traversal through all contexts
|
|
in all sessions in search for deadlock.
|
|
*/
|
|
|
|
class Deadlock_detection_context
|
|
{
|
|
public:
|
|
Deadlock_detection_context(MDL_context *start_arg)
|
|
: start(start_arg),
|
|
victim(NULL),
|
|
current_search_depth(0)
|
|
{ }
|
|
MDL_context *start;
|
|
MDL_context *victim;
|
|
uint current_search_depth;
|
|
static const uint MAX_SEARCH_DEPTH= 1000;
|
|
};
|
|
|
|
|
|
/**
|
|
Get a bit corresponding to enum_mdl_type value in a granted/waiting bitmaps
|
|
and compatibility matrices.
|
|
*/
|
|
|
|
#define MDL_BIT(A) static_cast<MDL_lock::bitmap_t>(1U << A)
|
|
|
|
/**
|
|
The lock context. Created internally for an acquired lock.
|
|
For a given name, there exists only one MDL_lock instance,
|
|
and it exists only when the lock has been granted.
|
|
Can be seen as an MDL subsystem's version of TABLE_SHARE.
|
|
|
|
This is an abstract class which lacks information about
|
|
compatibility rules for lock types. They should be specified
|
|
in its descendants.
|
|
*/
|
|
|
|
class MDL_lock
|
|
{
|
|
public:
|
|
typedef uchar bitmap_t;
|
|
|
|
class Ticket_list
|
|
{
|
|
public:
|
|
typedef I_P_List<MDL_ticket,
|
|
I_P_List_adapter<MDL_ticket,
|
|
&MDL_ticket::next_in_lock,
|
|
&MDL_ticket::prev_in_lock> >
|
|
List;
|
|
operator const List &() const { return m_list; }
|
|
Ticket_list() :m_bitmap(0) {}
|
|
|
|
void add_ticket(MDL_ticket *ticket);
|
|
void remove_ticket(MDL_ticket *ticket);
|
|
bool is_empty() const { return m_list.is_empty(); }
|
|
bitmap_t bitmap() const { return m_bitmap; }
|
|
private:
|
|
void clear_bit_if_not_in_list(enum_mdl_type type);
|
|
private:
|
|
/** List of tickets. */
|
|
List m_list;
|
|
/** Bitmap of types of tickets in this list. */
|
|
bitmap_t m_bitmap;
|
|
};
|
|
|
|
typedef Ticket_list::List::Iterator Ticket_iterator;
|
|
|
|
public:
|
|
/** The key of the object (data) being protected. */
|
|
MDL_key key;
|
|
void *cached_object;
|
|
mdl_cached_object_release_hook cached_object_release_hook;
|
|
/**
|
|
Read-write lock protecting this lock context.
|
|
|
|
TODO/FIXME: Replace with RW-lock which will prefer readers
|
|
on all platforms and not only on Linux.
|
|
*/
|
|
rw_lock_t m_rwlock;
|
|
|
|
bool is_empty() const
|
|
{
|
|
return (m_granted.is_empty() && m_waiting.is_empty());
|
|
}
|
|
|
|
virtual const bitmap_t *incompatible_granted_types_bitmap() const = 0;
|
|
virtual const bitmap_t *incompatible_waiting_types_bitmap() const = 0;
|
|
|
|
bool has_pending_conflicting_lock(enum_mdl_type type);
|
|
|
|
bool can_grant_lock(enum_mdl_type type, MDL_context *requstor_ctx) const;
|
|
|
|
inline static MDL_lock *create(const MDL_key *key);
|
|
|
|
void notify_shared_locks(MDL_context *ctx)
|
|
{
|
|
Ticket_iterator it(m_granted);
|
|
MDL_ticket *conflicting_ticket;
|
|
|
|
while ((conflicting_ticket= it++))
|
|
{
|
|
if (conflicting_ticket->get_ctx() != ctx)
|
|
notify_shared_lock(ctx->get_thd(), conflicting_ticket);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Wake up contexts which are waiting to acquire lock on the object and
|
|
which may succeed now, when we released some lock on it or removed
|
|
some pending request from its waiters list (the latter can happen,
|
|
for example, when context trying to acquire exclusive on the object
|
|
lock is killed).
|
|
*/
|
|
void wake_up_waiters()
|
|
{
|
|
MDL_lock::Ticket_iterator it(m_waiting);
|
|
MDL_ticket *awake_ticket;
|
|
|
|
while ((awake_ticket= it++))
|
|
awake_ticket->get_ctx()->awake(MDL_context::NORMAL_WAKE_UP);
|
|
}
|
|
void remove_ticket(Ticket_list MDL_lock::*queue, MDL_ticket *ticket);
|
|
|
|
bool find_deadlock(MDL_ticket *waiting_ticket,
|
|
Deadlock_detection_context *deadlock_ctx);
|
|
|
|
/** List of granted tickets for this lock. */
|
|
Ticket_list m_granted;
|
|
/** Tickets for contexts waiting to acquire a lock. */
|
|
Ticket_list m_waiting;
|
|
public:
|
|
|
|
MDL_lock(const MDL_key *key_arg)
|
|
: key(key_arg),
|
|
cached_object(NULL),
|
|
cached_object_release_hook(NULL),
|
|
m_ref_usage(0),
|
|
m_ref_release(0),
|
|
m_is_destroyed(FALSE)
|
|
{
|
|
my_rwlock_init(&m_rwlock, NULL);
|
|
}
|
|
|
|
virtual ~MDL_lock()
|
|
{
|
|
rwlock_destroy(&m_rwlock);
|
|
}
|
|
inline static void destroy(MDL_lock *lock);
|
|
public:
|
|
/**
|
|
These three members are used to make it possible to separate
|
|
the mdl_locks.m_mutex mutex and MDL_lock::m_rwlock in
|
|
MDL_map::find_or_insert() for increased scalability.
|
|
The 'm_is_destroyed' member is only set by destroyers that
|
|
have both the mdl_locks.m_mutex and MDL_lock::m_rwlock, thus
|
|
holding any of the mutexes is sufficient to read it.
|
|
The 'm_ref_usage; is incremented under protection by
|
|
mdl_locks.m_mutex, but when 'm_is_destroyed' is set to TRUE, this
|
|
member is moved to be protected by the MDL_lock::m_rwlock.
|
|
This means that the MDL_map::find_or_insert() which only
|
|
holds the MDL_lock::m_rwlock can compare it to 'm_ref_release'
|
|
without acquiring mdl_locks.m_mutex again and if equal it can also
|
|
destroy the lock object safely.
|
|
The 'm_ref_release' is incremented under protection by
|
|
MDL_lock::m_rwlock.
|
|
Note since we are only interested in equality of these two
|
|
counters we don't have to worry about overflows as long as
|
|
their size is big enough to hold maximum number of concurrent
|
|
threads on the system.
|
|
*/
|
|
uint m_ref_usage;
|
|
uint m_ref_release;
|
|
bool m_is_destroyed;
|
|
};
|
|
|
|
|
|
/**
|
|
An implementation of the global metadata lock. The only locking modes
|
|
which are supported at the moment are SHARED and INTENTION EXCLUSIVE.
|
|
*/
|
|
|
|
class MDL_global_lock : public MDL_lock
|
|
{
|
|
public:
|
|
MDL_global_lock(const MDL_key *key_arg)
|
|
: MDL_lock(key_arg)
|
|
{ }
|
|
|
|
virtual const bitmap_t *incompatible_granted_types_bitmap() const
|
|
{
|
|
return m_granted_incompatible;
|
|
}
|
|
virtual const bitmap_t *incompatible_waiting_types_bitmap() const
|
|
{
|
|
return m_waiting_incompatible;
|
|
}
|
|
|
|
private:
|
|
static const bitmap_t m_granted_incompatible[MDL_TYPE_END];
|
|
static const bitmap_t m_waiting_incompatible[MDL_TYPE_END];
|
|
};
|
|
|
|
|
|
/**
|
|
An implementation of a per-object lock. Supports SHARED, SHARED_UPGRADABLE,
|
|
SHARED HIGH PRIORITY and EXCLUSIVE locks.
|
|
*/
|
|
|
|
class MDL_object_lock : public MDL_lock
|
|
{
|
|
public:
|
|
MDL_object_lock(const MDL_key *key_arg)
|
|
: MDL_lock(key_arg)
|
|
{ }
|
|
|
|
virtual const bitmap_t *incompatible_granted_types_bitmap() const
|
|
{
|
|
return m_granted_incompatible;
|
|
}
|
|
virtual const bitmap_t *incompatible_waiting_types_bitmap() const
|
|
{
|
|
return m_waiting_incompatible;
|
|
}
|
|
|
|
private:
|
|
static const bitmap_t m_granted_incompatible[MDL_TYPE_END];
|
|
static const bitmap_t m_waiting_incompatible[MDL_TYPE_END];
|
|
};
|
|
|
|
|
|
static MDL_map mdl_locks;
|
|
|
|
extern "C"
|
|
{
|
|
static uchar *
|
|
mdl_locks_key(const uchar *record, size_t *length,
|
|
my_bool not_used __attribute__((unused)))
|
|
{
|
|
MDL_lock *lock=(MDL_lock*) record;
|
|
*length= lock->key.length();
|
|
return (uchar*) lock->key.ptr();
|
|
}
|
|
} /* extern "C" */
|
|
|
|
|
|
/**
|
|
Initialize the metadata locking subsystem.
|
|
|
|
This function is called at server startup.
|
|
|
|
In particular, initializes the new global mutex and
|
|
the associated condition variable: LOCK_mdl and COND_mdl.
|
|
These locking primitives are implementation details of the MDL
|
|
subsystem and are private to it.
|
|
|
|
Note, that even though the new implementation adds acquisition
|
|
of a new global mutex to the execution flow of almost every SQL
|
|
statement, the design capitalizes on that to later save on
|
|
look ups in the table definition cache. This leads to reduced
|
|
contention overall and on LOCK_open in particular.
|
|
Please see the description of MDL_context::acquire_shared_lock()
|
|
for details.
