mariadb/include/my_atomic_wrapper.h
Marko Mäkelä 4cbfdeca84 MDEV-24109 InnoDB hangs with innodb_flush_sync=OFF
MDEV-23855 broke the handling of innodb_flush_sync=OFF.
That parameter is supposed to limit the page write rate
in case the log capacity is being exceeded and log checkpoints
are needed.

With this fix, the following should pass:
./mtr --mysqld=--loose-innodb-flush-sync=0

One of our best regression tests for page flushing is
encryption.innochecksum. With innodb_page_size=16k and
innodb_flush_sync=OFF it would likely hang without this fix.

log_sys.last_checkpoint_lsn: Declare as Atomic_relaxed<lsn_t>
so that we are allowed to read the value while not holding
log_sys.mutex.

buf_flush_wait_flushed(): Let the page cleaner perform the flushing
also if innodb_flush_sync=OFF. After the page cleaner has
completed, perform a checkpoint if it is needed, because
buf_flush_sync_for_checkpoint() will not be run if
innodb_flush_sync=OFF.

buf_flush_ahead(): Simplify the condition. We do not really care
whether buf_flush_page_cleaner() is running.

buf_flush_page_cleaner(): Evaluate innodb_flush_sync at the low
level. If innodb_flush_sync=OFF, rate-limit the batches to
innodb_io_capacity_max pages per second.

Reviewed by: Vladislav Vaintroub
2020-11-04 16:55:36 +02:00

61 lines
2.6 KiB
C++

/* Copyright (c) 2020, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#pragma once
#ifdef __cplusplus
#include <atomic>
/**
A wrapper for std::atomic, defaulting to std::memory_order_relaxed.
When it comes to atomic loads or stores at std::memory_order_relaxed
on IA-32 or AMD64, this wrapper is only introducing some constraints
to the C++ compiler, to prevent some optimizations of loads or
stores.
On POWER and ARM, atomic loads and stores involve different instructions
from normal loads and stores and will thus incur some overhead.
Because atomic read-modify-write operations will always incur
overhead, we intentionally do not define
operator++(), operator--(), operator+=(), operator-=(), or similar,
to make the overhead stand out in the users of this code.
*/
template <typename Type> class Atomic_relaxed
{
std::atomic<Type> m;
public:
Atomic_relaxed(const Atomic_relaxed<Type> &rhs)
{ m.store(rhs, std::memory_order_relaxed); }
Atomic_relaxed(Type val) : m(val) {}
Atomic_relaxed() {}
operator Type() const { return m.load(std::memory_order_relaxed); }
Type operator=(const Type val)
{ m.store(val, std::memory_order_relaxed); return val; }
Type operator=(const Atomic_relaxed<Type> &rhs) { return *this= Type{rhs}; }
Type fetch_add(const Type i, std::memory_order o= std::memory_order_relaxed)
{ return m.fetch_add(i, o); }
Type fetch_sub(const Type i, std::memory_order o= std::memory_order_relaxed)
{ return m.fetch_sub(i, o); }
Type fetch_xor(const Type i, std::memory_order o= std::memory_order_relaxed)
{ return m.fetch_xor(i, o); }
bool compare_exchange_strong(Type& i1, const Type i2,
std::memory_order o1= std::memory_order_relaxed,
std::memory_order o2= std::memory_order_relaxed)
{ return m.compare_exchange_strong(i1, i2, o1, o2); }
Type exchange(const Type i, std::memory_order o= std::memory_order_relaxed)
{ return m.exchange(i, o); }
};
#endif /* __cplusplus */