mariadb/storage/innobase/trx/trx0trx.c
Marko Mäkelä 3db404c31f Bug#59440 Race condition in XA ROLLBACK and XA COMMIT after server restart
trx_get_trx_by_xid(): Invalidate trx->xid after a successful lookup,
so that subsequent callers will not find the same transaction.

The only callers of trx_get_trx_by_xid() will be invoking
innobase_commit_low() or innobase_rollback_trx(), and those code paths
should not depend on trx->xid.

rb://584 approved by Jimmy Yang
2011-01-27 13:27:29 +02:00

2084 lines
49 KiB
C

/******************************************************
The transaction
(c) 1996 Innobase Oy
Created 3/26/1996 Heikki Tuuri
*******************************************************/
#include "trx0trx.h"
#ifdef UNIV_NONINL
#include "trx0trx.ic"
#endif
#include "trx0undo.h"
#include "trx0rseg.h"
#include "log0log.h"
#include "que0que.h"
#include "lock0lock.h"
#include "trx0roll.h"
#include "usr0sess.h"
#include "read0read.h"
#include "srv0srv.h"
#include "thr0loc.h"
#include "btr0sea.h"
#include "os0proc.h"
#include "trx0xa.h"
#include "ha_prototypes.h"
/* Copy of the prototype for innobase_mysql_print_thd: this
copy MUST be equal to the one in mysql/sql/ha_innodb.cc ! */
void innobase_mysql_print_thd(
FILE* f,
void* thd,
ulint max_query_len);
/* Dummy session used currently in MySQL interface */
sess_t* trx_dummy_sess = NULL;
/* Number of transactions currently allocated for MySQL: protected by
the kernel mutex */
ulint trx_n_mysql_transactions = 0;
/*****************************************************************
Starts the transaction if it is not yet started. */
void
trx_start_if_not_started_noninline(
/*===============================*/
trx_t* trx) /* in: transaction */
{
trx_start_if_not_started(trx);
}
/*****************************************************************
Set detailed error message for the transaction. */
void
trx_set_detailed_error(
/*===================*/
trx_t* trx, /* in: transaction struct */
const char* msg) /* in: detailed error message */
{
ut_strlcpy(trx->detailed_error, msg, sizeof(trx->detailed_error));
}
/*****************************************************************
Set detailed error message for the transaction from a file. Note that the
file is rewinded before reading from it. */
void
trx_set_detailed_error_from_file(
/*=============================*/
trx_t* trx, /* in: transaction struct */
FILE* file) /* in: file to read message from */
{
os_file_read_string(file, trx->detailed_error,
sizeof(trx->detailed_error));
}
/********************************************************************
Retrieves the error_info field from a trx. */
void*
trx_get_error_info(
/*===============*/
/* out: the error info */
trx_t* trx) /* in: trx object */
{
return(trx->error_info);
}
/********************************************************************
Creates and initializes a transaction object. */
trx_t*
trx_create(
/*=======*/
/* out, own: the transaction */
sess_t* sess) /* in: session or NULL */
{
trx_t* trx;
ut_ad(mutex_own(&kernel_mutex));
trx = mem_alloc(sizeof(trx_t));
trx->magic_n = TRX_MAGIC_N;
trx->op_info = "";
trx->is_purge = 0;
trx->conc_state = TRX_NOT_STARTED;
trx->start_time = time(NULL);
trx->isolation_level = TRX_ISO_REPEATABLE_READ;
trx->id = ut_dulint_zero;
trx->no = ut_dulint_max;
trx->support_xa = TRUE;
trx->check_foreigns = TRUE;
trx->check_unique_secondary = TRUE;
trx->flush_log_later = FALSE;
trx->must_flush_log_later = FALSE;
trx->dict_operation = FALSE;
trx->mysql_thd = NULL;
trx->mysql_query_str = NULL;
trx->mysql_query_len = NULL;
trx->active_trans = 0;
trx->duplicates = 0;
trx->n_mysql_tables_in_use = 0;
trx->mysql_n_tables_locked = 0;
trx->mysql_log_file_name = NULL;
trx->mysql_log_offset = 0;
mutex_create(&trx->undo_mutex, SYNC_TRX_UNDO);
trx->rseg = NULL;
trx->undo_no = ut_dulint_zero;
trx->last_sql_stat_start.least_undo_no = ut_dulint_zero;
trx->insert_undo = NULL;
trx->update_undo = NULL;
trx->undo_no_arr = NULL;
trx->error_state = DB_SUCCESS;
trx->detailed_error[0] = '\0';
trx->sess = sess;
trx->que_state = TRX_QUE_RUNNING;
trx->n_active_thrs = 0;
trx->handling_signals = FALSE;
UT_LIST_INIT(trx->signals);
UT_LIST_INIT(trx->reply_signals);
trx->graph = NULL;
trx->wait_lock = NULL;
trx->was_chosen_as_deadlock_victim = FALSE;
UT_LIST_INIT(trx->wait_thrs);
trx->lock_heap = mem_heap_create_in_buffer(256);
UT_LIST_INIT(trx->trx_locks);
UT_LIST_INIT(trx->trx_savepoints);
trx->dict_operation_lock_mode = 0;
trx->has_search_latch = FALSE;
trx->search_latch_timeout = BTR_SEA_TIMEOUT;
trx->declared_to_be_inside_innodb = FALSE;
trx->n_tickets_to_enter_innodb = 0;
trx->auto_inc_lock = NULL;
trx->global_read_view_heap = mem_heap_create(256);
trx->global_read_view = NULL;
trx->read_view = NULL;
/* Set X/Open XA transaction identification to NULL */
memset(&trx->xid, 0, sizeof(trx->xid));
trx->xid.formatID = -1;
trx->n_autoinc_rows = 0;
return(trx);
}
/************************************************************************
Creates a transaction object for MySQL. */
trx_t*
trx_allocate_for_mysql(void)
/*========================*/
/* out, own: transaction object */
{
trx_t* trx;
mutex_enter(&kernel_mutex);
/* Open a dummy session */
if (!trx_dummy_sess) {
trx_dummy_sess = sess_open();
}
trx = trx_create(trx_dummy_sess);
trx_n_mysql_transactions++;
UT_LIST_ADD_FIRST(mysql_trx_list, trx_sys->mysql_trx_list, trx);
mutex_exit(&kernel_mutex);
trx->mysql_thread_id = os_thread_get_curr_id();
trx->mysql_process_no = os_proc_get_number();
return(trx);
}
/************************************************************************
Creates a transaction object for background operations by the master thread. */
trx_t*
trx_allocate_for_background(void)
/*=============================*/
/* out, own: transaction object */
{
trx_t* trx;
mutex_enter(&kernel_mutex);
/* Open a dummy session */
if (!trx_dummy_sess) {
trx_dummy_sess = sess_open();
}
