mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 21:12:26 +01:00
5f75c8f5b4
Now one can use user variables as target for data loaded from file (besides table's columns). Also LOAD DATA got new SET-clause in which one can specify values for table columns as expressions. For example the following is possible: LOAD DATA INFILE 'words.dat' INTO TABLE t1 (a, @b) SET c = @b + 1; This patch also implements new way of replicating LOAD DATA. Now we do it similarly to other queries. We store LOAD DATA query in new Execute_load_query event (which is last in the sequence of events representing LOAD DATA). When we are executing this event we simply rewrite part of query which holds name of file (we use name of temporary file) and then execute it as usual query. In the beggining of this sequence we use Begin_load_query event which is almost identical to Append_file event client/mysqlbinlog.cc: Added support of two new binary log events Begin_load_query_log_event and Execute_load_query_log_Event which are used to replicate LOAD DATA INFILE. mysql-test/r/ctype_ucs.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/r/insert_select.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/r/loaddata.result: Added tests for new LOAD DATA features. mysql-test/r/mix_innodb_myisam_binlog.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results (don't dare to get rid from binlog positions completely since it seems that this test uses them). mysql-test/r/mysqlbinlog.result: New approach for binlogging of LOAD DATA statement. Now we store it as usual query and rewrite part in which file is specified when needed. So now mysqlbinlog output for LOAD DATA much more closer to its initial form. Updated test'd results accordingly. mysql-test/r/mysqldump.result: Made test more robust to other tests failures. mysql-test/r/rpl000015.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_change_master.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results. mysql-test/r/rpl_charset.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly mysql-test/r/rpl_deadlock.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly mysql-test/r/rpl_error_ignored_table.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/r/rpl_flush_log_loop.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_flush_tables.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/r/rpl_loaddata.result: New way of replicating LOAD DATA. Now we do it similarly to other queries. We store LOAD DATA query in new Execute_load_query event (which is last in the sequence of events representing LOAD DATA). When we are executing this event we simply rewrite part of query which holds name of file (we use name of temporary file) and then execute it as usual query. In the beggining of this sequence we use Begin_load_query event which is almost identical to Append_file event... Updated test's results wwith new binlog positions. mysql-test/r/rpl_loaddata_rule_m.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. Since now LOAD DATA is replicated much in the same way as usual query --binlog_do/ignore_db work for it inthe same way as for usual queries. mysql-test/r/rpl_loaddata_rule_s.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_loaddatalocal.result: Added nice test for case when it is important that LOAD DATA LOCAL ignores duplicates. mysql-test/r/rpl_log.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly (don't dare to get rid from binlog positions completely since it seems that this test uses them). mysql-test/r/rpl_log_pos.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_max_relay_size.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_multi_query.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_relayrotate.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_replicate_do.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_reset_slave.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_rotate_logs.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_server_id1.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_server_id2.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly. mysql-test/r/rpl_temporary.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/r/rpl_timezone.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/r/rpl_until.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results accordingly and tweaked test a bit to bring it back to good shape. mysql-test/r/rpl_user_variables.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/r/user_var.result: Addition of two new types of binary log events shifted binlog positions. Updated test's results and made it more robust for future similar changes. mysql-test/t/ctype_ucs.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly and made it more robust for future similar changes. mysql-test/t/insert_select.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly and made it more robust for future similar changes. mysql-test/t/loaddata.test: Added test cases for new LOAD DATA functionality. mysql-test/t/mix_innodb_myisam_binlog.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly. mysql-test/t/mysqlbinlog.test: New way of replicating LOAD DATA local. Now we do it similarly to other queries. We store LOAD DATA query in new Execute_load_query event (which is last in the sequence of events representing LOAD DATA). When we are executing this event we simply rewrite part of query which holds name of file (we use name of temporary file) and then execute it as usual query. In the beggining of this sequence we use Begin_load_query event which is almost identical to Append_file event... Thus we need new binlog positions for LOAD DATA events. mysql-test/t/mysqlbinlog2.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly. mysql-test/t/mysqldump.test: Made test more robust for failures of other tests. mysql-test/t/rpl_charset.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly. mysql-test/t/rpl_deadlock.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly. mysql-test/t/rpl_error_ignored_table.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly and made it more robust for future similar changes. mysql-test/t/rpl_flush_tables.test: Addition of two new types of binary log events shifted binlog positions. Made test more robust for future similar changes. mysql-test/t/rpl_loaddata.test: New way of replicating LOAD DATA. Now we do it similarly to other queries. We store LOAD DATA query in new Execute_load_query event (which is last in the sequence of events representing LOAD DATA). When we are executing this event we simply rewrite part of query which holds name of file (we use name of temporary file) and then execute it as usual query. In the beggining of this sequence we use Begin_load_query event which is almost identical to Append_file event... Apropritely updated comments in test. mysql-test/t/rpl_loaddata_rule_m.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly and made it more robust for future similar changes. Since now LOAD DATA is replicated much in the same way as usual query --binlog_do/ignore_db work for it inthe same way as for usual queries. mysql-test/t/rpl_loaddata_rule_s.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly. mysql-test/t/rpl_loaddatalocal.test: Added nice test for case when it is important that LOAD DATA LOCAL ignores duplicates. mysql-test/t/rpl_log.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly (don't dare to get rid from binlog positions completely since it seems that this test uses them). mysql-test/t/rpl_log_pos.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly. mysql-test/t/rpl_multi_query.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly. mysql-test/t/rpl_temporary.test: Addition of two new types of binary log events shifted binlog positions. Made test more robust for future similar changes. mysql-test/t/rpl_timezone.test: Addition of two new types of binary log events shifted binlog positions. Made test more robust for future similar changes. mysql-test/t/rpl_until.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly and tweaked it a bit to bring it back to good shape. mysql-test/t/rpl_user_variables.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly and made it more robust for future similar changes. mysql-test/t/user_var.test: Addition of two new types of binary log events shifted binlog positions. Updated test accordingly and made it more robust for future similar changes. sql/item_func.cc: Added Item_user_var_as_out_param class that represents user variable which used as out parameter in LOAD DATA. Moved code from Item_func_set_user_var::update_hash() function to separate static function to be able to reuse it in this new class. sql/item_func.h: Added Item_user_var_as_out_param class that represents user variable which used as out parameter in LOAD DATA. sql/log_event.cc: New way of replicating LOAD DATA. Now we do it similarly to other queries. We store LOAD DATA query in new Execute_load_query event (which is last in the sequence of events representing LOAD DATA). When we are executing this event we simply rewrite part of query which holds name of file (we use name of temporary file) and then execute it as usual query. In the beggining of this sequence we use Begin_load_query event which is almost identical to Append_file event. sql/log_event.h: New way of replicating LOAD DATA. Now we do it similarly to other queries. We store LOAD DATA query in new Execute_load_query event (which is last in the sequence of events representing LOAD DATA). When we are executing this event we simply rewrite part of query which holds name of file (we use name of temporary file) and then execute it as usual query. In the beggining of this sequence we use Begin_load_query event which is almost identical to Append_file event. sql/mysql_priv.h: Now mysql_load() has two more arguments. They are needed to pass list of columns and corresponding expressions from new LOAD DATA's SET clause. sql/share/errmsg.txt: Added new error message which is used to forbid loading of data from fixed length rows to variables. sql/sql_lex.h: Added LEX::fname_start/fname_end members. They are pointers to part of LOAD DATA statement which should be rewritten during replication (file name + little extra). sql/sql_load.cc: Added support for extended LOAD DATA. Now one can use user variables as target for data loaded from file (besides table's columns). Also LOAD DATA got new SET-clause in which one can specify values for table columns as expressions. Updated mysql_load()/read_fixed_length()/read_sep_field() to support this functionality (now they can read data from file to both columns and variables and assign do calculations and assignments specified in SET clause). We also use new approach for LOAD DATA binlogging/replication. sql/sql_parse.cc: mysql_execute_command(): Since now we have SET clause in LOAD DATA we should also check permissions for tables used in its expressions. Also mysql_load() has two more arguments to pass information about this clause. sql/sql_repl.cc: New way of replicating LOAD DATA. Now we do it similarly to other queries. We store LOAD DATA query in new Execute_load_query event (which is last in the sequence of events representing LOAD DATA). When we are executing this event we simply rewrite part of query which holds name of file (we use name of temporary file) and then execute it as usual query. In the beggining of this sequence we use Begin_load_query event which is almost identical to Append_file event. sql/sql_repl.h: struct st_load_file_info: Removed memebers which are no longer needed for LOAD DATA binnlogging. sql/sql_yacc.yy: Added support for extended LOAD DATA syntax. Now one can use user variables as target for data loaded from file (besides table's columns). Also LOAD DATA got new SET-clause in which one can specify values for table columns as expressions. For example the following is possible: LOAD DATA INFILE 'words.dat' INTO TABLE t1 (a, @b) SET c = @b + 1; Also now we save pointers to the beginning and to the end of part of LOAD DATA statement which should be rewritten during replication.
