mariadb/bdb/btree/bt_cursor.c
ram@mysql.r18.ru 5e09392faa BDB 4.1.24
2002-10-30 15:57:05 +04:00

2794 lines
72 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996-2002
* Sleepycat Software. All rights reserved.
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: bt_cursor.c,v 11.147 2002/08/13 20:46:07 ubell Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/db_page.h"
#include "dbinc/db_shash.h"
#include "dbinc/btree.h"
#include "dbinc/lock.h"
static int __bam_bulk __P((DBC *, DBT *, u_int32_t));
static int __bam_c_close __P((DBC *, db_pgno_t, int *));
static int __bam_c_del __P((DBC *));
static int __bam_c_destroy __P((DBC *));
static int __bam_c_first __P((DBC *));
static int __bam_c_get __P((DBC *, DBT *, DBT *, u_int32_t, db_pgno_t *));
static int __bam_c_getstack __P((DBC *));
static int __bam_c_last __P((DBC *));
static int __bam_c_next __P((DBC *, int, int));
static int __bam_c_physdel __P((DBC *));
static int __bam_c_prev __P((DBC *));
static int __bam_c_put __P((DBC *, DBT *, DBT *, u_int32_t, db_pgno_t *));
static int __bam_c_search __P((DBC *,
db_pgno_t, const DBT *, u_int32_t, int *));
static int __bam_c_writelock __P((DBC *));
static int __bam_getboth_finddatum __P((DBC *, DBT *, u_int32_t));
static int __bam_getbothc __P((DBC *, DBT *));
static int __bam_get_prev __P((DBC *));
static int __bam_isopd __P((DBC *, db_pgno_t *));
/*
* Acquire a new page/lock. If we hold a page/lock, discard the page, and
* lock-couple the lock.
*
* !!!
* We have to handle both where we have a lock to lock-couple and where we
* don't -- we don't duplicate locks when we duplicate cursors if we are
* running in a transaction environment as there's no point if locks are
* never discarded. This means that the cursor may or may not hold a lock.
* In the case where we are decending the tree we always want to
* unlock the held interior page so we use ACQUIRE_COUPLE.
*/
#undef ACQUIRE
#define ACQUIRE(dbc, mode, lpgno, lock, fpgno, pagep, ret) { \
DB_MPOOLFILE *__mpf = (dbc)->dbp->mpf; \
if ((pagep) != NULL) { \
ret = __mpf->put(__mpf, pagep, 0); \
pagep = NULL; \
} else \
ret = 0; \
if ((ret) == 0 && STD_LOCKING(dbc)) \
ret = __db_lget(dbc, LCK_COUPLE, lpgno, mode, 0, &(lock));\
if ((ret) == 0) \
ret = __mpf->get(__mpf, &(fpgno), 0, &(pagep)); \
}
#undef ACQUIRE_COUPLE
#define ACQUIRE_COUPLE(dbc, mode, lpgno, lock, fpgno, pagep, ret) { \
DB_MPOOLFILE *__mpf = (dbc)->dbp->mpf; \
if ((pagep) != NULL) { \
ret = __mpf->put(__mpf, pagep, 0); \
pagep = NULL; \
} else \
ret = 0; \
if ((ret) == 0 && STD_LOCKING(dbc)) \
ret = __db_lget(dbc, \
LCK_COUPLE_ALWAYS, lpgno, mode, 0, &(lock)); \
if ((ret) == 0) \
ret = __mpf->get(__mpf, &(fpgno), 0, &(pagep)); \
}
/* Acquire a new page/lock for a cursor. */
#undef ACQUIRE_CUR
#define ACQUIRE_CUR(dbc, mode, p, ret) { \
BTREE_CURSOR *__cp = (BTREE_CURSOR *)(dbc)->internal; \
ACQUIRE(dbc, mode, p, __cp->lock, p, __cp->page, ret); \
if ((ret) == 0) { \
__cp->pgno = p; \
__cp->lock_mode = (mode); \
} \
}
/*
* Acquire a new page/lock for a cursor and release the previous.
* This is typically used when decending a tree and we do not
* want to hold the interior nodes locked.
*/
#undef ACQUIRE_CUR_COUPLE
#define ACQUIRE_CUR_COUPLE(dbc, mode, p, ret) { \
BTREE_CURSOR *__cp = (BTREE_CURSOR *)(dbc)->internal; \
ACQUIRE_COUPLE(dbc, mode, p, __cp->lock, p, __cp->page, ret); \
if ((ret) == 0) { \
__cp->pgno = p; \
__cp->lock_mode = (mode); \
} \
}
/*
* Acquire a write lock if we don't already have one.
*
* !!!
* See ACQUIRE macro on why we handle cursors that don't have locks.
*/
#undef ACQUIRE_WRITE_LOCK
#define ACQUIRE_WRITE_LOCK(dbc, ret) { \
BTREE_CURSOR *__cp = (BTREE_CURSOR *)(dbc)->internal; \
ret = 0; \
if (STD_LOCKING(dbc) && \
__cp->lock_mode != DB_LOCK_WRITE && \
((ret) = __db_lget(dbc, \
LOCK_ISSET(__cp->lock) ? LCK_COUPLE : 0, \
__cp->pgno, DB_LOCK_WRITE, 0, &__cp->lock)) == 0) \
__cp->lock_mode = DB_LOCK_WRITE; \
}
/* Discard the current page/lock. */
#undef DISCARD
#define DISCARD(dbc, ldiscard, lock, pagep, ret) { \
DB_MPOOLFILE *__mpf = (dbc)->dbp->mpf; \
int __t_ret; \
if ((pagep) != NULL) { \
ret = __mpf->put(__mpf, pagep, 0); \
pagep = NULL; \
} else \
ret = 0; \
if (ldiscard) \
__t_ret = __LPUT((dbc), lock); \
else \
__t_ret = __TLPUT((dbc), lock); \
if (__t_ret != 0 && (ret) == 0) \
ret = __t_ret; \
}
/* Discard the current page/lock for a cursor. */
#undef DISCARD_CUR
#define DISCARD_CUR(dbc, ret) { \
BTREE_CURSOR *__cp = (BTREE_CURSOR *)(dbc)->internal; \
DISCARD(dbc, 0, __cp->lock, __cp->page, ret); \
if ((ret) == 0) \
__cp->lock_mode = DB_LOCK_NG; \
}
/* If on-page item is a deleted record. */
#undef IS_DELETED
#define IS_DELETED(dbp, page, indx) \
B_DISSET(GET_BKEYDATA(dbp, page, \
(indx) + (TYPE(page) == P_LBTREE ? O_INDX : 0))->type)
#undef IS_CUR_DELETED
#define IS_CUR_DELETED(dbc) \
IS_DELETED((dbc)->dbp, (dbc)->internal->page, (dbc)->internal->indx)
/*
* Test to see if two cursors could point to duplicates of the same key.
* In the case of off-page duplicates they are they same, as the cursors
* will be in the same off-page duplicate tree. In the case of on-page
* duplicates, the key index offsets must be the same. For the last test,
* as the original cursor may not have a valid page pointer, we use the
* current cursor's.
*/
#undef IS_DUPLICATE
#define IS_DUPLICATE(dbc, i1, i2) \
(P_INP((dbc)->dbp,((PAGE *)(dbc)->internal->page))[i1] == \
P_INP((dbc)->dbp,((PAGE *)(dbc)->internal->page))[i2])
#undef IS_CUR_DUPLICATE
#define IS_CUR_DUPLICATE(dbc, orig_pgno, orig_indx) \
(F_ISSET(dbc, DBC_OPD) || \
(orig_pgno == (dbc)->internal->pgno && \
IS_DUPLICATE(dbc, (dbc)->internal->indx, orig_indx)))
/*
* __bam_c_init --
* Initialize the access private portion of a cursor
*
* PUBLIC: int __bam_c_init __P((DBC *, DBTYPE));
*/
int
__bam_c_init(dbc, dbtype)
DBC *dbc;
DBTYPE dbtype;
{
DB_ENV *dbenv;
int ret;
dbenv = dbc->dbp->dbenv;
/* Allocate/initialize the internal structure. */
if (dbc->internal == NULL && (ret =
__os_malloc(dbenv, sizeof(BTREE_CURSOR), &dbc->internal)) != 0)
return (ret);
/* Initialize methods. */
dbc->c_close = __db_c_close;
dbc->c_count = __db_c_count;
dbc->c_del = __db_c_del;
dbc->c_dup = __db_c_dup;
dbc->c_get = dbc->c_real_get = __db_c_get;
dbc->c_pget = __db_c_pget;
dbc->c_put = __db_c_put;
if (dbtype == DB_BTREE) {
dbc->c_am_bulk = __bam_bulk;
dbc->c_am_close = __bam_c_close;
dbc->c_am_del = __bam_c_del;
dbc->c_am_destroy = __bam_c_destroy;
dbc->c_am_get = __bam_c_get;
dbc->c_am_put = __bam_c_put;
dbc->c_am_writelock = __bam_c_writelock;
} else {
dbc->c_am_bulk = __bam_bulk;
dbc->c_am_close = __bam_c_close;
dbc->c_am_del = __ram_c_del;
dbc->c_am_destroy = __bam_c_destroy;
dbc->c_am_get = __ram_c_get;
dbc->c_am_put = __ram_c_put;
dbc->c_am_writelock = __bam_c_writelock;
}
return (0);
}
/*
* __bam_c_refresh
* Set things up properly for cursor re-use.
*
* PUBLIC: int __bam_c_refresh __P((DBC *));
*/
int
__bam_c_refresh(dbc)
DBC *dbc;
{
BTREE *t;
BTREE_CURSOR *cp;
DB *dbp;
dbp = dbc->dbp;
t = dbp->bt_internal;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* If our caller set the root page number, it's because the root was
* known. This is always the case for off page dup cursors. Else,
* pull it out of our internal information.
*/
if (cp->root == PGNO_INVALID)
cp->root = t->bt_root;
LOCK_INIT(cp->lock);
cp->lock_mode = DB_LOCK_NG;
cp->sp = cp->csp = cp->stack;
cp->esp = cp->stack + sizeof(cp->stack) / sizeof(cp->stack[0]);
/*
* The btree leaf page data structures require that two key/data pairs
* (or four items) fit on a page, but other than that there's no fixed
* requirement. The btree off-page duplicates only require two items,
* to be exact, but requiring four for them as well seems reasonable.
*
* Recno uses the btree bt_ovflsize value -- it's close enough.