trx = trx_create(trx_dummy_sess);
mutex_exit(&kernel_mutex);
return(trx);
}
/************************************************************************
Releases the search latch if trx has reserved it. */
void
trx_search_latch_release_if_reserved(
/*=================================*/
trx_t* trx) /* in: transaction */
{
if (trx->has_search_latch) {
rw_lock_s_unlock(&btr_search_latch);
trx->has_search_latch = FALSE;
}
}
/************************************************************************
Frees a transaction object. */
void
trx_free(
/*=====*/
trx_t* trx) /* in, own: trx object */
{
ut_ad(mutex_own(&kernel_mutex));
if (trx->declared_to_be_inside_innodb) {
ut_print_timestamp(stderr);
fputs(" InnoDB: Error: Freeing a trx which is declared"
" to be processing\n"
"InnoDB: inside InnoDB.\n", stderr);
trx_print(stderr, trx, 600);
putc('\n', stderr);
/* This is an error but not a fatal error. We must keep
the counters like srv_conc_n_threads accurate. */
srv_conc_force_exit_innodb(trx);
}
if (trx->n_mysql_tables_in_use != 0
|| trx->mysql_n_tables_locked != 0) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Error: MySQL is freeing a thd\n"
"InnoDB: though trx->n_mysql_tables_in_use is %lu\n"
"InnoDB: and trx->mysql_n_tables_locked is %lu.\n",
(ulong)trx->n_mysql_tables_in_use,
(ulong)trx->mysql_n_tables_locked);
trx_print(stderr, trx, 600);
ut_print_buf(stderr, trx, sizeof(trx_t));
}
ut_a(trx->magic_n == TRX_MAGIC_N);
trx->magic_n = 11112222;
ut_a(trx->conc_state == TRX_NOT_STARTED);
mutex_free(&(trx->undo_mutex));
ut_a(trx->insert_undo == NULL);
ut_a(trx->update_undo == NULL);
if (trx->undo_no_arr) {
trx_undo_arr_free(trx->undo_no_arr);
}
ut_a(UT_LIST_GET_LEN(trx->signals) == 0);
ut_a(UT_LIST_GET_LEN(trx->reply_signals) == 0);
ut_a(trx->wait_lock == NULL);
ut_a(UT_LIST_GET_LEN(trx->wait_thrs) == 0);
ut_a(!trx->has_search_latch);
ut_a(!trx->auto_inc_lock);
ut_a(trx->dict_operation_lock_mode == 0);
if (trx->lock_heap) {
mem_heap_free(trx->lock_heap);
}
ut_a(UT_LIST_GET_LEN(trx->trx_locks) == 0);
if (trx->global_read_view_heap) {
mem_heap_free(trx->global_read_view_heap);
}
trx->global_read_view = NULL;
ut_a(trx->read_view == NULL);
mem_free(trx);
}
/************************************************************************
Frees a transaction object for MySQL. */
void
trx_free_for_mysql(
/*===============*/
trx_t* trx) /* in, own: trx object */
{
mutex_enter(&kernel_mutex);
UT_LIST_REMOVE(mysql_trx_list, trx_sys->mysql_trx_list, trx);
trx_free(trx);
ut_a(trx_n_mysql_transactions > 0);
trx_n_mysql_transactions--;
mutex_exit(&kernel_mutex);
}
/************************************************************************
Frees a transaction object of a background operation of the master thread. */
void
trx_free_for_background(
/*====================*/
trx_t* trx) /* in, own: trx object */
{
mutex_enter(&kernel_mutex);
trx_free(trx);
mutex_exit(&kernel_mutex);
}
/********************************************************************
Inserts the trx handle in the trx system trx list in the right position.
The list is sorted on the trx id so that the biggest id is at the list
start. This function is used at the database startup to insert incomplete
transactions to the list. */
static
void
trx_list_insert_ordered(
/*====================*/
trx_t* trx) /* in: trx handle */
{
trx_t* trx2;
ut_ad(mutex_own(&kernel_mutex));
trx2 = UT_LIST_GET_FIRST(trx_sys->trx_list);
while (trx2 != NULL) {
if (ut_dulint_cmp(trx->id, trx2->id) >= 0) {
ut_ad(ut_dulint_cmp(trx->id, trx2->id) == 1);
break;
}
trx2 = UT_LIST_GET_NEXT(trx_list, trx2);
}
if (trx2 != NULL) {
trx2 = UT_LIST_GET_PREV(trx_list, trx2);
if (trx2 == NULL) {
UT_LIST_ADD_FIRST(trx_list, trx_sys->trx_list, trx);
} else {
UT_LIST_INSERT_AFTER(trx_list, trx_sys->trx_list,
trx2, trx);
}
} else {
UT_LIST_ADD_LAST(trx_list, trx_sys->trx_list, trx);
}
}
/********************************************************************
Creates trx objects for transactions and initializes the trx list of
trx_sys at database start. Rollback segment and undo log lists must
already exist when this function is called, because the lists of
transactions to be rolled back or cleaned up are built based on the
undo log lists. */
void
trx_lists_init_at_db_start(void)
/*============================*/
{
trx_rseg_t* rseg;
trx_undo_t* undo;
trx_t* trx;
UT_LIST_INIT(trx_sys->trx_list);
/* Look from the rollback segments if there exist undo logs for
transactions */
rseg = UT_LIST_GET_FIRST(trx_sys->rseg_list);
while (rseg != NULL) {
undo = UT_LIST_GET_FIRST(rseg->insert_undo_list);
while (undo != NULL) {
trx = trx_create(NULL);
trx->id = undo->trx_id;
trx->xid = undo->xid;
trx->insert_undo = undo;
trx->rseg = rseg;
if (undo->state != TRX_UNDO_ACTIVE) {
/* Prepared transactions are left in
the prepared state waiting for a
commit or abort decision from MySQL */
if (undo->state == TRX_UNDO_PREPARED) {
fprintf(stderr,
"InnoDB: Transaction %lu %lu"
" was in the"
" XA prepared state.\n",
ut_dulint_get_high(trx->id),
ut_dulint_get_low(trx->id));
if (srv_force_recovery == 0) {
trx->conc_state = TRX_PREPARED;
} else {
fprintf(stderr,
"InnoDB: Since"
" innodb_force_recovery"
" > 0, we will"
" rollback it"
" anyway.\n");
trx->conc_state = TRX_ACTIVE;
}
} else {
trx->conc_state
= TRX_COMMITTED_IN_MEMORY;
}
/* We give a dummy value for the trx no;
this should have no relevance since purge
is not interested in committed transaction
numbers, unless they are in the history
list, in which case it looks the number
from the disk based undo log structure */
trx->no = trx->id;
} else {
trx->conc_state = TRX_ACTIVE;
/* A running transaction always has the number
field inited to ut_dulint_max */
trx->no = ut_dulint_max;
}
if (undo->dict_operation) {
trx->dict_operation = undo->dict_operation;
trx->table_id = undo->table_id;
}
if (!undo->empty) {
trx->undo_no = ut_dulint_add(undo->top_undo_no,
1);
}
