mariadb/sql/uniques.h
Monty eb483c5181 Updated optimizer costs in multi_range_read_info_const() and sql_select.cc
- multi_range_read_info_const now uses the new records_in_range interface
- Added handler::avg_io_cost()
- Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is
  not 1.0.  In this case we trust the avg_io_cost() from the handler.
- Changed test_quick_select to use TIME_FOR_COMPARE instead of
  TIME_FOR_COMPARE_IDX to align this with the rest of the code.
- Fixed bug when using test_if_cheaper_ordering where we didn't use
  keyread if index was changed
- Fixed a bug where we didn't use index only read when using order-by-index
- Added keyread_time() to HEAP.
  The default keyread_time() was optimized for blocks and not suitable for
  HEAP. The effect was the HEAP prefered table scans over ranges for btree
  indexes.
- Fixed get_sweep_read_cost() for HEAP tables
- Ensure that range and ref have same cost for simple ranges
  Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure
  we favior ref for range for simple queries.
- Fixed that matching_candidates_in_table() uses same number of records
  as the rest of the optimizer
- Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for
  HEAP and temporary tables better. A few tests changed because of this.
- heap::read_time() and heap::keyread_time() adjusted to not add +1.
  This was to ensure that handler::keyread_time() doesn't give
  higher cost for heap tables than for normal tables. One effect of
  this is that heap and derived tables stored in heap will prefer
  key access as this is now regarded as cheap.
- Changed cost for index read in sql_select.cc to match
  multi_range_read_info_const(). All index cost calculation is now
  done trough one function.
- 'ref' will now use quick_cost for keys if it exists. This is done
  so that for '=' ranges, 'ref' is prefered over 'range'.
- scan_time() now takes avg_io_costs() into account
- get_delayed_table_estimates() uses block_size and avg_io_cost()
- Removed default argument to test_if_order_by_key(); simplifies code
2020-03-27 03:58:32 +02:00

107 lines
4 KiB
C++

/* Copyright (c) 2016 MariaDB corporation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef UNIQUE_INCLUDED
#define UNIQUE_INCLUDED
#include "filesort.h"
/*
Unique -- class for unique (removing of duplicates).
Puts all values to the TREE. If the tree becomes too big,
it's dumped to the file. User can request sorted values, or
just iterate through them. In the last case tree merging is performed in
memory simultaneously with iteration, so it should be ~2-3x faster.
*/
class Unique :public Sql_alloc
{
DYNAMIC_ARRAY file_ptrs;
ulong max_elements; /* Total number of elements that will be stored in-memory */
size_t max_in_memory_size;
IO_CACHE file;
TREE tree;
/* Number of elements filtered out due to min_dupl_count when storing results
to table. See Unique::get */
ulong filtered_out_elems;
uint size;
uint full_size; /* Size of element + space needed to store the number of
duplicates found for the element. */
uint min_dupl_count; /* Minimum number of occurences of element required for
it to be written to record_pointers.
always 0 for unions, > 0 for intersections */
bool with_counters;
bool merge(TABLE *table, uchar *buff, size_t size, bool without_last_merge);
bool flush();
public:
ulong elements;
SORT_INFO sort;
Unique(qsort_cmp2 comp_func, void *comp_func_fixed_arg,
uint size_arg, size_t max_in_memory_size_arg,
uint min_dupl_count_arg= 0);
~Unique();
ulong elements_in_tree() { return tree.elements_in_tree; }
inline bool unique_add(void *ptr)
{
DBUG_ENTER("unique_add");
DBUG_PRINT("info", ("tree %u - %lu", tree.elements_in_tree, max_elements));
if (!(tree.flag & TREE_ONLY_DUPS) &&
tree.elements_in_tree >= max_elements && flush())
DBUG_RETURN(1);
DBUG_RETURN(!tree_insert(&tree, ptr, 0, tree.custom_arg));
}
bool is_in_memory() { return (my_b_tell(&file) == 0); }
void close_for_expansion() { tree.flag= TREE_ONLY_DUPS; }
bool get(TABLE *table);
/* Cost of searching for an element in the tree */
inline static double get_search_cost(ulonglong tree_elems,
double compare_factor)
{
return log((double) tree_elems) / (compare_factor * M_LN2);
}
static double get_use_cost(uint *buffer, size_t nkeys, uint key_size,
size_t max_in_memory_size, double compare_factor,
bool intersect_fl, bool *in_memory);
inline static int get_cost_calc_buff_size(size_t nkeys, uint key_size,
size_t max_in_memory_size)
{
size_t max_elems_in_tree=
max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size);
return (int) (sizeof(uint)*(1 + nkeys/max_elems_in_tree));
}
void reset();
bool walk(TABLE *table, tree_walk_action action, void *walk_action_arg);
uint get_size() const { return size; }
size_t get_max_in_memory_size() const { return max_in_memory_size; }
friend int unique_write_to_file(uchar* key, element_count count, Unique *unique);
friend int unique_write_to_ptrs(uchar* key, element_count count, Unique *unique);
friend int unique_write_to_file_with_count(uchar* key, element_count count,
Unique *unique);
friend int unique_intersect_write_to_ptrs(uchar* key, element_count count,
Unique *unique);
};
#endif /* UNIQUE_INCLUDED */