mirror of
https://github.com/MariaDB/server.git
synced 2025-01-25 00:04:33 +01:00
9b6ac73419
2ND EXECUTION OF PS Description: ------------ When MySQL calls 'EXECUTE stmt' firstly to deal with ORDER BY clause which is similar with 'ORDER BY 1,(t2a.f2+1)' in find_order_in_list(), it believes the first expression is a position, the function replaces the pointer of the first expression with Item_field object associated with a temporary table field, then releases it after the end of the execution, that behavior destroys the pointer of first expression. After that, when MySQL calls 'EXECUTE stmt' once more, the first expression points to an invalid pointer, so it crashed. Fix: ---- If an item of ORDER clause is a location, reset 'args' with a original value.
3680 lines
94 KiB
C++
3680 lines
94 KiB
C++
/* Copyright (c) 2000, 2015, Oracle and/or its affiliates.
|
|
Copyright (c) 2008, 2015, MariaDB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
|
|
/**
|
|
@file
|
|
|
|
@brief
|
|
Sum functions (COUNT, MIN...)
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include <my_global.h>
|
|
#include "sql_priv.h"
|
|
#include "sql_select.h"
|
|
|
|
/**
|
|
Calculate the affordable RAM limit for structures like TREE or Unique
|
|
used in Item_sum_*
|
|
*/
|
|
|
|
ulonglong Item_sum::ram_limitation(THD *thd)
|
|
{
|
|
return MY_MIN(thd->variables.tmp_table_size,
|
|
thd->variables.max_heap_table_size);
|
|
}
|
|
|
|
|
|
/**
|
|
Prepare an aggregate function item for checking context conditions.
|
|
|
|
The function initializes the members of the Item_sum object created
|
|
for a set function that are used to check validity of the set function
|
|
occurrence.
|
|
If the set function is not allowed in any subquery where it occurs
|
|
an error is reported immediately.
|
|
|
|
@param thd reference to the thread context info
|
|
|
|
@note
|
|
This function is to be called for any item created for a set function
|
|
object when the traversal of trees built for expressions used in the query
|
|
is performed at the phase of context analysis. This function is to
|
|
be invoked at the descent of this traversal.
|
|
@retval
|
|
TRUE if an error is reported
|
|
@retval
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool Item_sum::init_sum_func_check(THD *thd)
|
|
{
|
|
SELECT_LEX *curr_sel= thd->lex->current_select;
|
|
if (!curr_sel->name_visibility_map)
|
|
{
|
|
for (SELECT_LEX *sl= curr_sel; sl; sl= sl->context.outer_select())
|
|
{
|
|
curr_sel->name_visibility_map|= (1 << sl-> nest_level);
|
|
}
|
|
}
|
|
if (!(thd->lex->allow_sum_func & curr_sel->name_visibility_map))
|
|
{
|
|
my_message(ER_INVALID_GROUP_FUNC_USE, ER(ER_INVALID_GROUP_FUNC_USE),
|
|
MYF(0));
|
|
return TRUE;
|
|
}
|
|
/* Set a reference to the nesting set function if there is any */
|
|
in_sum_func= thd->lex->in_sum_func;
|
|
/* Save a pointer to object to be used in items for nested set functions */
|
|
thd->lex->in_sum_func= this;
|
|
nest_level= thd->lex->current_select->nest_level;
|
|
ref_by= 0;
|
|
aggr_level= -1;
|
|
aggr_sel= NULL;
|
|
max_arg_level= -1;
|
|
max_sum_func_level= -1;
|
|
outer_fields.empty();
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Check constraints imposed on a usage of a set function.
|
|
|
|
The method verifies whether context conditions imposed on a usage
|
|
of any set function are met for this occurrence.
|
|
It checks whether the set function occurs in the position where it
|
|
can be aggregated and, when it happens to occur in argument of another
|
|
set function, the method checks that these two functions are aggregated in
|
|
different subqueries.
|
|
If the context conditions are not met the method reports an error.
|
|
If the set function is aggregated in some outer subquery the method
|
|
adds it to the chain of items for such set functions that is attached
|
|
to the the st_select_lex structure for this subquery.
|
|
|
|
A number of designated members of the object are used to check the
|
|
conditions. They are specified in the comment before the Item_sum
|
|
class declaration.
|
|
Additionally a bitmap variable called allow_sum_func is employed.
|
|
It is included into the thd->lex structure.
|
|
The bitmap contains 1 at n-th position if the set function happens
|
|
to occur under a construct of the n-th level subquery where usage
|
|
of set functions are allowed (i.e either in the SELECT list or
|
|
in the HAVING clause of the corresponding subquery)
|
|
Consider the query:
|
|
@code
|
|
SELECT SUM(t1.b) FROM t1 GROUP BY t1.a
|
|
HAVING t1.a IN (SELECT t2.c FROM t2 WHERE AVG(t1.b) > 20) AND
|
|
t1.a > (SELECT MIN(t2.d) FROM t2);
|
|
@endcode
|
|
allow_sum_func will contain:
|
|
- for SUM(t1.b) - 1 at the first position
|
|
- for AVG(t1.b) - 1 at the first position, 0 at the second position
|
|
- for MIN(t2.d) - 1 at the first position, 1 at the second position.
|
|
|
|
@param thd reference to the thread context info
|
|
@param ref location of the pointer to this item in the embedding expression
|
|
|
|
@note
|
|
This function is to be called for any item created for a set function
|
|
object when the traversal of trees built for expressions used in the query
|
|
is performed at the phase of context analysis. This function is to
|
|
be invoked at the ascent of this traversal.
|
|
|
|
@retval
|
|
TRUE if an error is reported
|
|
@retval
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool Item_sum::check_sum_func(THD *thd, Item **ref)
|
|
{
|
|
SELECT_LEX *curr_sel= thd->lex->current_select;
|
|
nesting_map allow_sum_func= (thd->lex->allow_sum_func &
|
|
curr_sel->name_visibility_map);
|
|
bool invalid= FALSE;
|
|
DBUG_ASSERT(curr_sel->name_visibility_map); // should be set already
|
|
/*
|
|
The value of max_arg_level is updated if an argument of the set function
|
|
contains a column reference resolved against a subquery whose level is
|
|
greater than the current value of max_arg_level.
|
|
max_arg_level cannot be greater than nest level.
|
|
nest level is always >= 0
|
|
*/
|
|
if (nest_level == max_arg_level)
|
|
{
|
|
/*
|
|
The function must be aggregated in the current subquery,
|
|
If it is there under a construct where it is not allowed
|
|
we report an error.
|
|
*/
|
|
invalid= !(allow_sum_func & ((nesting_map)1 << max_arg_level));
|
|
}
|
|
else if (max_arg_level >= 0 ||
|
|
!(allow_sum_func & ((nesting_map)1 << nest_level)))
|
|
{
|
|
/*
|
|
The set function can be aggregated only in outer subqueries.
|
|
Try to find a subquery where it can be aggregated;
|
|
If we fail to find such a subquery report an error.
|
|
*/
|
|
if (register_sum_func(thd, ref))
|
|
return TRUE;
|
|
invalid= aggr_level < 0 &&
|
|
!(allow_sum_func & ((nesting_map)1 << nest_level));
|
|
if (!invalid && thd->variables.sql_mode & MODE_ANSI)
|
|
invalid= aggr_level < 0 && max_arg_level < nest_level;
|
|
}
|
|
if (!invalid && aggr_level < 0)
|
|
{
|
|
aggr_level= nest_level;
|
|
aggr_sel= curr_sel;
|
|
}
|
|
/*
|
|
By this moment we either found a subquery where the set function is
|
|
to be aggregated and assigned a value that is >= 0 to aggr_level,
|
|
or set the value of 'invalid' to TRUE to report later an error.
|
|
*/
|
|
/*
|
|
Additionally we have to check whether possible nested set functions
|
|
are acceptable here: they are not, if the level of aggregation of
|
|
some of them is less than aggr_level.
|
|
*/
|
|
if (!invalid)
|
|
invalid= aggr_level <= max_sum_func_level;
|
|
if (invalid)
|
|
{
|
|
my_message(ER_INVALID_GROUP_FUNC_USE, ER(ER_INVALID_GROUP_FUNC_USE),
|
|
MYF(0));
|
|
return TRUE;
|
|
}
|
|
|
|
if (in_sum_func)
|
|
{
|
|
/*
|
|
If the set function is nested adjust the value of
|
|
max_sum_func_level for the nesting set function.
|
|
We take into account only enclosed set functions that are to be
|
|
aggregated on the same level or above of the nest level of
|
|
the enclosing set function.
|
|
But we must always pass up the max_sum_func_level because it is
|
|
the maximum nested level of all directly and indirectly enclosed
|
|
set functions. We must do that even for set functions that are
|
|
aggregated inside of their enclosing set function's nest level
|
|
because the enclosing function may contain another enclosing
|
|
function that is to be aggregated outside or on the same level
|
|
as its parent's nest level.
|
|
*/
|
|
if (in_sum_func->nest_level >= aggr_level)
|
|
set_if_bigger(in_sum_func->max_sum_func_level, aggr_level);
|
|
set_if_bigger(in_sum_func->max_sum_func_level, max_sum_func_level);
|
|
}
|
|
|
|
/*
|
|
Check that non-aggregated fields and sum functions aren't mixed in the
|
|
same select in the ONLY_FULL_GROUP_BY mode.
|
|
*/
|
|
if (outer_fields.elements)
|
|
{
|
|
Item_field *field;
|
|
/*
|
|
Here we compare the nesting level of the select to which an outer field
|
|
belongs to with the aggregation level of the sum function. All fields in
|
|
the outer_fields list are checked.
|
|
|
|
If the nesting level is equal to the aggregation level then the field is
|
|
aggregated by this sum function.
|
|
If the nesting level is less than the aggregation level then the field
|
|
belongs to an outer select. In this case if there is an embedding sum
|
|
function add current field to functions outer_fields list. If there is
|
|
no embedding function then the current field treated as non aggregated
|
|
and the select it belongs to is marked accordingly.
|
|
If the nesting level is greater than the aggregation level then it means
|
|
that this field was added by an inner sum function.
|
|
Consider an example:
|
|
|
|
select avg ( <-- we are here, checking outer.f1
|
|
select (
|
|
select sum(outer.f1 + inner.f1) from inner
|
|
) from outer)
|
|
from most_outer;
|
|
|
|
In this case we check that no aggregate functions are used in the
|
|
select the field belongs to. If there are some then an error is
|
|
raised.
|
|
*/
|
|
List_iterator<Item_field> of(outer_fields);
|
|
while ((field= of++))
|
|
{
|
|
SELECT_LEX *sel= field->field->table->pos_in_table_list->select_lex;
|
|
if (sel->nest_level < aggr_level)
|
|
{
|
|
if (in_sum_func)
|
|
{
|
|
/*
|
|
Let upper function decide whether this field is a non
|
|
aggregated one.
|
|
*/
|
|
in_sum_func->outer_fields.push_back(field);
|
|
}
|
|
else
|
|
sel->set_non_agg_field_used(true);
|
|
}
|
|
if (sel->nest_level > aggr_level &&
|
|
(sel->agg_func_used()) &&
|
|
!sel->group_list.elements)
|
|
{
|
|
my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
|
|
ER(ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0));
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
aggr_sel->set_agg_func_used(true);
|
|
update_used_tables();
|
|
thd->lex->in_sum_func= in_sum_func;
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Attach a set function to the subquery where it must be aggregated.
|
|
|
|
The function looks for an outer subquery where the set function must be
|
|
aggregated. If it finds such a subquery then aggr_level is set to
|
|
the nest level of this subquery and the item for the set function
|
|
is added to the list of set functions used in nested subqueries
|
|
inner_sum_func_list defined for each subquery. When the item is placed
|
|
there the field 'ref_by' is set to ref.
|
|
|
|
@note
|
|
Now we 'register' only set functions that are aggregated in outer
|
|
subqueries. Actually it makes sense to link all set function for
|
|
a subquery in one chain. It would simplify the process of 'splitting'
|
|
for set functions.
|
|
|
|
@param thd reference to the thread context info
|
|
@param ref location of the pointer to this item in the embedding expression
|
|
|
|
@retval
|
|
FALSE if the executes without failures (currently always)
|
|
@retval
|
|
TRUE otherwise
|
|
*/
|
|
|
|
bool Item_sum::register_sum_func(THD *thd, Item **ref)
|
|
{
|
|
SELECT_LEX *sl;
|
|
nesting_map allow_sum_func= thd->lex->allow_sum_func;
|
|
for (sl= thd->lex->current_select->context.outer_select() ;
|
|
sl && sl->nest_level > max_arg_level;
|
|
sl= sl->context.outer_select())
|
|
{
|
|
if (aggr_level < 0 &&
|
|
(allow_sum_func & ((nesting_map)1 << sl->nest_level)))
|
|
{
|
|
/* Found the most nested subquery where the function can be aggregated */
|
|
aggr_level= sl->nest_level;
|
|
aggr_sel= sl;
|
|
}
|
|
}
|
|
if (sl && (allow_sum_func & ((nesting_map)1 << sl->nest_level)))
|
|
{
|
|
/*
|
|
We reached the subquery of level max_arg_level and checked
|
|
that the function can be aggregated here.
|
|
The set function will be aggregated in this subquery.
|
|
*/
|
|
aggr_level= sl->nest_level;
|
|
aggr_sel= sl;
|
|
|
|
}
|
|
if (aggr_level >= 0)
|
|
{
|
|
ref_by= ref;
|
|
/* Add the object to the list of registered objects assigned to aggr_sel */
|
|
if (!aggr_sel->inner_sum_func_list)
|
|
next= this;
|
|
else
|
|
{
|
|
next= aggr_sel->inner_sum_func_list->next;
|
|
aggr_sel->inner_sum_func_list->next= this;
|
|
}
|
|
aggr_sel->inner_sum_func_list= this;
|
|
aggr_sel->with_sum_func= 1;
|
|
|
|
/*
|
|
Mark Item_subselect(s) as containing aggregate function all the way up
|
|
to aggregate function's calculation context.
