mariadb/innobase/fil/fil0fil.c
heikki@donna.mysql.fi 94db78ce61 srv0srv.h Support raw disk partitions as data files
srv0start.c	Support raw disk partitions as data files
srv0srv.c	Support raw disk partitions as data files
row0purge.c	< 4 GB rows, doublewrite, hang fixes
row0row.c	< 4 GB rows, doublewrite, hang fixes
row0sel.c	< 4 GB rows, doublewrite, hang fixes
row0uins.c	< 4 GB rows, doublewrite, hang fixes
row0umod.c	< 4 GB rows, doublewrite, hang fixes
row0undo.c	< 4 GB rows, doublewrite, hang fixes
row0upd.c	< 4 GB rows, doublewrite, hang fixes
srv0srv.c	< 4 GB rows, doublewrite, hang fixes
srv0start.c	< 4 GB rows, doublewrite, hang fixes
sync0rw.c	< 4 GB rows, doublewrite, hang fixes
sync0sync.c	< 4 GB rows, doublewrite, hang fixes
trx0purge.c	< 4 GB rows, doublewrite, hang fixes
trx0rec.c	< 4 GB rows, doublewrite, hang fixes
trx0sys.c	< 4 GB rows, doublewrite, hang fixes
btr0btr.c	< 4 GB rows, doublewrite, hang fixes
btr0cur.c	< 4 GB rows, doublewrite, hang fixes
buf0buf.c	< 4 GB rows, doublewrite, hang fixes
buf0flu.c	< 4 GB rows, doublewrite, hang fixes
buf0rea.c	< 4 GB rows, doublewrite, hang fixes
data0data.c	< 4 GB rows, doublewrite, hang fixes
fil0fil.c	< 4 GB rows, doublewrite, hang fixes
fsp0fsp.c	< 4 GB rows, doublewrite, hang fixes
ibuf0ibuf.c	< 4 GB rows, doublewrite, hang fixes
lock0lock.c	< 4 GB rows, doublewrite, hang fixes
log0log.c	< 4 GB rows, doublewrite, hang fixes
log0recv.c	< 4 GB rows, doublewrite, hang fixes
os0file.c	< 4 GB rows, doublewrite, hang fixes
page0cur.c	< 4 GB rows, doublewrite, hang fixes
pars0pars.c	< 4 GB rows, doublewrite, hang fixes
rem0cmp.c	< 4 GB rows, doublewrite, hang fixes
rem0rec.c	< 4 GB rows, doublewrite, hang fixes
row0ins.c	< 4 GB rows, doublewrite, hang fixes
row0mysql.c	< 4 GB rows, doublewrite, hang fixes
univ.i  	< 4 GB rows, doublewrite, hang fixes
data0data.ic	< 4 GB rows, doublewrite, hang fixes
mach0data.ic	< 4 GB rows, doublewrite, hang fixes
rem0rec.ic	< 4 GB rows, doublewrite, hang fixes
row0upd.ic	< 4 GB rows, doublewrite, hang fixes
trx0rec.ic	< 4 GB rows, doublewrite, hang fixes
rem0cmp.h	< 4 GB rows, doublewrite, hang fixes
rem0rec.h	< 4 GB rows, doublewrite, hang fixes
row0ins.h	< 4 GB rows, doublewrite, hang fixes
row0mysql.h	< 4 GB rows, doublewrite, hang fixes
row0row.h	< 4 GB rows, doublewrite, hang fixes
row0upd.h	< 4 GB rows, doublewrite, hang fixes
srv0srv.h	< 4 GB rows, doublewrite, hang fixes
sync0sync.h	< 4 GB rows, doublewrite, hang fixes
trx0rec.h	< 4 GB rows, doublewrite, hang fixes
trx0sys.h	< 4 GB rows, doublewrite, hang fixes
trx0types.h	< 4 GB rows, doublewrite, hang fixes
trx0undo.h	< 4 GB rows, doublewrite, hang fixes
ut0dbg.h	< 4 GB rows, doublewrite, hang fixes
ut0ut.h 	< 4 GB rows, doublewrite, hang fixes
btr0btr.h	< 4 GB rows, doublewrite, hang fixes
btr0cur.h	< 4 GB rows, doublewrite, hang fixes
buf0buf.h	< 4 GB rows, doublewrite, hang fixes
buf0flu.h	< 4 GB rows, doublewrite, hang fixes
data0data.h	< 4 GB rows, doublewrite, hang fixes
dict0mem.h	< 4 GB rows, doublewrite, hang fixes
fil0fil.h	< 4 GB rows, doublewrite, hang fixes
fsp0fsp.h	< 4 GB rows, doublewrite, hang fixes
os0file.h	< 4 GB rows, doublewrite, hang fixes
2001-08-04 19:36:14 +03:00

1391 lines
34 KiB
C

/******************************************************
The low-level file system
(c) 1995 Innobase Oy
Created 10/25/1995 Heikki Tuuri
*******************************************************/
#include "fil0fil.h"
#include "mem0mem.h"
#include "sync0sync.h"
#include "hash0hash.h"
#include "os0file.h"
#include "os0sync.h"
#include "mach0data.h"
#include "ibuf0ibuf.h"
#include "buf0buf.h"
#include "log0log.h"
#include "log0recv.h"
#include "fsp0fsp.h"
/*
IMPLEMENTATION OF THE LOW-LEVEL FILE SYSTEM
===========================================
The file system is responsible for providing fast read/write access to
tablespaces and logs of the database. File creation and deletion is done
in other modules which know more of the logic of the operation, however.