|
|
*/
|
|
|
|
void mdl_init()
|
|
{
|
|
DBUG_ASSERT(! mdl_initialized);
|
|
mdl_initialized= TRUE;
|
|
mdl_locks.init();
|
|
}
|
|
|
|
|
|
/**
|
|
Release resources of metadata locking subsystem.
|
|
|
|
Destroys the global mutex and the condition variable.
|
|
Called at server shutdown.
|
|
*/
|
|
|
|
void mdl_destroy()
|
|
{
|
|
if (mdl_initialized)
|
|
{
|
|
mdl_initialized= FALSE;
|
|
mdl_locks.destroy();
|
|
}
|
|
}
|
|
|
|
|
|
/** Initialize the global hash containing all MDL locks. */
|
|
|
|
void MDL_map::init()
|
|
{
|
|
pthread_mutex_init(&m_mutex, NULL);
|
|
my_hash_init(&m_locks, &my_charset_bin, 16 /* FIXME */, 0, 0,
|
|
mdl_locks_key, 0, 0);
|
|
}
|
|
|
|
|
|
/**
|
|
Destroy the global hash containing all MDL locks.
|
|
@pre It must be empty.
|
|
*/
|
|
|
|
void MDL_map::destroy()
|
|
{
|
|
DBUG_ASSERT(!m_locks.records);
|
|
pthread_mutex_destroy(&m_mutex);
|
|
my_hash_free(&m_locks);
|
|
}
|
|
|
|
|
|
/**
|
|
Find MDL_lock object corresponding to the key, create it
|
|
if it does not exist.
|
|
|
|
@retval non-NULL - Success. MDL_lock instance for the key with
|
|
locked MDL_lock::m_rwlock.
|
|
@retval NULL - Failure (OOM).
|
|
*/
|
|
|
|
MDL_lock* MDL_map::find_or_insert(const MDL_key *mdl_key)
|
|
{
|
|
MDL_lock *lock;
|
|
|
|
retry:
|
|
pthread_mutex_lock(&m_mutex);
|
|
if (!(lock= (MDL_lock*) my_hash_search(&m_locks,
|
|
mdl_key->ptr(),
|
|
mdl_key->length())))
|
|
{
|
|
lock= MDL_lock::create(mdl_key);
|
|
if (!lock || my_hash_insert(&m_locks, (uchar*)lock))
|
|
{
|
|
pthread_mutex_unlock(&m_mutex);
|
|
MDL_lock::destroy(lock);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (move_from_hash_to_lock_mutex(lock))
|
|
goto retry;
|
|
|
|
return lock;
|
|
}
|
|
|
|
|
|
/**
|
|
Find MDL_lock object corresponding to the key.
|
|
|
|
@retval non-NULL - MDL_lock instance for the key with locked
|
|
MDL_lock::m_rwlock.
|
|
@retval NULL - There was no MDL_lock for the key.
|
|
*/
|
|
|
|
MDL_lock* MDL_map::find(const MDL_key *mdl_key)
|
|
{
|
|
MDL_lock *lock;
|
|
|
|
retry:
|
|
pthread_mutex_lock(&m_mutex);
|
|
if (!(lock= (MDL_lock*) my_hash_search(&m_locks,
|
|
mdl_key->ptr(),
|
|
mdl_key->length())))
|
|
{
|
|
pthread_mutex_unlock(&m_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
if (move_from_hash_to_lock_mutex(lock))
|
|
goto retry;
|
|
|
|
return lock;
|
|
}
|
|
|
|
|
|
/**
|
|
Release mdl_locks.m_mutex mutex and lock MDL_lock::m_rwlock for lock
|
|
object from the hash. Handle situation when object was released
|
|
while the held no mutex.
|
|
|
|
@retval FALSE - Success.
|
|
@retval TRUE - Object was released while we held no mutex, caller
|
|
should re-try looking up MDL_lock object in the hash.
|
|
*/
|
|
|
|
bool MDL_map::move_from_hash_to_lock_mutex(MDL_lock *lock)
|
|
{
|
|
DBUG_ASSERT(! lock->m_is_destroyed);
|
|
safe_mutex_assert_owner(&m_mutex);
|
|
|
|
/*
|
|
We increment m_ref_usage which is a reference counter protected by
|
|
mdl_locks.m_mutex under the condition it is present in the hash and
|
|
m_is_destroyed is FALSE.
|
|
*/
|
|
lock->m_ref_usage++;
|
|
pthread_mutex_unlock(&m_mutex);
|
|
|
|
rw_wrlock(&lock->m_rwlock);
|
|
lock->m_ref_release++;
|
|
if (unlikely(lock->m_is_destroyed))
|
|
{
|
|
/*
|
|
Object was released while we held no mutex, we need to
|
|
release it if no others hold references to it, while our own
|
|
reference count ensured that the object as such haven't got
|
|
its memory released yet. We can also safely compare
|
|
m_ref_usage and m_ref_release since the object is no longer
|
|
present in the hash so no one will be able to find it and
|
|
increment m_ref_usage anymore.
|
|
*/
|
|
uint ref_usage= lock->m_ref_usage;
|
|
uint ref_release= lock->m_ref_release;
|
|
rw_unlock(&lock->m_rwlock);
|
|
if (ref_usage == ref_release)
|
|
MDL_lock::destroy(lock);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Destroy MDL_lock object or delegate this responsibility to
|
|
whatever thread that holds the last outstanding reference to
|
|
it.
|
|
*/
|
|
|
|
void MDL_map::remove(MDL_lock *lock)
|
|
{
|
|
uint ref_usage, ref_release;
|
|
|
|
if (lock->cached_object)
|
|
(*lock->cached_object_release_hook)(lock->cached_object);
|
|
|
|
/*
|
|
Destroy the MDL_lock object, but ensure that anyone that is
|
|
holding a reference to the object is not remaining, if so he
|
|
has the responsibility to release it.
|
|
|
|
Setting of m_is_destroyed to TRUE while holding _both_
|
|
mdl_locks.m_mutex and MDL_lock::m_rwlock mutexes transfers the
|
|
protection of m_ref_usage from mdl_locks.m_mutex to
|
|
MDL_lock::m_rwlock while removal of object from the hash makes
|
|
it read-only. Therefore whoever acquires MDL_lock::m_rwlock next
|
|
will see most up to date version of m_ref_usage.
|
|
|
|
This means that when m_is_destroyed is TRUE and we hold the
|
|
MDL_lock::m_rwlock we can safely read the m_ref_usage
|
|
member.
|
|
*/
|
|
pthread_mutex_lock(&m_mutex);
|
|
my_hash_delete(&m_locks, (uchar*) lock);
|
|
lock->m_is_destroyed= TRUE;
|
|
ref_usage= lock->m_ref_usage;
|
|
ref_release= lock->m_ref_release;
|
|
rw_unlock(&lock->m_rwlock);
|
|
pthread_mutex_unlock(&m_mutex);
|
|
if (ref_usage == ref_release)
|
|
MDL_lock::destroy(lock);
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize a metadata locking context.
|
|
|
|
This is to be called when a new server connection is created.
|
|
*/
|
|
|
|
MDL_context::MDL_context()
|
|
:m_trans_sentinel(NULL),
|
|
m_thd(NULL),
|
|
m_needs_thr_lock_abort(FALSE),
|
|
m_waiting_for(NULL),
|
|
m_deadlock_weight(0),
|
|
m_signal(NO_WAKE_UP)
|
|
{
|
|
my_rwlock_init(&m_waiting_for_lock, NULL);
|
|
pthread_mutex_init(&m_signal_lock, NULL);
|
|
pthread_cond_init(&m_signal_cond, NULL);
|
|
}
|
|
|
|
|
|
/**
|
|
Destroy metadata locking context.
|
|
|
|
Assumes and asserts that there are no active or pending locks
|
|
associated with this context at the time of the destruction.
|
|
|
|
Currently does nothing. Asserts that there are no pending
|
|
or satisfied lock requests. The pending locks must be released
|
|
prior to destruction. This is a new way to express the assertion
|
|
that all tables are closed before a connection is destroyed.
|
|
*/
|
|
|
|
void MDL_context::destroy()
|
|
{
|
|
DBUG_ASSERT(m_tickets.is_empty());
|
|
|
|
rwlock_destroy(&m_waiting_for_lock);
|
|
pthread_mutex_destroy(&m_signal_lock);
|
|
pthread_cond_destroy(&m_signal_cond);
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize a lock request.
|
|
|
|
This is to be used for every lock request.
|
|
|
|
Note that initialization and allocation are split into two
|
|
calls. This is to allow flexible memory management of lock
|
|
requests. Normally a lock request is stored in statement memory
|
|
(e.g. is a member of struct TABLE_LIST), but we would also like
|
|
to allow allocation of lock requests in other memory roots,
|
|
for example in the grant subsystem, to lock privilege tables.
|
|
|
|
The MDL subsystem does not own or manage memory of lock requests.
|
|
|
|
@param mdl_namespace Id of namespace of object to be locked
|
|
@param db Name of database to which the object belongs
|
|
@param name Name of of the object
|
|
@param mdl_type The MDL lock type for the request.
|
|
*/
|
|
|
|
void MDL_request::init(MDL_key::enum_mdl_namespace mdl_namespace,
|
|
const char *db_arg,
|
|
const char *name_arg,
|
|
enum enum_mdl_type mdl_type_arg)
|
|
{
|
|
key.mdl_key_init(mdl_namespace, db_arg, name_arg);
|
|
type= mdl_type_arg;
|
|
ticket= NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
Initialize a lock request using pre-built MDL_key.
|
|
|
|
@sa MDL_request::init(namespace, db, name, type).
|
|
|
|
@param key_arg The pre-built MDL key for the request.
|
|
@param mdl_type_arg The MDL lock type for the request.
|
|
*/
|
|
|
|
void MDL_request::init(const MDL_key *key_arg,
|
|
enum enum_mdl_type mdl_type_arg)
|
|
{
|
|
key.mdl_key_init(key_arg);
|
|
type= mdl_type_arg;
|
|
ticket= NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
Allocate and initialize one lock request.