|
|
Note that we must not mark the Item of calculation context itself
|
|
because with_sum_func on the calculation context st_select_lex is
|
|
already set above.
|
|
|
|
with_sum_func being set for an Item means that this Item refers
|
|
(somewhere in it, e.g. one of its arguments if it's a function) directly
|
|
or through intermediate items to an aggregate function that is calculated
|
|
in a context "outside" of the Item (e.g. in the current or outer select).
|
|
|
|
with_sum_func being set for an st_select_lex means that this st_select_lex
|
|
has aggregate functions directly referenced (i.e. not through a sub-select).
|
|
*/
|
|
for (sl= thd->lex->current_select;
|
|
sl && sl != aggr_sel && sl->master_unit()->item;
|
|
sl= sl->master_unit()->outer_select() )
|
|
sl->master_unit()->item->with_sum_func= 1;
|
|
}
|
|
thd->lex->current_select->mark_as_dependent(thd, aggr_sel, NULL);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool Item_sum::collect_outer_ref_processor(uchar *param)
|
|
{
|
|
Collect_deps_prm *prm= (Collect_deps_prm *)param;
|
|
SELECT_LEX *ds;
|
|
if ((ds= depended_from()) &&
|
|
ds->nest_level_base == prm->nest_level_base &&
|
|
ds->nest_level < prm->nest_level)
|
|
{
|
|
if (prm->collect)
|
|
prm->parameters->add_unique(this, &cmp_items);
|
|
else
|
|
prm->count++;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
Item_sum::Item_sum(List<Item> &list) :arg_count(list.elements),
|
|
forced_const(FALSE)
|
|
{
|
|
if ((args=(Item**) sql_alloc(sizeof(Item*)*arg_count)))
|
|
{
|
|
uint i=0;
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
|
|
while ((item=li++))
|
|
{
|
|
args[i++]= item;
|
|
}
|
|
}
|
|
if (!(orig_args= (Item **) sql_alloc(sizeof(Item *) * arg_count)))
|
|
{
|
|
args= NULL;
|
|
}
|
|
mark_as_sum_func();
|
|
init_aggregator();
|
|
list.empty(); // Fields are used
|
|
}
|
|
|
|
|
|
/**
|
|
Constructor used in processing select with temporary tebles.
|
|
*/
|
|
|
|
Item_sum::Item_sum(THD *thd, Item_sum *item):
|
|
Item_result_field(thd, item),
|
|
aggr_sel(item->aggr_sel),
|
|
nest_level(item->nest_level), aggr_level(item->aggr_level),
|
|
quick_group(item->quick_group),
|
|
arg_count(item->arg_count), orig_args(NULL),
|
|
used_tables_cache(item->used_tables_cache),
|
|
forced_const(item->forced_const)
|
|
{
|
|
if (arg_count <= 2)
|
|
{
|
|
args=tmp_args;
|
|
orig_args=tmp_orig_args;
|
|
}
|
|
else
|
|
{
|
|
if (!(args= (Item**) thd->alloc(sizeof(Item*)*arg_count)))
|
|
return;
|
|
if (!(orig_args= (Item**) thd->alloc(sizeof(Item*)*arg_count)))
|
|
return;
|
|
}
|
|
memcpy(args, item->args, sizeof(Item*)*arg_count);
|
|
memcpy(orig_args, item->orig_args, sizeof(Item*)*arg_count);
|
|
init_aggregator();
|
|
with_distinct= item->with_distinct;
|
|
if (item->aggr)
|
|
set_aggregator(item->aggr->Aggrtype());
|
|
}
|
|
|
|
|
|
void Item_sum::mark_as_sum_func()
|
|
{
|
|
SELECT_LEX *cur_select= current_thd->lex->current_select;
|
|
cur_select->n_sum_items++;
|
|
cur_select->with_sum_func= 1;
|
|
with_sum_func= 1;
|
|
with_field= 0;
|
|
}
|
|
|
|
|
|
void Item_sum::print(String *str, enum_query_type query_type)
|
|
{
|
|
/* orig_args is not filled with valid values until fix_fields() */
|
|
Item **pargs= fixed ? orig_args : args;
|
|
str->append(func_name());
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
{
|
|
if (i)
|
|
str->append(',');
|
|
pargs[i]->print(str, query_type);
|
|
}
|
|
str->append(')');
|
|
}
|
|
|
|
void Item_sum::fix_num_length_and_dec()
|
|
{
|
|
decimals=0;
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
set_if_bigger(decimals,args[i]->decimals);
|
|
max_length=float_length(decimals);
|
|
}
|
|
|
|
Item *Item_sum::get_tmp_table_item(THD *thd)
|
|
{
|
|
Item_sum* sum_item= (Item_sum *) copy_or_same(thd);
|
|
if (sum_item && sum_item->result_field) // If not a const sum func
|
|
{
|
|
Field *result_field_tmp= sum_item->result_field;
|
|
for (uint i=0 ; i < sum_item->arg_count ; i++)
|
|
{
|
|
Item *arg= sum_item->args[i];
|
|
if (!arg->const_item())
|
|
{
|
|
if (arg->type() == Item::FIELD_ITEM)
|
|
((Item_field*) arg)->field= result_field_tmp++;
|
|
else
|
|
sum_item->args[i]= new Item_field(result_field_tmp++);
|
|
}
|
|
}
|
|
}
|
|
return sum_item;
|
|
}
|
|
|
|
|
|
bool Item_sum::walk (Item_processor processor, bool walk_subquery,
|
|
uchar *argument)
|
|
{
|
|
if (arg_count)
|
|
{
|
|
Item **arg,**arg_end;
|
|
for (arg= args, arg_end= args+arg_count; arg != arg_end; arg++)
|
|
{
|
|
if ((*arg)->walk(processor, walk_subquery, argument))
|
|
return 1;
|
|
}
|
|
}
|
|
return (this->*processor)(argument);
|
|
}
|
|
|
|
|
|
Field *Item_sum::create_tmp_field(bool group, TABLE *table,
|
|
uint convert_blob_length)
|
|
{
|
|
Field *UNINIT_VAR(field);
|
|
switch (result_type()) {
|
|
case REAL_RESULT:
|
|
field= new Field_double(max_length, maybe_null, name, decimals, TRUE);
|
|
break;
|
|
case INT_RESULT:
|
|
field= new Field_longlong(max_length, maybe_null, name, unsigned_flag);
|
|
break;
|
|
case STRING_RESULT:
|
|
if (max_length/collation.collation->mbmaxlen <= 255 ||
|
|
convert_blob_length > Field_varstring::MAX_SIZE ||
|
|
!convert_blob_length)
|
|
return make_string_field(table);
|
|
field= new Field_varstring(convert_blob_length, maybe_null,
|
|
name, table->s, collation.collation);
|
|
break;
|
|
case DECIMAL_RESULT:
|
|
field= Field_new_decimal::create_from_item(this);
|
|
break;
|
|
case ROW_RESULT:
|
|
case TIME_RESULT:
|
|
case IMPOSSIBLE_RESULT:
|
|
// This case should never be choosen
|
|
DBUG_ASSERT(0);
|
|
return 0;
|
|
}
|
|
if (field)
|
|
field->init(table);
|
|
return field;
|
|
}
|
|
|
|
|
|
void Item_sum::update_used_tables ()
|
|
{
|
|
if (!forced_const)
|
|
{
|
|
used_tables_cache= 0;
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
{
|
|
args[i]->update_used_tables();
|
|
used_tables_cache|= args[i]->used_tables();
|
|
}
|
|
/*
|
|
MariaDB: don't run the following {
|
|
|
|
used_tables_cache&= PSEUDO_TABLE_BITS;
|
|
|
|
// the aggregate function is aggregated into its local context
|
|
used_tables_cache|= ((table_map)1 << aggr_sel->join->tables) - 1;
|
|
|
|
} because if we do it, table elimination will assume that
|
|
- constructs like "COUNT(*)" use columns from all tables
|
|
- so, it is not possible to eliminate any table
|
|
our solution for COUNT(*) is that it has
|
|
item->used_tables() == 0 && !item->const_item()
|
|
*/
|
|
}
|
|
}
|
|
|
|
|
|
Item *Item_sum::set_arg(uint i, THD *thd, Item *new_val)
|
|
{
|
|
thd->change_item_tree(args + i, new_val);
|
|
return new_val;
|
|
}
|
|
|
|
|
|
int Item_sum::set_aggregator(Aggregator::Aggregator_type aggregator)
|
|
{
|
|
/*
|
|
Dependent subselects may be executed multiple times, making
|
|
set_aggregator to be called multiple times. The aggregator type
|
|
will be the same, but it needs to be reset so that it is
|
|
reevaluated with the new dependent data.
|
|
This function may also be called multiple times during query optimization.
|
|
In this case, the type may change, so we delete the old aggregator,
|
|
and create a new one.
|
|
*/
|
|
if (aggr && aggregator == aggr->Aggrtype())
|
|
{
|
|
aggr->clear();
|
|
return FALSE;
|
|
}
|
|
|
|
delete aggr;
|
|
switch (aggregator)
|
|
{
|
|
case Aggregator::DISTINCT_AGGREGATOR:
|
|
aggr= new Aggregator_distinct(this);
|
|
break;
|
|
case Aggregator::SIMPLE_AGGREGATOR:
|
|
aggr= new Aggregator_simple(this);
|
|
break;
|
|
};
|
|
return aggr ? FALSE : TRUE;
|
|
}
|
|
|
|
|
|
void Item_sum::cleanup()
|
|
{
|
|
if (aggr)
|
|
{
|
|
delete aggr;
|
|
aggr= NULL;
|
|
}
|
|
Item_result_field::cleanup();
|
|
forced_const= FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
Compare keys consisting of single field that cannot be compared as binary.
|
|
|
|
Used by the Unique class to compare keys. Will do correct comparisons
|
|
for all field types.
|
|
|
|
@param arg Pointer to the relevant Field class instance
|
|
@param key1 left key image
|
|
@param key2 right key image
|
|
@return comparison result
|
|
@retval < 0 if key1 < key2
|
|
@retval = 0 if key1 = key2
|
|
@retval > 0 if key1 > key2
|
|
*/
|
|
|
|
int simple_str_key_cmp(void* arg, uchar* key1, uchar* key2)
|
|
{
|
|
Field *f= (Field*) arg;
|
|
return f->cmp(key1, key2);
|
|
}
|
|
|
|
|
|
C_MODE_START
|
|
|
|
int count_distinct_walk(void *elem, element_count count, void *arg)
|
|
{
|
|
(*((ulonglong*)arg))++;
|
|
return 0;
|
|
}
|
|
|
|
C_MODE_END
|
|
|
|
|
|
/**
|
|
Correctly compare composite keys.
|
|
|
|
Used by the Unique class to compare keys. Will do correct comparisons
|
|
for composite keys with various field types.
|
|
|
|
@param arg Pointer to the relevant Aggregator_distinct instance
|
|
@param key1 left key image
|
|
@param key2 right key image
|
|
@return comparison result
|
|
@retval <0 if key1 < key2
|
|
@retval =0 if key1 = key2
|
|
@retval >0 if key1 > key2
|
|
*/
|
|
|
|
int Aggregator_distinct::composite_key_cmp(void* arg, uchar* key1, uchar* key2)
|
|
{
|
|
Aggregator_distinct *aggr= (Aggregator_distinct *) arg;
|
|
Field **field = aggr->table->field;
|
|
Field **field_end= field + aggr->table->s->fields;
|
|
uint32 *lengths=aggr->field_lengths;
|
|
for (; field < field_end; ++field)
|
|
{
|
|
Field* f = *field;
|
|
int len = *lengths++;
|
|
int res = f->cmp(key1, key2);
|
|
if (res)
|
|
return res;
|
|
key1 += len;
|
|
key2 += len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static enum enum_field_types
|
|
calc_tmp_field_type(enum enum_field_types table_field_type,
|
|
Item_result result_type)
|
|
{
|
|
/* Adjust tmp table type according to the chosen aggregation type */
|
|
switch (result_type) {
|
|
case STRING_RESULT:
|
|
case REAL_RESULT:
|
|
if (table_field_type != MYSQL_TYPE_FLOAT)
|
|
table_field_type= MYSQL_TYPE_DOUBLE;
|
|
break;
|
|
case INT_RESULT:
|
|
table_field_type= MYSQL_TYPE_LONGLONG;
|
|
/* fallthrough */
|
|
case DECIMAL_RESULT:
|
|
if (table_field_type != MYSQL_TYPE_LONGLONG)
|
|
table_field_type= MYSQL_TYPE_NEWDECIMAL;
|
|
break;
|
|
case ROW_RESULT:
|
|
default:
|
|
DBUG_ASSERT(0);
|
|
}
|
|
return table_field_type;
|
|
}
|
|
|
|
|
|
/***************************************************************************/
|
|
|
|
C_MODE_START
|
|
|
|
/* Declarations for auxilary C-callbacks */
|
|
|
|
int simple_raw_key_cmp(void* arg, const void* key1, const void* key2)
|
|
{
|
|
return memcmp(key1, key2, *(uint *) arg);
|
|
}
|
|
|
|
|
|
static int item_sum_distinct_walk_for_count(void *element,
|
|
element_count num_of_dups,
|
|
void *item)
|
|
{
|
|
return ((Aggregator_distinct*) (item))->unique_walk_function_for_count(element);
|
|
}
|
|
|
|
|
|
static int item_sum_distinct_walk(void *element, element_count num_of_dups,
|
|
void *item)
|
|
{
|
|
return ((Aggregator_distinct*) (item))->unique_walk_function(element);
|
|
}
|
|
|
|
C_MODE_END
|
|
|
|
/***************************************************************************/
|
|
/**
|
|
Called before feeding the first row. Used to allocate/setup
|
|
the internal structures used for aggregation.