*/
cp->ovflsize = B_MINKEY_TO_OVFLSIZE(
dbp, F_ISSET(dbc, DBC_OPD) ? 2 : t->bt_minkey, dbp->pgsize);
cp->recno = RECNO_OOB;
cp->order = INVALID_ORDER;
cp->flags = 0;
/* Initialize for record numbers. */
if (F_ISSET(dbc, DBC_OPD) ||
dbc->dbtype == DB_RECNO || F_ISSET(dbp, DB_AM_RECNUM)) {
F_SET(cp, C_RECNUM);
/*
* All btrees that support record numbers, optionally standard
* recno trees, and all off-page duplicate recno trees have
* mutable record numbers.
*/
if ((F_ISSET(dbc, DBC_OPD) && dbc->dbtype == DB_RECNO) ||
F_ISSET(dbp, DB_AM_RECNUM | DB_AM_RENUMBER))
F_SET(cp, C_RENUMBER);
}
return (0);
}
/*
* __bam_c_close --
* Close down the cursor.
*/
static int
__bam_c_close(dbc, root_pgno, rmroot)
DBC *dbc;
db_pgno_t root_pgno;
int *rmroot;
{
BTREE_CURSOR *cp, *cp_opd, *cp_c;
DB *dbp;
DBC *dbc_opd, *dbc_c;
DB_MPOOLFILE *mpf;
PAGE *h;
int cdb_lock, ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
cp_opd = (dbc_opd = cp->opd) == NULL ?
NULL : (BTREE_CURSOR *)dbc_opd->internal;
cdb_lock = ret = 0;
/*
* There are 3 ways this function is called:
*
* 1. Closing a primary cursor: we get called with a pointer to a
* primary cursor that has a NULL opd field. This happens when
* closing a btree/recno database cursor without an associated
* off-page duplicate tree.
*
* 2. Closing a primary and an off-page duplicate cursor stack: we
* get called with a pointer to the primary cursor which has a
* non-NULL opd field. This happens when closing a btree cursor
* into database with an associated off-page btree/recno duplicate
* tree. (It can't be a primary recno database, recno databases
* don't support duplicates.)
*
* 3. Closing an off-page duplicate cursor stack: we get called with
* a pointer to the off-page duplicate cursor. This happens when
* closing a non-btree database that has an associated off-page
* btree/recno duplicate tree or for a btree database when the
* opd tree is not empty (root_pgno == PGNO_INVALID).
*
* If either the primary or off-page duplicate cursor deleted a btree
* key/data pair, check to see if the item is still referenced by a
* different cursor. If it is, confirm that cursor's delete flag is
* set and leave it to that cursor to do the delete.
*
* NB: The test for == 0 below is correct. Our caller already removed
* our cursor argument from the active queue, we won't find it when we
* search the queue in __bam_ca_delete().
* NB: It can't be true that both the primary and off-page duplicate
* cursors have deleted a btree key/data pair. Either the primary
* cursor may have deleted an item and there's no off-page duplicate
* cursor, or there's an off-page duplicate cursor and it may have
* deleted an item.
*
* Primary recno databases aren't an issue here. Recno keys are either
* deleted immediately or never deleted, and do not have to be handled
* here.
*
* Off-page duplicate recno databases are an issue here, cases #2 and
* #3 above can both be off-page recno databases. The problem is the
* same as the final problem for off-page duplicate btree databases.
* If we no longer need the off-page duplicate tree, we want to remove
* it. For off-page duplicate btrees, we are done with the tree when
* we delete the last item it contains, i.e., there can be no further
* references to it when it's empty. For off-page duplicate recnos,
* we remove items from the tree as the application calls the remove
* function, so we are done with the tree when we close the last cursor
* that references it.
*
* We optionally take the root page number from our caller. If the
* primary database is a btree, we can get it ourselves because dbc
* is the primary cursor. If the primary database is not a btree,
* the problem is that we may be dealing with a stack of pages. The
* cursor we're using to do the delete points at the bottom of that
* stack and we need the top of the stack.
*/
if (F_ISSET(cp, C_DELETED)) {
dbc_c = dbc;
switch (dbc->dbtype) {
case DB_BTREE: /* Case #1, #3. */
if (__bam_ca_delete(dbp, cp->pgno, cp->indx, 1) == 0)
goto lock;
goto done;
case DB_RECNO:
if (!F_ISSET(dbc, DBC_OPD)) /* Case #1. */
goto done;
/* Case #3. */
if (__ram_ca_delete(dbp, cp->root) == 0)
goto lock;
goto done;
default:
return (__db_unknown_type(dbp->dbenv,
"__bam_c_close", dbc->dbtype));
}
}
if (dbc_opd == NULL)
goto done;
if (F_ISSET(cp_opd, C_DELETED)) { /* Case #2. */
/*
* We will not have been provided a root page number. Acquire
* one from the primary database.
*/
if ((ret = mpf->get(mpf, &cp->pgno, 0, &h)) != 0)
goto err;
root_pgno = GET_BOVERFLOW(dbp, h, cp->indx + O_INDX)->pgno;
if ((ret = mpf->put(mpf, h, 0)) != 0)
goto err;
dbc_c = dbc_opd;
switch (dbc_opd->dbtype) {
case DB_BTREE:
if (__bam_ca_delete(
dbp, cp_opd->pgno, cp_opd->indx, 1) == 0)
goto lock;
goto done;
case DB_RECNO:
if (__ram_ca_delete(dbp, cp_opd->root) == 0)
goto lock;
goto done;
default:
return (__db_unknown_type(dbp->dbenv,
"__bam_c_close", dbc->dbtype));
}
}
goto done;
lock: cp_c = (BTREE_CURSOR *)dbc_c->internal;
/*
* If this is CDB, upgrade the lock if necessary. While we acquired
* the write lock to logically delete the record, we released it when
* we returned from that call, and so may not be holding a write lock
* at the moment. NB: to get here in CDB we must either be holding a
* write lock or be the only cursor that is permitted to acquire write
* locks. The reason is that there can never be more than a single CDB
* write cursor (that cursor cannot be dup'd), and so that cursor must
* be closed and the item therefore deleted before any other cursor
* could acquire a reference to this item.
*
* Note that dbc may be an off-page dup cursor; this is the sole
* instance in which an OPD cursor does any locking, but it's necessary
* because we may be closed by ourselves without a parent cursor
* handy, and we have to do a lock upgrade on behalf of somebody.
* If this is the case, the OPD has been given the parent's locking
* info in __db_c_get--the OPD is also a WRITEDUP.
*/
if (CDB_LOCKING(dbp->dbenv)) {
if (F_ISSET(dbc, DBC_WRITEDUP | DBC_WRITECURSOR)) {
if ((ret = dbp->dbenv->lock_get(
dbp->dbenv, dbc->locker, DB_LOCK_UPGRADE,
&dbc->lock_dbt, DB_LOCK_WRITE, &dbc->mylock)) != 0)
goto err;
cdb_lock = 1;
}
if ((ret = mpf->get(mpf, &cp_c->pgno, 0, &cp_c->page)) != 0)
goto err;
goto delete;
}
/*
* The variable dbc_c has been initialized to reference the cursor in
* which we're going to do the delete. Initialize the cursor's page
* and lock structures as necessary.
*
* First, we may not need to acquire any locks. If we're in case #3,
* that is, the primary database isn't a btree database, our caller
* is responsible for acquiring any necessary locks before calling us.
*/
if (F_ISSET(dbc, DBC_OPD)) {
if ((ret = mpf->get(mpf, &cp_c->pgno, 0, &cp_c->page)) != 0)
goto err;
goto delete;
}
/*
* Otherwise, acquire a write lock. If the cursor that did the initial
* logical deletion (and which had a write lock) is not the same as the
* cursor doing the physical deletion (which may have only ever had a
* read lock on the item), we need to upgrade. The confusion comes as
* follows:
*
* C1 created, acquires item read lock
* C2 dup C1, create C2, also has item read lock.
* C1 acquire write lock, delete item
* C1 close
* C2 close, needs a write lock to physically delete item.
*
* If we're in a TXN, we know that C2 will be able to acquire the write
* lock, because no locker other than the one shared by C1 and C2 can
* acquire a write lock -- the original write lock C1 acquire was never
* discarded.
*
* If we're not in a TXN, it's nastier. Other cursors might acquire
* read locks on the item after C1 closed, discarding its write lock,
* and such locks would prevent C2 from acquiring a read lock. That's
* OK, though, we'll simply wait until we can acquire a read lock, or
* we'll deadlock. (Which better not happen, since we're not in a TXN.)
*
* Lock the primary database page, regardless of whether we're deleting
* an item on a primary database page or an off-page duplicates page.
*/
ACQUIRE(dbc, DB_LOCK_WRITE,
cp->pgno, cp_c->lock, cp_c->pgno, cp_c->page, ret);
if (ret != 0)
goto err;
delete: /*
* If the delete occurred in a btree, delete the on-page physical item
* referenced by the cursor.
*/
if (dbc_c->dbtype == DB_BTREE && (ret = __bam_c_physdel(dbc_c)) != 0)
goto err;
/*
* If we're not working in an off-page duplicate tree, then we're
* done.
*/
if (!F_ISSET(dbc_c, DBC_OPD) || root_pgno == PGNO_INVALID)
goto done;
/*
* We may have just deleted the last element in the off-page duplicate
* tree, and closed the last cursor in the tree. For an off-page btree
* there are no other cursors in the tree by definition, if the tree is
* empty. For an off-page recno we know we have closed the last cursor
* in the tree because the __ram_ca_delete call above returned 0 only
* in that case. So, if the off-page duplicate tree is empty at this
* point, we want to remove it.
*/
if ((ret = mpf->get(mpf, &root_pgno, 0, &h)) != 0)
goto err;
if (NUM_ENT(h) == 0) {
if ((ret = __db_free(dbc, h)) != 0)
goto err;
} else {
if ((ret = mpf->put(mpf, h, 0)) != 0)
goto err;
goto done;
}
/*
* When removing the tree, we have to do one of two things. If this is
* case #2, that is, the primary tree is a btree, delete the key that's
* associated with the tree from the btree leaf page. We know we are
* the only reference to it and we already have the correct lock. We
* detect this case because the cursor that was passed to us references
* an off-page duplicate cursor.
*
* If this is case #3, that is, the primary tree isn't a btree, pass
* the information back to our caller, it's their job to do cleanup on
* the primary page.
*/
if (dbc_opd != NULL) {
if ((ret = mpf->get(mpf, &cp->pgno, 0, &cp->page)) != 0)
goto err;
if ((ret = __bam_c_physdel(dbc)) != 0)
goto err;
} else
*rmroot = 1;
err:
done: /*
* Discard the page references and locks, and confirm that the stack
* has been emptied.