1532 lines
45 KiB
C++
1532 lines
45 KiB
C++
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB & Sasha
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
#include "mysql_priv.h"
|
|
#ifdef HAVE_REPLICATION
|
|
|
|
#include "sql_repl.h"
|
|
#include "log_event.h"
|
|
#include <my_dir.h>
|
|
|
|
int max_binlog_dump_events = 0; // unlimited
|
|
my_bool opt_sporadic_binlog_dump_fail = 0;
|
|
static int binlog_dump_count = 0;
|
|
|
|
/*
|
|
fake_rotate_event() builds a fake (=which does not exist physically in any
|
|
binlog) Rotate event, which contains the name of the binlog we are going to
|
|
send to the slave (because the slave may not know it if it just asked for
|
|
MASTER_LOG_FILE='', MASTER_LOG_POS=4).
|
|
< 4.0.14, fake_rotate_event() was called only if the requested pos was 4.
|
|
After this version we always call it, so that a 3.23.58 slave can rely on
|
|
it to detect if the master is 4.0 (and stop) (the _fake_ Rotate event has
|
|
zeros in the good positions which, by chance, make it possible for the 3.23
|
|
slave to detect that this event is unexpected) (this is luck which happens
|
|
because the master and slave disagree on the size of the header of
|
|
Log_event).
|
|
|
|
Relying on the event length of the Rotate event instead of these
|
|
well-placed zeros was not possible as Rotate events have a variable-length
|
|
part.
|
|
*/
|
|
|
|
static int fake_rotate_event(NET* net, String* packet, char* log_file_name,
|
|
ulonglong position, const char** errmsg)
|
|
{
|
|
DBUG_ENTER("fake_rotate_event");
|
|
char header[LOG_EVENT_HEADER_LEN], buf[ROTATE_HEADER_LEN+100];
|
|
/*
|
|
'when' (the timestamp) is set to 0 so that slave could distinguish between
|
|
real and fake Rotate events (if necessary)
|
|
*/
|
|
memset(header, 0, 4);
|
|
header[EVENT_TYPE_OFFSET] = ROTATE_EVENT;
|
|
|
|
char* p = log_file_name+dirname_length(log_file_name);
|
|
uint ident_len = (uint) strlen(p);
|
|
ulong event_len = ident_len + LOG_EVENT_HEADER_LEN + ROTATE_HEADER_LEN;
|
|
int4store(header + SERVER_ID_OFFSET, server_id);
|
|
int4store(header + EVENT_LEN_OFFSET, event_len);
|
|
int2store(header + FLAGS_OFFSET, 0);
|
|
|
|
// TODO: check what problems this may cause and fix them
|
|
int4store(header + LOG_POS_OFFSET, 0);
|
|
|
|
packet->append(header, sizeof(header));
|
|
int8store(buf+R_POS_OFFSET,position);
|
|
packet->append(buf, ROTATE_HEADER_LEN);
|
|
packet->append(p,ident_len);
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()))
|
|
{
|
|
*errmsg = "failed on my_net_write()";
|
|
DBUG_RETURN(-1);
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
static int send_file(THD *thd)
|
|
{
|
|
NET* net = &thd->net;
|
|
int fd = -1,bytes, error = 1;
|
|
char fname[FN_REFLEN+1];
|
|
const char *errmsg = 0;
|
|
int old_timeout;
|
|
uint packet_len;
|
|
char buf[IO_SIZE]; // It's safe to alloc this
|
|
DBUG_ENTER("send_file");
|
|
|
|
/*
|
|
The client might be slow loading the data, give him wait_timeout to do
|
|
the job
|
|
*/
|
|
old_timeout = thd->net.read_timeout;
|
|
thd->net.read_timeout = thd->variables.net_wait_timeout;
|
|
|
|
/*
|
|
We need net_flush here because the client will not know it needs to send
|
|
us the file name until it has processed the load event entry
|
|
*/
|
|
if (net_flush(net) || (packet_len = my_net_read(net)) == packet_error)
|
|
{
|
|
errmsg = "while reading file name";
|
|
goto err;
|
|
}
|
|
|
|
// terminate with \0 for fn_format
|
|
*((char*)net->read_pos + packet_len) = 0;
|
|
fn_format(fname, (char*) net->read_pos + 1, "", "", 4);
|
|
// this is needed to make replicate-ignore-db
|
|
if (!strcmp(fname,"/dev/null"))
|
|
goto end;
|
|
|
|
if ((fd = my_open(fname, O_RDONLY, MYF(0))) < 0)
|
|
{
|
|
errmsg = "on open of file";
|
|
goto err;
|
|
}
|
|
|
|
while ((bytes = (int) my_read(fd, (byte*) buf, IO_SIZE, MYF(0))) > 0)
|
|
{
|
|
if (my_net_write(net, buf, bytes))
|
|
{
|
|
errmsg = "while writing data to client";
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
end:
|
|
if (my_net_write(net, "", 0) || net_flush(net) ||
|
|
(my_net_read(net) == packet_error))
|
|
{
|
|
errmsg = "while negotiating file transfer close";
|
|
goto err;
|
|
}
|
|
error = 0;
|
|
|
|
err:
|
|
thd->net.read_timeout = old_timeout;
|
|
if (fd >= 0)
|
|
(void) my_close(fd, MYF(0));
|
|
if (errmsg)
|
|
{
|
|
sql_print_error("Failed in send_file() %s", errmsg);
|
|
DBUG_PRINT("error", (errmsg));
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
Adjust the position pointer in the binary log file for all running slaves
|
|
|
|
SYNOPSIS
|
|
adjust_linfo_offsets()
|
|
purge_offset Number of bytes removed from start of log index file
|
|
|
|
NOTES
|
|
- This is called when doing a PURGE when we delete lines from the
|
|
index log file
|
|
|
|
REQUIREMENTS
|
|
- Before calling this function, we have to ensure that no threads are
|
|
using any binary log file before purge_offset.a
|
|
|
|
TODO
|
|
- Inform the slave threads that they should sync the position
|
|
in the binary log file with flush_relay_log_info.
|
|
Now they sync is done for next read.