|
|
|
|
@param thd Thread descriptor
|
|
@return status
|
|
@retval FALSE success
|
|
@retval TRUE faliure
|
|
|
|
Prepares Aggregator_distinct to process the incoming stream.
|
|
Creates the temporary table and the Unique class if needed.
|
|
Called by Item_sum::aggregator_setup()
|
|
*/
|
|
|
|
bool Aggregator_distinct::setup(THD *thd)
|
|
{
|
|
endup_done= FALSE;
|
|
/*
|
|
Setup can be called twice for ROLLUP items. This is a bug.
|
|
Please add DBUG_ASSERT(tree == 0) here when it's fixed.
|
|
*/
|
|
if (tree || table || tmp_table_param)
|
|
return FALSE;
|
|
|
|
if (item_sum->setup(thd))
|
|
return TRUE;
|
|
if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
|
|
item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
|
|
{
|
|
List<Item> list;
|
|
SELECT_LEX *select_lex= thd->lex->current_select;
|
|
|
|
if (!(tmp_table_param= new TMP_TABLE_PARAM))
|
|
return TRUE;
|
|
|
|
/* Create a table with an unique key over all parameters */
|
|
for (uint i=0; i < item_sum->get_arg_count() ; i++)
|
|
{
|
|
Item *item=item_sum->get_arg(i);
|
|
if (list.push_back(item))
|
|
return TRUE; // End of memory
|
|
if (item->const_item() && item->is_null())
|
|
always_null= true;
|
|
}
|
|
if (always_null)
|
|
return FALSE;
|
|
count_field_types(select_lex, tmp_table_param, list, 0);
|
|
tmp_table_param->force_copy_fields= item_sum->has_force_copy_fields();
|
|
DBUG_ASSERT(table == 0);
|
|
/*
|
|
Make create_tmp_table() convert BIT columns to BIGINT.
|
|
This is needed because BIT fields store parts of their data in table's
|
|
null bits, and we don't have methods to compare two table records, which
|
|
is needed by Unique which is used when HEAP table is used.
|
|
*/
|
|
{
|
|
List_iterator_fast<Item> li(list);
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (item->type() == Item::FIELD_ITEM &&
|
|
((Item_field*)item)->field->type() == FIELD_TYPE_BIT)
|
|
item->marker=4;
|
|
}
|
|
}
|
|
if (!(table= create_tmp_table(thd, tmp_table_param, list, (ORDER*) 0, 1,
|
|
0,
|
|
(select_lex->options | thd->variables.option_bits),
|
|
HA_POS_ERROR, const_cast<char*>(""))))
|
|
return TRUE;
|
|
table->file->extra(HA_EXTRA_NO_ROWS); // Don't update rows
|
|
table->no_rows=1;
|
|
|
|
if (table->s->db_type() == heap_hton)
|
|
{
|
|
/*
|
|
No blobs, otherwise it would have been MyISAM: set up a compare
|
|
function and its arguments to use with Unique.
|
|
*/
|
|
qsort_cmp2 compare_key;
|
|
void* cmp_arg;
|
|
Field **field= table->field;
|
|
Field **field_end= field + table->s->fields;
|
|
bool all_binary= TRUE;
|
|
|
|
for (tree_key_length= 0; field < field_end; ++field)
|
|
{
|
|
Field *f= *field;
|
|
enum enum_field_types type= f->type();
|
|
tree_key_length+= f->pack_length();
|
|
if ((type == MYSQL_TYPE_VARCHAR) ||
|
|
(!f->binary() && (type == MYSQL_TYPE_STRING ||
|
|
type == MYSQL_TYPE_VAR_STRING)))
|
|
{
|
|
all_binary= FALSE;
|
|
break;
|
|
}
|
|
}
|
|
if (all_binary)
|
|
{
|
|
cmp_arg= (void*) &tree_key_length;
|
|
compare_key= (qsort_cmp2) simple_raw_key_cmp;
|
|
}
|
|
else
|
|
{
|
|
if (table->s->fields == 1)
|
|
{
|
|
/*
|
|
If we have only one field, which is the most common use of
|
|
count(distinct), it is much faster to use a simpler key
|
|
compare method that can take advantage of not having to worry
|
|
about other fields.
|
|
*/
|
|
compare_key= (qsort_cmp2) simple_str_key_cmp;
|
|
cmp_arg= (void*) table->field[0];
|
|
/* tree_key_length has been set already */
|
|
}
|
|
else
|
|
{
|
|
uint32 *length;
|
|
compare_key= (qsort_cmp2) composite_key_cmp;
|
|
cmp_arg= (void*) this;
|
|
field_lengths= (uint32*) thd->alloc(table->s->fields * sizeof(uint32));
|
|
for (tree_key_length= 0, length= field_lengths, field= table->field;
|
|
field < field_end; ++field, ++length)
|
|
{
|
|
*length= (*field)->pack_length();
|
|
tree_key_length+= *length;
|
|
}
|
|
}
|
|
}
|
|
DBUG_ASSERT(tree == 0);
|
|
tree= new Unique(compare_key, cmp_arg, tree_key_length,
|
|
item_sum->ram_limitation(thd));
|
|
/*
|
|
The only time tree_key_length could be 0 is if someone does
|
|
count(distinct) on a char(0) field - stupid thing to do,
|
|
but this has to be handled - otherwise someone can crash
|
|
the server with a DoS attack
|
|
*/
|
|
if (! tree)
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
List<Create_field> field_list;
|
|
Create_field field_def; /* field definition */
|
|
Item *arg;
|
|
DBUG_ENTER("Aggregator_distinct::setup");
|
|
/* It's legal to call setup() more than once when in a subquery */
|
|
if (tree)
|
|
DBUG_RETURN(FALSE);
|
|
|
|
/*
|
|
Virtual table and the tree are created anew on each re-execution of
|
|
PS/SP. Hence all further allocations are performed in the runtime
|
|
mem_root.
|
|
*/
|
|
if (field_list.push_back(&field_def))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
item_sum->null_value= item_sum->maybe_null= 1;
|
|
item_sum->quick_group= 0;
|
|
|
|
DBUG_ASSERT(item_sum->get_arg(0)->fixed);
|
|
|
|
arg= item_sum->get_arg(0);
|
|
if (arg->const_item())
|
|
{
|
|
(void) arg->val_int();
|
|
if (arg->null_value)
|
|
always_null= true;
|
|
}
|
|
|
|
if (always_null)
|
|
DBUG_RETURN(FALSE);
|
|
|
|
enum enum_field_types field_type;
|
|
|
|
field_type= calc_tmp_field_type(arg->field_type(),
|
|
arg->result_type());
|
|
field_def.init_for_tmp_table(field_type,
|
|
arg->max_length,
|
|
arg->decimals,
|
|
arg->maybe_null,
|
|
arg->unsigned_flag);
|
|
|
|
if (! (table= create_virtual_tmp_table(thd, field_list)))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
/* XXX: check that the case of CHAR(0) works OK */
|
|
tree_key_length= table->s->reclength - table->s->null_bytes;
|
|
|
|
/*
|
|
Unique handles all unique elements in a tree until they can't fit
|
|
in. Then the tree is dumped to the temporary file. We can use
|
|
simple_raw_key_cmp because the table contains numbers only; decimals
|
|
are converted to binary representation as well.
|
|
*/
|
|
tree= new Unique(simple_raw_key_cmp, &tree_key_length, tree_key_length,
|
|
item_sum->ram_limitation(thd));
|
|
|
|
DBUG_RETURN(tree == 0);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Invalidate calculated value and clear the distinct rows.
|
|
|
|
Frees space used by the internal data structures.
|
|
Removes the accumulated distinct rows. Invalidates the calculated result.
|
|
*/
|
|
|
|
void Aggregator_distinct::clear()
|
|
{
|
|
endup_done= FALSE;
|
|
item_sum->clear();
|
|
if (tree)
|
|
tree->reset();
|
|
/* tree and table can be both null only if always_null */
|
|
if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
|
|
item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
|
|
{
|
|
if (!tree && table)
|
|
{
|
|
table->file->extra(HA_EXTRA_NO_CACHE);
|
|
table->file->ha_delete_all_rows();
|
|
table->file->extra(HA_EXTRA_WRITE_CACHE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
item_sum->null_value= 1;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Process incoming row.
|
|
|
|
Add it to Unique/temp hash table if it's unique. Skip the row if
|
|
not unique.
|
|
Prepare Aggregator_distinct to process the incoming stream.
|
|
Create the temporary table and the Unique class if needed.
|
|
Called by Item_sum::aggregator_add().
|
|
To actually get the result value in item_sum's buffers
|
|
Aggregator_distinct::endup() must be called.
|
|
|
|
@return status
|
|
@retval FALSE success
|
|
@retval TRUE failure
|
|
*/
|
|
|
|
bool Aggregator_distinct::add()
|
|
{
|
|
if (always_null)
|
|
return 0;
|
|
|
|
if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
|
|
item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
|
|
{
|
|
int error;
|
|
copy_fields(tmp_table_param);
|
|
if (copy_funcs(tmp_table_param->items_to_copy, table->in_use))
|
|
return TRUE;
|
|
|
|
for (Field **field=table->field ; *field ; field++)
|
|
if ((*field)->is_real_null(0))
|
|
return 0; // Don't count NULL
|
|
|
|
if (tree)
|
|
{
|
|
/*
|
|
The first few bytes of record (at least one) are just markers
|
|
for deleted and NULLs. We want to skip them since they will
|
|
bloat the tree without providing any valuable info. Besides,
|
|
key_length used to initialize the tree didn't include space for them.
|
|
*/
|
|
return tree->unique_add(table->record[0] + table->s->null_bytes);
|
|
}
|
|
if ((error= table->file->ha_write_tmp_row(table->record[0])) &&
|
|
table->file->is_fatal_error(error, HA_CHECK_DUP))
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
item_sum->get_arg(0)->save_in_field(table->field[0], FALSE);
|
|
if (table->field[0]->is_null())
|
|
return 0;
|
|
DBUG_ASSERT(tree);
|
|
item_sum->null_value= 0;
|
|
/*
|
|
'0' values are also stored in the tree. This doesn't matter
|
|
for SUM(DISTINCT), but is important for AVG(DISTINCT)
|
|
*/
|
|
return tree->unique_add(table->field[0]->ptr);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Calculate the aggregate function value.
|
|
|
|
Since Distinct_aggregator::add() just collects the distinct rows,
|
|
we must go over the distinct rows and feed them to the aggregation
|
|
function before returning its value.
|
|
This is what endup () does. It also sets the result validity flag
|
|
endup_done to TRUE so it will not recalculate the aggregate value
|
|
again if the Item_sum hasn't been reset.
|
|
*/
|
|
|
|
void Aggregator_distinct::endup()
|
|
{
|
|
/* prevent consecutive recalculations */
|
|
if (endup_done)
|
|
return;
|
|
|
|
/* we are going to calculate the aggregate value afresh */
|
|
item_sum->clear();
|
|
|
|
/* The result will definitely be null : no more calculations needed */
|
|
if (always_null)
|
|
return;
|
|
|
|
if (item_sum->sum_func() == Item_sum::COUNT_FUNC ||
|
|
item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
|
|
{
|
|
DBUG_ASSERT(item_sum->fixed == 1);
|
|
Item_sum_count *sum= (Item_sum_count *)item_sum;
|
|
if (tree && tree->elements == 0)
|
|
{
|
|
/* everything fits in memory */
|
|
sum->count= (longlong) tree->elements_in_tree();
|
|
endup_done= TRUE;
|
|
}
|
|
if (!tree)
|
|
{
|
|
/* there were blobs */
|
|
table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
|
|
sum->count= table->file->stats.records;
|
|
endup_done= TRUE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
We don't have a tree only if 'setup()' hasn't been called;
|
|
this is the case of sql_executor.cc:return_zero_rows.
|
|
*/
|
|
if (tree && !endup_done)
|
|
{
|
|
/*
|
|
All tree's values are not NULL.
|
|
Note that value of field is changed as we walk the tree, in
|
|
Aggregator_distinct::unique_walk_function, but it's always not NULL.
|
|
*/
|
|
table->field[0]->set_notnull();
|
|
/* go over the tree of distinct keys and calculate the aggregate value */
|
|
use_distinct_values= TRUE;
|
|
tree_walk_action func;
|
|
if (item_sum->sum_func() == Item_sum::COUNT_DISTINCT_FUNC)
|
|
func= item_sum_distinct_walk_for_count;
|
|
else
|
|
func= item_sum_distinct_walk;
|
|
tree->walk(table, func, (void*) this);
|
|
use_distinct_values= FALSE;
|
|
}
|
|
/* prevent consecutive recalculations */
|
|
endup_done= TRUE;
|
|
}
|
|
|
|
|
|
String *
|
|
Item_sum_num::val_str(String *str)
|
|
{
|
|
return val_string_from_real(str);
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_num::val_decimal(my_decimal *decimal_value)
|
|
{
|
|
return val_decimal_from_real(decimal_value);
|
|
}
|
|
|
|
|
|
String *
|
|
Item_sum_int::val_str(String *str)
|
|
{
|
|
return val_string_from_int(str);
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_int::val_decimal(my_decimal *decimal_value)
|
|
{
|
|
return val_decimal_from_int(decimal_value);
|
|
}
|
|
|
|
|
|
bool
|
|
Item_sum_num::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
DBUG_ASSERT(fixed == 0);
|
|
|
|
if (init_sum_func_check(thd))
|
|
return TRUE;
|
|
|
|
decimals=0;
|
|
maybe_null= sum_func() != COUNT_FUNC;
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
{
|
|
if (args[i]->fix_fields(thd, args + i) || args[i]->check_cols(1))
|
|
return TRUE;
|
|
set_if_bigger(decimals, args[i]->decimals);
|
|
with_subselect|= args[i]->with_subselect;
|
|
}
|
|
result_field=0;
|
|
max_length=float_length(decimals);
|
|
null_value=1;
|
|
fix_length_and_dec();
|
|
|
|
if (check_sum_func(thd, ref))
|
|
return TRUE;
|
|
|
|
memcpy (orig_args, args, sizeof (Item *) * arg_count);
|
|
fixed= 1;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool
|
|
Item_sum_hybrid::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
DBUG_ASSERT(fixed == 0);
|
|
|
|
Item *item= args[0];
|
|
|
|
if (init_sum_func_check(thd))
|
|
return TRUE;
|
|
|
|
// 'item' can be changed during fix_fields
|
|
if ((!item->fixed && item->fix_fields(thd, args)) ||
|
|
(item= args[0])->check_cols(1))
|
|
return TRUE;
|
|
decimals=item->decimals;
|
|
with_subselect= args[0]->with_subselect;
|
|
|
|
switch (hybrid_type= item->result_type()) {
|
|
case INT_RESULT:
|
|
case DECIMAL_RESULT:
|
|
case STRING_RESULT:
|
|
max_length= item->max_length;
|
|
break;
|
|
case REAL_RESULT:
|
|
max_length= float_length(decimals);
|
|
break;
|
|
case ROW_RESULT:
|
|
case TIME_RESULT:
|
|
case IMPOSSIBLE_RESULT:
|
|
DBUG_ASSERT(0);
|
|
};
|
|
setup_hybrid(args[0], NULL);
|
|
/* MIN/MAX can return NULL for empty set indepedent of the used column */
|
|
maybe_null= 1;
|
|
unsigned_flag=item->unsigned_flag;
|
|
result_field=0;
|
|
null_value=1;
|
|
fix_length_and_dec();
|
|
item= item->real_item();
|
|
if (item->type() == Item::FIELD_ITEM)
|
|
hybrid_field_type= ((Item_field*) item)->field->type();
|
|
else
|
|
hybrid_field_type= Item::field_type();
|
|
|
|
if (check_sum_func(thd, ref))
|
|
return TRUE;
|
|
|
|
orig_args[0]= args[0];
|
|
fixed= 1;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
MIN/MAX function setup.