*/
if (dbc_opd != NULL) {
DISCARD_CUR(dbc_opd, t_ret);
if (t_ret != 0 && ret == 0)
ret = t_ret;
}
DISCARD_CUR(dbc, t_ret);
if (t_ret != 0 && ret == 0)
ret = t_ret;
/* Downgrade any CDB lock we acquired. */
if (cdb_lock)
(void)__lock_downgrade(
dbp->dbenv, &dbc->mylock, DB_LOCK_IWRITE, 0);
return (ret);
}
/*
* __bam_c_destroy --
* Close a single cursor -- internal version.
*/
static int
__bam_c_destroy(dbc)
DBC *dbc;
{
/* Discard the structures. */
__os_free(dbc->dbp->dbenv, dbc->internal);
return (0);
}
/*
* __bam_c_count --
* Return a count of on and off-page duplicates.
*
* PUBLIC: int __bam_c_count __P((DBC *, db_recno_t *));
*/
int
__bam_c_count(dbc, recnop)
DBC *dbc;
db_recno_t *recnop;
{
BTREE_CURSOR *cp;
DB *dbp;
DB_MPOOLFILE *mpf;
db_indx_t indx, top;
db_recno_t recno;
int ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* Called with the top-level cursor that may reference an off-page
* duplicates page. If it's a set of on-page duplicates, get the
* page and count. Otherwise, get the root page of the off-page
* duplicate tree, and use the count. We don't have to acquire any
* new locks, we have to have a read lock to even get here.
*/
if (cp->opd == NULL) {
if ((ret = mpf->get(mpf, &cp->pgno, 0, &cp->page)) != 0)
return (ret);
/*
* Move back to the beginning of the set of duplicates and
* then count forward.
*/
for (indx = cp->indx;; indx -= P_INDX)
if (indx == 0 ||
!IS_DUPLICATE(dbc, indx, indx - P_INDX))
break;
for (recno = 1, top = NUM_ENT(cp->page) - P_INDX;
indx < top; ++recno, indx += P_INDX)
if (!IS_DUPLICATE(dbc, indx, indx + P_INDX))
break;
*recnop = recno;
} else {
if ((ret =
mpf->get(mpf, &cp->opd->internal->root, 0, &cp->page)) != 0)
return (ret);
*recnop = RE_NREC(cp->page);
}
ret = mpf->put(mpf, cp->page, 0);
cp->page = NULL;
return (ret);
}
/*
* __bam_c_del --
* Delete using a cursor.
*/
static int
__bam_c_del(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
DB *dbp;
DB_MPOOLFILE *mpf;
int ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
ret = 0;
/* If the item was already deleted, return failure. */
if (F_ISSET(cp, C_DELETED))
return (DB_KEYEMPTY);
/*
* This code is always called with a page lock but no page.
*/
DB_ASSERT(cp->page == NULL);
/*
* We don't physically delete the record until the cursor moves, so
* we have to have a long-lived write lock on the page instead of a
* a long-lived read lock. Note, we have to have a read lock to even
* get here.
*
* If we're maintaining record numbers, we lock the entire tree, else
* we lock the single page.
*/
if (F_ISSET(cp, C_RECNUM)) {
if ((ret = __bam_c_getstack(dbc)) != 0)
goto err;
cp->page = cp->csp->page;
} else {
ACQUIRE_CUR(dbc, DB_LOCK_WRITE, cp->pgno, ret);
if (ret != 0)
goto err;
}
/* Log the change. */
if (DBC_LOGGING(dbc)) {
if ((ret = __bam_cdel_log(dbp, dbc->txn, &LSN(cp->page), 0,
PGNO(cp->page), &LSN(cp->page), cp->indx)) != 0)
goto err;
} else
LSN_NOT_LOGGED(LSN(cp->page));
/* Set the intent-to-delete flag on the page. */
if (TYPE(cp->page) == P_LBTREE)
B_DSET(GET_BKEYDATA(dbp, cp->page, cp->indx + O_INDX)->type);
else
B_DSET(GET_BKEYDATA(dbp, cp->page, cp->indx)->type);
/* Mark the page dirty. */
ret = mpf->set(mpf, cp->page, DB_MPOOL_DIRTY);
err: /*
* If we've been successful so far and the tree has record numbers,
* adjust the record counts. Either way, release acquired page(s).
*/
if (F_ISSET(cp, C_RECNUM)) {
if (ret == 0)
ret = __bam_adjust(dbc, -1);
(void)__bam_stkrel(dbc, 0);
} else
if (cp->page != NULL &&
(t_ret = mpf->put(mpf, cp->page, 0)) != 0 && ret == 0)
ret = t_ret;
cp->page = NULL;
/* Update the cursors last, after all chance of failure is past. */
if (ret == 0)
(void)__bam_ca_delete(dbp, cp->pgno, cp->indx, 1);
return (ret);
}
/*
* __bam_c_dup --
* Duplicate a btree cursor, such that the new one holds appropriate
* locks for the position of the original.
*
* PUBLIC: int __bam_c_dup __P((DBC *, DBC *));
*/
int
__bam_c_dup(orig_dbc, new_dbc)
DBC *orig_dbc, *new_dbc;
{
BTREE_CURSOR *orig, *new;
int ret;
orig = (BTREE_CURSOR *)orig_dbc->internal;
new = (BTREE_CURSOR *)new_dbc->internal;
/*
* If we're holding a lock we need to acquire a copy of it, unless
* we're in a transaction. We don't need to copy any lock we're
* holding inside a transaction because all the locks are retained
* until the transaction commits or aborts.
*/
if (LOCK_ISSET(orig->lock) && orig_dbc->txn == NULL) {
if ((ret = __db_lget(new_dbc,
0, new->pgno, new->lock_mode, 0, &new->lock)) != 0)
return (ret);
}
new->ovflsize = orig->ovflsize;
new->recno = orig->recno;
new->flags = orig->flags;
return (0);
}
/*
* __bam_c_get --
* Get using a cursor (btree).
*/
static int
__bam_c_get(dbc, key, data, flags, pgnop)
DBC *dbc;
DBT *key, *data;
u_int32_t flags;
db_pgno_t *pgnop;
{
BTREE_CURSOR *cp;
DB *dbp;
DB_MPOOLFILE *mpf;
db_pgno_t orig_pgno;
db_indx_t orig_indx;
int exact, newopd, ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
orig_pgno = cp->pgno;
orig_indx = cp->indx;
newopd = 0;
switch (flags) {
case DB_CURRENT:
/* It's not possible to return a deleted record. */
if (F_ISSET(cp, C_DELETED)) {
ret = DB_KEYEMPTY;
goto err;
}
/*
* Acquire the current page. We have at least a read-lock
* already. The caller may have set DB_RMW asking for a
* write lock, but upgrading to a write lock has no better
* chance of succeeding now instead of later, so don't try.
*/
if ((ret = mpf->get(mpf, &cp->pgno, 0, &cp->page)) != 0)
goto err;
break;
case DB_FIRST:
newopd = 1;
if ((ret = __bam_c_first(dbc)) != 0)
goto err;
break;
case DB_GET_BOTH:
case DB_GET_BOTH_RANGE:
/*
* There are two ways to get here based on DBcursor->c_get
* with the DB_GET_BOTH/DB_GET_BOTH_RANGE flags set:
*
* 1. Searching a sorted off-page duplicate tree: do a tree
* search.
*
* 2. Searching btree: do a tree search. If it returns a
* reference to off-page duplicate tree, return immediately
* and let our caller deal with it. If the search doesn't
* return a reference to off-page duplicate tree, continue
* with an on-page search.
*/
if (F_ISSET(dbc, DBC_OPD)) {
if ((ret = __bam_c_search(
dbc, PGNO_INVALID, data, flags, &exact)) != 0)
goto err;
if (flags == DB_GET_BOTH) {
if (!exact) {
ret = DB_NOTFOUND;
goto err;
}
break;
}
/*
* We didn't require an exact match, so the search may
* may have returned an entry past the end of the page,
* or we may be referencing a deleted record. If so,
* move to the next entry.
*/
if ((cp->indx == NUM_ENT(cp->page) ||
IS_CUR_DELETED(dbc)) &&
(ret = __bam_c_next(dbc, 1, 0)) != 0)
goto err;
} else {
if ((ret = __bam_c_search(
dbc, PGNO_INVALID, key, flags, &exact)) != 0)
return (ret);
if (!exact) {
ret = DB_NOTFOUND;
goto err;
}
if (pgnop != NULL && __bam_isopd(dbc, pgnop)) {
newopd = 1;
break;
}
if ((ret =
__bam_getboth_finddatum(dbc, data, flags)) != 0)
goto err;
}
break;
case DB_GET_BOTHC:
if ((ret = __bam_getbothc(dbc, data)) != 0)
goto err;
break;
case DB_LAST:
newopd = 1;
if ((ret = __bam_c_last(dbc)) != 0)
goto err;
break;
case DB_NEXT:
newopd = 1;
if (cp->pgno == PGNO_INVALID) {
if ((ret = __bam_c_first(dbc)) != 0)
goto err;
} else
if ((ret = __bam_c_next(dbc, 1, 0)) != 0)
goto err;
break;
case DB_NEXT_DUP:
if ((ret = __bam_c_next(dbc, 1, 0)) != 0)
goto err;
if (!IS_CUR_DUPLICATE(dbc, orig_pgno, orig_indx)) {
ret = DB_NOTFOUND;
goto err;
}
break;
case DB_NEXT_NODUP:
newopd = 1;
if (cp->pgno == PGNO_INVALID) {
if ((ret = __bam_c_first(dbc)) != 0)
goto err;
} else
do {
if ((ret = __bam_c_next(dbc, 1, 0)) != 0)
goto err;
} while (IS_CUR_DUPLICATE(dbc, orig_pgno, orig_indx));
break;
case DB_PREV:
newopd = 1;
if (cp->pgno == PGNO_INVALID) {
if ((ret = __bam_c_last(dbc)) != 0)
goto err;
} else
if ((ret = __bam_c_prev(dbc)) != 0)
goto err;
break;
case DB_PREV_NODUP:
newopd = 1;
if (cp->pgno == PGNO_INVALID) {
if ((ret = __bam_c_last(dbc)) != 0)
goto err;
} else
do {
if ((ret = __bam_c_prev(dbc)) != 0)
goto err;
} while (IS_CUR_DUPLICATE(dbc, orig_pgno, orig_indx));
break;
case DB_SET:
case DB_SET_RECNO:
newopd = 1;
if ((ret = __bam_c_search(dbc,
PGNO_INVALID, key, flags, &exact)) != 0)
goto err;
break;
case DB_SET_RANGE:
newopd = 1;
if ((ret = __bam_c_search(dbc,
PGNO_INVALID, key, flags, &exact)) != 0)
goto err;
/*
* As we didn't require an exact match, the search function
* may have returned an entry past the end of the page. Or,
* we may be referencing a deleted record. If so, move to
* the next entry.