|
|
*/
|
|
|
|
void adjust_linfo_offsets(my_off_t purge_offset)
|
|
{
|
|
THD *tmp;
|
|
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
I_List_iterator<THD> it(threads);
|
|
|
|
while ((tmp=it++))
|
|
{
|
|
LOG_INFO* linfo;
|
|
if ((linfo = tmp->current_linfo))
|
|
{
|
|
pthread_mutex_lock(&linfo->lock);
|
|
/*
|
|
Index file offset can be less that purge offset only if
|
|
we just started reading the index file. In that case
|
|
we have nothing to adjust
|
|
*/
|
|
if (linfo->index_file_offset < purge_offset)
|
|
linfo->fatal = (linfo->index_file_offset != 0);
|
|
else
|
|
linfo->index_file_offset -= purge_offset;
|
|
pthread_mutex_unlock(&linfo->lock);
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
}
|
|
|
|
|
|
bool log_in_use(const char* log_name)
|
|
{
|
|
int log_name_len = strlen(log_name) + 1;
|
|
THD *tmp;
|
|
bool result = 0;
|
|
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
I_List_iterator<THD> it(threads);
|
|
|
|
while ((tmp=it++))
|
|
{
|
|
LOG_INFO* linfo;
|
|
if ((linfo = tmp->current_linfo))
|
|
{
|
|
pthread_mutex_lock(&linfo->lock);
|
|
result = !bcmp(log_name, linfo->log_file_name, log_name_len);
|
|
pthread_mutex_unlock(&linfo->lock);
|
|
if (result)
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
return result;
|
|
}
|
|
|
|
bool purge_error_message(THD* thd, int res)
|
|
{
|
|
uint errmsg= 0;
|
|
|
|
switch (res) {
|
|
case 0: break;
|
|
case LOG_INFO_EOF: errmsg= ER_UNKNOWN_TARGET_BINLOG; break;
|
|
case LOG_INFO_IO: errmsg= ER_IO_ERR_LOG_INDEX_READ; break;
|
|
case LOG_INFO_INVALID:errmsg= ER_BINLOG_PURGE_PROHIBITED; break;
|
|
case LOG_INFO_SEEK: errmsg= ER_FSEEK_FAIL; break;
|
|
case LOG_INFO_MEM: errmsg= ER_OUT_OF_RESOURCES; break;
|
|
case LOG_INFO_FATAL: errmsg= ER_BINLOG_PURGE_FATAL_ERR; break;
|
|
case LOG_INFO_IN_USE: errmsg= ER_LOG_IN_USE; break;
|
|
default: errmsg= ER_LOG_PURGE_UNKNOWN_ERR; break;
|
|
}
|
|
|
|
if (errmsg)
|
|
{
|
|
my_message(errmsg, ER(errmsg), MYF(0));
|
|
return TRUE;
|
|
}
|
|
send_ok(thd);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool purge_master_logs(THD* thd, const char* to_log)
|
|
{
|
|
char search_file_name[FN_REFLEN];
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
send_ok(thd);
|
|
return FALSE;
|
|
}
|
|
|
|
mysql_bin_log.make_log_name(search_file_name, to_log);
|
|
return purge_error_message(thd,
|
|
mysql_bin_log.purge_logs(search_file_name, 0, 1,
|
|
1, NULL));
|
|
}
|
|
|
|
|
|
bool purge_master_logs_before_date(THD* thd, time_t purge_time)
|
|
{
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
send_ok(thd);
|
|
return 0;
|
|
}
|
|
return purge_error_message(thd,
|
|
mysql_bin_log.purge_logs_before_date(purge_time));
|
|
}
|
|
|
|
int test_for_non_eof_log_read_errors(int error, const char **errmsg)
|
|
{
|
|
if (error == LOG_READ_EOF)
|
|
return 0;
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
switch (error) {
|
|
case LOG_READ_BOGUS:
|
|
*errmsg = "bogus data in log event";
|
|
break;
|
|
case LOG_READ_TOO_LARGE:
|
|
*errmsg = "log event entry exceeded max_allowed_packet; \
|
|
Increase max_allowed_packet on master";
|
|
break;
|
|
case LOG_READ_IO:
|
|
*errmsg = "I/O error reading log event";
|
|
break;
|
|
case LOG_READ_MEM:
|
|
*errmsg = "memory allocation failed reading log event";
|
|
break;
|
|
case LOG_READ_TRUNC:
|
|
*errmsg = "binlog truncated in the middle of event";
|
|
break;
|
|
default:
|
|
*errmsg = "unknown error reading log event on the master";
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
TODO: Clean up loop to only have one call to send_file()
|
|
*/
|
|
|
|
void mysql_binlog_send(THD* thd, char* log_ident, my_off_t pos,
|
|
ushort flags)
|
|
{
|
|
LOG_INFO linfo;
|
|
char *log_file_name = linfo.log_file_name;
|
|
char search_file_name[FN_REFLEN], *name;
|
|
IO_CACHE log;
|
|
File file = -1;
|
|
String* packet = &thd->packet;
|
|
int error;
|
|
const char *errmsg = "Unknown error";
|
|
NET* net = &thd->net;
|
|
pthread_mutex_t *log_lock;
|
|
bool binlog_can_be_corrupted= FALSE;
|
|
#ifndef DBUG_OFF
|
|
int left_events = max_binlog_dump_events;
|
|
#endif
|
|
DBUG_ENTER("mysql_binlog_send");
|
|
DBUG_PRINT("enter",("log_ident: '%s' pos: %ld", log_ident, (long) pos));
|
|
|
|
bzero((char*) &log,sizeof(log));
|
|
|
|
#ifndef DBUG_OFF
|
|
if (opt_sporadic_binlog_dump_fail && (binlog_dump_count++ % 2))
|
|
{
|
|
errmsg = "Master failed COM_BINLOG_DUMP to test if slave can recover";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
errmsg = "Binary log is not open";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
if (!server_id_supplied)
|
|
{
|
|
errmsg = "Misconfigured master - server id was not set";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
name=search_file_name;
|
|
if (log_ident[0])
|
|
mysql_bin_log.make_log_name(search_file_name, log_ident);
|
|
else
|
|
name=0; // Find first log
|
|
|
|
linfo.index_file_offset = 0;
|
|
thd->current_linfo = &linfo;
|
|
|
|
if (mysql_bin_log.find_log_pos(&linfo, name, 1))
|
|
{
|
|
errmsg = "Could not find first log file name in binary log index file";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
if ((file=open_binlog(&log, log_file_name, &errmsg)) < 0)
|
|
{
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
if (pos < BIN_LOG_HEADER_SIZE || pos > my_b_filelength(&log))
|
|
{
|
|
errmsg= "Client requested master to start replication from \
|
|
impossible position";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
We need to start a packet with something other than 255
|
|
to distinguish it from error
|
|
*/
|
|
packet->set("\0", 1, &my_charset_bin); /* This is the start of a new packet */
|
|
|
|
/*
|
|
Tell the client about the log name with a fake Rotate event;
|
|
this is needed even if we also send a Format_description_log_event
|
|
just after, because that event does not contain the binlog's name.
|
|
Note that as this Rotate event is sent before
|
|
Format_description_log_event, the slave cannot have any info to
|
|
understand this event's format, so the header len of
|
|
Rotate_log_event is FROZEN (so in 5.0 it will have a header shorter
|
|
than other events except FORMAT_DESCRIPTION_EVENT).
|
|
Before 4.0.14 we called fake_rotate_event below only if (pos ==
|
|
BIN_LOG_HEADER_SIZE), because if this is false then the slave
|
|
already knows the binlog's name.
|
|
Since, we always call fake_rotate_event; if the slave already knew
|
|
the log's name (ex: CHANGE MASTER TO MASTER_LOG_FILE=...) this is
|
|
useless but does not harm much. It is nice for 3.23 (>=.58) slaves
|
|
which test Rotate events to see if the master is 4.0 (then they
|
|
choose to stop because they can't replicate 4.0); by always calling
|
|
fake_rotate_event we are sure that 3.23.58 and newer will detect the
|
|
problem as soon as replication starts (BUG#198).
|
|
Always calling fake_rotate_event makes sending of normal
|
|
(=from-binlog) Rotate events a priori unneeded, but it is not so
|
|
simple: the 2 Rotate events are not equivalent, the normal one is
|
|
before the Stop event, the fake one is after. If we don't send the
|
|
normal one, then the Stop event will be interpreted (by existing 4.0
|
|
slaves) as "the master stopped", which is wrong. So for safety,
|
|
given that we want minimum modification of 4.0, we send the normal
|
|
and fake Rotates.
|
|
*/
|
|
if (fake_rotate_event(net, packet, log_file_name, pos, &errmsg))
|
|
{
|
|
/*
|
|
This error code is not perfect, as fake_rotate_event() does not
|
|
read anything from the binlog; if it fails it's because of an
|
|
error in my_net_write(), fortunately it will say so in errmsg.
|
|
*/
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
|
|
/*
|
|
We can set log_lock now, it does not move (it's a member of
|
|
mysql_bin_log, and it's already inited, and it will be destroyed
|
|
only at shutdown).
|
|
*/
|
|
log_lock = mysql_bin_log.get_log_lock();
|
|
if (pos > BIN_LOG_HEADER_SIZE)
|
|
{
|
|
/*
|
|
Try to find a Format_description_log_event at the beginning of
|
|
the binlog
|
|
*/
|
|
if (!(error = Log_event::read_log_event(&log, packet, log_lock)))
|
|
{
|
|
/*
|
|
The packet has offsets equal to the normal offsets in a binlog
|
|
event +1 (the first character is \0).