|
|
|
|
@param item argument of MIN/MAX function
|
|
@param value_arg calculated value of MIN/MAX function
|
|
|
|
@details
|
|
Setup cache/comparator of MIN/MAX functions. When called by the
|
|
copy_or_same function value_arg parameter contains calculated value
|
|
of the original MIN/MAX object and it is saved in this object's cache.
|
|
|
|
We mark the value and arg_cache with 'RAND_TABLE_BIT' to ensure
|
|
that Arg_comparator::compare_datetime() doesn't allocate new
|
|
item inside of Arg_comparator. This would cause compare_datetime()
|
|
and Item_sum_min::add() to use different values!
|
|
*/
|
|
|
|
void Item_sum_hybrid::setup_hybrid(Item *item, Item *value_arg)
|
|
{
|
|
if (!(value= Item_cache::get_cache(item, item->cmp_type())))
|
|
return;
|
|
value->setup(item);
|
|
value->store(value_arg);
|
|
/* Don't cache value, as it will change */
|
|
if (!item->const_item())
|
|
value->set_used_tables(RAND_TABLE_BIT);
|
|
if (!(arg_cache= Item_cache::get_cache(item, item->cmp_type())))
|
|
return;
|
|
arg_cache->setup(item);
|
|
/* Don't cache value, as it will change */
|
|
if (!item->const_item())
|
|
arg_cache->set_used_tables(RAND_TABLE_BIT);
|
|
cmp= new Arg_comparator();
|
|
if (cmp)
|
|
cmp->set_cmp_func(this, (Item**)&arg_cache, (Item**)&value, FALSE);
|
|
collation.set(item->collation);
|
|
}
|
|
|
|
|
|
Field *Item_sum_hybrid::create_tmp_field(bool group, TABLE *table,
|
|
uint convert_blob_length)
|
|
{
|
|
Field *field;
|
|
if (args[0]->type() == Item::FIELD_ITEM)
|
|
{
|
|
field= ((Item_field*) args[0])->field;
|
|
|
|
if ((field= create_tmp_field_from_field(current_thd, field, name, table,
|
|
NULL, convert_blob_length)))
|
|
field->flags&= ~NOT_NULL_FLAG;
|
|
return field;
|
|
}
|
|
/*
|
|
DATE/TIME fields have STRING_RESULT result types.
|
|
In order to preserve field type, it's needed to handle DATE/TIME
|
|
fields creations separately.
|
|
*/
|
|
switch (args[0]->field_type()) {
|
|
case MYSQL_TYPE_DATE:
|
|
field= new Field_newdate(0, maybe_null ? (uchar*)"" : 0, 0, Field::NONE,
|
|
name);
|
|
break;
|
|
case MYSQL_TYPE_TIME:
|
|
field= new_Field_time(0, maybe_null ? (uchar*)"" : 0, 0, Field::NONE,
|
|
name, decimals);
|
|
break;
|
|
case MYSQL_TYPE_TIMESTAMP:
|
|
case MYSQL_TYPE_DATETIME:
|
|
field= new_Field_datetime(0, maybe_null ? (uchar*)"" : 0, 0, Field::NONE,
|
|
name, decimals);
|
|
break;
|
|
default:
|
|
return Item_sum::create_tmp_field(group, table, convert_blob_length);
|
|
}
|
|
if (field)
|
|
field->init(table);
|
|
return field;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
** reset and add of sum_func
|
|
***********************************************************************/
|
|
|
|
/**
|
|
@todo
|
|
check if the following assignments are really needed
|
|
*/
|
|
Item_sum_sum::Item_sum_sum(THD *thd, Item_sum_sum *item)
|
|
:Item_sum_num(thd, item), hybrid_type(item->hybrid_type),
|
|
curr_dec_buff(item->curr_dec_buff)
|
|
{
|
|
/* TODO: check if the following assignments are really needed */
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
my_decimal2decimal(item->dec_buffs, dec_buffs);
|
|
my_decimal2decimal(item->dec_buffs + 1, dec_buffs + 1);
|
|
}
|
|
else
|
|
sum= item->sum;
|
|
}
|
|
|
|
Item *Item_sum_sum::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_sum(thd, this);
|
|
}
|
|
|
|
|
|
void Item_sum_sum::clear()
|
|
{
|
|
DBUG_ENTER("Item_sum_sum::clear");
|
|
null_value=1;
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
curr_dec_buff= 0;
|
|
my_decimal_set_zero(dec_buffs);
|
|
}
|
|
else
|
|
sum= 0.0;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
void Item_sum_sum::fix_length_and_dec()
|
|
{
|
|
DBUG_ENTER("Item_sum_sum::fix_length_and_dec");
|
|
maybe_null=null_value=1;
|
|
decimals= args[0]->decimals;
|
|
switch (args[0]->cast_to_int_type()) {
|
|
case REAL_RESULT:
|
|
case STRING_RESULT:
|
|
hybrid_type= REAL_RESULT;
|
|
sum= 0.0;
|
|
break;
|
|
case INT_RESULT:
|
|
case TIME_RESULT:
|
|
case DECIMAL_RESULT:
|
|
{
|
|
/* SUM result can't be longer than length(arg) + length(MAX_ROWS) */
|
|
int precision= args[0]->decimal_precision() + DECIMAL_LONGLONG_DIGITS;
|
|
max_length= my_decimal_precision_to_length_no_truncation(precision,
|
|
decimals,
|
|
unsigned_flag);
|
|
curr_dec_buff= 0;
|
|
hybrid_type= DECIMAL_RESULT;
|
|
my_decimal_set_zero(dec_buffs);
|
|
break;
|
|
}
|
|
case ROW_RESULT:
|
|
case IMPOSSIBLE_RESULT:
|
|
DBUG_ASSERT(0);
|
|
}
|
|
DBUG_PRINT("info", ("Type: %s (%d, %d)",
|
|
(hybrid_type == REAL_RESULT ? "REAL_RESULT" :
|
|
hybrid_type == DECIMAL_RESULT ? "DECIMAL_RESULT" :
|
|
hybrid_type == INT_RESULT ? "INT_RESULT" :
|
|
"--ILLEGAL!!!--"),
|
|
max_length,
|
|
(int)decimals));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
bool Item_sum_sum::add()
|
|
{
|
|
DBUG_ENTER("Item_sum_sum::add");
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
my_decimal value;
|
|
const my_decimal *val= aggr->arg_val_decimal(&value);
|
|
if (!aggr->arg_is_null(true))
|
|
{
|
|
my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs + (curr_dec_buff^1),
|
|
val, dec_buffs + curr_dec_buff);
|
|
curr_dec_buff^= 1;
|
|
null_value= 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sum+= aggr->arg_val_real();
|
|
if (!aggr->arg_is_null(true))
|
|
null_value= 0;
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
longlong Item_sum_sum::val_int()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (aggr)
|
|
aggr->endup();
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
longlong result;
|
|
my_decimal2int(E_DEC_FATAL_ERROR, dec_buffs + curr_dec_buff, unsigned_flag,
|
|
&result);
|
|
return result;
|
|
}
|
|
return (longlong) rint(val_real());
|
|
}
|
|
|
|
|
|
double Item_sum_sum::val_real()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (aggr)
|
|
aggr->endup();
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
my_decimal2double(E_DEC_FATAL_ERROR, dec_buffs + curr_dec_buff, &sum);
|
|
return sum;
|
|
}
|
|
|
|
|
|
String *Item_sum_sum::val_str(String *str)
|
|
{
|
|
if (aggr)
|
|
aggr->endup();
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
return val_string_from_decimal(str);
|
|
return val_string_from_real(str);
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_sum::val_decimal(my_decimal *val)
|
|
{
|
|
if (aggr)
|
|
aggr->endup();
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
return (dec_buffs + curr_dec_buff);
|
|
return val_decimal_from_real(val);
|
|
}
|
|
|
|
/**
|
|
Aggregate a distinct row from the distinct hash table.
|
|
|
|
Called for each row into the hash table 'Aggregator_distinct::table'.
|
|
Includes the current distinct row into the calculation of the
|
|
aggregate value. Uses the Field classes to get the value from the row.
|
|
This function is used for AVG/SUM(DISTINCT). For COUNT(DISTINCT)
|
|
it's called only when there are no blob arguments and the data don't
|
|
fit into memory (so Unique makes persisted trees on disk).
|
|
|
|
@param element pointer to the row data.
|
|
|
|
@return status
|
|
@retval FALSE success
|
|
@retval TRUE failure
|
|
*/
|
|
|
|
bool Aggregator_distinct::unique_walk_function(void *element)
|
|
{
|
|
memcpy(table->field[0]->ptr, element, tree_key_length);
|
|
item_sum->add();
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
A variant of unique_walk_function() that is to be used with Item_sum_count.
|
|
|
|
COUNT is a special aggregate function: it doesn't need the values, it only
|
|
needs to count them. COUNT needs to know the values are not NULLs, but NULL
|
|
values are not put into the Unique, so we don't need to check for NULLs here.
|
|
*/
|
|
|
|
bool Aggregator_distinct::unique_walk_function_for_count(void *element)
|
|
{
|
|
Item_sum_count *sum= (Item_sum_count *)item_sum;
|
|
sum->count++;
|
|
return 0;
|
|
}
|
|
|
|
|
|
Aggregator_distinct::~Aggregator_distinct()
|
|
{
|
|
if (tree)
|
|
{
|
|
delete tree;
|
|
tree= NULL;
|
|
}
|
|
if (table)
|
|
{
|
|
free_tmp_table(table->in_use, table);
|
|
table=NULL;
|
|
}
|
|
if (tmp_table_param)
|
|
{
|
|
delete tmp_table_param;
|
|
tmp_table_param= NULL;
|
|
}
|
|
}
|
|
|
|
|
|
my_decimal *Aggregator_simple::arg_val_decimal(my_decimal *value)
|
|
{
|
|
return item_sum->args[0]->val_decimal(value);
|
|
}
|
|
|
|
|
|
double Aggregator_simple::arg_val_real()
|
|
{
|
|
return item_sum->args[0]->val_real();
|
|
}
|
|
|
|
|
|
bool Aggregator_simple::arg_is_null(bool use_null_value)
|
|
{
|
|
Item **item= item_sum->args;
|
|
const uint item_count= item_sum->arg_count;
|
|
if (use_null_value)
|
|
{
|
|
for (uint i= 0; i < item_count; i++)
|
|
{
|
|
if (item[i]->null_value)
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (uint i= 0; i < item_count; i++)
|
|
{
|
|
if (item[i]->maybe_null && item[i]->is_null())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
my_decimal *Aggregator_distinct::arg_val_decimal(my_decimal * value)
|
|
{
|
|
return use_distinct_values ? table->field[0]->val_decimal(value) :
|
|
item_sum->args[0]->val_decimal(value);
|
|
}
|
|
|
|
|
|
double Aggregator_distinct::arg_val_real()
|
|
{
|
|
return use_distinct_values ? table->field[0]->val_real() :
|
|
item_sum->args[0]->val_real();
|
|
}
|
|
|
|
|
|
bool Aggregator_distinct::arg_is_null(bool use_null_value)
|
|
{
|
|
if (use_distinct_values)
|
|
{
|
|
const bool rc= table->field[0]->is_null();
|
|
DBUG_ASSERT(!rc); // NULLs are never stored in 'tree'
|
|
return rc;
|
|
}
|
|
return use_null_value ?