*/
if (cp->indx == NUM_ENT(cp->page) || IS_CUR_DELETED(dbc))
if ((ret = __bam_c_next(dbc, 0, 0)) != 0)
goto err;
break;
default:
ret = __db_unknown_flag(dbp->dbenv, "__bam_c_get", flags);
goto err;
}
/*
* We may have moved to an off-page duplicate tree. Return that
* information to our caller.
*/
if (newopd && pgnop != NULL)
(void)__bam_isopd(dbc, pgnop);
/*
* Don't return the key, it was passed to us (this is true even if the
* application defines a compare function returning equality for more
* than one key value, since in that case which actual value we store
* in the database is undefined -- and particularly true in the case of
* duplicates where we only store one key value).
*/
if (flags == DB_GET_BOTH ||
flags == DB_GET_BOTH_RANGE || flags == DB_SET)
F_SET(key, DB_DBT_ISSET);
err: /*
* Regardless of whether we were successful or not, if the cursor
* moved, clear the delete flag, DBcursor->c_get never references
* a deleted key, if it moved at all.
*/
if (F_ISSET(cp, C_DELETED) &&
(cp->pgno != orig_pgno || cp->indx != orig_indx))
F_CLR(cp, C_DELETED);
return (ret);
}
static int
__bam_get_prev(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
DBT key, data;
db_pgno_t pgno;
int ret;
if ((ret = __bam_c_prev(dbc)) != 0)
return (ret);
if (__bam_isopd(dbc, &pgno)) {
cp = (BTREE_CURSOR *)dbc->internal;
if ((ret = __db_c_newopd(dbc, pgno, cp->opd, &cp->opd)) != 0)
return (ret);
if ((ret = cp->opd->c_am_get(cp->opd,
&key, &data, DB_LAST, NULL)) != 0)
return (ret);
}
return (0);
}
/*
* __bam_bulk -- Return bulk data from a btree.
*/
static int
__bam_bulk(dbc, data, flags)
DBC *dbc;
DBT *data;
u_int32_t flags;
{
BKEYDATA *bk;
BOVERFLOW *bo;
BTREE_CURSOR *cp;
PAGE *pg;
db_indx_t *inp, indx, pg_keyoff;
int32_t *endp, key_off, *offp, *saveoffp;
u_int8_t *dbuf, *dp, *np;
u_int32_t key_size, size, space;
int adj, is_key, need_pg, next_key, no_dup;
int pagesize, rec_key, ret;
ret = 0;
key_off = 0;
size = 0;
pagesize = dbc->dbp->pgsize;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* dp tracks the beginging of the page in the buffer.
* np is the next place to copy things into the buffer.
* dbuf always stays at the beging of the buffer.
*/
dbuf = data->data;
np = dp = dbuf;
/* Keep track of space that is left. There is a termination entry */
space = data->ulen;
space -= sizeof(*offp);
/* Build the offset/size table from the end up. */
endp = (int32_t *)((u_int8_t *)dbuf + data->ulen);
endp--;
offp = endp;
key_size = 0;
/*
* Distinguish between BTREE and RECNO.
* There are no keys in RECNO. If MULTIPLE_KEY is specified
* then we return the record numbers.
* is_key indicates that multiple btree keys are returned.
* rec_key is set if we are returning record numbers.
* next_key is set if we are going after the next key rather than dup.
*/
if (dbc->dbtype == DB_BTREE) {
is_key = LF_ISSET(DB_MULTIPLE_KEY) ? 1: 0;
rec_key = 0;
next_key = is_key && LF_ISSET(DB_OPFLAGS_MASK) != DB_NEXT_DUP;
adj = 2;
} else {
is_key = 0;
rec_key = LF_ISSET(DB_MULTIPLE_KEY) ? 1 : 0;
next_key = LF_ISSET(DB_OPFLAGS_MASK) != DB_NEXT_DUP;
adj = 1;
}
no_dup = LF_ISSET(DB_OPFLAGS_MASK) == DB_NEXT_NODUP;
next_pg:
indx = cp->indx;
pg = cp->page;
inp = P_INP(dbc->dbp, pg);
/* The current page is not yet in the buffer. */
need_pg = 1;
/*
* Keep track of the offset of the current key on the page.
* If we are returning keys, set it to 0 first so we force
* the copy of the key to the buffer.
*/
pg_keyoff = 0;
if (is_key == 0)
pg_keyoff = inp[indx];
do {
if (IS_DELETED(dbc->dbp, pg, indx)) {
if (dbc->dbtype != DB_RECNO)
continue;
cp->recno++;
/*
* If we are not returning recnos then we
* need to fill in every slot so the user
* can calculate the record numbers.
*/
if (rec_key != 0)
continue;
space -= 2 * sizeof(*offp);
/* Check if space as underflowed. */
if (space > data->ulen)
goto back_up;
/* Just mark the empty recno slots. */
*offp-- = 0;
*offp-- = 0;
continue;
}
/*
* Check to see if we have a new key.
* If so, then see if we need to put the
* key on the page. If its already there
* then we just point to it.
*/
if (is_key && pg_keyoff != inp[indx]) {
bk = GET_BKEYDATA(dbc->dbp, pg, indx);
if (B_TYPE(bk->type) == B_OVERFLOW) {
bo = (BOVERFLOW *)bk;
size = key_size = bo->tlen;
if (key_size > space)
goto get_key_space;
if ((ret = __bam_bulk_overflow(dbc,
bo->tlen, bo->pgno, np)) != 0)
return (ret);
space -= key_size;
key_off = (int32_t)(np - dbuf);
np += key_size;
} else {
if (need_pg) {
dp = np;
size = pagesize - HOFFSET(pg);
if (space < size) {
get_key_space:
/* Nothing added, then error. */
if (offp == endp) {
data->size =
ALIGN(size +
pagesize,
sizeof(u_int32_t));
return (ENOMEM);
}
/*
* We need to back up to the
* last record put into the
* buffer so that it is
* CURRENT.
*/
if (indx != 0)
indx -= P_INDX;
else {
if ((ret =
__bam_get_prev(
dbc)) != 0)
return (ret);
indx = cp->indx;
pg = cp->page;
}
break;
}
/*
* Move the data part of the page
* to the buffer.
*/
memcpy(dp,
(u_int8_t *)pg + HOFFSET(pg), size);
need_pg = 0;
space -= size;
np += size;
}
key_size = bk->len;
key_off = (int32_t)(inp[indx] - HOFFSET(pg)
+ dp - dbuf + SSZA(BKEYDATA, data));
pg_keyoff = inp[indx];
}
}
/*
* Reserve space for the pointers and sizes.
* Either key/data pair or just for a data item.
*/
space -= (is_key ? 4 : 2) * sizeof(*offp);
if (rec_key)
space -= sizeof(*offp);
/* Check to see if space has underflowed. */
if (space > data->ulen)
goto back_up;
/*
* Determine if the next record is in the
* buffer already or if it needs to be copied in.
* If we have an off page dup, then copy as many
* as will fit into the buffer.
*/
bk = GET_BKEYDATA(dbc->dbp, pg, indx + adj - 1);
if (B_TYPE(bk->type) == B_DUPLICATE) {
bo = (BOVERFLOW *)bk;
if (is_key) {
*offp-- = key_off;
*offp-- = key_size;
}
/*
* We pass the offset of the current key.
* On return we check to see if offp has
* moved to see if any data fit.
*/
saveoffp = offp;
if ((ret = __bam_bulk_duplicates(dbc, bo->pgno,
dbuf, is_key ? offp + P_INDX : NULL,
&offp, &np, &space, no_dup)) != 0) {
if (ret == ENOMEM) {
size = space;
/* If nothing was added, then error. */
if (offp == saveoffp) {
offp += 2;
goto back_up;
}
goto get_space;
}
return (ret);
}
} else if (B_TYPE(bk->type) == B_OVERFLOW) {
bo = (BOVERFLOW *)bk;
size = bo->tlen;
if (size > space)
goto back_up;
if ((ret =
__bam_bulk_overflow(dbc,
bo->tlen, bo->pgno, np)) != 0)
return (ret);
space -= size;
if (is_key) {
*offp-- = key_off;
*offp-- = key_size;
} else if (rec_key)
*offp-- = cp->recno;
*offp-- = (int32_t)(np - dbuf);
np += size;
*offp-- = size;
} else {
if (need_pg) {
dp = np;
size = pagesize - HOFFSET(pg);
if (space < size) {
back_up:
/*
* Back up the index so that the
* last record in the buffer is CURRENT
*/
if (indx >= adj)
indx -= adj;
else {
if ((ret =
__bam_get_prev(dbc)) != 0 &&
ret != DB_NOTFOUND)
return (ret);
indx = cp->indx;
pg = cp->page;
}
if (dbc->dbtype == DB_RECNO)
cp->recno--;
get_space:
/*
* See if we put anything in the
* buffer or if we are doing a DBP->get
* did we get all of the data.
*/
if (offp >=
(is_key ? &endp[-1] : endp) ||
F_ISSET(dbc, DBC_TRANSIENT)) {
data->size = ALIGN(size +
data->ulen - space,
sizeof(u_int32_t));
return (ENOMEM);
}
break;
}
memcpy(dp, (u_int8_t *)pg + HOFFSET(pg), size);
need_pg = 0;
space -= size;
np += size;
}
/*
* Add the offsets and sizes to the end of the buffer.
* First add the key info then the data info.
*/
if (is_key) {
*offp-- = key_off;
*offp-- = key_size;
} else if (rec_key)
*offp-- = cp->recno;
*offp-- = (int32_t)(inp[indx + adj - 1] - HOFFSET(pg)
+ dp - dbuf + SSZA(BKEYDATA, data));
*offp-- = bk->len;
}
if (dbc->dbtype == DB_RECNO)
cp->recno++;
else if (no_dup) {
while (indx + adj < NUM_ENT(pg) &&
pg_keyoff == inp[indx + adj])
indx += adj;
}
/*
* Stop when we either run off the page or we
* move to the next key and we are not returning mulitple keys.