|
|
*/
|
|
DBUG_PRINT("info",
|
|
("Looked for a Format_description_log_event, found event type %d",
|
|
(*packet)[EVENT_TYPE_OFFSET+1]));
|
|
if ((*packet)[EVENT_TYPE_OFFSET+1] == FORMAT_DESCRIPTION_EVENT)
|
|
{
|
|
binlog_can_be_corrupted= test((*packet)[FLAGS_OFFSET+1] &
|
|
LOG_EVENT_BINLOG_IN_USE_F);
|
|
(*packet)[FLAGS_OFFSET+1] &= ~LOG_EVENT_BINLOG_IN_USE_F;
|
|
/*
|
|
mark that this event with "log_pos=0", so the slave
|
|
should not increment master's binlog position
|
|
(rli->group_master_log_pos)
|
|
*/
|
|
int4store((char*) packet->ptr()+LOG_POS_OFFSET+1, 0);
|
|
/* send it */
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()))
|
|
{
|
|
errmsg = "Failed on my_net_write()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
/*
|
|
No need to save this event. We are only doing simple reads
|
|
(no real parsing of the events) so we don't need it. And so
|
|
we don't need the artificial Format_description_log_event of
|
|
3.23&4.x.
|
|
*/
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (test_for_non_eof_log_read_errors(error, &errmsg))
|
|
goto err;
|
|
/*
|
|
It's EOF, nothing to do, go on reading next events, the
|
|
Format_description_log_event will be found naturally if it is written.
|
|
*/
|
|
}
|
|
/* reset the packet as we wrote to it in any case */
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
} /* end of if (pos > BIN_LOG_HEADER_SIZE); */
|
|
else
|
|
{
|
|
/* The Format_description_log_event event will be found naturally. */
|
|
}
|
|
|
|
/* seek to the requested position, to start the requested dump */
|
|
my_b_seek(&log, pos); // Seek will done on next read
|
|
|
|
while (!net->error && net->vio != 0 && !thd->killed)
|
|
{
|
|
while (!(error = Log_event::read_log_event(&log, packet, log_lock)))
|
|
{
|
|
#ifndef DBUG_OFF
|
|
if (max_binlog_dump_events && !left_events--)
|
|
{
|
|
net_flush(net);
|
|
errmsg = "Debugging binlog dump abort";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
if ((*packet)[EVENT_TYPE_OFFSET+1] == FORMAT_DESCRIPTION_EVENT)
|
|
{
|
|
binlog_can_be_corrupted= test((*packet)[FLAGS_OFFSET+1] &
|
|
LOG_EVENT_BINLOG_IN_USE_F);
|
|
(*packet)[FLAGS_OFFSET+1] &= ~LOG_EVENT_BINLOG_IN_USE_F;
|
|
}
|
|
else if ((*packet)[EVENT_TYPE_OFFSET+1] == STOP_EVENT)
|
|
binlog_can_be_corrupted= FALSE;
|
|
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()))
|
|
{
|
|
errmsg = "Failed on my_net_write()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
DBUG_PRINT("info", ("log event code %d",
|
|
(*packet)[LOG_EVENT_OFFSET+1] ));
|
|
if ((*packet)[LOG_EVENT_OFFSET+1] == LOAD_EVENT)
|
|
{
|
|
if (send_file(thd))
|
|
{
|
|
errmsg = "failed in send_file()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
}
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
}
|
|
|
|
/*
|
|
here we were reading binlog that was not closed properly (as a result
|
|
of a crash ?). treat any corruption as EOF
|
|
*/
|
|
if (binlog_can_be_corrupted && error != LOG_READ_MEM)
|
|
error=LOG_READ_EOF;
|
|
/*
|
|
TODO: now that we are logging the offset, check to make sure
|
|
the recorded offset and the actual match.
|
|
Guilhem 2003-06: this is not true if this master is a slave
|
|
<4.0.15 running with --log-slave-updates, because then log_pos may
|
|
be the offset in the-master-of-this-master's binlog.
|
|
*/
|
|
if (test_for_non_eof_log_read_errors(error, &errmsg))
|
|
goto err;
|
|
|
|
if (!(flags & BINLOG_DUMP_NON_BLOCK) &&
|
|
mysql_bin_log.is_active(log_file_name))
|
|
{
|
|
/*
|
|
Block until there is more data in the log
|
|
*/
|
|
if (net_flush(net))
|
|
{
|
|
errmsg = "failed on net_flush()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
We may have missed the update broadcast from the log
|
|
that has just happened, let's try to catch it if it did.
|
|
If we did not miss anything, we just wait for other threads
|
|
to signal us.
|
|
*/
|
|
{
|
|
log.error=0;
|
|
bool read_packet = 0, fatal_error = 0;
|
|
|
|
#ifndef DBUG_OFF
|
|
if (max_binlog_dump_events && !left_events--)
|
|
{
|
|
errmsg = "Debugging binlog dump abort";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
No one will update the log while we are reading
|
|
now, but we'll be quick and just read one record
|
|
|
|
TODO:
|
|
Add an counter that is incremented for each time we update the
|
|
binary log. We can avoid the following read if the counter
|
|
has not been updated since last read.
|
|
*/
|
|
|
|
pthread_mutex_lock(log_lock);
|
|
switch (Log_event::read_log_event(&log, packet, (pthread_mutex_t*)0)) {
|
|
case 0:
|
|
/* we read successfully, so we'll need to send it to the slave */
|
|
pthread_mutex_unlock(log_lock);
|
|
read_packet = 1;
|
|
break;
|
|
|
|
case LOG_READ_EOF:
|
|
DBUG_PRINT("wait",("waiting for data in binary log"));
|
|
if (thd->server_id==0) // for mysqlbinlog (mysqlbinlog.server_id==0)
|
|
{
|
|
pthread_mutex_unlock(log_lock);
|
|
goto end;
|
|
}
|
|
if (!thd->killed)
|
|
{
|
|
/* Note that the following call unlocks lock_log */
|
|
mysql_bin_log.wait_for_update(thd, 0);
|
|
}
|
|
else
|
|
pthread_mutex_unlock(log_lock);
|
|
DBUG_PRINT("wait",("binary log received update"));
|
|
break;
|
|
|
|
default:
|
|
pthread_mutex_unlock(log_lock);
|
|
fatal_error = 1;
|
|
break;
|
|
}
|
|
|
|
if (read_packet)
|
|
{
|
|
thd->proc_info = "Sending binlog event to slave";
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()) )
|
|
{
|
|
errmsg = "Failed on my_net_write()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
if ((*packet)[LOG_EVENT_OFFSET+1] == LOAD_EVENT)
|
|
{
|
|
if (send_file(thd))
|
|
{
|
|
errmsg = "failed in send_file()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
}
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
/*
|
|
No need to net_flush because we will get to flush later when
|
|
we hit EOF pretty quick
|
|
*/
|
|
}
|
|
|
|
if (fatal_error)
|
|
{
|
|
errmsg = "error reading log entry";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
log.error=0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool loop_breaker = 0;
|
|
// need this to break out of the for loop from switch
|
|
thd->proc_info = "Finished reading one binlog; switching to next binlog";
|
|
switch (mysql_bin_log.find_next_log(&linfo, 1)) {
|
|
case LOG_INFO_EOF:
|
|
loop_breaker = (flags & BINLOG_DUMP_NON_BLOCK);
|
|
break;
|
|
case 0:
|
|
break;
|
|
default:
|
|
errmsg = "could not find next log";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
if (loop_breaker)
|
|
break;
|
|
|
|
end_io_cache(&log);
|
|
(void) my_close(file, MYF(MY_WME));
|
|
|
|
/*
|
|
Call fake_rotate_event() in case the previous log (the one which
|
|
we have just finished reading) did not contain a Rotate event
|
|
(for example (I don't know any other example) the previous log
|
|
was the last one before the master was shutdown & restarted).