|
|
|
|
Same as mdl_init_lock(), but allocates the lock and the key buffer
|
|
on a memory root. Necessary to lock ad-hoc tables, e.g.
|
|
mysql.* tables of grant and data dictionary subsystems.
|
|
|
|
@param mdl_namespace Id of namespace of object to be locked
|
|
@param db Name of database to which object belongs
|
|
@param name Name of of object
|
|
@param root MEM_ROOT on which object should be allocated
|
|
|
|
@note The allocated lock request will have MDL_SHARED type.
|
|
|
|
@retval 0 Error if out of memory
|
|
@retval non-0 Pointer to an object representing a lock request
|
|
*/
|
|
|
|
MDL_request *
|
|
MDL_request::create(MDL_key::enum_mdl_namespace mdl_namespace, const char *db,
|
|
const char *name, enum_mdl_type mdl_type,
|
|
MEM_ROOT *root)
|
|
{
|
|
MDL_request *mdl_request;
|
|
|
|
if (!(mdl_request= (MDL_request*) alloc_root(root, sizeof(MDL_request))))
|
|
return NULL;
|
|
|
|
mdl_request->init(mdl_namespace, db, name, mdl_type);
|
|
|
|
return mdl_request;
|
|
}
|
|
|
|
|
|
uint MDL_request::get_deadlock_weight() const
|
|
{
|
|
return key.mdl_namespace() == MDL_key::GLOBAL ||
|
|
type > MDL_SHARED_NO_WRITE ?
|
|
MDL_DEADLOCK_WEIGHT_DDL : MDL_DEADLOCK_WEIGHT_DML;
|
|
}
|
|
|
|
/**
|
|
Auxiliary functions needed for creation/destruction of MDL_lock objects.
|
|
|
|
@note Also chooses an MDL_lock descendant appropriate for object namespace.
|
|
|
|
@todo This naive implementation should be replaced with one that saves
|
|
on memory allocation by reusing released objects.
|
|
*/
|
|
|
|
inline MDL_lock *MDL_lock::create(const MDL_key *mdl_key)
|
|
{
|
|
switch (mdl_key->mdl_namespace())
|
|
{
|
|
case MDL_key::GLOBAL:
|
|
return new MDL_global_lock(mdl_key);
|
|
default:
|
|
return new MDL_object_lock(mdl_key);
|
|
}
|
|
}
|
|
|
|
|
|
void MDL_lock::destroy(MDL_lock *lock)
|
|
{
|
|
delete lock;
|
|
}
|
|
|
|
|
|
/**
|
|
Auxiliary functions needed for creation/destruction of MDL_ticket
|
|
objects.
|
|
|
|
@todo This naive implementation should be replaced with one that saves
|
|
on memory allocation by reusing released objects.
|
|
*/
|
|
|
|
MDL_ticket *MDL_ticket::create(MDL_context *ctx_arg, enum_mdl_type type_arg)
|
|
{
|
|
return new MDL_ticket(ctx_arg, type_arg);
|
|
}
|
|
|
|
|
|
void MDL_ticket::destroy(MDL_ticket *ticket)
|
|
{
|
|
delete ticket;
|
|
}
|
|
|
|
|
|
/**
|
|
Helper functions and macros to be used for killable waiting in metadata
|
|
locking subsystem.
|
|
|
|
@sa THD::enter_cond()/exit_cond()/killed.
|
|
|
|
@note We can't use THD::enter_cond()/exit_cond()/killed directly here
|
|
since this will make metadata subsystem dependent on THD class
|
|
and thus prevent us from writing unit tests for it. And usage of
|
|
wrapper functions to access THD::killed/enter_cond()/exit_cond()
|
|
will probably introduce too much overhead.
|
|
*/
|
|
|
|
#define MDL_ENTER_COND(A, B, C, D) \
|
|
mdl_enter_cond(A, B, C, D, __func__, __FILE__, __LINE__)
|
|
|
|
static inline const char *mdl_enter_cond(THD *thd,
|
|
st_my_thread_var *mysys_var,
|
|
pthread_cond_t *cond,
|
|
pthread_mutex_t *mutex,
|
|
const char *calling_func,
|
|
const char *calling_file,
|
|
const unsigned int calling_line)
|
|
{
|
|
safe_mutex_assert_owner(mutex);
|
|
|
|
mysys_var->current_mutex= mutex;
|
|
mysys_var->current_cond= cond;
|
|
|
|
DEBUG_SYNC(thd, "mdl_enter_cond");
|
|
|
|
return set_thd_proc_info(thd, "Waiting for table",
|
|
calling_func, calling_file, calling_line);
|
|
}
|
|
|
|
#define MDL_EXIT_COND(A, B, C, D) \
|
|
mdl_exit_cond(A, B, C, D, __func__, __FILE__, __LINE__)
|
|
|
|
static inline void mdl_exit_cond(THD *thd,
|
|
st_my_thread_var *mysys_var,
|
|
pthread_mutex_t *mutex,
|
|
const char* old_msg,
|
|
const char *calling_func,
|
|
const char *calling_file,
|
|
const unsigned int calling_line)
|
|
{
|
|
DBUG_ASSERT(mutex == mysys_var->current_mutex);
|
|
|
|
pthread_mutex_unlock(mutex);
|
|
pthread_mutex_lock(&mysys_var->mutex);
|
|
mysys_var->current_mutex= 0;
|
|
mysys_var->current_cond= 0;
|
|
pthread_mutex_unlock(&mysys_var->mutex);
|
|
|
|
DEBUG_SYNC(thd, "mdl_exit_cond");
|
|
|
|
(void) set_thd_proc_info(thd, old_msg, calling_func,
|
|
calling_file, calling_line);
|
|
}
|
|
|
|
|
|
MDL_context::mdl_signal_type MDL_context::wait()
|
|
{
|
|
const char *old_msg;
|
|
st_my_thread_var *mysys_var= my_thread_var;
|
|
mdl_signal_type result;
|
|
|
|
pthread_mutex_lock(&m_signal_lock);
|
|
|
|
old_msg= MDL_ENTER_COND(m_thd, mysys_var, &m_signal_cond, &m_signal_lock);
|
|
|
|
while (! m_signal && !mysys_var->abort)
|
|
pthread_cond_wait(&m_signal_cond, &m_signal_lock);
|
|
|
|
result= m_signal;
|
|
|
|
MDL_EXIT_COND(m_thd, mysys_var, &m_signal_lock, old_msg);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MDL_context::mdl_signal_type MDL_context::timed_wait(ulong timeout)
|
|
{
|
|
struct timespec abstime;
|
|
const char *old_msg;
|
|
mdl_signal_type result;
|
|
st_my_thread_var *mysys_var= my_thread_var;
|
|
|
|
pthread_mutex_lock(&m_signal_lock);
|
|
|
|
old_msg= MDL_ENTER_COND(m_thd, mysys_var, &m_signal_cond, &m_signal_lock);
|
|
|
|
if (! m_signal)
|
|
{
|
|
set_timespec(abstime, timeout);
|
|
pthread_cond_timedwait(&m_signal_cond, &m_signal_lock, &abstime);
|
|
}
|
|
|
|
result= (m_signal != NO_WAKE_UP) ? m_signal : TIMEOUT_WAKE_UP;
|
|
|
|
MDL_EXIT_COND(m_thd, mysys_var, &m_signal_lock, old_msg);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
Clear bit corresponding to the type of metadata lock in bitmap representing
|
|
set of such types if list of tickets does not contain ticket with such type.
|
|
|
|
@param[in,out] bitmap Bitmap representing set of types of locks.
|
|
@param[in] list List to inspect.
|
|
@param[in] type Type of metadata lock to look up in the list.
|
|
*/
|
|
|
|
void MDL_lock::Ticket_list::clear_bit_if_not_in_list(enum_mdl_type type)
|
|
{
|
|
MDL_lock::Ticket_iterator it(m_list);
|
|
const MDL_ticket *ticket;
|
|
|
|
while ((ticket= it++))
|
|
if (ticket->get_type() == type)
|
|
return;
|
|
m_bitmap&= ~ MDL_BIT(type);
|
|
}
|
|
|
|
|
|
/**
|
|
Add ticket to MDL_lock's list of waiting requests and
|
|
update corresponding bitmap of lock types.
|
|
*/
|
|
|
|
void MDL_lock::Ticket_list::add_ticket(MDL_ticket *ticket)
|
|
{
|
|
m_list.push_front(ticket);
|
|
m_bitmap|= MDL_BIT(ticket->get_type());
|
|
}
|
|
|
|
|
|
/**
|
|
Remove ticket from MDL_lock's list of requests and
|
|
update corresponding bitmap of lock types.
|
|
*/
|
|
|
|
void MDL_lock::Ticket_list::remove_ticket(MDL_ticket *ticket)
|
|
{
|
|
m_list.remove(ticket);
|
|
/*
|
|
Check if waiting queue has another ticket with the same type as
|
|
one which was removed. If there is no such ticket, i.e. we have
|
|
removed last ticket of particular type, then we need to update
|
|
bitmap of waiting ticket's types.
|
|
Note that in most common case, i.e. when shared lock is removed
|
|
from waiting queue, we are likely to find ticket of the same
|
|
type early without performing full iteration through the list.
|
|
So this method should not be too expensive.
|
|
*/
|
|
clear_bit_if_not_in_list(ticket->get_type());
|
|
}
|
|
|
|
|
|
/**
|
|
Compatibility (or rather "incompatibility") matrices for global metadata
|
|
lock. Arrays of bitmaps which elements specify which granted/waiting locks
|
|
are incompatible with type of lock being requested.
|
|
|
|
Here is how types of individual locks are translated to type of global lock:
|
|
|
|
----------------+-------------+
|
|
Type of request | Correspond. |
|
|
for indiv. lock | global lock |
|
|
----------------+-------------+
|
|
S, SH, SR, SW | IS |
|
|
SNW, SNRW, X | IX |
|
|
SNW, SNRW -> X | IX (*) |
|
|
|
|
The first array specifies if particular type of request can be satisfied
|
|
if there is granted global lock of certain type.