*/
} while ((indx += adj) < NUM_ENT(pg) &&
(next_key || pg_keyoff == inp[indx]));
/* If we are off the page then try to the next page. */
if (ret == 0 && next_key && indx >= NUM_ENT(pg)) {
cp->indx = indx;
ret = __bam_c_next(dbc, 0, 1);
if (ret == 0)
goto next_pg;
if (ret != DB_NOTFOUND)
return (ret);
}
/*
* If we did a DBP->get we must error if we did not return
* all the data for the current key because there is
* no way to know if we did not get it all, nor any
* interface to fetch the balance.
*/
if (ret == 0 &&
F_ISSET(dbc, DBC_TRANSIENT) && pg_keyoff == inp[indx]) {
data->size = (data->ulen - space) + size;
return (ENOMEM);
}
/*
* Must leave the index pointing at the last record fetched.
* If we are not fetching keys, we may have stepped to the
* next key.
*/
if (next_key || pg_keyoff == inp[indx])
cp->indx = indx;
else
cp->indx = indx - P_INDX;
if (rec_key == 1)
*offp = (u_int32_t) RECNO_OOB;
else
*offp = (u_int32_t) -1;
return (0);
}
/*
* __bam_bulk_overflow --
* Dump overflow record into the buffer.
* The space requirements have already been checked.
* PUBLIC: int __bam_bulk_overflow
* PUBLIC: __P((DBC *, u_int32_t, db_pgno_t, u_int8_t *));
*/
int
__bam_bulk_overflow(dbc, len, pgno, dp)
DBC *dbc;
u_int32_t len;
db_pgno_t pgno;
u_int8_t *dp;
{
DBT dbt;
memset(&dbt, 0, sizeof(dbt));
F_SET(&dbt, DB_DBT_USERMEM);
dbt.ulen = len;
dbt.data = (void *)dp;
return (__db_goff(dbc->dbp, &dbt, len, pgno, NULL, NULL));
}
/*
* __bam_bulk_duplicates --
* Put as many off page duplicates as will fit into the buffer.
* This routine will adjust the cursor to reflect the position in
* the overflow tree.
* PUBLIC: int __bam_bulk_duplicates __P((DBC *,
* PUBLIC: db_pgno_t, u_int8_t *, int32_t *,
* PUBLIC: int32_t **, u_int8_t **, u_int32_t *, int));
*/
int
__bam_bulk_duplicates(dbc, pgno, dbuf, keyoff, offpp, dpp, spacep, no_dup)
DBC *dbc;
db_pgno_t pgno;
u_int8_t *dbuf;
int32_t *keyoff, **offpp;
u_int8_t **dpp;
u_int32_t *spacep;
int no_dup;
{
DB *dbp;
BKEYDATA *bk;
BOVERFLOW *bo;
BTREE_CURSOR *cp;
DBC *opd;
DBT key, data;
PAGE *pg;
db_indx_t indx, *inp;
int32_t *offp;
u_int32_t size, space;
u_int8_t *dp, *np;
int first, need_pg, pagesize, ret, t_ret;
ret = 0;
dbp = dbc->dbp;
cp = (BTREE_CURSOR *)dbc->internal;
opd = cp->opd;
if (opd == NULL) {
if ((ret = __db_c_newopd(dbc, pgno, NULL, &opd)) != 0)
return (ret);
cp->opd = opd;
if ((ret = opd->c_am_get(opd,
&key, &data, DB_FIRST, NULL)) != 0)
return (ret);
}
pagesize = opd->dbp->pgsize;
cp = (BTREE_CURSOR *)opd->internal;
space = *spacep;
/* Get current offset slot. */
offp = *offpp;
/*
* np is the next place to put data.
* dp is the begining of the current page in the buffer.
*/
np = dp = *dpp;
first = 1;
indx = cp->indx;
do {
/* Fetch the current record. No initial move. */
if ((ret = __bam_c_next(opd, 0, 0)) != 0)
break;
pg = cp->page;
indx = cp->indx;
inp = P_INP(dbp, pg);
/* We need to copy the page to the buffer. */
need_pg = 1;
do {
if (IS_DELETED(dbp, pg, indx))
goto contin;
bk = GET_BKEYDATA(dbp, pg, indx);
space -= 2 * sizeof(*offp);
/* Allocate space for key if needed. */
if (first == 0 && keyoff != NULL)
space -= 2 * sizeof(*offp);
/* Did space underflow? */
if (space > *spacep) {
ret = ENOMEM;
if (first == 1) {
space = *spacep + -(int32_t)space;
if (need_pg)
space += pagesize - HOFFSET(pg);
}
break;
}
if (B_TYPE(bk->type) == B_OVERFLOW) {
bo = (BOVERFLOW *)bk;
size = bo->tlen;
if (size > space) {
ret = ENOMEM;
if (first == 1) {
space = *spacep + size;
}
break;
}
if (first == 0 && keyoff != NULL) {
*offp-- = keyoff[0];
*offp-- = keyoff[-1];
}
if ((ret = __bam_bulk_overflow(dbc,
bo->tlen, bo->pgno, np)) != 0)
return (ret);
space -= size;
*offp-- = (int32_t)(np - dbuf);
np += size;
} else {
if (need_pg) {
dp = np;
size = pagesize - HOFFSET(pg);
if (space < size) {
ret = ENOMEM;
/* Return space required. */
if (first == 1) {
space = *spacep + size;
}
break;
}
memcpy(dp,
(u_int8_t *)pg + HOFFSET(pg), size);
need_pg = 0;
space -= size;
np += size;
}
if (first == 0 && keyoff != NULL) {
*offp-- = keyoff[0];
*offp-- = keyoff[-1];
}
size = bk->len;
*offp-- = (int32_t)(inp[indx] - HOFFSET(pg)
+ dp - dbuf + SSZA(BKEYDATA, data));
}
*offp-- = size;
first = 0;
if (no_dup)
break;
contin:
indx++;
if (opd->dbtype == DB_RECNO)
cp->recno++;
} while (indx < NUM_ENT(pg));
if (no_dup)
break;
cp->indx = indx;
} while (ret == 0);
/* Return the updated information. */
*spacep = space;
*offpp = offp;
*dpp = np;
/*
* If we ran out of space back up the pointer.
* If we did not return any dups or reached the end, close the opd.
*/
if (ret == ENOMEM) {
if (opd->dbtype == DB_RECNO) {
if (--cp->recno == 0)
goto close_opd;
} else if (indx != 0)
cp->indx--;
else {
t_ret = __bam_c_prev(opd);
if (t_ret == DB_NOTFOUND)
goto close_opd;
if (t_ret != 0)
ret = t_ret;
}
} else if (keyoff == NULL && ret == DB_NOTFOUND) {
cp->indx--;
if (opd->dbtype == DB_RECNO)
--cp->recno;
} else if (indx == 0 || ret == DB_NOTFOUND) {
close_opd:
opd->c_close(opd);
((BTREE_CURSOR *)dbc->internal)->opd = NULL;
}
if (ret == DB_NOTFOUND)
ret = 0;
return (ret);
}
/*
* __bam_getbothc --
* Search for a matching data item on a join.
*/
static int
__bam_getbothc(dbc, data)
DBC *dbc;
DBT *data;
{
BTREE_CURSOR *cp;
DB *dbp;
DB_MPOOLFILE *mpf;
int cmp, exact, ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* Acquire the current page. We have at least a read-lock
* already. The caller may have set DB_RMW asking for a
* write lock, but upgrading to a write lock has no better
* chance of succeeding now instead of later, so don't try.
*/
if ((ret = mpf->get(mpf, &cp->pgno, 0, &cp->page)) != 0)
return (ret);
/*
* An off-page duplicate cursor. Search the remaining duplicates
* for one which matches (do a normal btree search, then verify
* that the retrieved record is greater than the original one).
*/
if (F_ISSET(dbc, DBC_OPD)) {
/*
* Check to make sure the desired item comes strictly after
* the current position; if it doesn't, return DB_NOTFOUND.
*/
if ((ret = __bam_cmp(dbp, data, cp->page, cp->indx,
dbp->dup_compare == NULL ? __bam_defcmp : dbp->dup_compare,
&cmp)) != 0)
return (ret);
if (cmp <= 0)
return (DB_NOTFOUND);
/* Discard the current page, we're going to do a full search. */
if ((ret = mpf->put(mpf, cp->page, 0)) != 0)
return (ret);
cp->page = NULL;
return (__bam_c_search(dbc,
PGNO_INVALID, data, DB_GET_BOTH, &exact));
}
/*
* We're doing a DBC->c_get(DB_GET_BOTHC) and we're already searching
* a set of on-page duplicates (either sorted or unsorted). Continue
* a linear search from after the current position.
*
* (Note that we could have just finished a "set" of one duplicate,
* i.e. not a duplicate at all, but the following check will always
* return DB_NOTFOUND in this case, which is the desired behavior.)
*/
if (cp->indx + P_INDX >= NUM_ENT(cp->page) ||
!IS_DUPLICATE(dbc, cp->indx, cp->indx + P_INDX))
return (DB_NOTFOUND);
cp->indx += P_INDX;
return (__bam_getboth_finddatum(dbc, data, DB_GET_BOTH));
}
/*
* __bam_getboth_finddatum --
* Find a matching on-page data item.
*/
static int
__bam_getboth_finddatum(dbc, data, flags)
DBC *dbc;
DBT *data;
u_int32_t flags;
{
BTREE_CURSOR *cp;
DB *dbp;
db_indx_t base, lim, top;
int cmp, ret;
dbp = dbc->dbp;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* Called (sometimes indirectly) from DBC->get to search on-page data
* item(s) for a matching value. If the original flag was DB_GET_BOTH
* or DB_GET_BOTH_RANGE, the cursor is set to the first undeleted data
* item for the key. If the original flag was DB_GET_BOTHC, the cursor
* argument is set to the first data item we can potentially return.
* In both cases, there may or may not be additional duplicate data
* items to search.
*
* If the duplicates are not sorted, do a linear search.
*/
if (dbp->dup_compare == NULL) {
for (;; cp->indx += P_INDX) {
if (!IS_CUR_DELETED(dbc) &&
(ret = __bam_cmp(dbp, data, cp->page,
cp->indx + O_INDX, __bam_defcmp, &cmp)) != 0)
return (ret);
if (cmp == 0)
return (0);
if (cp->indx + P_INDX >= NUM_ENT(cp->page) ||
!IS_DUPLICATE(dbc, cp->indx, cp->indx + P_INDX))
break;
}
return (DB_NOTFOUND);
}
/*
* If the duplicates are sorted, do a binary search. The reason for
* this is that large pages and small key/data pairs result in large
* numbers of on-page duplicates before they get pushed off-page.