trx_list_insert_ordered(trx);
undo = UT_LIST_GET_NEXT(undo_list, undo);
}
undo = UT_LIST_GET_FIRST(rseg->update_undo_list);
while (undo != NULL) {
trx = trx_get_on_id(undo->trx_id);
if (NULL == trx) {
trx = trx_create(NULL);
trx->id = undo->trx_id;
trx->xid = undo->xid;
if (undo->state != TRX_UNDO_ACTIVE) {
/* Prepared transactions are left in
the prepared state waiting for a
commit or abort decision from MySQL */
if (undo->state == TRX_UNDO_PREPARED) {
fprintf(stderr,
"InnoDB: Transaction"
" %lu %lu was in the"
" XA prepared state.\n",
ut_dulint_get_high(
trx->id),
ut_dulint_get_low(
trx->id));
if (srv_force_recovery == 0) {
trx->conc_state
= TRX_PREPARED;
} else {
fprintf(stderr,
"InnoDB: Since"
" innodb_force_recovery"
" > 0, we will"
" rollback it"
" anyway.\n");
trx->conc_state
= TRX_ACTIVE;
}
} else {
trx->conc_state
= TRX_COMMITTED_IN_MEMORY;
}
/* We give a dummy value for the trx
number */
trx->no = trx->id;
} else {
trx->conc_state = TRX_ACTIVE;
/* A running transaction always has
the number field inited to
ut_dulint_max */
trx->no = ut_dulint_max;
}
trx->rseg = rseg;
trx_list_insert_ordered(trx);
if (undo->dict_operation) {
trx->dict_operation
= undo->dict_operation;
trx->table_id = undo->table_id;
}
}
trx->update_undo = undo;
if ((!undo->empty)
&& (ut_dulint_cmp(undo->top_undo_no,
trx->undo_no) >= 0)) {
trx->undo_no = ut_dulint_add(undo->top_undo_no,
1);
}
undo = UT_LIST_GET_NEXT(undo_list, undo);
}
rseg = UT_LIST_GET_NEXT(rseg_list, rseg);
}
}
/**********************************************************************
Assigns a rollback segment to a transaction in a round-robin fashion.
Skips the SYSTEM rollback segment if another is available. */
UNIV_INLINE
ulint
trx_assign_rseg(void)
/*=================*/
/* out: assigned rollback segment id */
{
trx_rseg_t* rseg = trx_sys->latest_rseg;
ut_ad(mutex_own(&kernel_mutex));
loop:
/* Get next rseg in a round-robin fashion */
rseg = UT_LIST_GET_NEXT(rseg_list, rseg);
if (rseg == NULL) {
rseg = UT_LIST_GET_FIRST(trx_sys->rseg_list);
}
/* If it is the SYSTEM rollback segment, and there exist others, skip
it */
if ((rseg->id == TRX_SYS_SYSTEM_RSEG_ID)
&& (UT_LIST_GET_LEN(trx_sys->rseg_list) > 1)) {
goto loop;
}
trx_sys->latest_rseg = rseg;
return(rseg->id);
}
/********************************************************************
Starts a new transaction. */
ibool
trx_start_low(
/*==========*/
/* out: TRUE */
trx_t* trx, /* in: transaction */
ulint rseg_id)/* in: rollback segment id; if ULINT_UNDEFINED
is passed, the system chooses the rollback segment
automatically in a round-robin fashion */
{
trx_rseg_t* rseg;
ut_ad(mutex_own(&kernel_mutex));
ut_ad(trx->rseg == NULL);
if (trx->is_purge) {
trx->id = ut_dulint_zero;
trx->conc_state = TRX_ACTIVE;
trx->start_time = time(NULL);
return(TRUE);
}
ut_ad(trx->conc_state != TRX_ACTIVE);
if (rseg_id == ULINT_UNDEFINED) {
rseg_id = trx_assign_rseg();
}
rseg = trx_sys_get_nth_rseg(trx_sys, rseg_id);
trx->id = trx_sys_get_new_trx_id();
/* The initial value for trx->no: ut_dulint_max is used in
read_view_open_now: */
trx->no = ut_dulint_max;
trx->rseg = rseg;
trx->conc_state = TRX_ACTIVE;
trx->start_time = time(NULL);
UT_LIST_ADD_FIRST(trx_list, trx_sys->trx_list, trx);
return(TRUE);
}
/********************************************************************
Starts a new transaction. */
ibool
trx_start(
/*======*/
/* out: TRUE */
trx_t* trx, /* in: transaction */
ulint rseg_id)/* in: rollback segment id; if ULINT_UNDEFINED
is passed, the system chooses the rollback segment
automatically in a round-robin fashion */
{
ibool ret;
mutex_enter(&kernel_mutex);
ret = trx_start_low(trx, rseg_id);
mutex_exit(&kernel_mutex);
return(ret);
}
/********************************************************************
Commits a transaction. */
void
trx_commit_off_kernel(
/*==================*/
trx_t* trx) /* in: transaction */
{
page_t* update_hdr_page;
dulint lsn;
trx_rseg_t* rseg;
trx_undo_t* undo;
ibool must_flush_log = FALSE;
mtr_t mtr;
ut_ad(mutex_own(&kernel_mutex));
trx->must_flush_log_later = FALSE;
rseg = trx->rseg;
if (trx->insert_undo != NULL || trx->update_undo != NULL) {
mutex_exit(&kernel_mutex);
mtr_start(&mtr);
must_flush_log = TRUE;
/* Change the undo log segment states from TRX_UNDO_ACTIVE
to some other state: these modifications to the file data
structure define the transaction as committed in the file
based world, at the serialization point of the log sequence
number lsn obtained below. */
mutex_enter(&(rseg->mutex));
if (trx->insert_undo != NULL) {
trx_undo_set_state_at_finish(
rseg, trx, trx->insert_undo, &mtr);
}
undo = trx->update_undo;
if (undo) {
mutex_enter(&kernel_mutex);
trx->no = trx_sys_get_new_trx_no();
mutex_exit(&kernel_mutex);
/* It is not necessary to obtain trx->undo_mutex here
because only a single OS thread is allowed to do the
transaction commit for this transaction. */
update_hdr_page = trx_undo_set_state_at_finish(
rseg, trx, undo, &mtr);
/* We have to do the cleanup for the update log while
holding the rseg mutex because update log headers
have to be put to the history list in the order of
the trx number. */
trx_undo_update_cleanup(trx, update_hdr_page, &mtr);
}
mutex_exit(&(rseg->mutex));
/* Update the latest MySQL binlog name and offset info
in trx sys header if MySQL binlogging is on or the database
server is a MySQL replication slave */
if (trx->mysql_log_file_name
&& trx->mysql_log_file_name[0] != '\0') {
trx_sys_update_mysql_binlog_offset(
trx->mysql_log_file_name,
trx->mysql_log_offset,
TRX_SYS_MYSQL_LOG_INFO, &mtr);
trx->mysql_log_file_name = NULL;
}
/* The following call commits the mini-transaction, making the
whole transaction committed in the file-based world, at this
log sequence number. The transaction becomes 'durable' when
we write the log to disk, but in the logical sense the commit
in the file-based data structures (undo logs etc.) happens
here.