|
|
|
|
| Type of active |
|
|
Request | global lock |
|
|
type | IS(**) IX S |
|
|
---------+----------------+
|
|
IS | + + + |
|
|
IX | + + - |
|
|
S | + - + |
|
|
|
|
The second array specifies if particular type of request can be satisfied
|
|
if there is already waiting request for the global lock of certain type.
|
|
I.e. it specifies what is the priority of different lock types.
|
|
|
|
| Pending |
|
|
Request | global lock |
|
|
type | IS(**) IX S |
|
|
---------+--------------+
|
|
IS | + + + |
|
|
IX | + + - |
|
|
S | + + + |
|
|
|
|
Here: "+" -- means that request can be satisfied
|
|
"-" -- means that request can't be satisfied and should wait
|
|
|
|
(*) Since for upgradable locks we always take intention exclusive global
|
|
lock at the same time when obtaining the shared lock, there is no
|
|
need to obtain such lock during the upgrade itself.
|
|
(**) Since intention shared global locks are compatible with all other
|
|
type of locks we don't even have any accounting for them.
|
|
*/
|
|
|
|
const MDL_lock::bitmap_t MDL_global_lock::m_granted_incompatible[MDL_TYPE_END] =
|
|
{
|
|
MDL_BIT(MDL_SHARED), MDL_BIT(MDL_INTENTION_EXCLUSIVE), 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
const MDL_lock::bitmap_t MDL_global_lock::m_waiting_incompatible[MDL_TYPE_END] =
|
|
{
|
|
MDL_BIT(MDL_SHARED), 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
|
|
/**
|
|
Compatibility (or rather "incompatibility") matrices for per-object
|
|
metadata lock. Arrays of bitmaps which elements specify which granted/
|
|
waiting locks are incompatible with type of lock being requested.
|
|
|
|
The first array specifies if particular type of request can be satisfied
|
|
if there is granted lock of certain type.
|
|
|
|
Request | Granted requests for lock |
|
|
type | S SH SR SW SNW SNRW X |
|
|
----------+------------------------------+
|
|
S | + + + + + + - |
|
|
SH | + + + + + + - |
|
|
SR | + + + + + - - |
|
|
SW | + + + + - - - |
|
|
SNW | + + + - - - - |
|
|
SNRW | + + - - - - - |
|
|
X | - - - - - - - |
|
|
SNW -> X | - - - 0 0 0 0 |
|
|
SNRW -> X | - - 0 0 0 0 0 |
|
|
|
|
The second array specifies if particular type of request can be satisfied
|
|
if there is waiting request for the same lock of certain type. In other
|
|
words it specifies what is the priority of different lock types.
|
|
|
|
Request | Pending requests for lock |
|
|
type | S SH SR SW SNW SNRW X |
|
|
----------+-----------------------------+
|
|
S | + + + + + + - |
|
|
SH | + + + + + + + |
|
|
SR | + + + + + - - |
|
|
SW | + + + + - - - |
|
|
SNW | + + + + + + - |
|
|
SNRW | + + + + + + - |
|
|
X | + + + + + + + |
|
|
SNW -> X | + + + + + + + |
|
|
SNRW -> X | + + + + + + + |
|
|
|
|
Here: "+" -- means that request can be satisfied
|
|
"-" -- means that request can't be satisfied and should wait
|
|
"0" -- means impossible situation which will trigger assert
|
|
|
|
@note In cases then current context already has "stronger" type
|
|
of lock on the object it will be automatically granted
|
|
thanks to usage of the MDL_context::find_ticket() method.
|
|
*/
|
|
|
|
const MDL_lock::bitmap_t
|
|
MDL_object_lock::m_granted_incompatible[MDL_TYPE_END] =
|
|
{
|
|
0,
|
|
MDL_BIT(MDL_EXCLUSIVE),
|
|
MDL_BIT(MDL_EXCLUSIVE),
|
|
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE),
|
|
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
|
|
MDL_BIT(MDL_SHARED_NO_WRITE),
|
|
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
|
|
MDL_BIT(MDL_SHARED_NO_WRITE) | MDL_BIT(MDL_SHARED_WRITE),
|
|
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
|
|
MDL_BIT(MDL_SHARED_NO_WRITE) | MDL_BIT(MDL_SHARED_WRITE) |
|
|
MDL_BIT(MDL_SHARED_READ),
|
|
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
|
|
MDL_BIT(MDL_SHARED_NO_WRITE) | MDL_BIT(MDL_SHARED_WRITE) |
|
|
MDL_BIT(MDL_SHARED_READ) | MDL_BIT(MDL_SHARED_HIGH_PRIO) |
|
|
MDL_BIT(MDL_SHARED)
|
|
};
|
|
|
|
|
|
const MDL_lock::bitmap_t
|
|
MDL_object_lock::m_waiting_incompatible[MDL_TYPE_END] =
|
|
{
|
|
0,
|
|
MDL_BIT(MDL_EXCLUSIVE),
|
|
0,
|
|
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE),
|
|
MDL_BIT(MDL_EXCLUSIVE) | MDL_BIT(MDL_SHARED_NO_READ_WRITE) |
|
|
MDL_BIT(MDL_SHARED_NO_WRITE),
|
|
MDL_BIT(MDL_EXCLUSIVE),
|
|
MDL_BIT(MDL_EXCLUSIVE),
|
|
0
|
|
};
|
|
|
|
|
|
/**
|
|
Check if request for the metadata lock can be satisfied given its
|
|
current state.
|
|
|
|
@param type_arg The requested lock type.
|
|
@param requestor_ctx The MDL context of the requestor.
|
|
|
|
@retval TRUE Lock request can be satisfied
|
|
@retval FALSE There is some conflicting lock.
|
|
|
|
@note In cases then current context already has "stronger" type
|
|
of lock on the object it will be automatically granted
|
|
thanks to usage of the MDL_context::find_ticket() method.
|
|
*/
|
|
|
|
bool
|
|
MDL_lock::can_grant_lock(enum_mdl_type type_arg,
|
|
MDL_context *requestor_ctx) const
|
|
{
|
|
bool can_grant= FALSE;
|
|
bitmap_t waiting_incompat_map= incompatible_waiting_types_bitmap()[type_arg];
|
|
bitmap_t granted_incompat_map= incompatible_granted_types_bitmap()[type_arg];
|
|
/*
|
|
New lock request can be satisfied iff:
|
|
- There are no incompatible types of satisfied requests
|
|
in other contexts
|
|
- There are no waiting requests which have higher priority
|
|
than this request.
|
|
*/
|
|
if (! (m_waiting.bitmap() & waiting_incompat_map))
|
|
{
|
|
if (! (m_granted.bitmap() & granted_incompat_map))
|
|
can_grant= TRUE;
|
|
else
|
|
{
|
|
Ticket_iterator it(m_granted);
|
|
MDL_ticket *ticket;
|
|
|
|
/* Check that the incompatible lock belongs to some other context. */
|
|
while ((ticket= it++))
|
|
{
|
|
if (ticket->get_ctx() != requestor_ctx &&
|
|
ticket->is_incompatible_when_granted(type_arg))
|
|
break;
|
|
}
|
|
if (ticket == NULL) /* Incompatible locks are our own. */
|
|
can_grant= TRUE;
|
|
}
|
|
}
|
|
return can_grant;
|
|
}
|
|
|
|
|
|
/** Remove a ticket from waiting or pending queue and wakeup up waiters. */
|
|
|
|
void MDL_lock::remove_ticket(Ticket_list MDL_lock::*list, MDL_ticket *ticket)
|
|
{
|
|
rw_wrlock(&m_rwlock);
|
|
(this->*list).remove_ticket(ticket);
|
|
if (is_empty())
|
|
mdl_locks.remove(this);
|
|
else
|
|
{
|
|
/*
|
|
There can be some contexts waiting to acquire a lock
|
|
which now might be able to do it. Wake them up!
|
|
*/
|
|
wake_up_waiters();
|
|
rw_unlock(&m_rwlock);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Check if we have any pending locks which conflict with existing
|
|
shared lock.
|
|
|
|
@pre The ticket must match an acquired lock.
|
|
|
|
@return TRUE if there is a conflicting lock request, FALSE otherwise.
|
|
*/
|
|
|
|
bool MDL_lock::has_pending_conflicting_lock(enum_mdl_type type)
|
|
{
|
|
bool result;
|
|
|
|
safe_mutex_assert_not_owner(&LOCK_open);
|
|
|
|
rw_rdlock(&m_rwlock);
|
|
result= (m_waiting.bitmap() & incompatible_granted_types_bitmap()[type]);
|
|
rw_unlock(&m_rwlock);
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
Check if ticket represents metadata lock of "stronger" or equal type
|
|
than specified one. I.e. if metadata lock represented by ticket won't
|
|
allow any of locks which are not allowed by specified type of lock.
|
|
|
|
@return TRUE if ticket has stronger or equal type
|
|
FALSE otherwise.
|
|
*/
|
|
|
|
bool MDL_ticket::has_stronger_or_equal_type(enum_mdl_type type) const
|
|
{
|
|
const MDL_lock::bitmap_t *
|
|
granted_incompat_map= m_lock->incompatible_granted_types_bitmap();
|
|
|
|
return ! (granted_incompat_map[type] & ~(granted_incompat_map[m_type]));
|
|
}
|
|
|
|
|
|
bool MDL_ticket::is_incompatible_when_granted(enum_mdl_type type) const
|
|
{
|
|
return (MDL_BIT(m_type) &
|
|
m_lock->incompatible_granted_types_bitmap()[type]);
|
|
}
|
|
|
|
|
|
bool MDL_ticket::is_incompatible_when_waiting(enum_mdl_type type) const
|
|
{
|
|
return (MDL_BIT(m_type) &
|
|
m_lock->incompatible_waiting_types_bitmap()[type]);
|
|
}
|
|
|
|
|
|
/**
|
|
Acquire global intention exclusive lock.