*
* Find the top and bottom of the duplicate set. Binary search
* requires at least two items, don't loop if there's only one.
*/
for (base = top = cp->indx; top < NUM_ENT(cp->page); top += P_INDX)
if (!IS_DUPLICATE(dbc, cp->indx, top))
break;
if (base == (top - P_INDX)) {
if ((ret = __bam_cmp(dbp, data,
cp->page, cp->indx + O_INDX, dbp->dup_compare, &cmp)) != 0)
return (ret);
return (cmp == 0 ||
(cmp < 0 && flags == DB_GET_BOTH_RANGE) ? 0 : DB_NOTFOUND);
}
for (lim = (top - base) / (db_indx_t)P_INDX; lim != 0; lim >>= 1) {
cp->indx = base + ((lim >> 1) * P_INDX);
if ((ret = __bam_cmp(dbp, data, cp->page,
cp->indx + O_INDX, dbp->dup_compare, &cmp)) != 0)
return (ret);
if (cmp == 0) {
/*
* XXX
* No duplicate duplicates in sorted duplicate sets,
* so there can be only one.
*/
if (!IS_CUR_DELETED(dbc))
return (0);
break;
}
if (cmp > 0) {
base = cp->indx + P_INDX;
--lim;
}
}
/* No match found; if we're looking for an exact match, we're done. */
if (flags == DB_GET_BOTH)
return (DB_NOTFOUND);
/*
* Base is the smallest index greater than the data item, may be zero
* or a last + O_INDX index, and may be deleted. Find an undeleted
* item.
*/
cp->indx = base;
while (cp->indx < top && IS_CUR_DELETED(dbc))
cp->indx += P_INDX;
return (cp->indx < top ? 0 : DB_NOTFOUND);
}
/*
* __bam_c_put --
* Put using a cursor.
*/
static int
__bam_c_put(dbc, key, data, flags, pgnop)
DBC *dbc;
DBT *key, *data;
u_int32_t flags;
db_pgno_t *pgnop;
{
BTREE_CURSOR *cp;
DB *dbp;
DBT dbt;
DB_MPOOLFILE *mpf;
db_pgno_t root_pgno;
u_int32_t iiop;
int cmp, exact, ret, stack;
void *arg;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
root_pgno = cp->root;
split: ret = stack = 0;
switch (flags) {
case DB_AFTER:
case DB_BEFORE:
case DB_CURRENT:
iiop = flags;
/*
* If the Btree has record numbers (and we're not replacing an
* existing record), we need a complete stack so that we can
* adjust the record counts. The check for flags == DB_CURRENT
* is superfluous but left in for clarity. (If C_RECNUM is set
* we know that flags must be DB_CURRENT, as DB_AFTER/DB_BEFORE
* are illegal in a Btree unless it's configured for duplicates
* and you cannot configure a Btree for both record renumbering
* and duplicates.)
*/
if (flags == DB_CURRENT &&
F_ISSET(cp, C_RECNUM) && F_ISSET(cp, C_DELETED)) {
if ((ret = __bam_c_getstack(dbc)) != 0)
goto err;
/*
* Initialize the cursor from the stack. Don't take
* the page number or page index, they should already
* be set.
*/
cp->page = cp->csp->page;
cp->lock = cp->csp->lock;
cp->lock_mode = cp->csp->lock_mode;
stack = 1;
break;
}
/* Acquire the current page with a write lock. */
ACQUIRE_WRITE_LOCK(dbc, ret);
if (ret != 0)
goto err;
if ((ret = mpf->get(mpf, &cp->pgno, 0, &cp->page)) != 0)
goto err;
break;
case DB_KEYFIRST:
case DB_KEYLAST:
case DB_NODUPDATA:
/*
* Searching off-page, sorted duplicate tree: do a tree search
* for the correct item; __bam_c_search returns the smallest
* slot greater than the key, use it.
*
* See comment below regarding where we can start the search.
*/
if (F_ISSET(dbc, DBC_OPD)) {
if ((ret = __bam_c_search(dbc,
F_ISSET(cp, C_RECNUM) ? cp->root : root_pgno,
data, flags, &exact)) != 0)
goto err;
stack = 1;
/* Disallow "sorted" duplicate duplicates. */
if (exact) {
if (IS_DELETED(dbp, cp->page, cp->indx)) {
iiop = DB_CURRENT;
break;
}
ret = __db_duperr(dbp, flags);
goto err;
}
iiop = DB_BEFORE;
break;
}
/*
* Searching a btree.
*
* If we've done a split, we can start the search from the
* parent of the split page, which __bam_split returned
* for us in root_pgno, unless we're in a Btree with record
* numbering. In that case, we'll need the true root page
* in order to adjust the record count.
*/
if ((ret = __bam_c_search(dbc,
F_ISSET(cp, C_RECNUM) ? cp->root : root_pgno, key,
flags == DB_KEYFIRST || dbp->dup_compare != NULL ?
DB_KEYFIRST : DB_KEYLAST, &exact)) != 0)
goto err;
stack = 1;
/*
* If we don't have an exact match, __bam_c_search returned
* the smallest slot greater than the key, use it.
*/
if (!exact) {
iiop = DB_KEYFIRST;
break;
}
/*
* If duplicates aren't supported, replace the current item.
* (If implementing the DB->put function, our caller already
* checked the DB_NOOVERWRITE flag.)
*/
if (!F_ISSET(dbp, DB_AM_DUP)) {
iiop = DB_CURRENT;
break;
}
/*
* If we find a matching entry, it may be an off-page duplicate
* tree. Return the page number to our caller, we need a new
* cursor.
*/
if (pgnop != NULL && __bam_isopd(dbc, pgnop))
goto done;
/* If the duplicates aren't sorted, move to the right slot. */
if (dbp->dup_compare == NULL) {
if (flags == DB_KEYFIRST)
iiop = DB_BEFORE;
else
for (;; cp->indx += P_INDX)
if (cp->indx + P_INDX >=
NUM_ENT(cp->page) ||
!IS_DUPLICATE(dbc, cp->indx,
cp->indx + P_INDX)) {
iiop = DB_AFTER;
break;
}
break;
}
/*
* We know that we're looking at the first of a set of sorted
* on-page duplicates. Walk the list to find the right slot.
*/
for (;; cp->indx += P_INDX) {
if ((ret = __bam_cmp(dbp, data, cp->page,
cp->indx + O_INDX, dbp->dup_compare, &cmp)) != 0)
goto err;
if (cmp < 0) {
iiop = DB_BEFORE;
break;
}
/* Disallow "sorted" duplicate duplicates. */
if (cmp == 0) {
if (IS_DELETED(dbp, cp->page, cp->indx)) {
iiop = DB_CURRENT;
break;
}
ret = __db_duperr(dbp, flags);
goto err;
}
if (cp->indx + P_INDX >= NUM_ENT(cp->page) ||
P_INP(dbp, ((PAGE *)cp->page))[cp->indx] !=
P_INP(dbp, ((PAGE *)cp->page))[cp->indx + P_INDX]) {
iiop = DB_AFTER;
break;
}
}
break;
default:
ret = __db_unknown_flag(dbp->dbenv, "__bam_c_put", flags);
goto err;
}
switch (ret = __bam_iitem(dbc, key, data, iiop, 0)) {
case 0:
break;
case DB_NEEDSPLIT:
/*
* To split, we need a key for the page. Either use the key
* argument or get a copy of the key from the page.
*/
if (flags == DB_AFTER ||
flags == DB_BEFORE || flags == DB_CURRENT) {
memset(&dbt, 0, sizeof(DBT));
if ((ret = __db_ret(dbp, cp->page, 0, &dbt,
&dbc->rkey->data, &dbc->rkey->ulen)) != 0)
goto err;
arg = &dbt;
} else
arg = F_ISSET(dbc, DBC_OPD) ? data : key;
/*
* Discard any locks and pinned pages (the locks are discarded
* even if we're running with transactions, as they lock pages
* that we're sorry we ever acquired). If stack is set and the
* cursor entries are valid, they point to the same entries as
* the stack, don't free them twice.
*/
if (stack)
ret = __bam_stkrel(dbc, STK_CLRDBC | STK_NOLOCK);
else
DISCARD_CUR(dbc, ret);
if (ret != 0)
goto err;
/* Split the tree. */
if ((ret = __bam_split(dbc, arg, &root_pgno)) != 0)
return (ret);
goto split;
default:
goto err;
}
err:
done: /*
* Discard any pages pinned in the tree and their locks, except for
* the leaf page. Note, the leaf page participated in any stack we
* acquired, and so we have to adjust the stack as necessary. If
* there was only a single page on the stack, we don't have to free
* further stack pages.
*/
if (stack && BT_STK_POP(cp) != NULL)
(void)__bam_stkrel(dbc, 0);
/*
* Regardless of whether we were successful or not, clear the delete
* flag. If we're successful, we either moved the cursor or the item
* is no longer deleted. If we're not successful, then we're just a
* copy, no need to have the flag set.
*/
F_CLR(cp, C_DELETED);
return (ret);
}
/*
* __bam_c_rget --
* Return the record number for a cursor.
*
* PUBLIC: int __bam_c_rget __P((DBC *, DBT *));
*/
int
__bam_c_rget(dbc, data)
DBC *dbc;
DBT *data;
{
BTREE_CURSOR *cp;
DB *dbp;
DBT dbt;
DB_MPOOLFILE *mpf;
db_recno_t recno;
int exact, ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* Get the page with the current item on it.
* Get a copy of the key.
* Release the page, making sure we don't release it twice.
*/
if ((ret = mpf->get(mpf, &cp->pgno, 0, &cp->page)) != 0)
return (ret);
memset(&dbt, 0, sizeof(DBT));
if ((ret = __db_ret(dbp, cp->page,
cp->indx, &dbt, &dbc->rkey->data, &dbc->rkey->ulen)) != 0)
goto err;
ret = mpf->put(mpf, cp->page, 0);
cp->page = NULL;
if (ret != 0)
return (ret);
if ((ret = __bam_search(dbc, PGNO_INVALID, &dbt,
F_ISSET(dbc, DBC_RMW) ? S_FIND_WR : S_FIND,
1, &recno, &exact)) != 0)
goto err;
ret = __db_retcopy(dbp->dbenv, data,
&recno, sizeof(recno), &dbc->rdata->data, &dbc->rdata->ulen);
/* Release the stack. */
err: __bam_stkrel(dbc, 0);
return (ret);
}
/*
* __bam_c_writelock --
* Upgrade the cursor to a write lock.