|
|
This way we tell the slave about the new log's name and
|
|
position. If the binlog is 5.0, the next event we are going to
|
|
read and send is Format_description_log_event.
|
|
*/
|
|
if ((file=open_binlog(&log, log_file_name, &errmsg)) < 0 ||
|
|
fake_rotate_event(net, packet, log_file_name, BIN_LOG_HEADER_SIZE,
|
|
&errmsg))
|
|
{
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
packet->length(0);
|
|
packet->append('\0');
|
|
}
|
|
}
|
|
|
|
end:
|
|
end_io_cache(&log);
|
|
(void)my_close(file, MYF(MY_WME));
|
|
|
|
send_eof(thd);
|
|
thd->proc_info = "Waiting to finalize termination";
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
thd->current_linfo = 0;
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
DBUG_VOID_RETURN;
|
|
|
|
err:
|
|
thd->proc_info = "Waiting to finalize termination";
|
|
end_io_cache(&log);
|
|
/*
|
|
Exclude iteration through thread list
|
|
this is needed for purge_logs() - it will iterate through
|
|
thread list and update thd->current_linfo->index_file_offset
|
|
this mutex will make sure that it never tried to update our linfo
|
|
after we return from this stack frame
|
|
*/
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
thd->current_linfo = 0;
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
if (file >= 0)
|
|
(void) my_close(file, MYF(MY_WME));
|
|
my_message(my_errno, errmsg, MYF(0));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
int start_slave(THD* thd , MASTER_INFO* mi, bool net_report)
|
|
{
|
|
int slave_errno= 0;
|
|
int thread_mask;
|
|
DBUG_ENTER("start_slave");
|
|
|
|
if (check_access(thd, SUPER_ACL, any_db,0,0,0))
|
|
DBUG_RETURN(1);
|
|
lock_slave_threads(mi); // this allows us to cleanly read slave_running
|
|
// Get a mask of _stopped_ threads
|
|
init_thread_mask(&thread_mask,mi,1 /* inverse */);
|
|
/*
|
|
Below we will start all stopped threads. But if the user wants to
|
|
start only one thread, do as if the other thread was running (as we
|
|
don't wan't to touch the other thread), so set the bit to 0 for the
|
|
other thread
|
|
*/
|
|
if (thd->lex->slave_thd_opt)
|
|
thread_mask&= thd->lex->slave_thd_opt;
|
|
if (thread_mask) //some threads are stopped, start them
|
|
{
|
|
if (init_master_info(mi,master_info_file,relay_log_info_file, 0,
|
|
thread_mask))
|
|
slave_errno=ER_MASTER_INFO;
|
|
else if (server_id_supplied && *mi->host)
|
|
{
|
|
/*
|
|
If we will start SQL thread we will care about UNTIL options If
|
|
not and they are specified we will ignore them and warn user
|
|
about this fact.
|
|
*/
|
|
if (thread_mask & SLAVE_SQL)
|
|
{
|
|
pthread_mutex_lock(&mi->rli.data_lock);
|
|
|
|
if (thd->lex->mi.pos)
|
|
{
|
|
mi->rli.until_condition= RELAY_LOG_INFO::UNTIL_MASTER_POS;
|
|
mi->rli.until_log_pos= thd->lex->mi.pos;
|
|
/*
|
|
We don't check thd->lex->mi.log_file_name for NULL here
|
|
since it is checked in sql_yacc.yy
|
|
*/
|
|
strmake(mi->rli.until_log_name, thd->lex->mi.log_file_name,
|
|
sizeof(mi->rli.until_log_name)-1);
|
|
}
|
|
else if (thd->lex->mi.relay_log_pos)
|
|
{
|
|
mi->rli.until_condition= RELAY_LOG_INFO::UNTIL_RELAY_POS;
|
|
mi->rli.until_log_pos= thd->lex->mi.relay_log_pos;
|
|
strmake(mi->rli.until_log_name, thd->lex->mi.relay_log_name,
|
|
sizeof(mi->rli.until_log_name)-1);
|
|
}
|
|
else
|
|
clear_until_condition(&mi->rli);
|
|
|
|
if (mi->rli.until_condition != RELAY_LOG_INFO::UNTIL_NONE)
|
|
{
|
|
/* Preparing members for effective until condition checking */
|
|
const char *p= fn_ext(mi->rli.until_log_name);
|
|
char *p_end;
|
|
if (*p)
|
|
{
|
|
//p points to '.'
|
|
mi->rli.until_log_name_extension= strtoul(++p,&p_end, 10);
|
|
/*
|
|
p_end points to the first invalid character. If it equals
|
|
to p, no digits were found, error. If it contains '\0' it
|
|
means conversion went ok.
|
|
*/
|
|
if (p_end==p || *p_end)
|
|
slave_errno=ER_BAD_SLAVE_UNTIL_COND;
|
|
}
|
|
else
|
|
slave_errno=ER_BAD_SLAVE_UNTIL_COND;
|
|
|
|
/* mark the cached result of the UNTIL comparison as "undefined" */
|
|
mi->rli.until_log_names_cmp_result=
|
|
RELAY_LOG_INFO::UNTIL_LOG_NAMES_CMP_UNKNOWN;
|
|
|
|
/* Issuing warning then started without --skip-slave-start */
|
|
if (!opt_skip_slave_start)
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE,
|
|
ER_MISSING_SKIP_SLAVE,
|
|
ER(ER_MISSING_SKIP_SLAVE));
|
|
}
|
|
|
|
pthread_mutex_unlock(&mi->rli.data_lock);
|
|
}
|
|
else if (thd->lex->mi.pos || thd->lex->mi.relay_log_pos)
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_UNTIL_COND_IGNORED,
|
|
ER(ER_UNTIL_COND_IGNORED));
|
|
|
|
if (!slave_errno)
|
|
slave_errno = start_slave_threads(0 /*no mutex */,
|
|
1 /* wait for start */,
|
|
mi,
|
|
master_info_file,relay_log_info_file,
|
|
thread_mask);
|
|
}
|
|
else
|
|
slave_errno = ER_BAD_SLAVE;
|
|
}
|
|
else
|
|
{
|
|
/* no error if all threads are already started, only a warning */
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_SLAVE_WAS_RUNNING,
|
|
ER(ER_SLAVE_WAS_RUNNING));
|
|
}
|
|
|
|
unlock_slave_threads(mi);
|
|
|
|
if (slave_errno)
|
|
{
|
|
if (net_report)
|
|
my_message(slave_errno, ER(slave_errno), MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
else if (net_report)
|
|
send_ok(thd);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int stop_slave(THD* thd, MASTER_INFO* mi, bool net_report )
|
|
{
|
|
int slave_errno;
|
|
if (!thd)
|
|
thd = current_thd;
|
|
|
|
if (check_access(thd, SUPER_ACL, any_db,0,0,0))
|
|
return 1;
|
|
thd->proc_info = "Killing slave";
|
|
int thread_mask;
|
|
lock_slave_threads(mi);
|
|
// Get a mask of _running_ threads
|
|
init_thread_mask(&thread_mask,mi,0 /* not inverse*/);
|
|
/*
|
|
Below we will stop all running threads.