NOTE that transaction numbers, which are assigned only to
transactions with an update undo log, do not necessarily come
in exactly the same order as commit lsn's, if the transactions
have different rollback segments. To get exactly the same
order we should hold the kernel mutex up to this point,
adding to to the contention of the kernel mutex. However, if
a transaction T2 is able to see modifications made by
a transaction T1, T2 will always get a bigger transaction
number and a bigger commit lsn than T1. */
/*--------------*/
mtr_commit(&mtr);
/*--------------*/
lsn = mtr.end_lsn;
mutex_enter(&kernel_mutex);
}
ut_ad(trx->conc_state == TRX_ACTIVE
|| trx->conc_state == TRX_PREPARED);
ut_ad(mutex_own(&kernel_mutex));
/* The following assignment makes the transaction committed in memory
and makes its changes to data visible to other transactions.
NOTE that there is a small discrepancy from the strict formal
visibility rules here: a human user of the database can see
modifications made by another transaction T even before the necessary
log segment has been flushed to the disk. If the database happens to
crash before the flush, the user has seen modifications from T which
will never be a committed transaction. However, any transaction T2
which sees the modifications of the committing transaction T, and
which also itself makes modifications to the database, will get an lsn
larger than the committing transaction T. In the case where the log
flush fails, and T never gets committed, also T2 will never get
committed. */
/*--------------------------------------*/
trx->conc_state = TRX_COMMITTED_IN_MEMORY;
/*--------------------------------------*/
lock_release_off_kernel(trx);
if (trx->global_read_view) {
read_view_close(trx->global_read_view);
mem_heap_empty(trx->global_read_view_heap);
trx->global_read_view = NULL;
}
trx->read_view = NULL;
if (must_flush_log) {
mutex_exit(&kernel_mutex);
if (trx->insert_undo != NULL) {
trx_undo_insert_cleanup(trx);
}
/* NOTE that we could possibly make a group commit more
efficient here: call os_thread_yield here to allow also other
trxs to come to commit! */
/*-------------------------------------*/
/* Depending on the my.cnf options, we may now write the log
buffer to the log files, making the transaction durable if
the OS does not crash. We may also flush the log files to
disk, making the transaction durable also at an OS crash or a
power outage.
The idea in InnoDB's group commit is that a group of
transactions gather behind a trx doing a physical disk write
to log files, and when that physical write has been completed,
one of those transactions does a write which commits the whole
group. Note that this group commit will only bring benefit if
there are > 2 users in the database. Then at least 2 users can
gather behind one doing the physical log write to disk.
If we are calling trx_commit() under MySQL's binlog mutex, we
will delay possible log write and flush to a separate function
trx_commit_complete_for_mysql(), which is only called when the
thread has released the binlog mutex. This is to make the
group commit algorithm to work. Otherwise, the MySQL binlog
mutex would serialize all commits and prevent a group of
transactions from gathering. */
if (trx->flush_log_later) {
/* Do nothing yet */
trx->must_flush_log_later = TRUE;
} else if (srv_flush_log_at_trx_commit == 0) {
/* Do nothing */
} else if (srv_flush_log_at_trx_commit == 1) {
if (srv_unix_file_flush_method == SRV_UNIX_NOSYNC) {
/* Write the log but do not flush it to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP,
FALSE);
} else {
/* Write the log to the log files AND flush
them to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, TRUE);
}
} else if (srv_flush_log_at_trx_commit == 2) {
/* Write the log but do not flush it to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE);
} else {
ut_error;
}
trx->commit_lsn = lsn;
/*-------------------------------------*/
mutex_enter(&kernel_mutex);
}
/* Free all savepoints */
trx_roll_free_all_savepoints(trx);
trx->conc_state = TRX_NOT_STARTED;
trx->rseg = NULL;
trx->undo_no = ut_dulint_zero;
trx->last_sql_stat_start.least_undo_no = ut_dulint_zero;
trx->mysql_query_str = NULL;
trx->mysql_query_len = NULL;
ut_ad(UT_LIST_GET_LEN(trx->wait_thrs) == 0);
ut_ad(UT_LIST_GET_LEN(trx->trx_locks) == 0);
UT_LIST_REMOVE(trx_list, trx_sys->trx_list, trx);
}
/********************************************************************
Cleans up a transaction at database startup. The cleanup is needed if
the transaction already got to the middle of a commit when the database
crashed, andf we cannot roll it back. */
void
trx_cleanup_at_db_startup(
/*======================*/
trx_t* trx) /* in: transaction */
{
if (trx->insert_undo != NULL) {
trx_undo_insert_cleanup(trx);
}
trx->conc_state = TRX_NOT_STARTED;
trx->rseg = NULL;
trx->undo_no = ut_dulint_zero;
trx->last_sql_stat_start.least_undo_no = ut_dulint_zero;
UT_LIST_REMOVE(trx_list, trx_sys->trx_list, trx);
}
/************************************************************************
Assigns a read view for a consistent read query. All the consistent reads
within the same transaction will get the same read view, which is created
when this function is first called for a new started transaction. */
read_view_t*
trx_assign_read_view(
/*=================*/
/* out: consistent read view */
trx_t* trx) /* in: active transaction */
{
ut_ad(trx->conc_state == TRX_ACTIVE);
if (trx->read_view) {
return(trx->read_view);
}
mutex_enter(&kernel_mutex);
if (!trx->read_view) {
trx->read_view = read_view_open_now(
trx->id, trx->global_read_view_heap);
trx->global_read_view = trx->read_view;
}
mutex_exit(&kernel_mutex);
return(trx->read_view);
}
/********************************************************************
Commits a transaction. NOTE that the kernel mutex is temporarily released. */
static
void
trx_handle_commit_sig_off_kernel(
/*=============================*/