A tablespace consists of a chain of files. The size of the files does not
have to be divisible by the database block size, because we may just leave
the last incomplete block unused. When a new file is appended to the
tablespace, the maximum size of the file is also specified. At the moment,
we think that it is best to extend the file to its maximum size already at
the creation of the file, because then we can avoid dynamically extending
the file when more space is needed for the tablespace.
A block's position in the tablespace is specified with a 32-bit unsigned
integer. The files in the chain are thought to be catenated, and the block
corresponding to an address n is the nth block in the catenated file (where
the first block is named the 0th block, and the incomplete block fragments
at the end of files are not taken into account). A tablespace can be extended
by appending a new file at the end of the chain.
Our tablespace concept is similar to the one of Oracle.
To acquire more speed in disk transfers, a technique called disk striping is
sometimes used. This means that logical block addresses are divided in a
round-robin fashion across several disks. Windows NT supports disk striping,
so there we do not need to support it in the database. Disk striping is
implemented in hardware in RAID disks. We conclude that it is not necessary
to implement it in the database. Oracle 7 does not support disk striping,
either.
Another trick used at some database sites is replacing tablespace files by
raw disks, that is, the whole physical disk drive, or a partition of it, is
opened as a single file, and it is accessed through byte offsets calculated
from the start of the disk or the partition. This is recommended in some
books on database tuning to achieve more speed in i/o. Using raw disk
certainly prevents the OS from fragmenting disk space, but it is not clear
if it really adds speed. We measured on the Pentium 100 MHz + NT + NTFS file
system + EIDE Conner disk only a negligible difference in speed when reading
from a file, versus reading from a raw disk.
To have fast access to a tablespace or a log file, we put the data structures
to a hash table. Each tablespace and log file is given an unique 32-bit
identifier.
Some operating systems do not support many open files at the same time,
though NT seems to tolerate at least 900 open files. Therefore, we put the
open files in an LRU-list. If we need to open another file, we may close the
file at the end of the LRU-list. When an i/o-operation is pending on a file,
the file cannot be closed. We take the file nodes with pending i/o-operations
out of the LRU-list and keep a count of pending operations. When an operation
completes, we decrement the count and return the file node to the LRU-list if
the count drops to zero. */
/* Null file address */
fil_addr_t fil_addr_null = {FIL_NULL, 0};
/* File system file node data structure */
typedef struct fil_node_struct fil_node_t;
struct fil_node_struct {
char* name; /* the file name or path */
ibool open; /* TRUE if file open */
os_file_t handle; /* OS handle to the file, if file open */
ulint size; /* size of the file in database blocks
(where the possible last incomplete block
is ignored) */
ulint n_pending;
/* count of pending i/o-ops on this file */
ibool is_modified; /* this is set to TRUE when we write
to the file and FALSE when we call fil_flush
for this file space */
UT_LIST_NODE_T(fil_node_t) chain;
/* link field for the file chain */
UT_LIST_NODE_T(fil_node_t) LRU;
/* link field for the LRU list */
ulint magic_n;
};
#define FIL_NODE_MAGIC_N 89389
/* File system tablespace or log data structure: let us call them by a common
name space */
struct fil_space_struct {
char* name; /* space name */
ulint id; /* space id */
ulint purpose;/* FIL_TABLESPACE, FIL_LOG, or FIL_ARCH_LOG */
UT_LIST_BASE_NODE_T(fil_node_t) chain;
/* base node for the file chain */
ulint size; /* space size in pages */
ulint n_reserved_extents;
/* number of reserved free extents for
ongoing operations like B-tree page split */
hash_node_t hash; /* hash chain node */
rw_lock_t latch; /* latch protecting the file space storage
allocation */
UT_LIST_NODE_T(fil_space_t) space_list;
/* list of all spaces */
ibuf_data_t* ibuf_data;
/* insert buffer data */
ulint magic_n;
};
#define FIL_SPACE_MAGIC_N 89472
/* The file system data structure */
typedef struct fil_system_struct fil_system_t;
struct fil_system_struct {
mutex_t mutex; /* The mutex protecting the system */
hash_table_t* spaces; /* The hash table of spaces in the
system */
UT_LIST_BASE_NODE_T(fil_node_t) LRU;
/* base node for the LRU list of the