|
|
But if the user wants to stop only one thread, do as if the other thread
|
|
was stopped (as we don't wan't to touch the other thread), so set the
|
|
bit to 0 for the other thread
|
|
*/
|
|
if (thd->lex->slave_thd_opt)
|
|
thread_mask &= thd->lex->slave_thd_opt;
|
|
|
|
if (thread_mask)
|
|
{
|
|
slave_errno= terminate_slave_threads(mi,thread_mask,
|
|
1 /*skip lock */);
|
|
}
|
|
else
|
|
{
|
|
//no error if both threads are already stopped, only a warning
|
|
slave_errno= 0;
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_SLAVE_WAS_NOT_RUNNING,
|
|
ER(ER_SLAVE_WAS_NOT_RUNNING));
|
|
}
|
|
unlock_slave_threads(mi);
|
|
thd->proc_info = 0;
|
|
|
|
if (slave_errno)
|
|
{
|
|
if (net_report)
|
|
my_message(slave_errno, ER(slave_errno), MYF(0));
|
|
return 1;
|
|
}
|
|
else if (net_report)
|
|
send_ok(thd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Remove all relay logs and start replication from the start
|
|
|
|
SYNOPSIS
|
|
reset_slave()
|
|
thd Thread handler
|
|
mi Master info for the slave
|
|
|
|
RETURN
|
|
0 ok
|
|
1 error
|
|
*/
|
|
|
|
|
|
int reset_slave(THD *thd, MASTER_INFO* mi)
|
|
{
|
|
MY_STAT stat_area;
|
|
char fname[FN_REFLEN];
|
|
int thread_mask= 0, error= 0;
|
|
uint sql_errno=0;
|
|
const char* errmsg=0;
|
|
DBUG_ENTER("reset_slave");
|
|
|
|
lock_slave_threads(mi);
|
|
init_thread_mask(&thread_mask,mi,0 /* not inverse */);
|
|
if (thread_mask) // We refuse if any slave thread is running
|
|
{
|
|
sql_errno= ER_SLAVE_MUST_STOP;
|
|
error=1;
|
|
goto err;
|
|
}
|
|
// delete relay logs, clear relay log coordinates
|
|
if ((error= purge_relay_logs(&mi->rli, thd,
|
|
1 /* just reset */,
|
|
&errmsg)))
|
|
goto err;
|
|
|
|
/*
|
|
Clear master's log coordinates and reset host/user/etc to the values
|
|
specified in mysqld's options (only for good display of SHOW SLAVE STATUS;
|
|
next init_master_info() (in start_slave() for example) would have set them
|
|
the same way; but here this is for the case where the user does SHOW SLAVE
|
|
STATUS; before doing START SLAVE;
|
|
*/
|
|
init_master_info_with_options(mi);
|
|
/*
|
|
Reset errors (the idea is that we forget about the
|
|
old master).
|
|
*/
|
|
clear_slave_error(&mi->rli);
|
|
clear_until_condition(&mi->rli);
|
|
|
|
// close master_info_file, relay_log_info_file, set mi->inited=rli->inited=0
|
|
end_master_info(mi);
|
|
// and delete these two files
|
|
fn_format(fname, master_info_file, mysql_data_home, "", 4+32);
|
|
if (my_stat(fname, &stat_area, MYF(0)) && my_delete(fname, MYF(MY_WME)))
|
|
{
|
|
error=1;
|
|
goto err;
|
|
}
|
|
// delete relay_log_info_file
|
|
fn_format(fname, relay_log_info_file, mysql_data_home, "", 4+32);
|
|
if (my_stat(fname, &stat_area, MYF(0)) && my_delete(fname, MYF(MY_WME)))
|
|
{
|
|
error=1;
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
unlock_slave_threads(mi);
|
|
if (error)
|
|
my_error(sql_errno, MYF(0), errmsg);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
/*
|
|
|
|
Kill all Binlog_dump threads which previously talked to the same slave
|
|
("same" means with the same server id). Indeed, if the slave stops, if the
|
|
Binlog_dump thread is waiting (pthread_cond_wait) for binlog update, then it
|
|
will keep existing until a query is written to the binlog. If the master is
|
|
idle, then this could last long, and if the slave reconnects, we could have 2
|
|
Binlog_dump threads in SHOW PROCESSLIST, until a query is written to the
|
|
binlog. To avoid this, when the slave reconnects and sends COM_BINLOG_DUMP,
|
|
the master kills any existing thread with the slave's server id (if this id is
|
|
not zero; it will be true for real slaves, but false for mysqlbinlog when it
|
|
sends COM_BINLOG_DUMP to get a remote binlog dump).
|
|
|
|
SYNOPSIS
|
|
kill_zombie_dump_threads()
|
|
slave_server_id the slave's server id
|
|
|
|
*/
|
|
|
|
|
|
void kill_zombie_dump_threads(uint32 slave_server_id)
|
|
{
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
I_List_iterator<THD> it(threads);
|
|
THD *tmp;
|
|
|
|
while ((tmp=it++))
|
|
{
|
|
if (tmp->command == COM_BINLOG_DUMP &&
|
|
tmp->server_id == slave_server_id)
|
|
{
|
|
pthread_mutex_lock(&tmp->LOCK_delete); // Lock from delete
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
if (tmp)
|
|
{
|
|
/*
|
|
Here we do not call kill_one_thread() as
|
|
it will be slow because it will iterate through the list
|
|
again. We just to do kill the thread ourselves.
|
|
*/
|
|
tmp->awake(THD::KILL_QUERY);
|
|
pthread_mutex_unlock(&tmp->LOCK_delete);
|
|
}
|
|
}
|
|
|
|
|
|
bool change_master(THD* thd, MASTER_INFO* mi)
|
|
{
|
|
int thread_mask;
|
|
const char* errmsg= 0;
|
|
bool need_relay_log_purge= 1;
|
|
DBUG_ENTER("change_master");
|
|
|
|
lock_slave_threads(mi);
|
|
init_thread_mask(&thread_mask,mi,0 /*not inverse*/);
|
|
if (thread_mask) // We refuse if any slave thread is running
|
|
{
|
|
my_message(ER_SLAVE_MUST_STOP, ER(ER_SLAVE_MUST_STOP), MYF(0));
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
thd->proc_info = "Changing master";
|
|
LEX_MASTER_INFO* lex_mi= &thd->lex->mi;
|
|
// TODO: see if needs re-write
|
|
if (init_master_info(mi, master_info_file, relay_log_info_file, 0,
|
|
thread_mask))
|
|
{
|
|
my_message(ER_MASTER_INFO, ER(ER_MASTER_INFO), MYF(0));
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
/*
|
|
Data lock not needed since we have already stopped the running threads,
|
|
and we have the hold on the run locks which will keep all threads that
|
|
could possibly modify the data structures from running
|
|
*/
|
|
|
|
/*
|
|
If the user specified host or port without binlog or position,
|
|
reset binlog's name to FIRST and position to 4.
|
|
*/
|
|
|
|
if ((lex_mi->host || lex_mi->port) && !lex_mi->log_file_name && !lex_mi->pos)
|
|
{
|
|
mi->master_log_name[0] = 0;
|
|
mi->master_log_pos= BIN_LOG_HEADER_SIZE;
|
|
}
|
|
|
|
if (lex_mi->log_file_name)
|
|
strmake(mi->master_log_name, lex_mi->log_file_name,
|
|
sizeof(mi->master_log_name)-1);
|
|
if (lex_mi->pos)
|
|
{
|
|
mi->master_log_pos= lex_mi->pos;
|
|
}
|
|
DBUG_PRINT("info", ("master_log_pos: %d", (ulong) mi->master_log_pos));
|
|
|
|
if (lex_mi->host)
|
|
strmake(mi->host, lex_mi->host, sizeof(mi->host)-1);
|
|
if (lex_mi->user)
|
|
strmake(mi->user, lex_mi->user, sizeof(mi->user)-1);
|
|
if (lex_mi->password)
|
|
strmake(mi->password, lex_mi->password, sizeof(mi->password)-1);
|
|
if (lex_mi->port)
|
|
mi->port = lex_mi->port;
|
|
if (lex_mi->connect_retry)
|
|
mi->connect_retry = lex_mi->connect_retry;
|
|
|
|
if (lex_mi->ssl != LEX_MASTER_INFO::SSL_UNCHANGED)
|
|
mi->ssl= (lex_mi->ssl == LEX_MASTER_INFO::SSL_ENABLE);
|
|
if (lex_mi->ssl_ca)
|
|
strmake(mi->ssl_ca, lex_mi->ssl_ca, sizeof(mi->ssl_ca)-1);
|
|
if (lex_mi->ssl_capath)
|
|
strmake(mi->ssl_capath, lex_mi->ssl_capath, sizeof(mi->ssl_capath)-1);
|
|
if (lex_mi->ssl_cert)
|
|
strmake(mi->ssl_cert, lex_mi->ssl_cert, sizeof(mi->ssl_cert)-1);
|
|
if (lex_mi->ssl_cipher)
|
|
strmake(mi->ssl_cipher, lex_mi->ssl_cipher, sizeof(mi->ssl_cipher)-1);
|
|
if (lex_mi->ssl_key)
|
|
strmake(mi->ssl_key, lex_mi->ssl_key, sizeof(mi->ssl_key)-1);
|
|
#ifndef HAVE_OPENSSL
|
|
if (lex_mi->ssl || lex_mi->ssl_ca || lex_mi->ssl_capath ||
|
|
lex_mi->ssl_cert || lex_mi->ssl_cipher || lex_mi->ssl_key )
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE,
|
|
ER_SLAVE_IGNORED_SSL_PARAMS, ER(ER_SLAVE_IGNORED_SSL_PARAMS));
|
|
#endif
|
|
|
|
if (lex_mi->relay_log_name)
|
|
{
|
|
need_relay_log_purge= 0;
|
|
strmake(mi->rli.group_relay_log_name,lex_mi->relay_log_name,
|
|
sizeof(mi->rli.group_relay_log_name)-1);
|
|
strmake(mi->rli.event_relay_log_name,lex_mi->relay_log_name,
|
|
sizeof(mi->rli.event_relay_log_name)-1);
|
|
}
|
|
|
|
if (lex_mi->relay_log_pos)
|
|
{
|
|
need_relay_log_purge= 0;
|
|
mi->rli.group_relay_log_pos= mi->rli.event_relay_log_pos= lex_mi->relay_log_pos;
|
|
}
|
|
|
|
/*
|
|
If user did specify neither host nor port nor any log name nor any log
|
|
pos, i.e. he specified only user/password/master_connect_retry, he probably
|
|
wants replication to resume from where it had left, i.e. from the
|
|
coordinates of the **SQL** thread (imagine the case where the I/O is ahead
|
|
of the SQL; restarting from the coordinates of the I/O would lose some
|
|
events which is probably unwanted when you are just doing minor changes
|
|
like changing master_connect_retry).