trx_t* trx, /* in: transaction */
que_thr_t** next_thr) /* in/out: next query thread to run;
if the value which is passed in is
a pointer to a NULL pointer, then the
calling function can start running
a new query thread */
{
trx_sig_t* sig;
trx_sig_t* next_sig;
ut_ad(mutex_own(&kernel_mutex));
trx->que_state = TRX_QUE_COMMITTING;
trx_commit_off_kernel(trx);
ut_ad(UT_LIST_GET_LEN(trx->wait_thrs) == 0);
/* Remove all TRX_SIG_COMMIT signals from the signal queue and send
reply messages to them */
sig = UT_LIST_GET_FIRST(trx->signals);
while (sig != NULL) {
next_sig = UT_LIST_GET_NEXT(signals, sig);
if (sig->type == TRX_SIG_COMMIT) {
trx_sig_reply(sig, next_thr);
trx_sig_remove(trx, sig);
}
sig = next_sig;
}
trx->que_state = TRX_QUE_RUNNING;
}
/***************************************************************
The transaction must be in the TRX_QUE_LOCK_WAIT state. Puts it to
the TRX_QUE_RUNNING state and releases query threads which were
waiting for a lock in the wait_thrs list. */
void
trx_end_lock_wait(
/*==============*/
trx_t* trx) /* in: transaction */
{
que_thr_t* thr;
ut_ad(mutex_own(&kernel_mutex));
ut_ad(trx->que_state == TRX_QUE_LOCK_WAIT);
thr = UT_LIST_GET_FIRST(trx->wait_thrs);
while (thr != NULL) {
que_thr_end_wait_no_next_thr(thr);
UT_LIST_REMOVE(trx_thrs, trx->wait_thrs, thr);
thr = UT_LIST_GET_FIRST(trx->wait_thrs);
}
trx->que_state = TRX_QUE_RUNNING;
}
/***************************************************************
Moves the query threads in the lock wait list to the SUSPENDED state and puts
the transaction to the TRX_QUE_RUNNING state. */
static
void
trx_lock_wait_to_suspended(
/*=======================*/
trx_t* trx) /* in: transaction in the TRX_QUE_LOCK_WAIT state */
{
que_thr_t* thr;
ut_ad(mutex_own(&kernel_mutex));
ut_ad(trx->que_state == TRX_QUE_LOCK_WAIT);
thr = UT_LIST_GET_FIRST(trx->wait_thrs);
while (thr != NULL) {
thr->state = QUE_THR_SUSPENDED;
UT_LIST_REMOVE(trx_thrs, trx->wait_thrs, thr);
thr = UT_LIST_GET_FIRST(trx->wait_thrs);
}
trx->que_state = TRX_QUE_RUNNING;
}
/***************************************************************
Moves the query threads in the sig reply wait list of trx to the SUSPENDED
state. */
static
void
trx_sig_reply_wait_to_suspended(
/*============================*/
trx_t* trx) /* in: transaction */
{
trx_sig_t* sig;
que_thr_t* thr;
ut_ad(mutex_own(&kernel_mutex));
sig = UT_LIST_GET_FIRST(trx->reply_signals);
while (sig != NULL) {
thr = sig->receiver;
ut_ad(thr->state == QUE_THR_SIG_REPLY_WAIT);
thr->state = QUE_THR_SUSPENDED;
sig->receiver = NULL;
UT_LIST_REMOVE(reply_signals, trx->reply_signals, sig);
sig = UT_LIST_GET_FIRST(trx->reply_signals);
}
}
/*********************************************************************
Checks the compatibility of a new signal with the other signals in the
queue. */
static
ibool
trx_sig_is_compatible(
/*==================*/
/* out: TRUE if the signal can be queued */
trx_t* trx, /* in: trx handle */
ulint type, /* in: signal type */
ulint sender) /* in: TRX_SIG_SELF or TRX_SIG_OTHER_SESS */
{
trx_sig_t* sig;
ut_ad(mutex_own(&kernel_mutex));
if (UT_LIST_GET_LEN(trx->signals) == 0) {
return(TRUE);
}
if (sender == TRX_SIG_SELF) {
if (type == TRX_SIG_ERROR_OCCURRED) {
return(TRUE);
} else if (type == TRX_SIG_BREAK_EXECUTION) {
return(TRUE);
} else {
return(FALSE);
}
}
ut_ad(sender == TRX_SIG_OTHER_SESS);
sig = UT_LIST_GET_FIRST(trx->signals);
if (type == TRX_SIG_COMMIT) {
while (sig != NULL) {
if (sig->type == TRX_SIG_TOTAL_ROLLBACK) {
return(FALSE);
}
sig = UT_LIST_GET_NEXT(signals, sig);
}
return(TRUE);
} else if (type == TRX_SIG_TOTAL_ROLLBACK) {
while (sig != NULL) {
if (sig->type == TRX_SIG_COMMIT) {
return(FALSE);
}
sig = UT_LIST_GET_NEXT(signals, sig);
}
return(TRUE);
} else if (type == TRX_SIG_BREAK_EXECUTION) {
return(TRUE);
} else {
ut_error;
return(FALSE);
}
}
/********************************************************************
Sends a signal to a trx object. */
void
trx_sig_send(
/*=========*/
trx_t* trx, /* in: trx handle */
ulint type, /* in: signal type */
ulint sender, /* in: TRX_SIG_SELF or
TRX_SIG_OTHER_SESS */
que_thr_t* receiver_thr, /* in: query thread which wants the
reply, or NULL; if type is
TRX_SIG_END_WAIT, this must be NULL */
trx_savept_t* savept, /* in: possible rollback savepoint, or
NULL */
que_thr_t** next_thr) /* in/out: next query thread to run;
if the value which is passed in is
a pointer to a NULL pointer, then the
calling function can start running
a new query thread; if the parameter
is NULL, it is ignored */
{
trx_sig_t* sig;
trx_t* receiver_trx;
ut_ad(trx);
ut_ad(mutex_own(&kernel_mutex));
if (!trx_sig_is_compatible(trx, type, sender)) {
/* The signal is not compatible with the other signals in
the queue: die */
ut_error;
}
/* Queue the signal object */
if (UT_LIST_GET_LEN(trx->signals) == 0) {
/* The signal list is empty: the 'sig' slot must be unused
(we improve performance a bit by avoiding mem_alloc) */
sig = &(trx->sig);
} else {
/* It might be that the 'sig' slot is unused also in this
case, but we choose the easy way of using mem_alloc */
sig = mem_alloc(sizeof(trx_sig_t));
}
UT_LIST_ADD_LAST(signals, trx->signals, sig);
sig->type = type;
sig->sender = sender;
sig->receiver = receiver_thr;
if (savept) {
sig->savept = *savept;
}
if (receiver_thr) {
receiver_trx = thr_get_trx(receiver_thr);
UT_LIST_ADD_LAST(reply_signals, receiver_trx->reply_signals,
sig);
}
if (trx->sess->state == SESS_ERROR) {
trx_sig_reply_wait_to_suspended(trx);
}
if ((sender != TRX_SIG_SELF) || (type == TRX_SIG_BREAK_EXECUTION)) {
ut_error;
}
/* If there were no other signals ahead in the queue, try to start
handling of the signal */
if (UT_LIST_GET_FIRST(trx->signals) == sig) {
trx_sig_start_handle(trx, next_thr);
}
}
/********************************************************************
Ends signal handling. If the session is in the error state, and
trx->graph_before_signal_handling != NULL, then returns control to the error