most recently used open files */
ulint n_open_pending; /* current number of open files with
pending i/o-ops on them */
ulint max_n_open; /* maximum allowed open files */
os_event_t can_open; /* this event is set to the signaled
state when the system is capable of
opening a new file, i.e.,
n_open_pending < max_n_open */
UT_LIST_BASE_NODE_T(fil_space_t) space_list;
/* list of all file spaces */
};
/* The file system. This variable is NULL before the module is initialized. */
fil_system_t* fil_system = NULL;
/* The file system hash table size */
#define FIL_SYSTEM_HASH_SIZE 500
/***********************************************************************
Reserves a right to open a single file. The right must be released with
fil_release_right_to_open. */
void
fil_reserve_right_to_open(void)
/*===========================*/
{
loop:
mutex_enter(&(fil_system->mutex));
if (fil_system->n_open_pending == fil_system->max_n_open) {
/* It is not sure we can open the file if it is closed: wait */
os_event_reset(fil_system->can_open);
mutex_exit(&(fil_system->mutex));
os_event_wait(fil_system->can_open);
goto loop;
}
fil_system->max_n_open--;
mutex_exit(&(fil_system->mutex));
}
/***********************************************************************
Releases a right to open a single file. */
void
fil_release_right_to_open(void)
/*===========================*/
{
mutex_enter(&(fil_system->mutex));
if (fil_system->n_open_pending == fil_system->max_n_open) {
os_event_set(fil_system->can_open);
}
fil_system->max_n_open++;
mutex_exit(&(fil_system->mutex));
}
/***********************************************************************
Returns the latch of a file space. */
rw_lock_t*
fil_space_get_latch(
/*================*/
/* out: latch protecting storage allocation */
ulint id) /* in: space id */
{
fil_space_t* space;
fil_system_t* system = fil_system;
ut_ad(system);
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
mutex_exit(&(system->mutex));
return(&(space->latch));
}
/***********************************************************************
Returns the type of a file space. */
ulint
fil_space_get_type(
/*===============*/
/* out: FIL_TABLESPACE or FIL_LOG */
ulint id) /* in: space id */
{
fil_space_t* space;
fil_system_t* system = fil_system;
ut_ad(system);
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
mutex_exit(&(system->mutex));
return(space->purpose);
}
/***********************************************************************
Returns the ibuf data of a file space. */
ibuf_data_t*
fil_space_get_ibuf_data(
/*====================*/
/* out: ibuf data for this space */
ulint id) /* in: space id */
{
fil_space_t* space;
fil_system_t* system = fil_system;
ut_ad(system);
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
mutex_exit(&(system->mutex));
return(space->ibuf_data);
}
/***********************************************************************
Appends a new file to the chain of files of a space. File must be closed. */
void
fil_node_create(
/*============*/
char* name, /* in: file name (file must be closed) */
ulint size, /* in: file size in database blocks, rounded downwards
to an integer */
ulint id) /* in: space id where to append */
{
fil_node_t* node;
fil_space_t* space;
char* name2;
fil_system_t* system = fil_system;
ut_a(system);
ut_a(name);
ut_a(size > 0);
mutex_enter(&(system->mutex));
node = mem_alloc(sizeof(fil_node_t));
name2 = mem_alloc(ut_strlen(name) + 1);
ut_strcpy(name2, name);
node->name = name2;
node->open = FALSE;
node->size = size;
node->magic_n = FIL_NODE_MAGIC_N;
node->n_pending = 0;
node->is_modified = FALSE;
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
space->size += size;
UT_LIST_ADD_LAST(chain, space->chain, node);
mutex_exit(&(system->mutex));
}
/**************************************************************************
Closes a file. */
static
void
fil_node_close(
/*===========*/
fil_node_t* node, /* in: file node */
fil_system_t* system) /* in: file system */
{
ibool ret;
ut_ad(node && system);
ut_ad(mutex_own(&(system->mutex)));
ut_a(node->open);
ut_a(node->n_pending == 0);
ret = os_file_close(node->handle);
ut_a(ret);
node->open = FALSE;
/* The node is in the LRU list, remove it */
UT_LIST_REMOVE(LRU, system->LRU, node);
}
/***********************************************************************
Frees a file node object from a file system. */
static
void
fil_node_free(
/*==========*/
fil_node_t* node, /* in, own: file node */
fil_system_t* system, /* in: file system */
fil_space_t* space) /* in: space where the file node is chained */
{
ut_ad(node && system && space);
ut_ad(mutex_own(&(system->mutex)));
ut_a(node->magic_n == FIL_NODE_MAGIC_N);