|
|
A side-effect is that if only the I/O thread was started, this thread may
|
|
restart from ''/4 after the CHANGE MASTER. That's a minor problem (it is a
|
|
much more unlikely situation than the one we are fixing here).
|
|
Note: coordinates of the SQL thread must be read here, before the
|
|
'if (need_relay_log_purge)' block which resets them.
|
|
*/
|
|
if (!lex_mi->host && !lex_mi->port &&
|
|
!lex_mi->log_file_name && !lex_mi->pos &&
|
|
need_relay_log_purge)
|
|
{
|
|
/*
|
|
Sometimes mi->rli.master_log_pos == 0 (it happens when the SQL thread is
|
|
not initialized), so we use a max().
|
|
What happens to mi->rli.master_log_pos during the initialization stages
|
|
of replication is not 100% clear, so we guard against problems using
|
|
max().
|
|
*/
|
|
mi->master_log_pos = max(BIN_LOG_HEADER_SIZE,
|
|
mi->rli.group_master_log_pos);
|
|
strmake(mi->master_log_name, mi->rli.group_master_log_name,
|
|
sizeof(mi->master_log_name)-1);
|
|
}
|
|
/*
|
|
Relay log's IO_CACHE may not be inited, if rli->inited==0 (server was never
|
|
a slave before).
|
|
*/
|
|
flush_master_info(mi, 0);
|
|
if (need_relay_log_purge)
|
|
{
|
|
relay_log_purge= 1;
|
|
thd->proc_info="Purging old relay logs";
|
|
if (purge_relay_logs(&mi->rli, thd,
|
|
0 /* not only reset, but also reinit */,
|
|
&errmsg))
|
|
{
|
|
my_error(ER_RELAY_LOG_FAIL, MYF(0), errmsg);
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char* msg;
|
|
relay_log_purge= 0;
|
|
/* Relay log is already initialized */
|
|
if (init_relay_log_pos(&mi->rli,
|
|
mi->rli.group_relay_log_name,
|
|
mi->rli.group_relay_log_pos,
|
|
0 /*no data lock*/,
|
|
&msg, 0))
|
|
{
|
|
my_error(ER_RELAY_LOG_INIT, MYF(0), msg);
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
mi->rli.group_master_log_pos = mi->master_log_pos;
|
|
DBUG_PRINT("info", ("master_log_pos: %d", (ulong) mi->master_log_pos));
|
|
|
|
/*
|
|
Coordinates in rli were spoilt by the 'if (need_relay_log_purge)' block,
|
|
so restore them to good values. If we left them to ''/0, that would work;
|
|
but that would fail in the case of 2 successive CHANGE MASTER (without a
|
|
START SLAVE in between): because first one would set the coords in mi to
|
|
the good values of those in rli, the set those in rli to ''/0, then
|
|
second CHANGE MASTER would set the coords in mi to those of rli, i.e. to
|
|
''/0: we have lost all copies of the original good coordinates.
|
|
That's why we always save good coords in rli.
|
|
*/
|
|
mi->rli.group_master_log_pos= mi->master_log_pos;
|
|
strmake(mi->rli.group_master_log_name,mi->master_log_name,
|
|
sizeof(mi->rli.group_master_log_name)-1);
|
|
|
|
if (!mi->rli.group_master_log_name[0]) // uninitialized case
|
|
mi->rli.group_master_log_pos=0;
|
|
|
|
pthread_mutex_lock(&mi->rli.data_lock);
|
|
mi->rli.abort_pos_wait++; /* for MASTER_POS_WAIT() to abort */
|
|
/* Clear the errors, for a clean start */
|
|
clear_slave_error(&mi->rli);
|
|
clear_until_condition(&mi->rli);
|
|
/*
|
|
If we don't write new coordinates to disk now, then old will remain in
|
|
relay-log.info until START SLAVE is issued; but if mysqld is shutdown
|
|
before START SLAVE, then old will remain in relay-log.info, and will be the
|
|
in-memory value at restart (thus causing errors, as the old relay log does
|
|
not exist anymore).
|
|
*/
|
|
flush_relay_log_info(&mi->rli);
|
|
pthread_cond_broadcast(&mi->data_cond);
|
|
pthread_mutex_unlock(&mi->rli.data_lock);
|
|
|
|
unlock_slave_threads(mi);
|
|
thd->proc_info = 0;
|
|
send_ok(thd);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
int reset_master(THD* thd)
|
|
{
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
my_message(ER_FLUSH_MASTER_BINLOG_CLOSED,
|
|
ER(ER_FLUSH_MASTER_BINLOG_CLOSED), MYF(ME_BELL+ME_WAITTANG));
|
|
return 1;
|
|
}
|
|
return mysql_bin_log.reset_logs(thd);
|
|
}
|
|
|
|
int cmp_master_pos(const char* log_file_name1, ulonglong log_pos1,
|
|
const char* log_file_name2, ulonglong log_pos2)
|
|
{
|
|
int res;
|
|
uint log_file_name1_len= strlen(log_file_name1);
|
|
uint log_file_name2_len= strlen(log_file_name2);
|
|
|
|
// We assume that both log names match up to '.'
|
|
if (log_file_name1_len == log_file_name2_len)
|
|
{
|
|
if ((res= strcmp(log_file_name1, log_file_name2)))
|
|
return res;
|
|
return (log_pos1 < log_pos2) ? -1 : (log_pos1 == log_pos2) ? 0 : 1;
|
|
}
|
|
return ((log_file_name1_len < log_file_name2_len) ? -1 : 1);
|
|
}
|
|
|
|
|
|
bool mysql_show_binlog_events(THD* thd)
|
|
{
|
|
Protocol *protocol= thd->protocol;
|
|
DBUG_ENTER("mysql_show_binlog_events");
|
|
List<Item> field_list;
|
|
const char *errmsg = 0;
|
|
bool ret = TRUE;
|
|
IO_CACHE log;
|
|
File file = -1;
|
|
Format_description_log_event *description_event= new
|
|
Format_description_log_event(3); /* MySQL 4.0 by default */
|
|
|
|
Log_event::init_show_field_list(&field_list);
|
|
if (protocol->send_fields(&field_list,
|
|
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
if (mysql_bin_log.is_open())
|
|
{
|
|
LEX_MASTER_INFO *lex_mi= &thd->lex->mi;
|
|
ha_rows event_count, limit_start, limit_end;
|
|
my_off_t pos = max(BIN_LOG_HEADER_SIZE, lex_mi->pos); // user-friendly
|
|
char search_file_name[FN_REFLEN], *name;
|
|
const char *log_file_name = lex_mi->log_file_name;
|
|
pthread_mutex_t *log_lock = mysql_bin_log.get_log_lock();
|
|
LOG_INFO linfo;
|
|
Log_event* ev;
|
|
|
|
limit_start= thd->lex->current_select->offset_limit;
|
|
limit_end= thd->lex->current_select->select_limit + limit_start;
|
|
|
|
name= search_file_name;
|
|
if (log_file_name)
|
|
mysql_bin_log.make_log_name(search_file_name, log_file_name);
|
|
else
|
|
name=0; // Find first log
|
|
|
|
linfo.index_file_offset = 0;
|
|
thd->current_linfo = &linfo;
|
|
|
|
if (mysql_bin_log.find_log_pos(&linfo, name, 1))
|
|
{
|
|
errmsg = "Could not find target log";
|
|
goto err;
|
|
}
|
|
|
|
if ((file=open_binlog(&log, linfo.log_file_name, &errmsg)) < 0)
|
|
goto err;
|
|
|
|
pthread_mutex_lock(log_lock);
|
|
|
|
/*
|
|
open_binlog() sought to position 4.