*/
static int
__bam_c_writelock(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
int ret;
cp = (BTREE_CURSOR *)dbc->internal;
if (cp->lock_mode == DB_LOCK_WRITE)
return (0);
/*
* When writing to an off-page duplicate tree, we need to have the
* appropriate page in the primary tree locked. The general DBC
* code calls us first with the primary cursor so we can acquire the
* appropriate lock.
*/
ACQUIRE_WRITE_LOCK(dbc, ret);
return (ret);
}
/*
* __bam_c_first --
* Return the first record.
*/
static int
__bam_c_first(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
db_pgno_t pgno;
int ret;
cp = (BTREE_CURSOR *)dbc->internal;
ret = 0;
/* Walk down the left-hand side of the tree. */
for (pgno = cp->root;;) {
ACQUIRE_CUR_COUPLE(dbc, DB_LOCK_READ, pgno, ret);
if (ret != 0)
return (ret);
/* If we find a leaf page, we're done. */
if (ISLEAF(cp->page))
break;
pgno = GET_BINTERNAL(dbc->dbp, cp->page, 0)->pgno;
}
/* If we want a write lock instead of a read lock, get it now. */
if (F_ISSET(dbc, DBC_RMW)) {
ACQUIRE_WRITE_LOCK(dbc, ret);
if (ret != 0)
return (ret);
}
cp->indx = 0;
/* If on an empty page or a deleted record, move to the next one. */
if (NUM_ENT(cp->page) == 0 || IS_CUR_DELETED(dbc))
if ((ret = __bam_c_next(dbc, 0, 0)) != 0)
return (ret);
return (0);
}
/*
* __bam_c_last --
* Return the last record.
*/
static int
__bam_c_last(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
db_pgno_t pgno;
int ret;
cp = (BTREE_CURSOR *)dbc->internal;
ret = 0;
/* Walk down the right-hand side of the tree. */
for (pgno = cp->root;;) {
ACQUIRE_CUR_COUPLE(dbc, DB_LOCK_READ, pgno, ret);
if (ret != 0)
return (ret);
/* If we find a leaf page, we're done. */
if (ISLEAF(cp->page))
break;
pgno = GET_BINTERNAL(dbc->dbp, cp->page,
NUM_ENT(cp->page) - O_INDX)->pgno;
}
/* If we want a write lock instead of a read lock, get it now. */
if (F_ISSET(dbc, DBC_RMW)) {
ACQUIRE_WRITE_LOCK(dbc, ret);
if (ret != 0)
return (ret);
}
cp->indx = NUM_ENT(cp->page) == 0 ? 0 :
NUM_ENT(cp->page) -
(TYPE(cp->page) == P_LBTREE ? P_INDX : O_INDX);
/* If on an empty page or a deleted record, move to the previous one. */
if (NUM_ENT(cp->page) == 0 || IS_CUR_DELETED(dbc))
if ((ret = __bam_c_prev(dbc)) != 0)
return (ret);
return (0);
}
/*
* __bam_c_next --
* Move to the next record.
*/
static int
__bam_c_next(dbc, initial_move, deleted_okay)
DBC *dbc;
int initial_move, deleted_okay;
{
BTREE_CURSOR *cp;
db_indx_t adjust;
db_lockmode_t lock_mode;
db_pgno_t pgno;
int ret;
cp = (BTREE_CURSOR *)dbc->internal;
ret = 0;
/*
* We're either moving through a page of duplicates or a btree leaf
* page.
*
* !!!
* This code handles empty pages and pages with only deleted entries.
*/
if (F_ISSET(dbc, DBC_OPD)) {
adjust = O_INDX;
lock_mode = DB_LOCK_NG;
} else {
adjust = dbc->dbtype == DB_BTREE ? P_INDX : O_INDX;
lock_mode =
F_ISSET(dbc, DBC_RMW) ? DB_LOCK_WRITE : DB_LOCK_READ;
}
if (cp->page == NULL) {
ACQUIRE_CUR(dbc, lock_mode, cp->pgno, ret);
if (ret != 0)
return (ret);
}
if (initial_move)
cp->indx += adjust;
for (;;) {
/*
* If at the end of the page, move to a subsequent page.
*
* !!!
* Check for >= NUM_ENT. If the original search landed us on
* NUM_ENT, we may have incremented indx before the test.
*/
if (cp->indx >= NUM_ENT(cp->page)) {
if ((pgno
= NEXT_PGNO(cp->page)) == PGNO_INVALID)
return (DB_NOTFOUND);
ACQUIRE_CUR(dbc, lock_mode, pgno, ret);
if (ret != 0)
return (ret);
cp->indx = 0;
continue;
}
if (!deleted_okay && IS_CUR_DELETED(dbc)) {
cp->indx += adjust;
continue;
}
break;
}
return (0);
}
/*
* __bam_c_prev --
* Move to the previous record.
*/
static int
__bam_c_prev(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
db_indx_t adjust;
db_lockmode_t lock_mode;
db_pgno_t pgno;
int ret;
cp = (BTREE_CURSOR *)dbc->internal;
ret = 0;
/*
* We're either moving through a page of duplicates or a btree leaf
* page.
*
* !!!
* This code handles empty pages and pages with only deleted entries.
*/
if (F_ISSET(dbc, DBC_OPD)) {
adjust = O_INDX;
lock_mode = DB_LOCK_NG;
} else {
adjust = dbc->dbtype == DB_BTREE ? P_INDX : O_INDX;
lock_mode =
F_ISSET(dbc, DBC_RMW) ? DB_LOCK_WRITE : DB_LOCK_READ;
}
if (cp->page == NULL) {
ACQUIRE_CUR(dbc, lock_mode, cp->pgno, ret);
if (ret != 0)
return (ret);
}
for (;;) {
/* If at the beginning of the page, move to a previous one. */
if (cp->indx == 0) {
if ((pgno =
PREV_PGNO(cp->page)) == PGNO_INVALID)
return (DB_NOTFOUND);
ACQUIRE_CUR(dbc, lock_mode, pgno, ret);
if (ret != 0)
return (ret);
if ((cp->indx = NUM_ENT(cp->page)) == 0)
continue;
}
/* Ignore deleted records. */
cp->indx -= adjust;
if (IS_CUR_DELETED(dbc))
continue;
break;
}
return (0);
}
/*
* __bam_c_search --
* Move to a specified record.
*/
static int
__bam_c_search(dbc, root_pgno, key, flags, exactp)
DBC *dbc;
db_pgno_t root_pgno;
const DBT *key;
u_int32_t flags;
int *exactp;
{
BTREE *t;
BTREE_CURSOR *cp;
DB *dbp;
PAGE *h;
db_indx_t indx, *inp;
db_pgno_t bt_lpgno;
db_recno_t recno;
u_int32_t sflags;
int cmp, ret;
dbp = dbc->dbp;
cp = (BTREE_CURSOR *)dbc->internal;
t = dbp->bt_internal;
ret = 0;
/*
* Find an entry in the database. Discard any lock we currently hold,
* we're going to search the tree.
*/
DISCARD_CUR(dbc, ret);
if (ret != 0)
return (ret);
switch (flags) {
case DB_SET_RECNO:
if ((ret = __ram_getno(dbc, key, &recno, 0)) != 0)
return (ret);
sflags = (F_ISSET(dbc, DBC_RMW) ? S_FIND_WR : S_FIND) | S_EXACT;
if ((ret = __bam_rsearch(dbc, &recno, sflags, 1, exactp)) != 0)
return (ret);
break;
case DB_SET:
case DB_GET_BOTH:
sflags = (F_ISSET(dbc, DBC_RMW) ? S_FIND_WR : S_FIND) | S_EXACT;
goto search;
case DB_GET_BOTH_RANGE:
sflags = (F_ISSET(dbc, DBC_RMW) ? S_FIND_WR : S_FIND);
goto search;
case DB_SET_RANGE:
sflags =
(F_ISSET(dbc, DBC_RMW) ? S_WRITE : S_READ) | S_DUPFIRST;
goto search;
case DB_KEYFIRST:
sflags = S_KEYFIRST;
goto fast_search;
case DB_KEYLAST:
case DB_NODUPDATA:
sflags = S_KEYLAST;
fast_search: /*
* If the application has a history of inserting into the first
* or last pages of the database, we check those pages first to
* avoid doing a full search.
*
* If the tree has record numbers, we need a complete stack so
* that we can adjust the record counts, so fast_search isn't
* possible.
*/
if (F_ISSET(cp, C_RECNUM))
goto search;
/*
* !!!
* We do not mutex protect the t->bt_lpgno field, which means
* that it can only be used in an advisory manner. If we find
* page we can use, great. If we don't, we don't care, we do
* it the slow way instead. Regardless, copy it into a local
* variable, otherwise we might acquire a lock for a page and
* then read a different page because it changed underfoot.
*/
bt_lpgno = t->bt_lpgno;
/*
* If the tree has no history of insertion, do it the slow way.
*/
if (bt_lpgno == PGNO_INVALID)
goto search;
/* Lock and retrieve the page on which we last inserted. */
h = NULL;
ACQUIRE(dbc,
DB_LOCK_WRITE, bt_lpgno, cp->lock, bt_lpgno, h, ret);
if (ret != 0)
goto fast_miss;
inp = P_INP(dbp, h);
/*
* It's okay if the page type isn't right or it's empty, it
* just means that the world changed.
*/
if (TYPE(h) != P_LBTREE || NUM_ENT(h) == 0)
goto fast_miss;
/*
* What we do here is test to see if we're at the beginning or
* end of the tree and if the new item sorts before/after the
* first/last page entry. We don't try and catch inserts into
* the middle of the tree (although we could, as long as there
* were two keys on the page and we saved both the index and
* the page number of the last insert).
*/
if (h->next_pgno == PGNO_INVALID) {
indx = NUM_ENT(h) - P_INDX;
if ((ret = __bam_cmp(dbp,
key, h, indx, t->bt_compare, &cmp)) != 0)
return (ret);
if (cmp < 0)
goto try_begin;
if (cmp > 0) {
indx += P_INDX;
goto fast_hit;
}
/*
* Found a duplicate. If doing DB_KEYLAST, we're at
* the correct position, otherwise, move to the first
* of the duplicates. If we're looking at off-page
* duplicates, duplicate duplicates aren't permitted,
* so we're done.