|
|
item_sum->args[0]->null_value :
|
|
(item_sum->args[0]->maybe_null && item_sum->args[0]->is_null());
|
|
}
|
|
|
|
|
|
Item *Item_sum_count::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_count(thd, this);
|
|
}
|
|
|
|
|
|
void Item_sum_count::clear()
|
|
{
|
|
count= 0;
|
|
}
|
|
|
|
|
|
bool Item_sum_count::add()
|
|
{
|
|
if (aggr->arg_is_null(false))
|
|
return 0;
|
|
count++;
|
|
return 0;
|
|
}
|
|
|
|
longlong Item_sum_count::val_int()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (aggr)
|
|
aggr->endup();
|
|
return (longlong) count;
|
|
}
|
|
|
|
|
|
void Item_sum_count::cleanup()
|
|
{
|
|
DBUG_ENTER("Item_sum_count::cleanup");
|
|
count= 0;
|
|
Item_sum_int::cleanup();
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Avgerage
|
|
*/
|
|
void Item_sum_avg::fix_length_and_dec()
|
|
{
|
|
Item_sum_sum::fix_length_and_dec();
|
|
maybe_null=null_value=1;
|
|
prec_increment= current_thd->variables.div_precincrement;
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
int precision= args[0]->decimal_precision() + prec_increment;
|
|
decimals= MY_MIN(args[0]->decimals + prec_increment, DECIMAL_MAX_SCALE);
|
|
max_length= my_decimal_precision_to_length_no_truncation(precision,
|
|
decimals,
|
|
unsigned_flag);
|
|
f_precision= MY_MIN(precision+DECIMAL_LONGLONG_DIGITS, DECIMAL_MAX_PRECISION);
|
|
f_scale= args[0]->decimals;
|
|
dec_bin_size= my_decimal_get_binary_size(f_precision, f_scale);
|
|
}
|
|
else
|
|
{
|
|
decimals= MY_MIN(args[0]->decimals + prec_increment, NOT_FIXED_DEC);
|
|
max_length= MY_MIN(args[0]->max_length + prec_increment, float_length(decimals));
|
|
}
|
|
}
|
|
|
|
|
|
Item *Item_sum_avg::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_avg(thd, this);
|
|
}
|
|
|
|
|
|
Field *Item_sum_avg::create_tmp_field(bool group, TABLE *table,
|
|
uint convert_blob_len)
|
|
{
|
|
Field *field;
|
|
if (group)
|
|
{
|
|
/*
|
|
We must store both value and counter in the temporary table in one field.
|
|
The easiest way is to do this is to store both value in a string
|
|
and unpack on access.
|
|
*/
|
|
field= new Field_string(((hybrid_type == DECIMAL_RESULT) ?
|
|
dec_bin_size : sizeof(double)) + sizeof(longlong),
|
|
0, name, &my_charset_bin);
|
|
}
|
|
else if (hybrid_type == DECIMAL_RESULT)
|
|
field= Field_new_decimal::create_from_item(this);
|
|
else
|
|
field= new Field_double(max_length, maybe_null, name, decimals, TRUE);
|
|
if (field)
|
|
field->init(table);
|
|
return field;
|
|
}
|
|
|
|
|
|
void Item_sum_avg::clear()
|
|
{
|
|
Item_sum_sum::clear();
|
|
count=0;
|
|
}
|
|
|
|
|
|
bool Item_sum_avg::add()
|
|
{
|
|
if (Item_sum_sum::add())
|
|
return TRUE;
|
|
if (!aggr->arg_is_null(true))
|
|
count++;
|
|
return FALSE;
|
|
}
|
|
|
|
double Item_sum_avg::val_real()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (aggr)
|
|
aggr->endup();
|
|
if (!count)
|
|
{
|
|
null_value=1;
|
|
return 0.0;
|
|
}
|
|
return Item_sum_sum::val_real() / ulonglong2double(count);
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_avg::val_decimal(my_decimal *val)
|
|
{
|
|
my_decimal cnt;
|
|
const my_decimal *sum_dec;
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (aggr)
|
|
aggr->endup();
|
|
if (!count)
|
|
{
|
|
null_value=1;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
For non-DECIMAL hybrid_type the division will be done in
|
|
Item_sum_avg::val_real().
|
|
*/
|
|
if (hybrid_type != DECIMAL_RESULT)
|
|
return val_decimal_from_real(val);
|
|
|
|
sum_dec= dec_buffs + curr_dec_buff;
|
|
int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &cnt);
|
|
my_decimal_div(E_DEC_FATAL_ERROR, val, sum_dec, &cnt, prec_increment);
|
|
return val;
|
|
}
|
|
|
|
|
|
String *Item_sum_avg::val_str(String *str)
|
|
{
|
|
if (aggr)
|
|
aggr->endup();
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
return val_string_from_decimal(str);
|
|
return val_string_from_real(str);
|
|
}
|
|
|
|
|
|
/*
|
|
Standard deviation
|
|
*/
|
|
|
|
double Item_sum_std::val_real()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
double nr= Item_sum_variance::val_real();
|
|
DBUG_ASSERT(nr >= 0.0);
|
|
return sqrt(nr);
|
|
}
|
|
|
|
Item *Item_sum_std::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_std(thd, this);
|
|
}
|
|
|
|
|
|
/*
|
|
Variance
|
|
*/
|
|
|
|
|
|
/**
|
|
Variance implementation for floating-point implementations, without
|
|
catastrophic cancellation, from Knuth's _TAoCP_, 3rd ed, volume 2, pg232.
|
|
This alters the value at m, s, and increments count.
|
|
*/
|
|
|
|
/*
|
|
These two functions are used by the Item_sum_variance and the
|
|
Item_variance_field classes, which are unrelated, and each need to calculate
|
|
variance. The difference between the two classes is that the first is used
|
|
for a mundane SELECT, while the latter is used in a GROUPing SELECT.
|
|
*/
|
|
static void variance_fp_recurrence_next(double *m, double *s, ulonglong *count, double nr)
|
|
{
|
|
*count += 1;
|
|
|
|
if (*count == 1)
|
|
{
|
|
*m= nr;
|
|
*s= 0;
|
|
}
|
|
else
|
|
{
|
|
double m_kminusone= *m;
|
|
*m= m_kminusone + (nr - m_kminusone) / (double) *count;
|
|
*s= *s + (nr - m_kminusone) * (nr - *m);
|
|
}
|
|
}
|
|
|
|
|
|
static double variance_fp_recurrence_result(double s, ulonglong count, bool is_sample_variance)
|
|
{
|
|
if (count == 1)
|
|
return 0.0;
|
|
|
|
if (is_sample_variance)
|
|
return s / (count - 1);
|
|
|
|
/* else, is a population variance */
|
|
return s / count;
|
|
}
|
|
|
|
|
|
Item_sum_variance::Item_sum_variance(THD *thd, Item_sum_variance *item):
|
|
Item_sum_num(thd, item), hybrid_type(item->hybrid_type),
|
|
count(item->count), sample(item->sample),
|
|
prec_increment(item->prec_increment)
|
|
{
|
|
recurrence_m= item->recurrence_m;
|
|
recurrence_s= item->recurrence_s;
|
|
}
|
|
|
|
|
|
void Item_sum_variance::fix_length_and_dec()
|
|
{
|
|
DBUG_ENTER("Item_sum_variance::fix_length_and_dec");
|
|
maybe_null= null_value= 1;
|
|
prec_increment= current_thd->variables.div_precincrement;
|
|
|
|
/*
|
|
According to the SQL2003 standard (Part 2, Foundations; sec 10.9,
|
|
aggregate function; paragraph 7h of Syntax Rules), "the declared
|
|
type of the result is an implementation-defined aproximate numeric
|
|
type.
|
|
*/
|
|
hybrid_type= REAL_RESULT;
|
|
|
|
switch (args[0]->result_type()) {
|
|
case REAL_RESULT:
|
|
case STRING_RESULT:
|
|
decimals= MY_MIN(args[0]->decimals + 4, NOT_FIXED_DEC);
|
|
break;
|
|
case INT_RESULT:
|
|
case DECIMAL_RESULT:
|
|
{
|
|
int precision= args[0]->decimal_precision()*2 + prec_increment;
|
|
decimals= MY_MIN(args[0]->decimals + prec_increment, DECIMAL_MAX_SCALE);
|
|
max_length= my_decimal_precision_to_length_no_truncation(precision,
|
|
decimals,
|
|
unsigned_flag);
|
|
|
|
break;
|
|
}
|
|
case ROW_RESULT:
|
|
case TIME_RESULT:
|
|
case IMPOSSIBLE_RESULT:
|
|
DBUG_ASSERT(0);
|
|
}
|
|
DBUG_PRINT("info", ("Type: REAL_RESULT (%d, %d)", max_length, (int)decimals));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
Item *Item_sum_variance::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_variance(thd, this);
|
|
}
|
|
|
|
|
|
/**
|
|
Create a new field to match the type of value we're expected to yield.
|
|
If we're grouping, then we need some space to serialize variables into, to
|
|
pass around.
|
|
*/
|
|
Field *Item_sum_variance::create_tmp_field(bool group, TABLE *table,
|
|
uint convert_blob_len)
|
|
{
|
|
Field *field;
|
|
if (group)
|
|
{
|
|
/*
|
|
We must store both value and counter in the temporary table in one field.
|
|
The easiest way is to do this is to store both value in a string
|
|
and unpack on access.
|
|
*/
|
|
field= new Field_string(sizeof(double)*2 + sizeof(longlong), 0, name, &my_charset_bin);
|
|
}
|
|
else
|
|
field= new Field_double(max_length, maybe_null, name, decimals, TRUE);
|
|
|
|
if (field != NULL)
|
|
field->init(table);
|
|
|
|
return field;
|
|
}
|
|
|
|
|
|
void Item_sum_variance::clear()
|
|
{
|
|
count= 0;
|
|
}
|
|
|
|
bool Item_sum_variance::add()
|
|
{
|
|
/*
|
|
Why use a temporary variable? We don't know if it is null until we
|
|
evaluate it, which has the side-effect of setting null_value .
|
|
*/
|
|
double nr= args[0]->val_real();
|
|
|
|
if (!args[0]->null_value)
|
|
variance_fp_recurrence_next(&recurrence_m, &recurrence_s, &count, nr);
|
|
return 0;
|
|
}
|
|
|
|
double Item_sum_variance::val_real()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
|
|
/*
|
|
'sample' is a 1/0 boolean value. If it is 1/true, id est this is a sample
|
|
variance call, then we should set nullness when the count of the items
|
|
is one or zero. If it's zero, i.e. a population variance, then we only
|
|
set nullness when the count is zero.
|
|
|
|
Another way to read it is that 'sample' is the numerical threshhold, at and
|
|
below which a 'count' number of items is called NULL.
|
|
*/
|
|
DBUG_ASSERT((sample == 0) || (sample == 1));
|
|
if (count <= sample)
|
|
{
|
|
null_value=1;
|
|
return 0.0;
|
|
}
|
|
|
|
null_value=0;
|
|
return variance_fp_recurrence_result(recurrence_s, count, sample);
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_variance::val_decimal(my_decimal *dec_buf)
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
return val_decimal_from_real(dec_buf);
|
|
}
|
|
|
|
|
|
void Item_sum_variance::reset_field()
|
|
{
|
|
double nr;
|
|
uchar *res= result_field->ptr;
|
|
|
|
nr= args[0]->val_real(); /* sets null_value as side-effect */
|
|
|
|
if (args[0]->null_value)
|
|
bzero(res,sizeof(double)*2+sizeof(longlong));
|
|
else
|
|
{
|
|
/* Serialize format is (double)m, (double)s, (longlong)count */
|
|
ulonglong tmp_count;
|
|
double tmp_s;
|
|
float8store(res, nr); /* recurrence variable m */
|
|
tmp_s= 0.0;
|
|
float8store(res + sizeof(double), tmp_s);
|
|
tmp_count= 1;
|
|
int8store(res + sizeof(double)*2, tmp_count);
|
|
}
|
|
}
|
|
|
|
|
|
void Item_sum_variance::update_field()
|
|
{
|
|
ulonglong field_count;
|
|
uchar *res=result_field->ptr;
|
|
|
|
double nr= args[0]->val_real(); /* sets null_value as side-effect */
|
|
|
|
if (args[0]->null_value)
|
|
return;
|
|
|
|
/* Serialize format is (double)m, (double)s, (longlong)count */
|
|
double field_recurrence_m, field_recurrence_s;
|
|
float8get(field_recurrence_m, res);
|
|
float8get(field_recurrence_s, res + sizeof(double));
|
|
field_count=sint8korr(res+sizeof(double)*2);
|
|
|
|
variance_fp_recurrence_next(&field_recurrence_m, &field_recurrence_s, &field_count, nr);
|
|
|
|
float8store(res, field_recurrence_m);
|
|
float8store(res + sizeof(double), field_recurrence_s);
|
|
res+= sizeof(double)*2;
|
|
int8store(res,field_count);
|
|
}
|
|
|
|
|
|
/* min & max */
|
|
|
|
void Item_sum_hybrid::clear()
|
|
{
|
|
value->clear();
|
|
null_value= 1;
|
|
}
|
|
|
|
double Item_sum_hybrid::val_real()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (null_value)
|
|
return 0.0;
|
|
double retval= value->val_real();
|
|
if ((null_value= value->null_value))
|
|
DBUG_ASSERT(retval == 0.0);
|
|
return retval;
|
|
}
|
|
|
|
longlong Item_sum_hybrid::val_int()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (null_value)
|
|
return 0;
|
|
longlong retval= value->val_int();
|
|
if ((null_value= value->null_value))
|
|
DBUG_ASSERT(retval == 0);
|
|
return retval;
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_hybrid::val_decimal(my_decimal *val)
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (null_value)
|
|
return 0;
|
|
my_decimal *retval= value->val_decimal(val);
|
|
if ((null_value= value->null_value))
|
|
DBUG_ASSERT(retval == NULL);
|
|
return retval;
|
|
}
|
|
|
|
|
|
String *
|
|
Item_sum_hybrid::val_str(String *str)
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (null_value)
|
|
return 0;
|
|
String *retval= value->val_str(str);
|
|
if ((null_value= value->null_value))
|
|
DBUG_ASSERT(retval == NULL);
|
|
return retval;
|
|
}
|
|
|
|
|
|
void Item_sum_hybrid::cleanup()
|
|
{
|
|
DBUG_ENTER("Item_sum_hybrid::cleanup");
|
|
Item_sum::cleanup();
|
|
forced_const= FALSE;
|
|
if (cmp)
|
|
delete cmp;
|
|
cmp= 0;
|
|
/*
|
|
by default it is TRUE to avoid TRUE reporting by
|
|
Item_func_not_all/Item_func_nop_all if this item was never called.