|
|
|
|
@param[in] mdl_request Lock request object for lock to be acquired
|
|
|
|
@retval FALSE Success. The lock has been acquired.
|
|
@retval TRUE Error.
|
|
*/
|
|
|
|
bool
|
|
MDL_context::acquire_global_intention_exclusive_lock(MDL_request *mdl_request)
|
|
{
|
|
DBUG_ASSERT(mdl_request->key.mdl_namespace() == MDL_key::GLOBAL &&
|
|
mdl_request->type == MDL_INTENTION_EXCLUSIVE);
|
|
|
|
/*
|
|
If this is a non-recursive attempt to acquire global intention
|
|
exclusive lock we might have to wait until active global shared
|
|
lock or pending requests will go away. Since we won't hold any
|
|
resources (except associated with open HANDLERs) while doing it
|
|
deadlocks are not possible.
|
|
*/
|
|
DBUG_ASSERT(is_lock_owner(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE) ||
|
|
! has_locks() ||
|
|
(m_trans_sentinel && m_tickets.front() == m_trans_sentinel));
|
|
|
|
return acquire_lock(mdl_request);
|
|
}
|
|
|
|
|
|
/**
|
|
Check whether the context already holds a compatible lock ticket
|
|
on an object.
|
|
Start searching the transactional locks. If not
|
|
found in the list of transactional locks, look at LOCK TABLES
|
|
and HANDLER locks.
|
|
|
|
@param mdl_request Lock request object for lock to be acquired
|
|
@param[out] is_transactional FALSE if we pass beyond m_trans_sentinel
|
|
while searching for ticket, otherwise TRUE.
|
|
|
|
@note Tickets which correspond to lock types "stronger" than one
|
|
being requested are also considered compatible.
|
|
|
|
@return A pointer to the lock ticket for the object or NULL otherwise.
|
|
*/
|
|
|
|
MDL_ticket *
|
|
MDL_context::find_ticket(MDL_request *mdl_request,
|
|
bool *is_transactional)
|
|
{
|
|
MDL_ticket *ticket;
|
|
Ticket_iterator it(m_tickets);
|
|
|
|
*is_transactional= TRUE;
|
|
|
|
while ((ticket= it++))
|
|
{
|
|
if (ticket == m_trans_sentinel)
|
|
*is_transactional= FALSE;
|
|
|
|
if (mdl_request->key.is_equal(&ticket->m_lock->key) &&
|
|
ticket->has_stronger_or_equal_type(mdl_request->type))
|
|
break;
|
|
}
|
|
|
|
return ticket;
|
|
}
|
|
|
|
|
|
/**
|
|
Acquire one lock with waiting for conflicting locks to go away if needed.
|
|
|
|
@note This is an internal method which should not be used outside of MDL
|
|
subsystem as in most cases simply waiting for conflicting locks to
|
|
go away will lead to deadlock.
|
|
|
|
@param mdl_request [in/out] Lock request object for lock to be acquired
|
|
|
|
@retval FALSE Success. MDL_request::ticket points to the ticket
|
|
for the lock.
|
|
@retval TRUE Failure (Out of resources or waiting is aborted),
|
|
*/
|
|
|
|
bool
|
|
MDL_context::acquire_lock(MDL_request *mdl_request)
|
|
{
|
|
return acquire_lock_impl(mdl_request);
|
|
}
|
|
|
|
|
|
/**
|
|
Try to acquire one lock.
|
|
|
|
Unlike exclusive locks, shared locks are acquired one by
|
|
one. This is interface is chosen to simplify introduction of
|
|
the new locking API to the system. MDL_context::try_acquire_lock()
|
|
is currently used from open_table(), and there we have only one
|
|
table to work with.
|
|
|
|
This function may also be used to try to acquire an exclusive
|
|
lock on a destination table, by ALTER TABLE ... RENAME.
|
|
|
|
Returns immediately without any side effect if encounters a lock
|
|
conflict. Otherwise takes the lock.
|
|
|
|
FIXME: Compared to lock_table_name_if_not_cached() (from 5.1)
|
|
it gives slightly more false negatives.
|
|
|
|
@param mdl_request [in/out] Lock request object for lock to be acquired
|
|
|
|
@retval FALSE Success. The lock may have not been acquired.
|
|
Check the ticket, if it's NULL, a conflicting lock
|
|
exists and another attempt should be made after releasing
|
|
all current locks and waiting for conflicting lock go
|
|
away (using MDL_context::wait_for_lock()).
|
|
@retval TRUE Out of resources, an error has been reported.
|
|
*/
|
|
|
|
bool
|
|
MDL_context::try_acquire_lock(MDL_request *mdl_request)
|
|
{
|
|
MDL_lock *lock;
|
|
MDL_key *key= &mdl_request->key;
|
|
MDL_ticket *ticket;
|
|
bool is_transactional;
|
|
|
|
DBUG_ASSERT(mdl_request->type < MDL_SHARED_NO_WRITE ||
|
|
(is_lock_owner(MDL_key::GLOBAL, "", "",
|
|
MDL_INTENTION_EXCLUSIVE)));
|
|
DBUG_ASSERT(mdl_request->ticket == NULL);
|
|
|
|
/* Don't take chances in production. */
|
|
mdl_request->ticket= NULL;
|
|
safe_mutex_assert_not_owner(&LOCK_open);
|
|
|
|
/*
|
|
Check whether the context already holds a shared lock on the object,
|
|
and if so, grant the request.
|
|
*/
|
|
if ((ticket= find_ticket(mdl_request, &is_transactional)))
|
|
{
|
|
DBUG_ASSERT(ticket->m_lock);
|
|
DBUG_ASSERT(ticket->m_type >= mdl_request->type);
|
|
/*
|
|
If the request is for a transactional lock, and we found
|
|
a transactional lock, just reuse the found ticket.
|
|
|
|
It's possible that we found a transactional lock,
|
|
but the request is for a HANDLER lock. In that case HANDLER
|
|
code will clone the ticket (see below why it's needed).
|
|
|
|
If the request is for a transactional lock, and we found
|
|
a HANDLER lock, create a copy, to make sure that when user
|
|
does HANDLER CLOSE, the transactional lock is not released.
|
|
|
|
If the request is for a handler lock, and we found a
|
|
HANDLER lock, also do the clone. HANDLER CLOSE for one alias
|
|
should not release the lock on the table HANDLER opened through
|
|
a different alias.
|
|
*/
|
|
mdl_request->ticket= ticket;
|
|
if (!is_transactional && clone_ticket(mdl_request))
|
|
{
|
|
/* Clone failed. */
|
|
mdl_request->ticket= NULL;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
if (!(ticket= MDL_ticket::create(this, mdl_request->type)))
|
|
return TRUE;
|
|
|
|
/* The below call implicitly locks MDL_lock::m_rwlock on success. */
|
|
if (!(lock= mdl_locks.find_or_insert(key)))
|
|
{
|
|
MDL_ticket::destroy(ticket);
|
|
return TRUE;
|
|
}
|
|
|
|
if (lock->can_grant_lock(mdl_request->type, this))
|
|
{
|
|
lock->m_granted.add_ticket(ticket);
|
|
rw_unlock(&lock->m_rwlock);
|
|
|
|
ticket->m_lock= lock;
|
|
|
|
m_tickets.push_front(ticket);
|
|
|
|
mdl_request->ticket= ticket;
|
|
}
|
|
else
|
|
{
|
|
/* We can't get here if we allocated a new lock. */
|
|
DBUG_ASSERT(! lock->is_empty());
|
|
rw_unlock(&lock->m_rwlock);
|
|
MDL_ticket::destroy(ticket);
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Create a copy of a granted ticket.
|
|
This is used to make sure that HANDLER ticket
|
|
is never shared with a ticket that belongs to
|
|
a transaction, so that when we HANDLER CLOSE,
|
|
we don't release a transactional ticket, and
|
|
vice versa -- when we COMMIT, we don't mistakenly
|
|
release a ticket for an open HANDLER.
|
|
|
|
@retval TRUE Out of memory.
|
|
@retval FALSE Success.
|
|
*/
|
|
|
|
bool
|
|
MDL_context::clone_ticket(MDL_request *mdl_request)
|
|
{
|
|
MDL_ticket *ticket;
|
|
|
|
safe_mutex_assert_not_owner(&LOCK_open);
|
|
/*
|
|
By submitting mdl_request->type to MDL_ticket::create()
|
|
we effectively downgrade the cloned lock to the level of
|
|
the request.
|
|
*/
|
|
if (!(ticket= MDL_ticket::create(this, mdl_request->type)))
|
|
return TRUE;
|
|
|
|
/* clone() is not supposed to be used to get a stronger lock. */
|
|
DBUG_ASSERT(ticket->m_type <= mdl_request->ticket->m_type);
|
|
|
|
ticket->m_lock= mdl_request->ticket->m_lock;
|
|
mdl_request->ticket= ticket;
|
|
|
|
rw_wrlock(&ticket->m_lock->m_rwlock);
|
|
ticket->m_lock->m_granted.add_ticket(ticket);
|
|
rw_unlock(&ticket->m_lock->m_rwlock);
|
|
|
|
m_tickets.push_front(ticket);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Notify a thread holding a shared metadata lock which
|
|
conflicts with a pending exclusive lock.
|
|
|
|
@param thd Current thread context
|
|
@param conflicting_ticket Conflicting metadata lock
|
|
*/
|
|
|
|
void notify_shared_lock(THD *thd, MDL_ticket *conflicting_ticket)
|
|
{
|
|
/* Only try to abort locks on which we back off. */
|
|
if (conflicting_ticket->get_type() < MDL_SHARED_NO_WRITE)
|
|
{
|
|
MDL_context *conflicting_ctx= conflicting_ticket->get_ctx();
|
|
THD *conflicting_thd= conflicting_ctx->get_thd();
|
|
DBUG_ASSERT(thd != conflicting_thd); /* Self-deadlock */
|
|
|
|
/*
|
|
If thread which holds conflicting lock is waiting on table-level
|
|
lock or some other non-MDL resource we might need to wake it up
|
|
by calling code outside of MDL.