*/
if (flags == DB_KEYLAST)
goto fast_hit;
for (;
indx > 0 && inp[indx - P_INDX] == inp[indx];
indx -= P_INDX)
;
goto fast_hit;
}
try_begin: if (h->prev_pgno == PGNO_INVALID) {
indx = 0;
if ((ret = __bam_cmp(dbp,
key, h, indx, t->bt_compare, &cmp)) != 0)
return (ret);
if (cmp > 0)
goto fast_miss;
if (cmp < 0)
goto fast_hit;
/*
* Found a duplicate. If doing DB_KEYFIRST, we're at
* the correct position, otherwise, move to the last
* of the duplicates. If we're looking at off-page
* duplicates, duplicate duplicates aren't permitted,
* so we're done.
*/
if (flags == DB_KEYFIRST)
goto fast_hit;
for (;
indx < (db_indx_t)(NUM_ENT(h) - P_INDX) &&
inp[indx] == inp[indx + P_INDX];
indx += P_INDX)
;
goto fast_hit;
}
goto fast_miss;
fast_hit: /* Set the exact match flag, we may have found a duplicate. */
*exactp = cmp == 0;
/*
* Insert the entry in the stack. (Our caller is likely to
* call __bam_stkrel() after our return.)
*/
BT_STK_CLR(cp);
BT_STK_ENTER(dbp->dbenv,
cp, h, indx, cp->lock, cp->lock_mode, ret);
if (ret != 0)
return (ret);
break;
fast_miss: /*
* This was not the right page, so we do not need to retain
* the lock even in the presence of transactions.
*/
DISCARD(dbc, 1, cp->lock, h, ret);
if (ret != 0)
return (ret);
search: if ((ret = __bam_search(dbc, root_pgno,
key, sflags, 1, NULL, exactp)) != 0)
return (ret);
break;
default:
return (__db_unknown_flag(dbp->dbenv, "__bam_c_search", flags));
}
/* Initialize the cursor from the stack. */
cp->page = cp->csp->page;
cp->pgno = cp->csp->page->pgno;
cp->indx = cp->csp->indx;
cp->lock = cp->csp->lock;
cp->lock_mode = cp->csp->lock_mode;
/*
* If we inserted a key into the first or last slot of the tree,
* remember where it was so we can do it more quickly next time.
* If there are duplicates and we are inserting into the last slot,
* the cursor will point _to_ the last item, not after it, which
* is why we subtract P_INDX below.
*/
if (TYPE(cp->page) == P_LBTREE &&
(flags == DB_KEYFIRST || flags == DB_KEYLAST))
t->bt_lpgno =
(NEXT_PGNO(cp->page) == PGNO_INVALID &&
cp->indx >= NUM_ENT(cp->page) - P_INDX) ||
(PREV_PGNO(cp->page) == PGNO_INVALID &&
cp->indx == 0) ? cp->pgno : PGNO_INVALID;
return (0);
}
/*
* __bam_c_physdel --
* Physically remove an item from the page.
*/
static int
__bam_c_physdel(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
DB *dbp;
DBT key;
DB_LOCK lock;
DB_MPOOLFILE *mpf;
PAGE *h;
db_pgno_t pgno;
int delete_page, empty_page, exact, level, ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
delete_page = empty_page = ret = 0;
/* If the page is going to be emptied, consider deleting it. */
delete_page = empty_page =
NUM_ENT(cp->page) == (TYPE(cp->page) == P_LBTREE ? 2 : 1);
/*
* Check if the application turned off reverse splits. Applications
* can't turn off reverse splits in off-page duplicate trees, that
* space will never be reused unless the exact same key is specified.
*/
if (delete_page &&
!F_ISSET(dbc, DBC_OPD) && F_ISSET(dbp, DB_AM_REVSPLITOFF))
delete_page = 0;
/*
* We never delete the last leaf page. (Not really true -- we delete
* the last leaf page of off-page duplicate trees, but that's handled
* by our caller, not down here.)
*/
if (delete_page && cp->pgno == cp->root)
delete_page = 0;
/*
* To delete a leaf page other than an empty root page, we need a
* copy of a key from the page. Use the 0th page index since it's
* the last key the page held.
*
* !!!
* Note that because __bam_c_physdel is always called from a cursor
* close, it should be safe to use the cursor's own "my_rkey" memory
* to temporarily hold this key. We shouldn't own any returned-data
* memory of interest--if we do, we're in trouble anyway.
*/
if (delete_page) {
memset(&key, 0, sizeof(DBT));
if ((ret = __db_ret(dbp, cp->page,
0, &key, &dbc->my_rkey.data, &dbc->my_rkey.ulen)) != 0)
return (ret);
}
/*
* Delete the items. If page isn't empty, we adjust the cursors.
*
* !!!
* The following operations to delete a page may deadlock. The easy
* scenario is if we're deleting an item because we're closing cursors
* because we've already deadlocked and want to call txn->abort. If
* we fail due to deadlock, we'll leave a locked, possibly empty page
* in the tree, which won't be empty long because we'll undo the delete
* when we undo the transaction's modifications.
*
* !!!
* Delete the key item first, otherwise the on-page duplicate checks
* in __bam_ditem() won't work!
*/
if (TYPE(cp->page) == P_LBTREE) {
if ((ret = __bam_ditem(dbc, cp->page, cp->indx)) != 0)
return (ret);
if (!empty_page)
if ((ret = __bam_ca_di(dbc,
PGNO(cp->page), cp->indx, -1)) != 0)
return (ret);
}
if ((ret = __bam_ditem(dbc, cp->page, cp->indx)) != 0)
return (ret);
if (!empty_page)
if ((ret = __bam_ca_di(dbc, PGNO(cp->page), cp->indx, -1)) != 0)
return (ret);
/* If we're not going to try and delete the page, we're done. */
if (!delete_page)
return (0);
/*
* Call __bam_search to reacquire the empty leaf page, but this time
* get both the leaf page and it's parent, locked. Jump back up the
* tree, until we have the top pair of pages that we want to delete.
* Once we have the top page that we want to delete locked, lock the
* underlying pages and check to make sure they're still empty. If
* they are, delete them.
*/
for (level = LEAFLEVEL;; ++level) {
/* Acquire a page and its parent, locked. */
if ((ret = __bam_search(dbc, PGNO_INVALID,
&key, S_WRPAIR, level, NULL, &exact)) != 0)
return (ret);
/*
* If we reach the root or the parent page isn't going to be
* empty when we delete one record, stop.
*/
h = cp->csp[-1].page;
if (h->pgno == cp->root || NUM_ENT(h) != 1)
break;
/* Discard the stack, retaining no locks. */
(void)__bam_stkrel(dbc, STK_NOLOCK);
}
/*
* Move the stack pointer one after the last entry, we may be about
* to push more items onto the page stack.
*/
++cp->csp;
/*
* cp->csp[-2].page is now the parent page, which we may or may not be
* going to delete, and cp->csp[-1].page is the first page we know we
* are going to delete. Walk down the chain of pages, acquiring pages
* until we've acquired a leaf page. Generally, this shouldn't happen;
* we should only see a single internal page with one item and a single
* leaf page with no items. The scenario where we could see something
* else is if reverse splits were turned off for awhile and then turned
* back on. That could result in all sorts of strangeness, e.g., empty
* pages in the tree, trees that looked like linked lists, and so on.
*
* !!!
* Sheer paranoia: if we find any pages that aren't going to be emptied
* by the delete, someone else added an item while we were walking the
* tree, and we discontinue the delete. Shouldn't be possible, but we
* check regardless.
*/
for (h = cp->csp[-1].page;;) {
if (ISLEAF(h)) {
if (NUM_ENT(h) != 0)
break;
break;
} else
if (NUM_ENT(h) != 1)
break;
/*
* Get the next page, write lock it and push it onto the stack.
* We know it's index 0, because it can only have one element.
*/
switch (TYPE(h)) {
case P_IBTREE:
pgno = GET_BINTERNAL(dbp, h, 0)->pgno;
break;
case P_IRECNO:
pgno = GET_RINTERNAL(dbp, h, 0)->pgno;
break;
default:
return (__db_pgfmt(dbp->dbenv, PGNO(h)));
}
if ((ret =
__db_lget(dbc, 0, pgno, DB_LOCK_WRITE, 0, &lock)) != 0)
break;
if ((ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
break;
BT_STK_PUSH(dbp->dbenv, cp, h, 0, lock, DB_LOCK_WRITE, ret);
if (ret != 0)
break;
}
/* Adjust the cursor stack to reference the last page on the stack. */
BT_STK_POP(cp);
/*
* If everything worked, delete the stack, otherwise, release the
* stack and page locks without further damage.
*/
if (ret == 0)
ret = __bam_dpages(dbc, cp->sp);
else
(void)__bam_stkrel(dbc, 0);
return (ret);
}
/*
* __bam_c_getstack --
* Acquire a full stack for a cursor.
*/
static int
__bam_c_getstack(dbc)
DBC *dbc;
{
BTREE_CURSOR *cp;
DB *dbp;
DBT dbt;
DB_MPOOLFILE *mpf;
PAGE *h;
int exact, ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* Get the page with the current item on it. The caller of this
* routine has to already hold a read lock on the page, so there
* is no additional lock to acquire.
*/
if ((ret = mpf->get(mpf, &cp->pgno, 0, &h)) != 0)
return (ret);
/* Get a copy of a key from the page. */
memset(&dbt, 0, sizeof(DBT));
if ((ret = __db_ret(dbp,
h, 0, &dbt, &dbc->rkey->data, &dbc->rkey->ulen)) != 0)
goto err;
/* Get a write-locked stack for the page. */
exact = 0;
ret = __bam_search(dbc, PGNO_INVALID,
&dbt, S_KEYFIRST, 1, NULL, &exact);
err: /* Discard the key and the page. */
if ((t_ret = mpf->put(mpf, h, 0)) != 0 && ret == 0)
ret = t_ret;
return (ret);
}
/*
* __bam_isopd --
* Return if the cursor references an off-page duplicate tree via its
* page number.
*/
static int
__bam_isopd(dbc, pgnop)
DBC *dbc;
db_pgno_t *pgnop;
{
BOVERFLOW *bo;
if (TYPE(dbc->internal->page) != P_LBTREE)
return (0);
bo = GET_BOVERFLOW(dbc->dbp,
dbc->internal->page, dbc->internal->indx + O_INDX);
if (B_TYPE(bo->type) == B_DUPLICATE) {
*pgnop = bo->pgno;
return (1);
}
return (0);
}