if (node->open) {
fil_node_close(node, system);
}
space->size -= node->size;
UT_LIST_REMOVE(chain, space->chain, node);
mem_free(node->name);
mem_free(node);
}
/********************************************************************
Drops files from the start of a file space, so that its size is cut by
the amount given. */
void
fil_space_truncate_start(
/*=====================*/
ulint id, /* in: space id */
ulint trunc_len) /* in: truncate by this much; it is an error
if this does not equal to the combined size of
some initial files in the space */
{
fil_node_t* node;
fil_space_t* space;
fil_system_t* system = fil_system;
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
ut_a(space);
while (trunc_len > 0) {
node = UT_LIST_GET_FIRST(space->chain);
ut_a(node->size * UNIV_PAGE_SIZE >= trunc_len);
trunc_len -= node->size * UNIV_PAGE_SIZE;
fil_node_free(node, system, space);
}
mutex_exit(&(system->mutex));
}
/********************************************************************
Creates a file system object. */
static
fil_system_t*
fil_system_create(
/*==============*/
/* out, own: file system object */
ulint hash_size, /* in: hash table size */
ulint max_n_open) /* in: maximum number of open files */
{
fil_system_t* system;
ut_a(hash_size > 0);
ut_a(max_n_open > 0);
system = mem_alloc(sizeof(fil_system_t));
mutex_create(&(system->mutex));
mutex_set_level(&(system->mutex), SYNC_ANY_LATCH);
system->spaces = hash_create(hash_size);
UT_LIST_INIT(system->LRU);
system->n_open_pending = 0;
system->max_n_open = max_n_open;
system->can_open = os_event_create(NULL);
UT_LIST_INIT(system->space_list);
return(system);
}
/********************************************************************
Initializes the file system of this module. */
void
fil_init(
/*=====*/
ulint max_n_open) /* in: max number of open files */
{
ut_a(fil_system == NULL);
fil_system = fil_system_create(FIL_SYSTEM_HASH_SIZE, max_n_open);
}
/********************************************************************
Writes the flushed lsn to the header of each file space. */
void
fil_ibuf_init_at_db_start(void)
/*===========================*/
{
fil_space_t* space;
space = UT_LIST_GET_FIRST(fil_system->space_list);
while (space) {
if (space->purpose == FIL_TABLESPACE) {
space->ibuf_data = ibuf_data_init_for_space(space->id);
}
space = UT_LIST_GET_NEXT(space_list, space);
}
}
/********************************************************************
Writes the flushed lsn and the latest archived log number to the page
header of the first page of a data file. */
static
ulint
fil_write_lsn_and_arch_no_to_file(
/*==============================*/
ulint space_id, /* in: space number */
ulint sum_of_sizes, /* in: combined size of previous files in space,
in database pages */
dulint lsn, /* in: lsn to write */
ulint arch_log_no) /* in: archived log number to write */
{
byte* buf1;
byte* buf;
buf1 = mem_alloc(2 * UNIV_PAGE_SIZE);
buf = ut_align(buf1, UNIV_PAGE_SIZE);
fil_read(TRUE, space_id, sum_of_sizes, 0, UNIV_PAGE_SIZE, buf, NULL);
mach_write_to_8(buf + FIL_PAGE_FILE_FLUSH_LSN, lsn);
mach_write_to_4(buf + FIL_PAGE_ARCH_LOG_NO, arch_log_no);
fil_write(TRUE, space_id, sum_of_sizes, 0, UNIV_PAGE_SIZE, buf, NULL);
return(DB_SUCCESS);
}
/********************************************************************
Writes the flushed lsn and the latest archived log number to the page
header of the first page of each data file. */
ulint
fil_write_flushed_lsn_to_data_files(
/*================================*/
/* out: DB_SUCCESS or error number */
dulint lsn, /* in: lsn to write */
ulint arch_log_no) /* in: latest archived log file number */
{
fil_space_t* space;
fil_node_t* node;
ulint sum_of_sizes;
ulint err;
mutex_enter(&(fil_system->mutex));
space = UT_LIST_GET_FIRST(fil_system->space_list);
while (space) {
if (space->purpose == FIL_TABLESPACE) {
sum_of_sizes = 0;
node = UT_LIST_GET_FIRST(space->chain);
while (node) {
mutex_exit(&(fil_system->mutex));
err = fil_write_lsn_and_arch_no_to_file(
space->id,
sum_of_sizes,
lsn, arch_log_no);
if (err != DB_SUCCESS) {
return(err);
}
mutex_enter(&(fil_system->mutex));
sum_of_sizes += node->size;
node = UT_LIST_GET_NEXT(chain, node);
}
}
space = UT_LIST_GET_NEXT(space_list, space);
}
mutex_exit(&(fil_system->mutex));
return(DB_SUCCESS);
}
/***********************************************************************
Reads the flushed lsn and arch no fields from a data file at database
startup. */
void
fil_read_flushed_lsn_and_arch_log_no(
/*=================================*/
os_file_t data_file, /* in: open data file */
ibool one_read_already, /* in: TRUE if min and max parameters