|
|
*/
|
|
mysql_notify_thread_having_shared_lock(thd, conflicting_thd,
|
|
conflicting_ctx->get_needs_thr_lock_abort());
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Auxiliary method for acquiring an exclusive lock.
|
|
|
|
@param mdl_request Request for the lock to be acqured.
|
|
|
|
@note Should not be used outside of MDL subsystem. Instead one
|
|
should call acquire_lock() or acquire_locks()
|
|
methods which ensure that conditions for deadlock-free
|
|
lock acquisition are fulfilled.
|
|
|
|
@retval FALSE Success
|
|
@retval TRUE Failure
|
|
*/
|
|
|
|
bool MDL_context::acquire_lock_impl(MDL_request *mdl_request)
|
|
{
|
|
MDL_lock *lock;
|
|
MDL_ticket *ticket;
|
|
bool not_used;
|
|
st_my_thread_var *mysys_var= my_thread_var;
|
|
MDL_key *key= &mdl_request->key;
|
|
|
|
safe_mutex_assert_not_owner(&LOCK_open);
|
|
|
|
DBUG_ASSERT(mdl_request->ticket == NULL);
|
|
/* Don't take chances in production. */
|
|
mdl_request->ticket= NULL;
|
|
|
|
/*
|
|
Check whether the context already holds an exclusive lock on the object,
|
|
and if so, grant the request.
|
|
*/
|
|
if ((ticket= find_ticket(mdl_request, ¬_used)))
|
|
{
|
|
DBUG_ASSERT(ticket->m_lock);
|
|
mdl_request->ticket= ticket;
|
|
return FALSE;
|
|
}
|
|
|
|
DBUG_ASSERT(mdl_request->type < MDL_SHARED_NO_WRITE ||
|
|
is_lock_owner(MDL_key::GLOBAL, "", "", MDL_INTENTION_EXCLUSIVE));
|
|
|
|
/* Early allocation: ticket will be needed in any case. */
|
|
if (!(ticket= MDL_ticket::create(this, mdl_request->type)))
|
|
return TRUE;
|
|
|
|
/* The below call implicitly locks MDL_lock::m_rwlock on success. */
|
|
if (!(lock= mdl_locks.find_or_insert(key)))
|
|
{
|
|
MDL_ticket::destroy(ticket);
|
|
return TRUE;
|
|
}
|
|
|
|
ticket->m_lock= lock;
|
|
|
|
lock->m_waiting.add_ticket(ticket);
|
|
|
|
while (!lock->can_grant_lock(mdl_request->type, this))
|
|
{
|
|
wait_reset();
|
|
|
|
if (ticket->is_upgradable_or_exclusive())
|
|
lock->notify_shared_locks(this);
|
|
|
|
rw_unlock(&lock->m_rwlock);
|
|
|
|
set_deadlock_weight(mdl_request->get_deadlock_weight());
|
|
will_wait_for(ticket);
|
|
|
|
/* There is a shared or exclusive lock on the object. */
|
|
DEBUG_SYNC(m_thd, "mdl_acquire_lock_wait");
|
|
|
|
bool is_deadlock= (find_deadlock() || timed_wait(1) == VICTIM_WAKE_UP);
|
|
|
|
stop_waiting();
|
|
|
|
if (is_deadlock || mysys_var->abort)
|
|
{
|
|
lock->remove_ticket(&MDL_lock::m_waiting, ticket);
|
|
MDL_ticket::destroy(ticket);
|
|
if (is_deadlock)
|
|
my_error(ER_LOCK_DEADLOCK, MYF(0));
|
|
return TRUE;
|
|
}
|
|
rw_wrlock(&lock->m_rwlock);
|
|
}
|
|
|
|
lock->m_waiting.remove_ticket(ticket);
|
|
lock->m_granted.add_ticket(ticket);
|
|
|
|
if (ticket->get_type() == MDL_EXCLUSIVE && lock->cached_object)
|
|
(*lock->cached_object_release_hook)(lock->cached_object);
|
|
lock->cached_object= NULL;
|
|
|
|
rw_unlock(&lock->m_rwlock);
|
|
|
|
m_tickets.push_front(ticket);
|
|
|
|
mdl_request->ticket= ticket;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
extern "C" int mdl_request_ptr_cmp(const void* ptr1, const void* ptr2)
|
|
{
|
|
MDL_request *req1= *(MDL_request**)ptr1;
|
|
MDL_request *req2= *(MDL_request**)ptr2;
|
|
return req1->key.cmp(&req2->key);
|
|
}
|
|
|
|
|
|
/**
|
|
Acquire exclusive locks. There must be no granted locks in the
|
|
context.
|
|
|
|
This is a replacement of lock_table_names(). It is used in
|
|
RENAME, DROP and other DDL SQL statements.
|
|
|
|
@param mdl_requests List of requests for locks to be acquired.
|
|
|
|
@note The list of requests should not contain non-exclusive lock requests.
|
|
There should not be any acquired locks in the context.
|
|
|
|
@note Assumes that one already owns global intention exclusive lock.
|
|
|
|
@retval FALSE Success
|
|
@retval TRUE Failure
|
|
*/
|
|
|
|
bool MDL_context::acquire_locks(MDL_request_list *mdl_requests)
|
|
{
|
|
MDL_request_list::Iterator it(*mdl_requests);
|
|
MDL_request **sort_buf, **p_req;
|
|
uint req_count= mdl_requests->elements();
|
|
|
|
if (req_count == 0)
|
|
return FALSE;
|
|
|
|
/*
|
|
To reduce deadlocks, the server acquires all exclusive
|
|
locks at once. For shared locks, try_acquire_lock() is
|
|
used instead.
|
|
*/
|
|
DBUG_ASSERT(m_tickets.is_empty() || m_tickets.front() == m_trans_sentinel);
|
|
|
|
/* Sort requests according to MDL_key. */
|
|
if (! (sort_buf= (MDL_request **)my_malloc(req_count *
|
|
sizeof(MDL_request*),
|
|
MYF(MY_WME))))
|
|
return TRUE;
|
|
|
|
for (p_req= sort_buf; p_req < sort_buf + req_count; p_req++)
|
|
*p_req= it++;
|
|
|
|
my_qsort(sort_buf, req_count, sizeof(MDL_request*),
|
|
mdl_request_ptr_cmp);
|
|
|
|
for (p_req= sort_buf; p_req < sort_buf + req_count; p_req++)
|
|
{
|
|
if (acquire_lock_impl(*p_req))
|
|
goto err;
|
|
}
|
|
my_free(sort_buf, MYF(0));
|
|
return FALSE;
|
|
|
|
err:
|
|
/* Release locks we have managed to acquire so far. */
|
|
for (req_count= p_req - sort_buf, p_req= sort_buf;
|
|
p_req < sort_buf + req_count; p_req++)
|
|
{
|
|
release_lock((*p_req)->ticket);
|
|
/* Reset lock request back to its initial state. */
|
|
(*p_req)->ticket= NULL;
|
|
}
|
|
my_free(sort_buf, MYF(0));
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
Upgrade a shared metadata lock to exclusive.
|
|
|
|
Used in ALTER TABLE, when a copy of the table with the
|
|
new definition has been constructed.
|
|
|
|
@note In case of failure to upgrade lock (e.g. because upgrader
|
|
was killed) leaves lock in its original state (locked in
|
|
shared mode).
|
|
|
|
@note There can be only one upgrader for a lock or we will have deadlock.
|
|
This invariant is ensured by code outside of metadata subsystem usually
|
|
by obtaining some sort of exclusive table-level lock (e.g. TL_WRITE,
|
|
TL_WRITE_ALLOW_READ) before performing upgrade of metadata lock.
|
|
|
|
@retval FALSE Success
|
|
@retval TRUE Failure (thread was killed)
|
|
*/
|
|
|
|
bool
|
|
MDL_context::upgrade_shared_lock_to_exclusive(MDL_ticket *mdl_ticket)
|
|
{
|
|
MDL_request mdl_xlock_request;
|
|
MDL_ticket *mdl_svp= mdl_savepoint();
|
|
bool is_new_ticket;
|
|
|
|
DBUG_ENTER("MDL_ticket::upgrade_shared_lock_to_exclusive");
|
|
DEBUG_SYNC(get_thd(), "mdl_upgrade_shared_lock_to_exclusive");
|
|
|
|
/*
|
|
Do nothing if already upgraded. Used when we FLUSH TABLE under
|
|
LOCK TABLES and a table is listed twice in LOCK TABLES list.
|
|
*/
|
|
if (mdl_ticket->m_type == MDL_EXCLUSIVE)
|
|
DBUG_RETURN(FALSE);
|
|
|
|
/* Only allow upgrades from MDL_SHARED_NO_WRITE/NO_READ_WRITE */
|
|
DBUG_ASSERT(mdl_ticket->m_type == MDL_SHARED_NO_WRITE ||
|
|
mdl_ticket->m_type == MDL_SHARED_NO_READ_WRITE);
|
|
|
|
mdl_xlock_request.init(&mdl_ticket->m_lock->key, MDL_EXCLUSIVE);
|
|
|
|
if (acquire_lock_impl(&mdl_xlock_request))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
is_new_ticket= ! has_lock(mdl_svp, mdl_xlock_request.ticket);
|
|
|
|
/* Merge the acquired and the original lock. @todo: move to a method. */
|
|
rw_wrlock(&mdl_ticket->m_lock->m_rwlock);
|
|
if (is_new_ticket)
|
|
mdl_ticket->m_lock->m_granted.remove_ticket(mdl_xlock_request.ticket);
|
|
/*
|
|
Set the new type of lock in the ticket. To update state of
|
|
MDL_lock object correctly we need to temporarily exclude
|
|
ticket from the granted queue and then include it back.