|
|
Read the first event in case it's a Format_description_log_event, to
|
|
know the format. If there's no such event, we are 3.23 or 4.x. This
|
|
code, like before, can't read 3.23 binlogs.
|
|
This code will fail on a mixed relay log (one which has Format_desc then
|
|
Rotate then Format_desc).
|
|
*/
|
|
|
|
ev = Log_event::read_log_event(&log,(pthread_mutex_t*)0,description_event);
|
|
if (ev)
|
|
{
|
|
if (ev->get_type_code() == FORMAT_DESCRIPTION_EVENT)
|
|
{
|
|
delete description_event;
|
|
description_event= (Format_description_log_event*) ev;
|
|
}
|
|
else
|
|
delete ev;
|
|
}
|
|
|
|
my_b_seek(&log, pos);
|
|
|
|
if (!description_event->is_valid())
|
|
{
|
|
errmsg="Invalid Format_description event; could be out of memory";
|
|
goto err;
|
|
}
|
|
|
|
for (event_count = 0;
|
|
(ev = Log_event::read_log_event(&log,(pthread_mutex_t*)0,description_event)); )
|
|
{
|
|
if (event_count >= limit_start &&
|
|
ev->net_send(protocol, linfo.log_file_name, pos))
|
|
{
|
|
errmsg = "Net error";
|
|
delete ev;
|
|
pthread_mutex_unlock(log_lock);
|
|
goto err;
|
|
}
|
|
|
|
pos = my_b_tell(&log);
|
|
delete ev;
|
|
|
|
if (++event_count >= limit_end)
|
|
break;
|
|
}
|
|
|
|
if (event_count < limit_end && log.error)
|
|
{
|
|
errmsg = "Wrong offset or I/O error";
|
|
pthread_mutex_unlock(log_lock);
|
|
goto err;
|
|
}
|
|
|
|
pthread_mutex_unlock(log_lock);
|
|
}
|
|
|
|
ret= FALSE;
|
|
|
|
err:
|
|
delete description_event;
|
|
if (file >= 0)
|
|
{
|
|
end_io_cache(&log);
|
|
(void) my_close(file, MYF(MY_WME));
|
|
}
|
|
|
|
if (errmsg)
|
|
{
|
|
my_error(ER_ERROR_WHEN_EXECUTING_COMMAND, MYF(0),
|
|
"SHOW BINLOG EVENTS", errmsg);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
send_eof(thd);
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
thd->current_linfo = 0;
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
DBUG_RETURN(ret);
|
|
}
|
|
|
|
|
|
bool show_binlog_info(THD* thd)
|
|
{
|
|
Protocol *protocol= thd->protocol;
|
|
DBUG_ENTER("show_binlog_info");
|
|
List<Item> field_list;
|
|
field_list.push_back(new Item_empty_string("File", FN_REFLEN));
|
|
field_list.push_back(new Item_return_int("Position",20,
|
|
MYSQL_TYPE_LONGLONG));
|
|
field_list.push_back(new Item_empty_string("Binlog_Do_DB",255));
|
|
field_list.push_back(new Item_empty_string("Binlog_Ignore_DB",255));
|
|
|
|
if (protocol->send_fields(&field_list,
|
|
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
|
|
DBUG_RETURN(TRUE);
|
|
protocol->prepare_for_resend();
|
|
|
|
if (mysql_bin_log.is_open())
|
|
{
|
|
LOG_INFO li;
|
|
mysql_bin_log.get_current_log(&li);
|
|
int dir_len = dirname_length(li.log_file_name);
|
|
protocol->store(li.log_file_name + dir_len, &my_charset_bin);
|
|
protocol->store((ulonglong) li.pos);
|
|
protocol->store(&binlog_do_db);
|
|
protocol->store(&binlog_ignore_db);
|
|
if (protocol->write())
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
send_eof(thd);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Send a list of all binary logs to client
|
|
|
|
SYNOPSIS
|
|
show_binlogs()
|
|
thd Thread specific variable
|
|
|
|
RETURN VALUES
|
|
FALSE OK
|
|
TRUE error
|
|
*/
|
|
|
|
bool show_binlogs(THD* thd)
|
|
{
|
|
IO_CACHE *index_file;
|
|
char fname[FN_REFLEN];
|
|
List<Item> field_list;
|
|
uint length;
|
|
Protocol *protocol= thd->protocol;
|
|
DBUG_ENTER("show_binlogs");
|
|
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
my_message(ER_NO_BINARY_LOGGING, ER(ER_NO_BINARY_LOGGING), MYF(0));
|
|
return 1;
|
|
}
|
|
|
|
field_list.push_back(new Item_empty_string("Log_name", 255));
|
|
if (protocol->send_fields(&field_list,
|
|
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
|
|
DBUG_RETURN(TRUE);
|
|
mysql_bin_log.lock_index();
|
|
index_file=mysql_bin_log.get_index_file();
|
|
|
|
reinit_io_cache(index_file, READ_CACHE, (my_off_t) 0, 0, 0);
|
|
|
|
/* The file ends with EOF or empty line */
|
|
while ((length=my_b_gets(index_file, fname, sizeof(fname))) > 1)
|
|
{
|
|
protocol->prepare_for_resend();
|
|
int dir_len = dirname_length(fname);
|
|
/* The -1 is for removing newline from fname */
|
|
protocol->store(fname + dir_len, length-1-dir_len, &my_charset_bin);
|
|
if (protocol->write())
|
|
goto err;
|
|
}
|
|
mysql_bin_log.unlock_index();
|
|
send_eof(thd);
|
|
DBUG_RETURN(FALSE);
|
|
|
|
err:
|
|
mysql_bin_log.unlock_index();
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
int log_loaded_block(IO_CACHE* file)
|
|
{
|
|
LOAD_FILE_INFO *lf_info;
|
|
uint block_len ;
|
|
|
|
/* file->request_pos contains position where we started last read */
|
|
char* buffer = (char*) file->request_pos;
|
|
if (!(block_len = (char*) file->read_end - (char*) buffer))
|
|
return 0;
|
|
lf_info = (LOAD_FILE_INFO*) file->arg;
|
|
if (lf_info->last_pos_in_file != HA_POS_ERROR &&
|
|
lf_info->last_pos_in_file >= file->pos_in_file)
|
|
return 0;
|
|
lf_info->last_pos_in_file = file->pos_in_file;
|
|
if (lf_info->wrote_create_file)
|
|
{
|
|
Append_block_log_event a(lf_info->thd, lf_info->thd->db, buffer,
|
|
block_len, lf_info->log_delayed);
|
|
mysql_bin_log.write(&a);
|
|
}
|
|
else
|
|
{
|
|
Begin_load_query_log_event b(lf_info->thd, lf_info->thd->db,
|
|
buffer, block_len,
|
|
lf_info->log_delayed);
|
|
mysql_bin_log.write(&b);
|
|
lf_info->wrote_create_file = 1;
|
|
DBUG_SYNC_POINT("debug_lock.created_file_event",10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_REPLICATION */
|
|
|
|
|