below already contain sensible data */
dulint* min_flushed_lsn, /* in/out: */
ulint* min_arch_log_no, /* in/out: */
dulint* max_flushed_lsn, /* in/out: */
ulint* max_arch_log_no) /* in/out: */
{
byte* buf;
dulint flushed_lsn;
ulint arch_log_no;
buf = ut_malloc(UNIV_PAGE_SIZE);
os_file_read(data_file, buf, 0, 0, UNIV_PAGE_SIZE);
flushed_lsn = mach_read_from_8(buf + FIL_PAGE_FILE_FLUSH_LSN);
arch_log_no = mach_read_from_4(buf + FIL_PAGE_ARCH_LOG_NO);
ut_free(buf);
if (!one_read_already) {
*min_flushed_lsn = flushed_lsn;
*max_flushed_lsn = flushed_lsn;
*min_arch_log_no = arch_log_no;
*max_arch_log_no = arch_log_no;
return;
}
if (ut_dulint_cmp(*min_flushed_lsn, flushed_lsn) > 0) {
*min_flushed_lsn = flushed_lsn;
}
if (ut_dulint_cmp(*max_flushed_lsn, flushed_lsn) < 0) {
*max_flushed_lsn = flushed_lsn;
}
if (*min_arch_log_no > arch_log_no) {
*min_arch_log_no = arch_log_no;
}
if (*max_arch_log_no < arch_log_no) {
*max_arch_log_no = arch_log_no;
}
}
/***********************************************************************
Creates a space object and puts it to the file system. */
void
fil_space_create(
/*=============*/
char* name, /* in: space name */
ulint id, /* in: space id */
ulint purpose)/* in: FIL_TABLESPACE, or FIL_LOG if log */
{
fil_space_t* space;
char* name2;
fil_system_t* system = fil_system;
ut_a(system);
ut_a(name);
#ifndef UNIV_BASIC_LOG_DEBUG
/* Spaces with an odd id number are reserved to replicate spaces
used in log debugging */
ut_a((purpose == FIL_LOG) || (id % 2 == 0));
#endif
mutex_enter(&(system->mutex));
space = mem_alloc(sizeof(fil_space_t));
name2 = mem_alloc(ut_strlen(name) + 1);
ut_strcpy(name2, name);
space->name = name2;
space->id = id;
space->purpose = purpose;
space->size = 0;
space->n_reserved_extents = 0;
UT_LIST_INIT(space->chain);
space->magic_n = FIL_SPACE_MAGIC_N;
space->ibuf_data = NULL;
rw_lock_create(&(space->latch));
rw_lock_set_level(&(space->latch), SYNC_FSP);
HASH_INSERT(fil_space_t, hash, system->spaces, id, space);
UT_LIST_ADD_LAST(space_list, system->space_list, space);
mutex_exit(&(system->mutex));
}
/***********************************************************************
Frees a space object from a file system. Closes the files in the chain
but does not delete them. */
void
fil_space_free(
/*===========*/
ulint id) /* in: space id */
{
fil_space_t* space;
fil_node_t* fil_node;
fil_system_t* system = fil_system;
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
HASH_DELETE(fil_space_t, hash, system->spaces, id, space);
UT_LIST_REMOVE(space_list, system->space_list, space);
ut_a(space->magic_n == FIL_SPACE_MAGIC_N);
fil_node = UT_LIST_GET_FIRST(space->chain);
ut_d(UT_LIST_VALIDATE(chain, fil_node_t, space->chain));
while (fil_node != NULL) {
fil_node_free(fil_node, system, space);
fil_node = UT_LIST_GET_FIRST(space->chain);
}
ut_d(UT_LIST_VALIDATE(chain, fil_node_t, space->chain));
ut_ad(0 == UT_LIST_GET_LEN(space->chain));
mutex_exit(&(system->mutex));
mem_free(space->name);
mem_free(space);
}
/***********************************************************************
Returns the size of the space in pages. */
ulint
fil_space_get_size(
/*===============*/
/* out: space size */
ulint id) /* in: space id */
{
fil_space_t* space;
fil_system_t* system = fil_system;
ulint size;
ut_ad(system);
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
size = space->size;
mutex_exit(&(system->mutex));
return(size);
}
/***********************************************************************
Checks if the pair space, page_no refers to an existing page in a
tablespace file space. */
ibool
fil_check_adress_in_tablespace(
/*===========================*/
/* out: TRUE if the address is meaningful */
ulint id, /* in: space id */
ulint page_no)/* in: page number */
{
fil_space_t* space;
fil_system_t* system = fil_system;
ulint size;
ibool ret;
ut_ad(system);
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
if (space == NULL) {
ret = FALSE;
} else {
size = space->size;
if (page_no > size) {
ret = FALSE;
} else if (space->purpose != FIL_TABLESPACE) {
ret = FALSE;
} else {
ret = TRUE;
}
}
mutex_exit(&(system->mutex));
return(ret);
}
/***********************************************************************
Tries to reserve free extents in a file space. */
ibool
fil_space_reserve_free_extents(
/*===========================*/
/* out: TRUE if succeed */
ulint id, /* in: space id */
ulint n_free_now, /* in: number of free extents now */
ulint n_to_reserve) /* in: how many one wants to reserve */
{
fil_space_t* space;
fil_system_t* system = fil_system;
ibool success;
ut_ad(system);
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