|
|
*/
|
|
mdl_ticket->m_lock->m_granted.remove_ticket(mdl_ticket);
|
|
mdl_ticket->m_type= MDL_EXCLUSIVE;
|
|
mdl_ticket->m_lock->m_granted.add_ticket(mdl_ticket);
|
|
|
|
rw_unlock(&mdl_ticket->m_lock->m_rwlock);
|
|
|
|
if (is_new_ticket)
|
|
{
|
|
m_tickets.remove(mdl_xlock_request.ticket);
|
|
MDL_ticket::destroy(mdl_xlock_request.ticket);
|
|
}
|
|
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
bool MDL_lock::find_deadlock(MDL_ticket *waiting_ticket,
|
|
Deadlock_detection_context *deadlock_ctx)
|
|
{
|
|
MDL_ticket *ticket;
|
|
bool result= FALSE;
|
|
|
|
rw_rdlock(&m_rwlock);
|
|
|
|
Ticket_iterator granted_it(m_granted);
|
|
Ticket_iterator waiting_it(m_waiting);
|
|
|
|
while ((ticket= granted_it++))
|
|
{
|
|
if (ticket->is_incompatible_when_granted(waiting_ticket->get_type()) &&
|
|
ticket->get_ctx() != waiting_ticket->get_ctx() &&
|
|
ticket->get_ctx() == deadlock_ctx->start)
|
|
{
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
while ((ticket= waiting_it++))
|
|
{
|
|
if (ticket->is_incompatible_when_waiting(waiting_ticket->get_type()) &&
|
|
ticket->get_ctx() != waiting_ticket->get_ctx() &&
|
|
ticket->get_ctx() == deadlock_ctx->start)
|
|
{
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
granted_it.rewind();
|
|
while ((ticket= granted_it++))
|
|
{
|
|
if (ticket->is_incompatible_when_granted(waiting_ticket->get_type()) &&
|
|
ticket->get_ctx() != waiting_ticket->get_ctx() &&
|
|
ticket->get_ctx()->find_deadlock(deadlock_ctx))
|
|
{
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
waiting_it.rewind();
|
|
while ((ticket= waiting_it++))
|
|
{
|
|
if (ticket->is_incompatible_when_waiting(waiting_ticket->get_type()) &&
|
|
ticket->get_ctx() != waiting_ticket->get_ctx() &&
|
|
ticket->get_ctx()->find_deadlock(deadlock_ctx))
|
|
{
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
end:
|
|
rw_unlock(&m_rwlock);
|
|
return result;
|
|
}
|
|
|
|
|
|
bool MDL_context::find_deadlock(Deadlock_detection_context *deadlock_ctx)
|
|
{
|
|
bool result= FALSE;
|
|
|
|
rw_rdlock(&m_waiting_for_lock);
|
|
|
|
if (m_waiting_for)
|
|
{
|
|
/*
|
|
QQ: should we rather be checking for NO_WAKE_UP ?
|
|
|
|
We want to do check signal only when m_waiting_for is set
|
|
to avoid reading left-overs from previous kills.
|
|
*/
|
|
if (peek_signal() != VICTIM_WAKE_UP)
|
|
{
|
|
|
|
if (++deadlock_ctx->current_search_depth >
|
|
deadlock_ctx->MAX_SEARCH_DEPTH)
|
|
result= TRUE;
|
|
else
|
|
result= m_waiting_for->m_lock->find_deadlock(m_waiting_for,
|
|
deadlock_ctx);
|
|
--deadlock_ctx->current_search_depth;
|
|
}
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
if (! deadlock_ctx->victim)
|
|
deadlock_ctx->victim= this;
|
|
else if (deadlock_ctx->victim->m_deadlock_weight >= m_deadlock_weight)
|
|
{
|
|
rw_unlock(&deadlock_ctx->victim->m_waiting_for_lock);
|
|
deadlock_ctx->victim= this;
|
|
}
|
|
else
|
|
rw_unlock(&m_waiting_for_lock);
|
|
}
|
|
else
|
|
rw_unlock(&m_waiting_for_lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
bool MDL_context::find_deadlock()
|
|
{
|
|
Deadlock_detection_context deadlock_ctx(this);
|
|
|
|
while (1)
|
|
{
|
|
if (! find_deadlock(&deadlock_ctx))
|
|
{
|
|
/* No deadlocks are found! */
|
|
break;
|
|
}
|
|
|
|
if (deadlock_ctx.victim != this)
|
|
{
|
|
deadlock_ctx.victim->awake(VICTIM_WAKE_UP);
|
|
rw_unlock(&deadlock_ctx.victim->m_waiting_for_lock);
|
|
/*
|
|
After adding new arc to waiting graph we found that it participates
|
|
in some loop (i.e. there is a deadlock). We decided to destroy this
|
|
loop by removing some arc other than newly added. Since this doesn't
|
|
guarantee that all loops created by addition of this arc are
|
|
destroyed we have to repeat search.
|
|
*/
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(&deadlock_ctx.victim->m_waiting_for_lock == &m_waiting_for_lock);
|
|
rw_unlock(&deadlock_ctx.victim->m_waiting_for_lock);
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Wait until there will be no locks that conflict with lock requests
|
|
in the given list.
|
|
|
|
This is a part of the locking protocol and must be used by the
|
|
acquirer of shared locks after a back-off.
|
|
|
|
Does not acquire the locks!
|
|
|
|
@retval FALSE Success. One can try to obtain metadata locks.
|
|
@retval TRUE Failure (thread was killed or deadlock is possible).
|
|
*/
|
|
|
|
bool
|
|
MDL_context::wait_for_lock(MDL_request *mdl_request)
|
|
{
|
|
MDL_lock *lock;
|
|
st_my_thread_var *mysys_var= my_thread_var;
|
|
|
|
safe_mutex_assert_not_owner(&LOCK_open);
|
|
|
|
DBUG_ASSERT(mdl_request->ticket == NULL);
|
|
|
|
while (!mysys_var->abort)
|
|
{
|
|
/*
|
|
We have to check if there are some HANDLERs open by this thread
|
|
which conflict with some pending exclusive locks. Otherwise we
|
|
might have a deadlock in situations when we are waiting for
|
|
pending writer to go away, which in its turn waits for HANDLER
|
|
open by our thread.
|
|
|
|
TODO: investigate situations in which we need to broadcast on
|
|
COND_mdl because of above scenario.
|
|
*/
|
|
mysql_ha_flush(m_thd);
|
|
|
|
MDL_key *key= &mdl_request->key;
|
|
|
|
/* The below call implicitly locks MDL_lock::m_rwlock on success. */
|
|
if (! (lock= mdl_locks.find(key)))
|
|
return FALSE;
|
|
|
|
if (lock->can_grant_lock(mdl_request->type, this))
|
|
{
|
|
rw_unlock(&lock->m_rwlock);
|
|
return FALSE;
|
|
}
|
|
|
|
MDL_ticket *pending_ticket;
|
|
if (! (pending_ticket= MDL_ticket::create(this, mdl_request->type)))
|
|
{
|
|
rw_unlock(&lock->m_rwlock);
|
|
return TRUE;
|
|
}
|
|
|
|
pending_ticket->m_lock= lock;
|
|
|
|
lock->m_waiting.add_ticket(pending_ticket);
|
|
|
|
wait_reset();
|
|
rw_unlock(&lock->m_rwlock);
|
|
|
|
set_deadlock_weight(MDL_DEADLOCK_WEIGHT_DML);
|
|
will_wait_for(pending_ticket);
|
|
|
|
bool is_deadlock= (find_deadlock() || wait() == VICTIM_WAKE_UP);
|
|
|
|
stop_waiting();
|
|
|
|
lock->remove_ticket(&MDL_lock::m_waiting, pending_ticket);
|
|
MDL_ticket::destroy(pending_ticket);
|
|
if (is_deadlock)
|
|
{
|
|
my_error(ER_LOCK_DEADLOCK, MYF(0));
|
|
return TRUE;
|
|
}
|
|
}
|
|
return mysys_var->abort;
|
|
}
|
|
|
|
|
|
/**
|
|
Release lock.
|
|
|
|
@param ticket Ticket for lock to be released.
|
|
*/
|
|
|
|
void MDL_context::release_lock(MDL_ticket *ticket)
|
|
{
|
|
MDL_lock *lock= ticket->m_lock;
|
|
DBUG_ENTER("MDL_context::release_lock");
|
|
DBUG_PRINT("enter", ("db=%s name=%s", lock->key.db_name(),
|
|
lock->key.name()));
|
|
|
|
DBUG_ASSERT(this == ticket->get_ctx());
|
|
safe_mutex_assert_not_owner(&LOCK_open);
|
|
|
|
if (ticket == m_trans_sentinel)
|
|
m_trans_sentinel= ++Ticket_list::Iterator(m_tickets, ticket);
|
|
|
|
lock->remove_ticket(&MDL_lock::m_granted, ticket);
|
|
|
|
m_tickets.remove(ticket);
|
|
MDL_ticket::destroy(ticket);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Release all locks associated with the context. If the sentinel
|
|
is not NULL, do not release locks stored in the list after and
|
|
including the sentinel.
|
|
|
|
Transactional locks are added to the beginning of the list, i.e.
|
|
stored in reverse temporal order. This allows to employ this
|
|
function to:
|
|
- back off in case of a lock conflict.
|
|
- release all locks in the end of a transaction
|
|
- rollback to a savepoint.
|
|
|
|
The sentinel semantics is used to support LOCK TABLES
|
|
mode and HANDLER statements: locks taken by these statements
|
|
survive COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT.
|
|
*/
|
|
|
|
void MDL_context::release_locks_stored_before(MDL_ticket *sentinel)
|
|
{
|
|
MDL_ticket *ticket;
|
|
Ticket_iterator it(m_tickets);
|
|
DBUG_ENTER("MDL_context::release_locks_stored_before");
|
|
|
|
if (m_tickets.is_empty())
|
|
DBUG_VOID_RETURN;
|
|
|
|
while ((ticket= it++) && ticket != sentinel)
|
|
{
|
|
DBUG_PRINT("info", ("found lock to release ticket=%p", ticket));
|
|
release_lock(ticket);
|
|
}
|
|
/*
|
|
If all locks were released, then the sentinel was not present
|
|
in the list. It must never happen because the sentinel was
|
|
bogus, i.e. pointed to a ticket that no longer exists.
