mariadb/extra/yassl/taocrypt/include/algebra.hpp
svoj@mysql.com 01f4036989 WL#2286 - Compile MySQL w/YASSL support
merge with latest yaSSL, move templates instantiation into separate file where it is possible
2005-05-31 20:56:32 +05:00

228 lines
7.5 KiB
C++

/* algebra.hpp
*
* Copyright (C) 2003 Sawtooth Consulting Ltd.
*
* This file is part of yaSSL.
*
* yaSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* yaSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/* based on Wei Dai's algebra.h from CryptoPP */
#ifndef TAO_CRYPT_ALGEBRA_HPP
#define TAO_CRYPT_ALGEBRA_HPP
#include "integer.hpp"
namespace TaoCrypt {
// "const Element&" returned by member functions are references
// to internal data members. Since each object may have only
// one such data member for holding results, the following code
// will produce incorrect results:
// abcd = group.Add(group.Add(a,b), group.Add(c,d));
// But this should be fine:
// abcd = group.Add(a, group.Add(b, group.Add(c,d));
// Abstract Group
class TAOCRYPT_NO_VTABLE AbstractGroup : public virtual_base
{
public:
typedef Integer Element;
virtual ~AbstractGroup() {}
virtual bool Equal(const Element &a, const Element &b) const =0;
virtual const Element& Identity() const =0;
virtual const Element& Add(const Element &a, const Element &b) const =0;
virtual const Element& Inverse(const Element &a) const =0;
virtual bool InversionIsFast() const {return false;}
virtual const Element& Double(const Element &a) const;
virtual const Element& Subtract(const Element &a, const Element &b) const;
virtual Element& Accumulate(Element &a, const Element &b) const;
virtual Element& Reduce(Element &a, const Element &b) const;
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1,
const Element &y, const Integer &e2) const;
virtual void SimultaneousMultiply(Element *results, const Element &base,
const Integer *exponents, unsigned int exponentsCount) const;
};
// Abstract Ring
class TAOCRYPT_NO_VTABLE AbstractRing : public AbstractGroup
{
public:
typedef Integer Element;
AbstractRing() : AbstractGroup() {m_mg.m_pRing = this;}
AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;}
AbstractRing& operator=(const AbstractRing &source) {return *this;}
virtual bool IsUnit(const Element &a) const =0;
virtual const Element& MultiplicativeIdentity() const =0;
virtual const Element& Multiply(const Element&, const Element&) const =0;
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
virtual const Element& Square(const Element &a) const;
virtual const Element& Divide(const Element &a, const Element &b) const;
virtual Element Exponentiate(const Element &a, const Integer &e) const;
virtual Element CascadeExponentiate(const Element &x, const Integer &e1,
const Element &y, const Integer &e2) const;
virtual void SimultaneousExponentiate(Element *results, const Element&,
const Integer *exponents, unsigned int exponentsCount) const;
virtual const AbstractGroup& MultiplicativeGroup() const
{return m_mg;}
private:
class MultiplicativeGroupT : public AbstractGroup
{
public:
const AbstractRing& GetRing() const
{return *m_pRing;}
bool Equal(const Element &a, const Element &b) const
{return GetRing().Equal(a, b);}
const Element& Identity() const
{return GetRing().MultiplicativeIdentity();}
const Element& Add(const Element &a, const Element &b) const
{return GetRing().Multiply(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return a = GetRing().Multiply(a, b);}
const Element& Inverse(const Element &a) const
{return GetRing().MultiplicativeInverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return GetRing().Divide(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return a = GetRing().Divide(a, b);}
const Element& Double(const Element &a) const
{return GetRing().Square(a);}
Element ScalarMultiply(const Element &a, const Integer &e) const
{return GetRing().Exponentiate(a, e);}
Element CascadeScalarMultiply(const Element &x, const Integer &e1,
const Element &y, const Integer &e2) const
{return GetRing().CascadeExponentiate(x, e1, y, e2);}
void SimultaneousMultiply(Element *results, const Element &base,
const Integer *exponents, unsigned int exponentsCount) const
{GetRing().SimultaneousExponentiate(results, base, exponents,
exponentsCount);}
const AbstractRing* m_pRing;
};
MultiplicativeGroupT m_mg;
};
// Abstract Euclidean Domain
class TAOCRYPT_NO_VTABLE AbstractEuclideanDomain
: public AbstractRing
{
public:
typedef Integer Element;
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a,
const Element &d) const =0;
virtual const Element& Mod(const Element &a, const Element &b) const =0;
virtual const Element& Gcd(const Element &a, const Element &b) const;
protected:
mutable Element result;
};
// EuclideanDomainOf
class EuclideanDomainOf : public AbstractEuclideanDomain
{
public:
typedef Integer Element;
EuclideanDomainOf() {}
bool Equal(const Element &a, const Element &b) const
{return a==b;}
const Element& Identity() const
{return Element::Zero();}
const Element& Add(const Element &a, const Element &b) const
{return result = a+b;}
Element& Accumulate(Element &a, const Element &b) const
{return a+=b;}
const Element& Inverse(const Element &a) const
{return result = -a;}
const Element& Subtract(const Element &a, const Element &b) const
{return result = a-b;}
Element& Reduce(Element &a, const Element &b) const
{return a-=b;}
const Element& Double(const Element &a) const
{return result = a.Doubled();}
const Element& MultiplicativeIdentity() const
{return Element::One();}
const Element& Multiply(const Element &a, const Element &b) const
{return result = a*b;}
const Element& Square(const Element &a) const
{return result = a.Squared();}
bool IsUnit(const Element &a) const
{return a.IsUnit();}
const Element& MultiplicativeInverse(const Element &a) const
{return result = a.MultiplicativeInverse();}
const Element& Divide(const Element &a, const Element &b) const
{return result = a/b;}
const Element& Mod(const Element &a, const Element &b) const
{return result = a%b;}
void DivisionAlgorithm(Element &r, Element &q, const Element &a,
const Element &d) const
{Element::Divide(r, q, a, d);}
private:
mutable Element result;
};
} // namespace
#endif // TAO_CRYPT_ALGEBRA_HPP