if (space->n_reserved_extents + n_to_reserve > n_free_now) {
success = FALSE;
} else {
space->n_reserved_extents += n_to_reserve;
success = TRUE;
}
mutex_exit(&(system->mutex));
return(success);
}
/***********************************************************************
Releases free extents in a file space. */
void
fil_space_release_free_extents(
/*===========================*/
ulint id, /* in: space id */
ulint n_reserved) /* in: how many one reserved */
{
fil_space_t* space;
fil_system_t* system = fil_system;
ut_ad(system);
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, id, space, space->id == id);
ut_a(space->n_reserved_extents >= n_reserved);
space->n_reserved_extents -= n_reserved;
mutex_exit(&(system->mutex));
}
/************************************************************************
Prepares a file node for i/o. Opens the file if it is closed. Updates the
pending i/o's field in the node and the system appropriately. Takes the node
off the LRU list if it is in the LRU list. */
static
void
fil_node_prepare_for_io(
/*====================*/
fil_node_t* node, /* in: file node */
fil_system_t* system, /* in: file system */
fil_space_t* space) /* in: space */
{
ibool ret;
fil_node_t* last_node;
ut_ad(node && system && space);
ut_ad(mutex_own(&(system->mutex)));
if (node->open == FALSE) {
/* File is closed */
ut_a(node->n_pending == 0);
/* If too many files are open, close one */
if (system->n_open_pending + UT_LIST_GET_LEN(system->LRU)
== system->max_n_open) {
ut_a(UT_LIST_GET_LEN(system->LRU) > 0);
last_node = UT_LIST_GET_LAST(system->LRU);
fil_node_close(last_node, system);
}
if (space->purpose == FIL_LOG) {
node->handle = os_file_create(node->name, OS_FILE_OPEN,
OS_FILE_AIO, OS_LOG_FILE, &ret);
} else {
node->handle = os_file_create(node->name, OS_FILE_OPEN,
OS_FILE_AIO, OS_DATA_FILE, &ret);
}
ut_a(ret);
node->open = TRUE;
system->n_open_pending++;
node->n_pending = 1;
/* File was closed: the node was not in the LRU list */
return;
}
/* File is open */
if (node->n_pending == 0) {
/* The node is in the LRU list, remove it */
UT_LIST_REMOVE(LRU, system->LRU, node);
system->n_open_pending++;
node->n_pending = 1;
} else {
/* There is already a pending i/o-op on the file: the node is
not in the LRU list */
node->n_pending++;
}
}
/************************************************************************
Updates the data structures when an i/o operation finishes. Updates the
pending i/os field in the node and the system appropriately. Puts the node
in the LRU list if there are no other pending i/os. */
static
void
fil_node_complete_io(
/*=================*/
fil_node_t* node, /* in: file node */
fil_system_t* system, /* in: file system */
ulint type) /* in: OS_FILE_WRITE or ..._READ */
{
ut_ad(node);
ut_ad(system);
ut_ad(mutex_own(&(system->mutex)));
ut_a(node->n_pending > 0);
node->n_pending--;
if (type != OS_FILE_READ) {
node->is_modified = TRUE;
}
if (node->n_pending == 0) {
/* The node must be put back to the LRU list */
UT_LIST_ADD_FIRST(LRU, system->LRU, node);
ut_a(system->n_open_pending > 0);
system->n_open_pending--;
if (system->n_open_pending == system->max_n_open - 1) {
os_event_set(system->can_open);
}
}
}
/************************************************************************
Reads or writes data. This operation is asynchronous (aio). */
void
fil_io(
/*===*/
ulint type, /* in: OS_FILE_READ or OS_FILE_WRITE,
ORed to OS_FILE_LOG, if a log i/o
and ORed to OS_AIO_SIMULATED_WAKE_LATER
if simulated aio and we want to post a
batch of i/os; NOTE that a simulated batch
may introduce hidden chances of deadlocks,
because i/os are not actually handled until
all have been posted: use with great
caution! */
ibool sync, /* in: TRUE if synchronous aio is desired */
ulint space_id, /* in: space id */
ulint block_offset, /* in: offset in number of blocks */
ulint byte_offset, /* in: remainder of offset in bytes; in
aio this must be divisible by the OS block
size */
ulint len, /* in: how many bytes to read; this must
not cross a file boundary; in aio this must
be a block size multiple */
void* buf, /* in/out: buffer where to store read data
or from where to write; in aio this must be
appropriately aligned */
void* message) /* in: message for aio handler if non-sync
aio used, else ignored */
{
ulint mode;
fil_space_t* space;
fil_node_t* node;
ulint offset_high;
ulint offset_low;
fil_system_t* system;
os_event_t event;
ibool ret;
ulint is_log;
ulint wake_later;
is_log = type & OS_FILE_LOG;
type = type & ~OS_FILE_LOG;
wake_later = type & OS_AIO_SIMULATED_WAKE_LATER;
type = type & ~OS_AIO_SIMULATED_WAKE_LATER;
ut_ad(byte_offset < UNIV_PAGE_SIZE);
ut_ad(buf);
ut_ad(len > 0);