|
|
*/
|
|
DBUG_ASSERT(! m_tickets.is_empty() || sentinel == NULL);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Release all locks in the context which correspond to the same name/
|
|
object as this lock request.
|
|
|
|
@param ticket One of the locks for the name/object for which all
|
|
locks should be released.
|
|
*/
|
|
|
|
void MDL_context::release_all_locks_for_name(MDL_ticket *name)
|
|
{
|
|
/* Use MDL_ticket::m_lock to identify other locks for the same object. */
|
|
MDL_lock *lock= name->m_lock;
|
|
|
|
/* Remove matching lock tickets from the context. */
|
|
MDL_ticket *ticket;
|
|
Ticket_iterator it_ticket(m_tickets);
|
|
|
|
while ((ticket= it_ticket++))
|
|
{
|
|
DBUG_ASSERT(ticket->m_lock);
|
|
/*
|
|
We rarely have more than one ticket in this loop,
|
|
let's not bother saving on pthread_cond_broadcast().
|
|
*/
|
|
if (ticket->m_lock == lock)
|
|
release_lock(ticket);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Downgrade an exclusive lock to shared metadata lock.
|
|
|
|
@param type Type of lock to which exclusive lock should be downgraded.
|
|
*/
|
|
|
|
void MDL_ticket::downgrade_exclusive_lock(enum_mdl_type type)
|
|
{
|
|
safe_mutex_assert_not_owner(&LOCK_open);
|
|
|
|
/*
|
|
Do nothing if already downgraded. Used when we FLUSH TABLE under
|
|
LOCK TABLES and a table is listed twice in LOCK TABLES list.
|
|
*/
|
|
if (m_type != MDL_EXCLUSIVE)
|
|
return;
|
|
|
|
rw_wrlock(&m_lock->m_rwlock);
|
|
/*
|
|
To update state of MDL_lock object correctly we need to temporarily
|
|
exclude ticket from the granted queue and then include it back.
|
|
*/
|
|
m_lock->m_granted.remove_ticket(this);
|
|
m_type= type;
|
|
m_lock->m_granted.add_ticket(this);
|
|
m_lock->wake_up_waiters();
|
|
rw_unlock(&m_lock->m_rwlock);
|
|
}
|
|
|
|
|
|
/**
|
|
Auxiliary function which allows to check if we have some kind of lock on
|
|
a object. Returns TRUE if we have a lock of a given or stronger type.
|
|
|
|
@param mdl_namespace Id of object namespace
|
|
@param db Name of the database
|
|
@param name Name of the object
|
|
@param mdl_type Lock type. Pass in the weakest type to find
|
|
out if there is at least some lock.
|
|
|
|
@return TRUE if current context contains satisfied lock for the object,
|
|
FALSE otherwise.
|
|
*/
|
|
|
|
bool
|
|
MDL_context::is_lock_owner(MDL_key::enum_mdl_namespace mdl_namespace,
|
|
const char *db, const char *name,
|
|
enum_mdl_type mdl_type)
|
|
{
|
|
MDL_request mdl_request;
|
|
bool is_transactional_unused;
|
|
mdl_request.init(mdl_namespace, db, name, mdl_type);
|
|
MDL_ticket *ticket= find_ticket(&mdl_request, &is_transactional_unused);
|
|
|
|
DBUG_ASSERT(ticket == NULL || ticket->m_lock);
|
|
|
|
return ticket;
|
|
}
|
|
|
|
|
|
/**
|
|
Check if we have any pending locks which conflict with existing shared lock.
|
|
|
|
@pre The ticket must match an acquired lock.
|
|
|
|
@return TRUE if there is a conflicting lock request, FALSE otherwise.
|
|
*/
|
|
|
|
bool MDL_ticket::has_pending_conflicting_lock() const
|
|
{
|
|
return m_lock->has_pending_conflicting_lock(m_type);
|
|
}
|
|
|
|
|
|
/**
|
|
Associate pointer to an opaque object with a lock.
|
|
|
|
@param cached_object Pointer to the object
|
|
@param release_hook Cleanup function to be called when MDL subsystem
|
|
decides to remove lock or associate another object.
|
|
|
|
This is used to cache a pointer to TABLE_SHARE in the lock
|
|
structure. Such caching can save one acquisition of LOCK_open
|
|
and one table definition cache lookup for every table.
|
|
|
|
Since the pointer may be stored only inside an acquired lock,
|
|
the caching is only effective when there is more than one lock
|
|
granted on a given table.
|
|
|
|
This function has the following usage pattern:
|
|
- try to acquire an MDL lock
|
|
- when done, call for mdl_get_cached_object(). If it returns NULL, our
|
|
thread has the only lock on this table.
|
|
- look up TABLE_SHARE in the table definition cache
|
|
- call mdl_set_cache_object() to assign the share to the opaque pointer.
|
|
|
|
The release hook is invoked when the last shared metadata
|
|
lock on this name is released.
|
|
*/
|
|
|
|
void
|
|
MDL_ticket::set_cached_object(void *cached_object,
|
|
mdl_cached_object_release_hook release_hook)
|
|
{
|
|
DBUG_ENTER("mdl_set_cached_object");
|
|
DBUG_PRINT("enter", ("db=%s name=%s cached_object=%p",
|
|
m_lock->key.db_name(), m_lock->key.name(),
|
|
cached_object));
|
|
/*
|
|
TODO: This assumption works now since we do get_cached_object()
|
|
and set_cached_object() in the same critical section. Once
|
|
this becomes false we will have to call release_hook here and
|
|
use additional mutex protecting 'cached_object' member.
|
|
*/
|
|
DBUG_ASSERT(!m_lock->cached_object);
|
|
|
|
m_lock->cached_object= cached_object;
|
|
m_lock->cached_object_release_hook= release_hook;
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Get a pointer to an opaque object that associated with the lock.
|
|
|
|
@param ticket Lock ticket for the lock which the object is associated to.
|
|
|
|
@return Pointer to an opaque object associated with the lock.
|
|
*/
|
|
|
|
void *MDL_ticket::get_cached_object()
|
|
{
|
|
return m_lock->cached_object;
|
|
}
|
|
|
|
|
|
/**
|
|
Releases metadata locks that were acquired after a specific savepoint.
|
|
|
|
@note Used to release tickets acquired during a savepoint unit.
|
|
@note It's safe to iterate and unlock any locks after taken after this
|
|
savepoint because other statements that take other special locks
|
|
cause a implicit commit (ie LOCK TABLES).
|
|
|
|
@param mdl_savepont The last acquired MDL lock when the
|
|
savepoint was set.
|
|
*/
|
|
|
|
void MDL_context::rollback_to_savepoint(MDL_ticket *mdl_savepoint)
|
|
{
|
|
DBUG_ENTER("MDL_context::rollback_to_savepoint");
|
|
|
|
/* If savepoint is NULL, it is from the start of the transaction. */
|
|
release_locks_stored_before(mdl_savepoint ?
|
|
mdl_savepoint : m_trans_sentinel);
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Release locks acquired by normal statements (SELECT, UPDATE,
|
|
DELETE, etc) in the course of a transaction. Do not release
|
|
HANDLER locks, if there are any.
|
|
|
|
This method is used at the end of a transaction, in
|
|
implementation of COMMIT (implicit or explicit) and ROLLBACK.
|
|
*/
|
|
|
|
void MDL_context::release_transactional_locks()
|
|
{
|
|
DBUG_ENTER("MDL_context::release_transactional_locks");
|
|
release_locks_stored_before(m_trans_sentinel);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Does this savepoint have this lock?
|
|
|
|
@retval TRUE The ticket is older than the savepoint and
|
|
is not LT, HA or GLR ticket. Thus it belongs
|
|
to the savepoint.
|
|
@retval FALSE The ticket is newer than the savepoint
|
|
or is an LT, HA or GLR ticket.
|
|
*/
|
|
|
|
bool MDL_context::has_lock(MDL_ticket *mdl_savepoint,
|
|
MDL_ticket *mdl_ticket)
|
|
{
|
|
MDL_ticket *ticket;
|
|
/* Start from the beginning, most likely mdl_ticket's been just acquired. */
|
|
MDL_context::Ticket_iterator it(m_tickets);
|
|
bool found_savepoint= FALSE;
|
|
|
|
while ((ticket= it++) && ticket != m_trans_sentinel)
|
|
{
|
|
/*
|
|
First met the savepoint. The ticket must be
|
|
somewhere after it.
|
|
*/
|
|
if (ticket == mdl_savepoint)
|
|
found_savepoint= TRUE;
|
|
/*
|
|
Met the ticket. If we haven't yet met the savepoint,
|
|
the ticket is newer than the savepoint.
|
|
*/
|
|
if (ticket == mdl_ticket)
|
|
return found_savepoint;
|
|
}
|
|
/* Reached m_trans_sentinel. The ticket must be LT, HA or GRL ticket. */
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Rearrange the ticket to reside in the part of the list that's
|
|
beyond m_trans_sentinel. This effectively changes the ticket
|
|
life cycle, from automatic to manual: i.e. the ticket is no
|
|
longer released by MDL_context::release_transactional_locks() or
|
|
MDL_context::rollback_to_savepoint(), it must be released manually.
|
|
*/
|
|
|
|
void MDL_context::move_ticket_after_trans_sentinel(MDL_ticket *mdl_ticket)
|
|
{
|
|
m_tickets.remove(mdl_ticket);
|
|
if (m_trans_sentinel == NULL)
|
|
{
|
|
m_trans_sentinel= mdl_ticket;
|
|
/* sic: linear from the number of transactional tickets acquired so-far! */
|
|
m_tickets.push_back(mdl_ticket);
|
|
}
|
|
else
|
|
m_tickets.insert_after(m_trans_sentinel, mdl_ticket);
|
|
}
|