|
|
|
|
no_rows_in_result() set it to FALSE if was not results found.
|
|
If some results found it will be left unchanged.
|
|
*/
|
|
was_values= TRUE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void Item_sum_hybrid::no_rows_in_result()
|
|
{
|
|
/* We may be called here twice in case of ref field in function */
|
|
if (was_values)
|
|
{
|
|
was_values= FALSE;
|
|
was_null_value= value->null_value;
|
|
clear();
|
|
}
|
|
}
|
|
|
|
void Item_sum_hybrid::restore_to_before_no_rows_in_result()
|
|
{
|
|
if (!was_values)
|
|
{
|
|
was_values= TRUE;
|
|
null_value= value->null_value= was_null_value;
|
|
}
|
|
}
|
|
|
|
|
|
Item *Item_sum_min::copy_or_same(THD* thd)
|
|
{
|
|
Item_sum_min *item= new (thd->mem_root) Item_sum_min(thd, this);
|
|
item->setup_hybrid(args[0], value);
|
|
return item;
|
|
}
|
|
|
|
|
|
bool Item_sum_min::add()
|
|
{
|
|
/* args[0] < value */
|
|
arg_cache->cache_value();
|
|
if (!arg_cache->null_value &&
|
|
(null_value || cmp->compare() < 0))
|
|
{
|
|
value->store(arg_cache);
|
|
value->cache_value();
|
|
null_value= 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
Item *Item_sum_max::copy_or_same(THD* thd)
|
|
{
|
|
Item_sum_max *item= new (thd->mem_root) Item_sum_max(thd, this);
|
|
item->setup_hybrid(args[0], value);
|
|
return item;
|
|
}
|
|
|
|
|
|
bool Item_sum_max::add()
|
|
{
|
|
/* args[0] > value */
|
|
arg_cache->cache_value();
|
|
if (!arg_cache->null_value &&
|
|
(null_value || cmp->compare() > 0))
|
|
{
|
|
value->store(arg_cache);
|
|
value->cache_value();
|
|
null_value= 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* bit_or and bit_and */
|
|
|
|
longlong Item_sum_bit::val_int()
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
return (longlong) bits;
|
|
}
|
|
|
|
|
|
void Item_sum_bit::clear()
|
|
{
|
|
bits= reset_bits;
|
|
}
|
|
|
|
Item *Item_sum_or::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_or(thd, this);
|
|
}
|
|
|
|
|
|
bool Item_sum_or::add()
|
|
{
|
|
ulonglong value= (ulonglong) args[0]->val_int();
|
|
if (!args[0]->null_value)
|
|
bits|=value;
|
|
return 0;
|
|
}
|
|
|
|
Item *Item_sum_xor::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_xor(thd, this);
|
|
}
|
|
|
|
|
|
bool Item_sum_xor::add()
|
|
{
|
|
ulonglong value= (ulonglong) args[0]->val_int();
|
|
if (!args[0]->null_value)
|
|
bits^=value;
|
|
return 0;
|
|
}
|
|
|
|
Item *Item_sum_and::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_and(thd, this);
|
|
}
|
|
|
|
|
|
bool Item_sum_and::add()
|
|
{
|
|
ulonglong value= (ulonglong) args[0]->val_int();
|
|
if (!args[0]->null_value)
|
|
bits&=value;
|
|
return 0;
|
|
}
|
|
|
|
/************************************************************************
|
|
** reset result of a Item_sum with is saved in a tmp_table
|
|
*************************************************************************/
|
|
|
|
void Item_sum_num::reset_field()
|
|
{
|
|
double nr= args[0]->val_real();
|
|
uchar *res=result_field->ptr;
|
|
|
|
if (maybe_null)
|
|
{
|
|
if (args[0]->null_value)
|
|
{
|
|
nr=0.0;
|
|
result_field->set_null();
|
|
}
|
|
else
|
|
result_field->set_notnull();
|
|
}
|
|
float8store(res,nr);
|
|
}
|
|
|
|
|
|
void Item_sum_hybrid::reset_field()
|
|
{
|
|
switch(hybrid_type) {
|
|
case STRING_RESULT:
|
|
{
|
|
char buff[MAX_FIELD_WIDTH];
|
|
String tmp(buff,sizeof(buff),result_field->charset()),*res;
|
|
|
|
res=args[0]->val_str(&tmp);
|
|
if (args[0]->null_value)
|
|
{
|
|
result_field->set_null();
|
|
result_field->reset();
|
|
}
|
|
else
|
|
{
|
|
result_field->set_notnull();
|
|
result_field->store(res->ptr(),res->length(),tmp.charset());
|
|
}
|
|
break;
|
|
}
|
|
case INT_RESULT:
|
|
{
|
|
longlong nr=args[0]->val_int();
|
|
|
|
if (maybe_null)
|
|
{
|
|
if (args[0]->null_value)
|
|
{
|
|
nr=0;
|
|
result_field->set_null();
|
|
}
|
|
else
|
|
result_field->set_notnull();
|
|
}
|
|
result_field->store(nr, unsigned_flag);
|
|
break;
|
|
}
|
|
case REAL_RESULT:
|
|
{
|
|
double nr= args[0]->val_real();
|
|
|
|
if (maybe_null)
|
|
{
|
|
if (args[0]->null_value)
|
|
{
|
|
nr=0.0;
|
|
result_field->set_null();
|
|
}
|
|
else
|
|
result_field->set_notnull();
|
|
}
|
|
result_field->store(nr);
|
|
break;
|
|
}
|
|
case DECIMAL_RESULT:
|
|
{
|
|
my_decimal value_buff, *arg_dec= args[0]->val_decimal(&value_buff);
|
|
|
|
if (maybe_null)
|
|
{
|
|
if (args[0]->null_value)
|
|
result_field->set_null();
|
|
else
|
|
result_field->set_notnull();
|
|
}
|
|
/*
|
|
We must store zero in the field as we will use the field value in
|
|
add()
|
|
*/
|
|
if (!arg_dec) // Null
|
|
arg_dec= &decimal_zero;
|
|
result_field->store_decimal(arg_dec);
|
|
break;
|
|
}
|
|
case ROW_RESULT:
|
|
case TIME_RESULT:
|
|
case IMPOSSIBLE_RESULT:
|
|
DBUG_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
|
|
void Item_sum_sum::reset_field()
|
|
{
|
|
DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
my_decimal value, *arg_val= args[0]->val_decimal(&value);
|
|
if (!arg_val) // Null
|
|
arg_val= &decimal_zero;
|
|
result_field->store_decimal(arg_val);
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(hybrid_type == REAL_RESULT);
|
|
double nr= args[0]->val_real(); // Nulls also return 0
|
|
float8store(result_field->ptr, nr);
|
|
}
|
|
if (args[0]->null_value)
|
|
result_field->set_null();
|
|
else
|
|
result_field->set_notnull();
|
|
}
|
|
|
|
|
|
void Item_sum_count::reset_field()
|
|
{
|
|
uchar *res=result_field->ptr;
|
|
longlong nr=0;
|
|
DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
|
|
|
|
if (!args[0]->maybe_null || !args[0]->is_null())
|
|
nr=1;
|
|
int8store(res,nr);
|
|
}
|
|
|
|
|
|
void Item_sum_avg::reset_field()
|
|
{
|
|
uchar *res=result_field->ptr;
|
|
DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
longlong tmp;
|
|
my_decimal value, *arg_dec= args[0]->val_decimal(&value);
|
|
if (args[0]->null_value)
|
|
{
|
|
arg_dec= &decimal_zero;
|
|
tmp= 0;
|
|
}
|
|
else
|
|
tmp= 1;
|
|
my_decimal2binary(E_DEC_FATAL_ERROR, arg_dec, res, f_precision, f_scale);
|
|
res+= dec_bin_size;
|
|
int8store(res, tmp);
|
|
}
|
|
else
|
|
{
|
|
double nr= args[0]->val_real();
|
|
|
|
if (args[0]->null_value)
|
|
bzero(res,sizeof(double)+sizeof(longlong));
|
|
else
|
|
{
|
|
longlong tmp= 1;
|
|
float8store(res,nr);
|
|
res+=sizeof(double);
|
|
int8store(res,tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Item_sum_bit::reset_field()
|
|
{
|
|
reset_and_add();
|
|
int8store(result_field->ptr, bits);
|
|
}
|
|
|
|
void Item_sum_bit::update_field()
|
|
{
|
|
uchar *res=result_field->ptr;
|
|
bits= uint8korr(res);
|
|
add();
|
|
int8store(res, bits);
|
|
}
|
|
|
|
|
|
/**
|
|
calc next value and merge it with field_value.
|
|
*/
|
|
|
|
void Item_sum_sum::update_field()
|
|
{
|
|
DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
my_decimal value, *arg_val= args[0]->val_decimal(&value);
|
|
if (!args[0]->null_value)
|
|
{
|
|
if (!result_field->is_null())
|
|
{
|
|
my_decimal field_value,
|
|
*field_val= result_field->val_decimal(&field_value);
|
|
my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, arg_val, field_val);
|
|
result_field->store_decimal(dec_buffs);
|
|
}
|
|
else
|
|
{
|
|
result_field->store_decimal(arg_val);
|
|
result_field->set_notnull();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double old_nr,nr;
|
|
uchar *res=result_field->ptr;
|
|
|
|
float8get(old_nr,res);
|
|
nr= args[0]->val_real();
|
|
if (!args[0]->null_value)
|
|
{
|
|
old_nr+=nr;
|
|
result_field->set_notnull();
|
|
}
|
|
float8store(res,old_nr);
|
|
}
|
|
}
|
|
|
|
|
|
void Item_sum_count::update_field()
|
|
{
|
|
longlong nr;
|
|
uchar *res=result_field->ptr;
|
|
|
|
nr=sint8korr(res);
|
|
if (!args[0]->maybe_null || !args[0]->is_null())
|
|
nr++;
|
|
int8store(res,nr);
|
|
}
|
|
|
|
|
|
void Item_sum_avg::update_field()
|
|
{
|
|
longlong field_count;
|
|
uchar *res=result_field->ptr;
|
|
|
|
DBUG_ASSERT (aggr->Aggrtype() != Aggregator::DISTINCT_AGGREGATOR);
|
|
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
my_decimal value, *arg_val= args[0]->val_decimal(&value);
|
|
if (!args[0]->null_value)
|
|
{
|
|
binary2my_decimal(E_DEC_FATAL_ERROR, res,
|
|
dec_buffs + 1, f_precision, f_scale);
|
|
field_count= sint8korr(res + dec_bin_size);
|
|
my_decimal_add(E_DEC_FATAL_ERROR, dec_buffs, arg_val, dec_buffs + 1);
|
|
my_decimal2binary(E_DEC_FATAL_ERROR, dec_buffs,
|
|
res, f_precision, f_scale);
|
|
res+= dec_bin_size;
|
|
field_count++;
|
|
int8store(res, field_count);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double nr;
|
|
|
|
nr= args[0]->val_real();
|
|
if (!args[0]->null_value)
|
|
{
|
|
double old_nr;
|
|
float8get(old_nr, res);
|
|
field_count= sint8korr(res + sizeof(double));
|
|
old_nr+= nr;
|
|
float8store(res,old_nr);
|
|
res+= sizeof(double);
|
|
field_count++;
|
|
int8store(res, field_count);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Item_sum_hybrid::update_field()
|
|
{
|
|
switch (hybrid_type) {
|
|
case STRING_RESULT:
|
|
min_max_update_str_field();
|
|
break;
|
|
case INT_RESULT:
|
|
min_max_update_int_field();
|
|
break;
|
|
case DECIMAL_RESULT:
|
|
min_max_update_decimal_field();
|
|
break;
|
|
default:
|
|
min_max_update_real_field();
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
Item_sum_hybrid::min_max_update_str_field()
|
|
{
|
|
DBUG_ASSERT(cmp);
|
|
String *res_str=args[0]->val_str(&cmp->value1);
|
|
|
|
if (!args[0]->null_value)
|
|
{
|
|
result_field->val_str(&cmp->value2);
|
|
|
|
if (result_field->is_null() ||
|
|
(cmp_sign * sortcmp(res_str,&cmp->value2,collation.collation)) < 0)
|
|
result_field->store(res_str->ptr(),res_str->length(),res_str->charset());
|
|
result_field->set_notnull();
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
Item_sum_hybrid::min_max_update_real_field()
|
|
{
|
|
double nr,old_nr;
|
|
|
|
old_nr=result_field->val_real();
|
|
nr= args[0]->val_real();
|
|
if (!args[0]->null_value)
|
|
{
|
|
if (result_field->is_null(0) ||
|
|
(cmp_sign > 0 ? old_nr > nr : old_nr < nr))
|
|
old_nr=nr;
|
|
result_field->set_notnull();
|
|
}
|
|
else if (result_field->is_null(0))
|
|
result_field->set_null();
|
|
result_field->store(old_nr);
|
|
}
|
|
|
|
|
|
void
|
|
Item_sum_hybrid::min_max_update_int_field()
|
|
{
|
|
longlong nr,old_nr;
|
|
|
|
old_nr=result_field->val_int();
|
|
nr=args[0]->val_int();
|
|
if (!args[0]->null_value)
|
|
{
|
|
if (result_field->is_null(0))
|
|
old_nr=nr;
|
|
else
|
|
{
|
|
bool res=(unsigned_flag ?