ut_ad((1 << UNIV_PAGE_SIZE_SHIFT) == UNIV_PAGE_SIZE);
ut_ad(fil_validate());
#ifndef UNIV_LOG_DEBUG
/* ibuf bitmap pages must be read in the sync aio mode: */
ut_ad(recv_no_ibuf_operations || (type == OS_FILE_WRITE)
|| !ibuf_bitmap_page(block_offset) || sync || is_log);
#ifdef UNIV_SYNC_DEBUG
ut_ad(!ibuf_inside() || is_log || (type == OS_FILE_WRITE)
|| ibuf_page(space_id, block_offset));
#endif
#endif
if (sync) {
mode = OS_AIO_SYNC;
} else if ((type == OS_FILE_READ) && !is_log
&& ibuf_page(space_id, block_offset)) {
mode = OS_AIO_IBUF;
} else if (is_log) {
mode = OS_AIO_LOG;
} else {
mode = OS_AIO_NORMAL;
}
system = fil_system;
loop:
mutex_enter(&(system->mutex));
if (system->n_open_pending == system->max_n_open) {
/* It is not sure we can open the file if it is closed: wait */
event = system->can_open;
os_event_reset(event);
mutex_exit(&(system->mutex));
os_event_wait(event);
goto loop;
}
HASH_SEARCH(hash, system->spaces, space_id, space,
space->id == space_id);
ut_a(space);
ut_ad((mode != OS_AIO_IBUF) || (space->purpose == FIL_TABLESPACE));
node = UT_LIST_GET_FIRST(space->chain);
for (;;) {
ut_a(node);
if (node->size > block_offset) {
/* Found! */
break;
} else {
block_offset -= node->size;
node = UT_LIST_GET_NEXT(chain, node);
}
}
/* Open file if closed */
fil_node_prepare_for_io(node, system, space);
/* Now we have made the changes in the data structures of system */
mutex_exit(&(system->mutex));
/* Calculate the low 32 bits and the high 32 bits of the file offset */
offset_high = (block_offset >> (32 - UNIV_PAGE_SIZE_SHIFT));
offset_low = ((block_offset << UNIV_PAGE_SIZE_SHIFT) & 0xFFFFFFFF)
+ byte_offset;
ut_a(node->size - block_offset >=
(byte_offset + len + (UNIV_PAGE_SIZE - 1)) / UNIV_PAGE_SIZE);
/* Do aio */
ut_a(byte_offset % OS_FILE_LOG_BLOCK_SIZE == 0);
ut_a((len % OS_FILE_LOG_BLOCK_SIZE) == 0);
/* Queue the aio request */
ret = os_aio(type, mode | wake_later, node->name, node->handle, buf,
offset_low, offset_high, len, node, message);
ut_a(ret);
if (mode == OS_AIO_SYNC) {
/* The i/o operation is already completed when we return from
os_aio: */
mutex_enter(&(system->mutex));
fil_node_complete_io(node, system, type);
mutex_exit(&(system->mutex));
ut_ad(fil_validate());
}
}
/************************************************************************
Reads data from a space to a buffer. Remember that the possible incomplete
blocks at the end of file are ignored: they are not taken into account when
calculating the byte offset within a space. */
void
fil_read(
/*=====*/
ibool sync, /* in: TRUE if synchronous aio is desired */
ulint space_id, /* in: space id */
ulint block_offset, /* in: offset in number of blocks */
ulint byte_offset, /* in: remainder of offset in bytes; in aio
this must be divisible by the OS block size */
ulint len, /* in: how many bytes to read; this must not
cross a file boundary; in aio this must be a
block size multiple */
void* buf, /* in/out: buffer where to store data read;
in aio this must be appropriately aligned */
void* message) /* in: message for aio handler if non-sync
aio used, else ignored */
{
fil_io(OS_FILE_READ, sync, space_id, block_offset, byte_offset, len,
buf, message);
}
/************************************************************************
Writes data to a space from a buffer. Remember that the possible incomplete
blocks at the end of file are ignored: they are not taken into account when
calculating the byte offset within a space. */
void
fil_write(
/*======*/
ibool sync, /* in: TRUE if synchronous aio is desired */
ulint space_id, /* in: space id */
ulint block_offset, /* in: offset in number of blocks */
ulint byte_offset, /* in: remainder of offset in bytes; in aio
this must be divisible by the OS block size */
ulint len, /* in: how many bytes to write; this must
not cross a file boundary; in aio this must
be a block size multiple */
void* buf, /* in: buffer from which to write; in aio
this must be appropriately aligned */
void* message) /* in: message for aio handler if non-sync
aio used, else ignored */
{
fil_io(OS_FILE_WRITE, sync, space_id, block_offset, byte_offset, len,
buf, message);
}
/**************************************************************************
Waits for an aio operation to complete. This function is used to write the
handler for completed requests. The aio array of pending requests is divided
into segments (see os0file.c for more info). The thread specifies which
segment it wants to wait for. */
void
fil_aio_wait(
/*=========*/
ulint segment) /* in: the number of the segment in the aio
array to wait for */
{
ibool ret;
fil_node_t* fil_node;
fil_system_t* system = fil_system;