handling routine of the graph (currently just returns the control to the
graph root which then will send an error message to the client). */
void
trx_end_signal_handling(
/*====================*/
trx_t* trx) /* in: trx */
{
ut_ad(mutex_own(&kernel_mutex));
ut_ad(trx->handling_signals == TRUE);
trx->handling_signals = FALSE;
trx->graph = trx->graph_before_signal_handling;
if (trx->graph && (trx->sess->state == SESS_ERROR)) {
que_fork_error_handle(trx, trx->graph);
}
}
/********************************************************************
Starts handling of a trx signal. */
void
trx_sig_start_handle(
/*=================*/
trx_t* trx, /* in: trx handle */
que_thr_t** next_thr) /* in/out: next query thread to run;
if the value which is passed in is
a pointer to a NULL pointer, then the
calling function can start running
a new query thread; if the parameter
is NULL, it is ignored */
{
trx_sig_t* sig;
ulint type;
loop:
/* We loop in this function body as long as there are queued signals
we can process immediately */
ut_ad(trx);
ut_ad(mutex_own(&kernel_mutex));
if (trx->handling_signals && (UT_LIST_GET_LEN(trx->signals) == 0)) {
trx_end_signal_handling(trx);
return;
}
if (trx->conc_state == TRX_NOT_STARTED) {
trx_start_low(trx, ULINT_UNDEFINED);
}
/* If the trx is in a lock wait state, moves the waiting query threads
to the suspended state */
if (trx->que_state == TRX_QUE_LOCK_WAIT) {
trx_lock_wait_to_suspended(trx);
}
/* If the session is in the error state and this trx has threads
waiting for reply from signals, moves these threads to the suspended
state, canceling wait reservations; note that if the transaction has
sent a commit or rollback signal to itself, and its session is not in
the error state, then nothing is done here. */
if (trx->sess->state == SESS_ERROR) {
trx_sig_reply_wait_to_suspended(trx);
}
/* If there are no running query threads, we can start processing of a
signal, otherwise we have to wait until all query threads of this
transaction are aware of the arrival of the signal. */
if (trx->n_active_thrs > 0) {
return;
}
if (trx->handling_signals == FALSE) {
trx->graph_before_signal_handling = trx->graph;
trx->handling_signals = TRUE;
}
sig = UT_LIST_GET_FIRST(trx->signals);
type = sig->type;
if (type == TRX_SIG_COMMIT) {
trx_handle_commit_sig_off_kernel(trx, next_thr);
} else if ((type == TRX_SIG_TOTAL_ROLLBACK)
|| (type == TRX_SIG_ROLLBACK_TO_SAVEPT)) {
trx_rollback(trx, sig, next_thr);
/* No further signals can be handled until the rollback
completes, therefore we return */
return;
} else if (type == TRX_SIG_ERROR_OCCURRED) {
trx_rollback(trx, sig, next_thr);
/* No further signals can be handled until the rollback
completes, therefore we return */
return;
} else if (type == TRX_SIG_BREAK_EXECUTION) {
trx_sig_reply(sig, next_thr);
trx_sig_remove(trx, sig);
} else {
ut_error;
}
goto loop;
}
/********************************************************************
Send the reply message when a signal in the queue of the trx has been
handled. */
void
trx_sig_reply(
/*==========*/
trx_sig_t* sig, /* in: signal */
que_thr_t** next_thr) /* in/out: next query thread to run;
if the value which is passed in is
a pointer to a NULL pointer, then the
calling function can start running
a new query thread */
{
trx_t* receiver_trx;
ut_ad(sig);
ut_ad(mutex_own(&kernel_mutex));
if (sig->receiver != NULL) {
ut_ad((sig->receiver)->state == QUE_THR_SIG_REPLY_WAIT);
receiver_trx = thr_get_trx(sig->receiver);
UT_LIST_REMOVE(reply_signals, receiver_trx->reply_signals,
sig);
ut_ad(receiver_trx->sess->state != SESS_ERROR);
que_thr_end_wait(sig->receiver, next_thr);
sig->receiver = NULL;
}
}
/********************************************************************
Removes a signal object from the trx signal queue. */
void
trx_sig_remove(
/*===========*/
trx_t* trx, /* in: trx handle */
trx_sig_t* sig) /* in, own: signal */
{
ut_ad(trx && sig);
ut_ad(mutex_own(&kernel_mutex));
ut_ad(sig->receiver == NULL);
UT_LIST_REMOVE(signals, trx->signals, sig);
sig->type = 0; /* reset the field to catch possible bugs */
if (sig != &(trx->sig)) {
mem_free(sig);
}
}
/*************************************************************************
Creates a commit command node struct. */
commit_node_t*
commit_node_create(
/*===============*/
/* out, own: commit node struct */
mem_heap_t* heap) /* in: mem heap where created */
{
commit_node_t* node;
node = mem_heap_alloc(heap, sizeof(commit_node_t));
node->common.type = QUE_NODE_COMMIT;
node->state = COMMIT_NODE_SEND;
return(node);
}
/***************************************************************
Performs an execution step for a commit type node in a query graph. */
que_thr_t*
trx_commit_step(
/*============*/
/* out: query thread to run next, or NULL */
que_thr_t* thr) /* in: query thread */
{
commit_node_t* node;
que_thr_t* next_thr;
node = thr->run_node;
ut_ad(que_node_get_type(node) == QUE_NODE_COMMIT);
if (thr->prev_node == que_node_get_parent(node)) {
node->state = COMMIT_NODE_SEND;
}
if (node->state == COMMIT_NODE_SEND) {
mutex_enter(&kernel_mutex);
node->state = COMMIT_NODE_WAIT;
next_thr = NULL;
thr->state = QUE_THR_SIG_REPLY_WAIT;
/* Send the commit signal to the transaction */
trx_sig_send(thr_get_trx(thr), TRX_SIG_COMMIT, TRX_SIG_SELF,
thr, NULL, &next_thr);
mutex_exit(&kernel_mutex);
return(next_thr);
}
ut_ad(node->state == COMMIT_NODE_WAIT);
node->state = COMMIT_NODE_SEND;
thr->run_node = que_node_get_parent(node);
return(thr);
}
/**************************************************************************
Does the transaction commit for MySQL. */
ulint
trx_commit_for_mysql(
/*=================*/
/* out: 0 or error number */
trx_t* trx) /* in: trx handle */
{
/* Because we do not do the commit by sending an Innobase
sig to the transaction, we must here make sure that trx has been
started. */
ut_a(trx);
trx->op_info = "committing";
/* If we are doing the XA recovery of prepared transactions, then