|
|
(ulonglong) old_nr > (ulonglong) nr :
|
|
old_nr > nr);
|
|
/* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */
|
|
if ((cmp_sign > 0) ^ (!res))
|
|
old_nr=nr;
|
|
}
|
|
result_field->set_notnull();
|
|
}
|
|
else if (result_field->is_null(0))
|
|
result_field->set_null();
|
|
result_field->store(old_nr, unsigned_flag);
|
|
}
|
|
|
|
|
|
/**
|
|
@todo
|
|
optimize: do not get result_field in case of args[0] is NULL
|
|
*/
|
|
void
|
|
Item_sum_hybrid::min_max_update_decimal_field()
|
|
{
|
|
my_decimal old_val, nr_val;
|
|
const my_decimal *old_nr;
|
|
const my_decimal *nr= args[0]->val_decimal(&nr_val);
|
|
if (!args[0]->null_value)
|
|
{
|
|
if (result_field->is_null(0))
|
|
old_nr=nr;
|
|
else
|
|
{
|
|
old_nr= result_field->val_decimal(&old_val);
|
|
bool res= my_decimal_cmp(old_nr, nr) > 0;
|
|
/* (cmp_sign > 0 && res) || (!(cmp_sign > 0) && !res) */
|
|
if ((cmp_sign > 0) ^ (!res))
|
|
old_nr=nr;
|
|
}
|
|
result_field->set_notnull();
|
|
result_field->store_decimal(old_nr);
|
|
}
|
|
else if (result_field->is_null(0))
|
|
result_field->set_null();
|
|
}
|
|
|
|
|
|
Item_avg_field::Item_avg_field(Item_result res_type, Item_sum_avg *item)
|
|
{
|
|
name=item->name;
|
|
decimals=item->decimals;
|
|
max_length= item->max_length;
|
|
unsigned_flag= item->unsigned_flag;
|
|
field=item->result_field;
|
|
maybe_null=1;
|
|
hybrid_type= res_type;
|
|
prec_increment= item->prec_increment;
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
{
|
|
f_scale= item->f_scale;
|
|
f_precision= item->f_precision;
|
|
dec_bin_size= item->dec_bin_size;
|
|
}
|
|
}
|
|
|
|
double Item_avg_field::val_real()
|
|
{
|
|
// fix_fields() never calls for this Item
|
|
double nr;
|
|
longlong count;
|
|
uchar *res;
|
|
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
return val_real_from_decimal();
|
|
|
|
float8get(nr,field->ptr);
|
|
res= (field->ptr+sizeof(double));
|
|
count= sint8korr(res);
|
|
|
|
if ((null_value= !count))
|
|
return 0.0;
|
|
return nr/(double) count;
|
|
}
|
|
|
|
|
|
longlong Item_avg_field::val_int()
|
|
{
|
|
return (longlong) rint(val_real());
|
|
}
|
|
|
|
|
|
my_decimal *Item_avg_field::val_decimal(my_decimal *dec_buf)
|
|
{
|
|
// fix_fields() never calls for this Item
|
|
if (hybrid_type == REAL_RESULT)
|
|
return val_decimal_from_real(dec_buf);
|
|
|
|
longlong count= sint8korr(field->ptr + dec_bin_size);
|
|
if ((null_value= !count))
|
|
return 0;
|
|
|
|
my_decimal dec_count, dec_field;
|
|
binary2my_decimal(E_DEC_FATAL_ERROR,
|
|
field->ptr, &dec_field, f_precision, f_scale);
|
|
int2my_decimal(E_DEC_FATAL_ERROR, count, 0, &dec_count);
|
|
my_decimal_div(E_DEC_FATAL_ERROR, dec_buf,
|
|
&dec_field, &dec_count, prec_increment);
|
|
return dec_buf;
|
|
}
|
|
|
|
|
|
String *Item_avg_field::val_str(String *str)
|
|
{
|
|
// fix_fields() never calls for this Item
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
return val_string_from_decimal(str);
|
|
return val_string_from_real(str);
|
|
}
|
|
|
|
|
|
Item_std_field::Item_std_field(Item_sum_std *item)
|
|
: Item_variance_field(item)
|
|
{
|
|
}
|
|
|
|
|
|
double Item_std_field::val_real()
|
|
{
|
|
double nr;
|
|
// fix_fields() never calls for this Item
|
|
nr= Item_variance_field::val_real();
|
|
DBUG_ASSERT(nr >= 0.0);
|
|
return sqrt(nr);
|
|
}
|
|
|
|
|
|
my_decimal *Item_std_field::val_decimal(my_decimal *dec_buf)
|
|
{
|
|
/*
|
|
We can't call val_decimal_from_real() for DECIMAL_RESULT as
|
|
Item_variance_field::val_real() would cause an infinite loop
|
|
*/
|
|
my_decimal tmp_dec, *dec;
|
|
double nr;
|
|
if (hybrid_type == REAL_RESULT)
|
|
return val_decimal_from_real(dec_buf);
|
|
|
|
dec= Item_variance_field::val_decimal(dec_buf);
|
|
if (!dec)
|
|
return 0;
|
|
my_decimal2double(E_DEC_FATAL_ERROR, dec, &nr);
|
|
DBUG_ASSERT(nr >= 0.0);
|
|
nr= sqrt(nr);
|
|
double2my_decimal(E_DEC_FATAL_ERROR, nr, &tmp_dec);
|
|
my_decimal_round(E_DEC_FATAL_ERROR, &tmp_dec, decimals, FALSE, dec_buf);
|
|
return dec_buf;
|
|
}
|
|
|
|
|
|
Item_variance_field::Item_variance_field(Item_sum_variance *item)
|
|
{
|
|
name=item->name;
|
|
decimals=item->decimals;
|
|
max_length=item->max_length;
|
|
unsigned_flag= item->unsigned_flag;
|
|
field=item->result_field;
|
|
maybe_null=1;
|
|
sample= item->sample;
|
|
prec_increment= item->prec_increment;
|
|
if ((hybrid_type= item->hybrid_type) == DECIMAL_RESULT)
|
|
{
|
|
f_scale0= item->f_scale0;
|
|
f_precision0= item->f_precision0;
|
|
dec_bin_size0= item->dec_bin_size0;
|
|
f_scale1= item->f_scale1;
|
|
f_precision1= item->f_precision1;
|
|
dec_bin_size1= item->dec_bin_size1;
|
|
}
|
|
}
|
|
|
|
|
|
double Item_variance_field::val_real()
|
|
{
|
|
// fix_fields() never calls for this Item
|
|
if (hybrid_type == DECIMAL_RESULT)
|
|
return val_real_from_decimal();
|
|
|
|
double recurrence_s;
|
|
ulonglong count;
|
|
float8get(recurrence_s, (field->ptr + sizeof(double)));
|
|
count=sint8korr(field->ptr+sizeof(double)*2);
|
|
|
|
if ((null_value= (count <= sample)))
|
|
return 0.0;
|
|
|
|
return variance_fp_recurrence_result(recurrence_s, count, sample);
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
** Functions to handle dynamic loadable aggregates
|
|
** Original source by: Alexis Mikhailov <root@medinf.chuvashia.su>
|
|
** Adapted for UDAs by: Andreas F. Bobak <bobak@relog.ch>.
|
|
** Rewritten by: Monty.
|
|
****************************************************************************/
|
|
|
|
#ifdef HAVE_DLOPEN
|
|
|
|
void Item_udf_sum::clear()
|
|
{
|
|
DBUG_ENTER("Item_udf_sum::clear");
|
|
udf.clear();
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
bool Item_udf_sum::add()
|
|
{
|
|
my_bool tmp_null_value;
|
|
DBUG_ENTER("Item_udf_sum::add");
|
|
udf.add(&tmp_null_value);
|
|
null_value= tmp_null_value;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
void Item_udf_sum::cleanup()
|
|
{
|
|
/*
|
|
udf_handler::cleanup() nicely handles case when we have not
|
|
original item but one created by copy_or_same() method.
|
|
*/
|
|
udf.cleanup();
|
|
Item_sum::cleanup();
|
|
}
|
|
|
|
|
|
void Item_udf_sum::print(String *str, enum_query_type query_type)
|
|
{
|
|
str->append(func_name());
|
|
str->append('(');
|
|
for (uint i=0 ; i < arg_count ; i++)
|
|
{
|
|
if (i)
|
|
str->append(',');
|
|
args[i]->print(str, query_type);
|
|
}
|
|
str->append(')');
|
|
}
|
|
|
|
|
|
Item *Item_sum_udf_float::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_udf_float(thd, this);
|
|
}
|
|
|
|
double Item_sum_udf_float::val_real()
|
|
{
|
|
my_bool tmp_null_value;
|
|
double res;
|
|
DBUG_ASSERT(fixed == 1);
|
|
DBUG_ENTER("Item_sum_udf_float::val");
|
|
DBUG_PRINT("info",("result_type: %d arg_count: %d",
|
|
args[0]->result_type(), arg_count));
|
|
res= udf.val(&tmp_null_value);
|
|
null_value= tmp_null_value;
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
String *Item_sum_udf_float::val_str(String *str)
|
|
{
|
|
return val_string_from_real(str);
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_udf_float::val_decimal(my_decimal *dec)
|
|
{
|
|
return val_decimal_from_real(dec);
|
|
}
|
|
|
|
|
|
String *Item_sum_udf_decimal::val_str(String *str)
|
|
{
|
|
return val_string_from_decimal(str);
|
|
}
|
|
|
|
|
|
double Item_sum_udf_decimal::val_real()
|
|
{
|
|
return val_real_from_decimal();
|
|
}
|
|
|
|
|
|
longlong Item_sum_udf_decimal::val_int()
|
|
{
|
|
return val_int_from_decimal();
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_udf_decimal::val_decimal(my_decimal *dec_buf)
|
|
{
|
|
my_decimal *res;
|
|
my_bool tmp_null_value;
|
|
DBUG_ASSERT(fixed == 1);
|
|
DBUG_ENTER("Item_func_udf_decimal::val_decimal");
|
|
DBUG_PRINT("info",("result_type: %d arg_count: %d",
|
|
args[0]->result_type(), arg_count));
|
|
|
|
res= udf.val_decimal(&tmp_null_value, dec_buf);
|
|
null_value= tmp_null_value;
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
Item *Item_sum_udf_decimal::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_udf_decimal(thd, this);
|
|
}
|
|
|
|
|
|
Item *Item_sum_udf_int::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_udf_int(thd, this);
|
|
}
|
|
|
|
longlong Item_sum_udf_int::val_int()
|
|
{
|
|
my_bool tmp_null_value;
|
|
longlong res;
|
|
DBUG_ASSERT(fixed == 1);
|
|
DBUG_ENTER("Item_sum_udf_int::val_int");
|
|
DBUG_PRINT("info",("result_type: %d arg_count: %d",
|
|
args[0]->result_type(), arg_count));
|
|
res= udf.val_int(&tmp_null_value);
|
|
null_value= tmp_null_value;
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
String *Item_sum_udf_int::val_str(String *str)
|
|
{
|
|
return val_string_from_int(str);
|
|
}
|
|
|
|
my_decimal *Item_sum_udf_int::val_decimal(my_decimal *dec)
|
|
{
|
|
return val_decimal_from_int(dec);
|
|
}
|
|
|
|
|
|
/** Default max_length is max argument length. */
|
|
|
|
void Item_sum_udf_str::fix_length_and_dec()
|
|
{
|
|
DBUG_ENTER("Item_sum_udf_str::fix_length_and_dec");
|
|
max_length=0;
|
|
for (uint i = 0; i < arg_count; i++)
|
|
set_if_bigger(max_length,args[i]->max_length);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
Item *Item_sum_udf_str::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_sum_udf_str(thd, this);
|
|
}
|
|
|
|
|
|
my_decimal *Item_sum_udf_str::val_decimal(my_decimal *dec)
|
|
{
|
|
return val_decimal_from_string(dec);
|
|
}
|
|
|
|
String *Item_sum_udf_str::val_str(String *str)
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
DBUG_ENTER("Item_sum_udf_str::str");
|
|
String *res=udf.val_str(str,&str_value);
|
|
null_value = !res;
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
#endif /* HAVE_DLOPEN */
|
|
|
|
|
|
/*****************************************************************************
|
|
GROUP_CONCAT function
|
|
|
|
SQL SYNTAX:
|
|
GROUP_CONCAT([DISTINCT] expr,... [ORDER BY col [ASC|DESC],...]
|
|
[SEPARATOR str_const])
|
|
|
|
concat of values from "group by" operation
|
|
|
|
BUGS
|
|
Blobs doesn't work with DISTINCT or ORDER BY
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/**
|
|
Compares the values for fields in expr list of GROUP_CONCAT.
|
|
@note
|
|
|
|
GROUP_CONCAT([DISTINCT] expr [,expr ...]
|
|
[ORDER BY {unsigned_integer | col_name | expr}
|
|
[ASC | DESC] [,col_name ...]]
|
|
[SEPARATOR str_val])
|
|
|
|
@return
|
|
@retval -1 : key1 < key2
|
|
@retval 0 : key1 = key2
|
|
@retval 1 : key1 > key2
|
|
*/
|
|
|
|
extern "C"
|
|
int group_concat_key_cmp_with_distinct(void* arg, const void* key1,
|
|
const void* key2)
|
|
{
|
|
Item_func_group_concat *item_func= (Item_func_group_concat*)arg;
|
|
|
|
for (uint i= 0; i < item_func->arg_count_field; i++)
|
|
{
|
|
Item *item= item_func->args[i];
|
|
/*
|
|
If item is a const item then either get_tmp_table_field returns 0
|
|
or it is an item over a const table.
|
|
*/
|
|
if (item->const_item())
|
|
continue;
|
|
/*
|
|
We have to use get_tmp_table_field() instead of
|
|
real_item()->get_tmp_table_field() because we want the field in
|
|
the temporary table, not the original field
|
|
*/
|
|
Field *field= item->get_tmp_table_field();
|
|
|
|
if (!field)
|
|
continue;
|
|
|
|
uint offset= (field->offset(field->table->record[0]) -
|
|
field->table->s->null_bytes);
|
|
int res= field->cmp((uchar*)key1 + offset, (uchar*)key2 + offset);
|
|
if (res)
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
function of sort for syntax: GROUP_CONCAT(expr,... ORDER BY col,... )
|
|
*/
|
|
|
|
extern "C"
|
|
int group_concat_key_cmp_with_order(void* arg, const void* key1,
|
|
const void* key2)
|
|
{
|
|
Item_func_group_concat* grp_item= (Item_func_group_concat*) arg;
|
|
ORDER **order_item, **end;
|
|
|
|
for (order_item= grp_item->order, end=order_item+ grp_item->arg_count_order;
|
|
order_item < end;
|
|
order_item++)
|
|
{
|
|
Item *item= *(*order_item)->item;
|
|
/*
|
|
If field_item is a const item then either get_tmp_table_field returns 0
|
|
or it is an item over a const table.