void* message;
ulint type;
ut_ad(fil_validate());
if (os_aio_use_native_aio) {
#ifdef WIN_ASYNC_IO
ret = os_aio_windows_handle(segment, 0, &fil_node, &message,
&type);
#elif defined(POSIX_ASYNC_IO)
ret = os_aio_posix_handle(segment, &fil_node, &message);
#else
ut_a(0);
#endif
} else {
ret = os_aio_simulated_handle(segment, (void**) &fil_node,
&message, &type);
}
ut_a(ret);
mutex_enter(&(system->mutex));
fil_node_complete_io(fil_node, fil_system, type);
mutex_exit(&(system->mutex));
ut_ad(fil_validate());
/* Do the i/o handling */
if (buf_pool_is_block(message)) {
buf_page_io_complete(message);
} else {
log_io_complete(message);
}
}
/**************************************************************************
Flushes to disk possible writes cached by the OS. */
void
fil_flush(
/*======*/
ulint space_id) /* in: file space id (this can be a group of
log files or a tablespace of the database) */
{
fil_system_t* system = fil_system;
fil_space_t* space;
fil_node_t* node;
os_file_t file;
mutex_enter(&(system->mutex));
HASH_SEARCH(hash, system->spaces, space_id, space,
space->id == space_id);
ut_a(space);
node = UT_LIST_GET_FIRST(space->chain);
while (node) {
if (node->open && node->is_modified) {
file = node->handle;
node->is_modified = FALSE;
mutex_exit(&(system->mutex));
/* Note that it is not certain, when we have
released the mutex above, that the file of the
handle is still open: we assume that the OS
will not crash or trap even if we pass a handle
to a closed file below in os_file_flush! */
/* printf("Flushing to file %s\n", node->name); */
os_file_flush(file);
mutex_enter(&(system->mutex));
}
node = UT_LIST_GET_NEXT(chain, node);
}
mutex_exit(&(system->mutex));
}
/**************************************************************************
Flushes to disk writes in file spaces of the given type possibly cached by
the OS. */
void
fil_flush_file_spaces(
/*==================*/
ulint purpose) /* in: FIL_TABLESPACE, FIL_LOG */
{
fil_system_t* system = fil_system;
fil_space_t* space;
mutex_enter(&(system->mutex));
space = UT_LIST_GET_FIRST(system->space_list);
while (space) {
if (space->purpose == purpose) {
mutex_exit(&(system->mutex));
fil_flush(space->id);
mutex_enter(&(system->mutex));
}
space = UT_LIST_GET_NEXT(space_list, space);
}
mutex_exit(&(system->mutex));
}
/**********************************************************************
Checks the consistency of the file system. */
ibool
fil_validate(void)
/*==============*/
/* out: TRUE if ok */
{
fil_space_t* space;
fil_node_t* fil_node;
ulint pending_count = 0;
fil_system_t* system;
ulint i;
system = fil_system;
mutex_enter(&(system->mutex));
/* Look for spaces in the hash table */
for (i = 0; i < hash_get_n_cells(system->spaces); i++) {
space = HASH_GET_FIRST(system->spaces, i);
while (space != NULL) {
UT_LIST_VALIDATE(chain, fil_node_t, space->chain);
fil_node = UT_LIST_GET_FIRST(space->chain);
while (fil_node != NULL) {
if (fil_node->n_pending > 0) {
pending_count++;
ut_a(fil_node->open);
}
fil_node = UT_LIST_GET_NEXT(chain, fil_node);
}
space = HASH_GET_NEXT(hash, space);
}
}
ut_a(pending_count == system->n_open_pending);
UT_LIST_VALIDATE(LRU, fil_node_t, system->LRU);
fil_node = UT_LIST_GET_FIRST(system->LRU);
while (fil_node != NULL) {
ut_a(fil_node->n_pending == 0);
ut_a(fil_node->open);
fil_node = UT_LIST_GET_NEXT(LRU, fil_node);
}
mutex_exit(&(system->mutex));
return(TRUE);
}
/************************************************************************
Returns TRUE if file address is undefined. */
ibool
fil_addr_is_null(
/*=============*/
/* out: TRUE if undefined */
fil_addr_t addr) /* in: address */
{
if (addr.page == FIL_NULL) {
return(TRUE);
}
return(FALSE);
}
/************************************************************************
Accessor functions for a file page */
ulint
fil_page_get_prev(byte* page)
{
return(mach_read_from_4(page + FIL_PAGE_PREV));
}
ulint
fil_page_get_next(byte* page)
{
return(mach_read_from_4(page + FIL_PAGE_NEXT));
}
/*************************************************************************
Sets the file page type. */
void
fil_page_set_type(
/*==============*/
byte* page, /* in: file page */
ulint type) /* in: type */
{
ut_ad(page);
ut_ad((type == FIL_PAGE_INDEX) || (type == FIL_PAGE_INDEX));
mach_write_to_2(page + FIL_PAGE_TYPE, type);
}
/*************************************************************************
Gets the file page type. */
ulint
fil_page_get_type(
/*==============*/
/* out: type; NOTE that if the type has not been
written to page, the return value not defined */
byte* page) /* in: file page */
{
ut_ad(page);
return(mach_read_from_2(page + FIL_PAGE_TYPE));
}