the transaction object does not have an InnoDB session object, and we
set the dummy session that we use for all MySQL transactions. */
if (trx->sess == NULL) {
/* Open a dummy session */
if (!trx_dummy_sess) {
mutex_enter(&kernel_mutex);
if (!trx_dummy_sess) {
trx_dummy_sess = sess_open();
}
mutex_exit(&kernel_mutex);
}
trx->sess = trx_dummy_sess;
}
trx_start_if_not_started(trx);
mutex_enter(&kernel_mutex);
trx_commit_off_kernel(trx);
mutex_exit(&kernel_mutex);
trx->op_info = "";
return(0);
}
/**************************************************************************
If required, flushes the log to disk if we called trx_commit_for_mysql()
with trx->flush_log_later == TRUE. */
ulint
trx_commit_complete_for_mysql(
/*==========================*/
/* out: 0 or error number */
trx_t* trx) /* in: trx handle */
{
dulint lsn = trx->commit_lsn;
ut_a(trx);
trx->op_info = "flushing log";
if (!trx->must_flush_log_later) {
/* Do nothing */
} else if (srv_flush_log_at_trx_commit == 0) {
/* Do nothing */
} else if (srv_flush_log_at_trx_commit == 1) {
if (srv_unix_file_flush_method == SRV_UNIX_NOSYNC) {
/* Write the log but do not flush it to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE);
} else {
/* Write the log to the log files AND flush them to
disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, TRUE);
}
} else if (srv_flush_log_at_trx_commit == 2) {
/* Write the log but do not flush it to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE);
} else {
ut_error;
}
trx->must_flush_log_later = FALSE;
trx->op_info = "";
return(0);
}
/**************************************************************************
Marks the latest SQL statement ended. */
void
trx_mark_sql_stat_end(
/*==================*/
trx_t* trx) /* in: trx handle */
{
ut_a(trx);
if (trx->conc_state == TRX_NOT_STARTED) {
trx->undo_no = ut_dulint_zero;
}
trx->last_sql_stat_start.least_undo_no = trx->undo_no;
}
/**************************************************************************
Prints info about a transaction to the given file. The caller must own the
kernel mutex. */
void
trx_print(
/*======*/
FILE* f, /* in: output stream */
trx_t* trx, /* in: transaction */
ulint max_query_len) /* in: max query length to print, or 0 to
use the default max length */
{
ibool newline;
fprintf(f, "TRANSACTION %lu %lu",
(ulong) ut_dulint_get_high(trx->id),
(ulong) ut_dulint_get_low(trx->id));
switch (trx->conc_state) {
case TRX_NOT_STARTED:
fputs(", not started", f);
break;
case TRX_ACTIVE:
fprintf(f, ", ACTIVE %lu sec",
(ulong)difftime(time(NULL), trx->start_time));
break;
case TRX_PREPARED:
fprintf(f, ", ACTIVE (PREPARED) %lu sec",
(ulong)difftime(time(NULL), trx->start_time));
break;
case TRX_COMMITTED_IN_MEMORY:
fputs(", COMMITTED IN MEMORY", f);
break;
default:
fprintf(f, " state %lu", (ulong) trx->conc_state);
}
#ifdef UNIV_LINUX
fprintf(f, ", process no %lu", trx->mysql_process_no);
#endif
fprintf(f, ", OS thread id %lu",
(ulong) os_thread_pf(trx->mysql_thread_id));
if (*trx->op_info) {
putc(' ', f);
fputs(trx->op_info, f);
}
if (trx->is_purge) {
fputs(" purge trx", f);
}
if (trx->declared_to_be_inside_innodb) {
fprintf(f, ", thread declared inside InnoDB %lu",
(ulong) trx->n_tickets_to_enter_innodb);
}
putc('\n', f);
if (trx->n_mysql_tables_in_use > 0 || trx->mysql_n_tables_locked > 0) {
fprintf(f, "mysql tables in use %lu, locked %lu\n",
(ulong) trx->n_mysql_tables_in_use,
(ulong) trx->mysql_n_tables_locked);
}
newline = TRUE;
switch (trx->que_state) {
case TRX_QUE_RUNNING:
newline = FALSE; break;
case TRX_QUE_LOCK_WAIT:
fputs("LOCK WAIT ", f); break;
case TRX_QUE_ROLLING_BACK:
fputs("ROLLING BACK ", f); break;
case TRX_QUE_COMMITTING:
fputs("COMMITTING ", f); break;
default:
fprintf(f, "que state %lu ", (ulong) trx->que_state);
}
if (0 < UT_LIST_GET_LEN(trx->trx_locks)
|| mem_heap_get_size(trx->lock_heap) > 400) {
newline = TRUE;
fprintf(f, "%lu lock struct(s), heap size %lu,"
" %lu row lock(s)",
(ulong) UT_LIST_GET_LEN(trx->trx_locks),
(ulong) mem_heap_get_size(trx->lock_heap),
(ulong) lock_number_of_rows_locked(trx));
}
if (trx->has_search_latch) {
newline = TRUE;
fputs(", holds adaptive hash latch", f);
}
if (ut_dulint_cmp(trx->undo_no, ut_dulint_zero) != 0) {
newline = TRUE;
fprintf(f, ", undo log entries %lu",
(ulong) ut_dulint_get_low(trx->undo_no));
}
if (newline) {
putc('\n', f);
}
if (trx->mysql_thd != NULL) {
innobase_mysql_print_thd(f, trx->mysql_thd, max_query_len);
}
}
/***********************************************************************
Compares the "weight" (or size) of two transactions. The weight of one
transaction is estimated as the number of altered rows + the number of
locked rows. Transactions that have edited non-transactional tables are
considered heavier than ones that have not. */
int
trx_weight_cmp(
/*===========*/
/* out: <0, 0 or >0; similar to strcmp(3) */
trx_t* a, /* in: the first transaction to be compared */
trx_t* b) /* in: the second transaction to be compared */
{
ibool a_notrans_edit;
ibool b_notrans_edit;
/* If mysql_thd is NULL for a transaction we assume that it has
not edited non-transactional tables. */
a_notrans_edit = a->mysql_thd != NULL
&& thd_has_edited_nontrans_tables(a->mysql_thd);
b_notrans_edit = b->mysql_thd != NULL
&& thd_has_edited_nontrans_tables(b->mysql_thd);
if (a_notrans_edit && !b_notrans_edit) {
return(1);
}
if (!a_notrans_edit && b_notrans_edit) {
return(-1);
}
/* Either both had edited non-transactional tables or both had
not, we fall back to comparing the number of altered/locked
rows. */
#if 0
fprintf(stderr,
"%s TRX_WEIGHT(a): %lld+%lu, TRX_WEIGHT(b): %lld+%lu\n",
__func__,
ut_conv_dulint_to_longlong(a->undo_no),
UT_LIST_GET_LEN(a->trx_locks),
ut_conv_dulint_to_longlong(b->undo_no),
UT_LIST_GET_LEN(b->trx_locks));
#endif
#define TRX_WEIGHT(t) \
ut_dulint_add((t)->undo_no, UT_LIST_GET_LEN((t)->trx_locks))
return(ut_dulint_cmp(TRX_WEIGHT(a), TRX_WEIGHT(b)));
}
/********************************************************************
Prepares a transaction. */
void
trx_prepare_off_kernel(
/*===================*/
trx_t* trx) /* in: transaction */
{
trx_rseg_t* rseg;
ibool must_flush_log = FALSE;
dulint lsn;
mtr_t mtr;
ut_ad(mutex_own(&kernel_mutex));
rseg = trx->rseg;
if (trx->insert_undo != NULL || trx->update_undo != NULL) {
mutex_exit(&kernel_mutex);
mtr_start(&mtr);
must_flush_log = TRUE;
/* Change the undo log segment states from TRX_UNDO_ACTIVE
to TRX_UNDO_PREPARED: these modifications to the file data
structure define the transaction as prepared in the
file-based world, at the serialization point of lsn. */
mutex_enter(&(rseg->mutex));
if (trx->insert_undo != NULL) {
/* It is not necessary to obtain trx->undo_mutex here
because only a single OS thread is allowed to do the
transaction prepare for this transaction. */
trx_undo_set_state_at_prepare(trx, trx->insert_undo,
&mtr);
}
if (trx->update_undo) {
trx_undo_set_state_at_prepare(
trx, trx->update_undo, &mtr);
}
mutex_exit(&(rseg->mutex));
/*--------------*/
mtr_commit(&mtr); /* This mtr commit makes the
transaction prepared in the file-based
world */
/*--------------*/
lsn = mtr.end_lsn;
mutex_enter(&kernel_mutex);
}
ut_ad(mutex_own(&kernel_mutex));
/*--------------------------------------*/
trx->conc_state = TRX_PREPARED;
/*--------------------------------------*/
if (must_flush_log) {
/* Depending on the my.cnf options, we may now write the log
buffer to the log files, making the prepared state of the
transaction durable if the OS does not crash. We may also
flush the log files to disk, making the prepared state of the
transaction durable also at an OS crash or a power outage.
The idea in InnoDB's group prepare is that a group of
transactions gather behind a trx doing a physical disk write
to log files, and when that physical write has been completed,
one of those transactions does a write which prepares the whole
group. Note that this group prepare will only bring benefit if
there are > 2 users in the database. Then at least 2 users can
gather behind one doing the physical log write to disk.
TODO: find out if MySQL holds some mutex when calling this.
That would spoil our group prepare algorithm. */
mutex_exit(&kernel_mutex);
if (srv_flush_log_at_trx_commit == 0) {
/* Do nothing */
} else if (srv_flush_log_at_trx_commit == 1) {
if (srv_unix_file_flush_method == SRV_UNIX_NOSYNC) {
/* Write the log but do not flush it to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP,
FALSE);
} else {
/* Write the log to the log files AND flush
them to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, TRUE);
}
} else if (srv_flush_log_at_trx_commit == 2) {
/* Write the log but do not flush it to disk */
log_write_up_to(lsn, LOG_WAIT_ONE_GROUP, FALSE);
} else {
ut_error;
}
mutex_enter(&kernel_mutex);
}
}
/**************************************************************************
Does the transaction prepare for MySQL. */
ulint
trx_prepare_for_mysql(
/*==================*/
/* out: 0 or error number */
trx_t* trx) /* in: trx handle */
{
/* Because we do not do the prepare by sending an Innobase
sig to the transaction, we must here make sure that trx has been
started. */
ut_a(trx);
trx->op_info = "preparing";
trx_start_if_not_started(trx);
mutex_enter(&kernel_mutex);
trx_prepare_off_kernel(trx);
mutex_exit(&kernel_mutex);
trx->op_info = "";
return(0);
}
/**************************************************************************
This function is used to find number of prepared transactions and
their transaction objects for a recovery. */
int
trx_recover_for_mysql(
/*==================*/
/* out: number of prepared transactions
stored in xid_list */
XID* xid_list, /* in/out: prepared transactions */
ulint len) /* in: number of slots in xid_list */
{
trx_t* trx;
ulint count = 0;
ut_ad(xid_list);
ut_ad(len);
/* We should set those transactions which are in the prepared state
to the xid_list */
mutex_enter(&kernel_mutex);
trx = UT_LIST_GET_FIRST(trx_sys->trx_list);
while (trx) {
if (trx->conc_state == TRX_PREPARED) {
xid_list[count] = trx->xid;
if (count == 0) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Starting recovery for"
" XA transactions...\n");
}
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Transaction %lu %lu in"
" prepared state after recovery\n",
(ulong) ut_dulint_get_high(trx->id),
(ulong) ut_dulint_get_low(trx->id));
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Transaction contains changes"
" to %lu rows\n",
(ulong) ut_conv_dulint_to_longlong(
trx->undo_no));
count++;
if (count == len) {
break;
}
}
trx = UT_LIST_GET_NEXT(trx_list, trx);
}
mutex_exit(&kernel_mutex);
if (count > 0){
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: %lu transactions in prepared state"
" after recovery\n",
(ulong) count);
}
return ((int) count);
}
/***********************************************************************
This function is used to find one X/Open XA distributed transaction
which is in the prepared state */
trx_t*
trx_get_trx_by_xid(
/*===============*/
/* out: trx or NULL;
on match, the trx->xid will be invalidated */
const XID* xid) /* in: X/Open XA transaction identifier */
{
trx_t* trx;
if (xid == NULL) {
return(NULL);
}
mutex_enter(&kernel_mutex);
trx = UT_LIST_GET_FIRST(trx_sys->trx_list);
while (trx) {
/* Compare two X/Open XA transaction id's: their
length should be the same and binary comparison
of gtrid_lenght+bqual_length bytes should be
the same */
if (trx->conc_state == TRX_PREPARED
&& xid->gtrid_length == trx->xid.gtrid_length
&& xid->bqual_length == trx->xid.bqual_length
&& memcmp(xid->data, trx->xid.data,
xid->gtrid_length + xid->bqual_length) == 0) {
/* Invalidate the XID, so that subsequent calls
will not find it. */
memset(&trx->xid, 0, sizeof(trx->xid));
trx->xid.formatID = -1;
break;
}
trx = UT_LIST_GET_NEXT(trx_list, trx);
}
mutex_exit(&kernel_mutex);
return(trx);
}