|
|
*/
|
|
if (item->const_item())
|
|
continue;
|
|
/*
|
|
If item is a const item then either get_tmp_table_field returns 0
|
|
or it is an item over a const table.
|
|
*/
|
|
if (item->const_item())
|
|
continue;
|
|
/*
|
|
We have to use get_tmp_table_field() instead of
|
|
real_item()->get_tmp_table_field() because we want the field in
|
|
the temporary table, not the original field
|
|
|
|
Note that for the case of ROLLUP, field may point to another table
|
|
tham grp_item->table. This is however ok as the table definitions are
|
|
the same.
|
|
*/
|
|
Field *field= item->get_tmp_table_field();
|
|
if (!field)
|
|
continue;
|
|
|
|
uint offset= (field->offset(field->table->record[0]) -
|
|
field->table->s->null_bytes);
|
|
int res= field->cmp((uchar*)key1 + offset, (uchar*)key2 + offset);
|
|
if (res)
|
|
return (*order_item)->asc ? res : -res;
|
|
}
|
|
/*
|
|
We can't return 0 because in that case the tree class would remove this
|
|
item as double value. This would cause problems for case-changes and
|
|
if the returned values are not the same we do the sort on.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
Append data from current leaf to item->result.
|
|
*/
|
|
|
|
extern "C"
|
|
int dump_leaf_key(void* key_arg, element_count count __attribute__((unused)),
|
|
void* item_arg)
|
|
{
|
|
Item_func_group_concat *item= (Item_func_group_concat *) item_arg;
|
|
TABLE *table= item->table;
|
|
uint max_length= table->in_use->variables.group_concat_max_len;
|
|
String tmp((char *)table->record[1], table->s->reclength,
|
|
default_charset_info);
|
|
String tmp2;
|
|
uchar *key= (uchar *) key_arg;
|
|
String *result= &item->result;
|
|
Item **arg= item->args, **arg_end= item->args + item->arg_count_field;
|
|
uint old_length= result->length();
|
|
|
|
if (item->no_appended)
|
|
item->no_appended= FALSE;
|
|
else
|
|
result->append(*item->separator);
|
|
|
|
tmp.length(0);
|
|
|
|
for (; arg < arg_end; arg++)
|
|
{
|
|
String *res;
|
|
/*
|
|
We have to use get_tmp_table_field() instead of
|
|
real_item()->get_tmp_table_field() because we want the field in
|
|
the temporary table, not the original field
|
|
We also can't use table->field array to access the fields
|
|
because it contains both order and arg list fields.
|
|
*/
|
|
if ((*arg)->const_item())
|
|
res= (*arg)->val_str(&tmp);
|
|
else
|
|
{
|
|
Field *field= (*arg)->get_tmp_table_field();
|
|
if (field)
|
|
{
|
|
uint offset= (field->offset(field->table->record[0]) -
|
|
table->s->null_bytes);
|
|
DBUG_ASSERT(offset < table->s->reclength);
|
|
res= field->val_str(&tmp, key + offset);
|
|
}
|
|
else
|
|
res= (*arg)->val_str(&tmp);
|
|
}
|
|
if (res)
|
|
result->append(*res);
|
|
}
|
|
|
|
item->row_count++;
|
|
|
|
/* stop if length of result more than max_length */
|
|
if (result->length() > max_length)
|
|
{
|
|
int well_formed_error;
|
|
CHARSET_INFO *cs= item->collation.collation;
|
|
const char *ptr= result->ptr();
|
|
uint add_length;
|
|
/*
|
|
It's ok to use item->result.length() as the fourth argument
|
|
as this is never used to limit the length of the data.
|
|
Cut is done with the third argument.
|
|
*/
|
|
add_length= cs->cset->well_formed_len(cs,
|
|
ptr + old_length,
|
|
ptr + max_length,
|
|
result->length(),
|
|
&well_formed_error);
|
|
result->length(old_length + add_length);
|
|
item->warning_for_row= TRUE;
|
|
push_warning_printf(current_thd, Sql_condition::WARN_LEVEL_WARN,
|
|
ER_CUT_VALUE_GROUP_CONCAT, ER(ER_CUT_VALUE_GROUP_CONCAT),
|
|
item->row_count);
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
Constructor of Item_func_group_concat.
|
|
|
|
@param distinct_arg distinct
|
|
@param select_list list of expression for show values
|
|
@param order_list list of sort columns
|
|
@param separator_arg string value of separator.
|
|
*/
|
|
|
|
Item_func_group_concat::
|
|
Item_func_group_concat(Name_resolution_context *context_arg,
|
|
bool distinct_arg, List<Item> *select_list,
|
|
const SQL_I_List<ORDER> &order_list,
|
|
String *separator_arg)
|
|
:tmp_table_param(0), separator(separator_arg), tree(0),
|
|
unique_filter(NULL), table(0),
|
|
order(0), context(context_arg),
|
|
arg_count_order(order_list.elements),
|
|
arg_count_field(select_list->elements),
|
|
row_count(0),
|
|
distinct(distinct_arg),
|
|
warning_for_row(FALSE),
|
|
force_copy_fields(0), original(0)
|
|
{
|
|
Item *item_select;
|
|
Item **arg_ptr;
|
|
|
|
quick_group= FALSE;
|
|
arg_count= arg_count_field + arg_count_order;
|
|
|
|
/*
|
|
We need to allocate:
|
|
args - arg_count_field+arg_count_order
|
|
(for possible order items in temporary tables)
|
|
order - arg_count_order
|
|
*/
|
|
if (!(args= (Item**) sql_alloc(sizeof(Item*) * arg_count * 2 +
|
|
sizeof(ORDER*)*arg_count_order)))
|
|
return;
|
|
|
|
order= (ORDER**)(args + arg_count);
|
|
|
|
/* fill args items of show and sort */
|
|
List_iterator_fast<Item> li(*select_list);
|
|
|
|
for (arg_ptr=args ; (item_select= li++) ; arg_ptr++)
|
|
*arg_ptr= item_select;
|
|
|
|
if (arg_count_order)
|
|
{
|
|
ORDER **order_ptr= order;
|
|
for (ORDER *order_item= order_list.first;
|
|
order_item != NULL;
|
|
order_item= order_item->next)
|
|
{
|
|
(*order_ptr++)= order_item;
|
|
*arg_ptr= *order_item->item;
|
|
order_item->item= arg_ptr++;
|
|
}
|
|
}
|
|
|
|
/* orig_args is only used for print() */
|
|
orig_args= (Item**) (order + arg_count_order);
|
|
memcpy(orig_args, args, sizeof(Item*) * arg_count);
|
|
}
|
|
|
|
|
|
Item_func_group_concat::Item_func_group_concat(THD *thd,
|
|
Item_func_group_concat *item)
|
|
:Item_sum(thd, item),
|
|
tmp_table_param(item->tmp_table_param),
|
|
separator(item->separator),
|
|
tree(item->tree),
|
|
unique_filter(item->unique_filter),
|
|
table(item->table),
|
|
context(item->context),
|
|
arg_count_order(item->arg_count_order),
|
|
arg_count_field(item->arg_count_field),
|
|
row_count(item->row_count),
|
|
distinct(item->distinct),
|
|
warning_for_row(item->warning_for_row),
|
|
always_null(item->always_null),
|
|
force_copy_fields(item->force_copy_fields),
|
|
original(item)
|
|
{
|
|
quick_group= item->quick_group;
|
|
result.set_charset(collation.collation);
|
|
|
|
/*
|
|
Since the ORDER structures pointed to by the elements of the 'order' array
|
|
may be modified in find_order_in_list() called from
|
|
Item_func_group_concat::setup(), create a copy of those structures so that
|
|
such modifications done in this object would not have any effect on the
|
|
object being copied.
|
|
*/
|
|
ORDER *tmp;
|
|
if (!(tmp= (ORDER *) thd->alloc(sizeof(ORDER *) * arg_count_order +
|
|
sizeof(ORDER) * arg_count_order)))
|
|
return;
|
|
order= (ORDER **)(tmp + arg_count_order);
|
|
for (uint i= 0; i < arg_count_order; i++, tmp++)
|
|
{
|
|
/*
|
|
Compiler generated copy constructor is used to
|
|
to copy all the members of ORDER struct.
|
|
It's also necessary to update ORDER::next pointer
|
|
so that it points to new ORDER element.
|
|
*/
|
|
new (tmp) st_order(*(item->order[i]));
|
|
tmp->next= (i + 1 == arg_count_order) ? NULL : (tmp + 1);
|
|
order[i]= tmp;
|
|
}
|
|
}
|
|
|
|
|
|
void Item_func_group_concat::cleanup()
|
|
{
|
|
DBUG_ENTER("Item_func_group_concat::cleanup");
|
|
Item_sum::cleanup();
|
|
|
|
/*
|
|
Free table and tree if they belong to this item (if item have not pointer
|
|
to original item from which was made copy => it own its objects )
|
|
*/
|
|
if (!original)
|
|
{
|
|
delete tmp_table_param;
|
|
tmp_table_param= 0;
|
|
if (table)
|
|
{
|
|
THD *thd= table->in_use;
|
|
free_tmp_table(thd, table);
|
|
table= 0;
|
|
if (tree)
|
|
{
|
|
delete_tree(tree);
|
|
tree= 0;
|
|
}
|
|
if (unique_filter)
|
|
{
|
|
delete unique_filter;
|
|
unique_filter= NULL;
|
|
}
|
|
}
|
|
DBUG_ASSERT(tree == 0);
|
|
}
|
|
/*
|
|
As the ORDER structures pointed to by the elements of the
|
|
'order' array may be modified in find_order_in_list() called
|
|
from Item_func_group_concat::setup() to point to runtime
|
|
created objects, we need to reset them back to the original
|
|
arguments of the function.
|
|
*/
|
|
ORDER **order_ptr= order;
|
|
for (uint i= 0; i < arg_count_order; i++)
|
|
{
|
|
(*order_ptr)->item= &args[arg_count_field + i];
|
|
order_ptr++;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
Field *Item_func_group_concat::make_string_field(TABLE *table)
|
|
{
|
|
Field *field;
|
|
DBUG_ASSERT(collation.collation);
|
|
if (too_big_for_varchar())
|
|
field= new Field_blob(max_length,
|
|
maybe_null, name, collation.collation, TRUE);
|
|
else
|
|
field= new Field_varstring(max_length,
|
|
maybe_null, name, table->s, collation.collation);
|
|
|
|
if (field)
|
|
field->init(table);
|
|
return field;
|
|
}
|
|
|
|
|
|
Item *Item_func_group_concat::copy_or_same(THD* thd)
|
|
{
|
|
return new (thd->mem_root) Item_func_group_concat(thd, this);
|
|
}
|
|
|
|
|
|
void Item_func_group_concat::clear()
|
|
{
|
|
result.length(0);
|
|
result.copy();
|
|
null_value= TRUE;
|
|
warning_for_row= FALSE;
|
|
no_appended= TRUE;
|
|
if (tree)
|
|
reset_tree(tree);
|
|
if (unique_filter)
|
|
unique_filter->reset();
|
|
/* No need to reset the table as we never call write_row */
|
|
}
|
|
|
|
|
|
bool Item_func_group_concat::add()
|
|
{
|
|
if (always_null)
|
|
return 0;
|
|
copy_fields(tmp_table_param);
|
|
if (copy_funcs(tmp_table_param->items_to_copy, table->in_use))
|
|
return TRUE;
|
|
|
|
for (uint i= 0; i < arg_count_field; i++)
|
|
{
|
|
Item *show_item= args[i];
|
|
if (show_item->const_item())
|
|
continue;
|
|
|
|
Field *field= show_item->get_tmp_table_field();
|
|
if (field && field->is_null_in_record((const uchar*) table->record[0]))
|
|
return 0; // Skip row if it contains null
|
|
}
|
|
|
|
null_value= FALSE;
|
|
bool row_eligible= TRUE;
|
|
|
|
if (distinct)
|
|
{
|
|
/* Filter out duplicate rows. */
|
|
uint count= unique_filter->elements_in_tree();
|
|
unique_filter->unique_add(table->record[0] + table->s->null_bytes);
|
|
if (count == unique_filter->elements_in_tree())
|
|
row_eligible= FALSE;
|
|
}
|
|
|
|
TREE_ELEMENT *el= 0; // Only for safety
|
|
if (row_eligible && tree)
|
|
{
|
|
el= tree_insert(tree, table->record[0] + table->s->null_bytes, 0,
|
|
tree->custom_arg);
|
|
/* check if there was enough memory to insert the row */
|
|
if (!el)
|
|
return 1;
|
|
}
|
|
/*
|
|
If the row is not a duplicate (el->count == 1)
|
|
we can dump the row here in case of GROUP_CONCAT(DISTINCT...)
|
|
instead of doing tree traverse later.
|
|
*/
|
|
if (row_eligible && !warning_for_row &&
|
|
(!tree || (el->count == 1 && distinct && !arg_count_order)))
|
|
dump_leaf_key(table->record[0] + table->s->null_bytes, 1, this);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool
|
|
Item_func_group_concat::fix_fields(THD *thd, Item **ref)
|
|
{
|
|
uint i; /* for loop variable */
|
|
DBUG_ASSERT(fixed == 0);
|
|
|
|
if (init_sum_func_check(thd))
|
|
return TRUE;
|
|
|
|
maybe_null= 1;
|
|
|
|
/*
|
|
Fix fields for select list and ORDER clause
|
|
*/
|
|
|
|
for (i=0 ; i < arg_count ; i++)
|
|
{
|
|
if ((!args[i]->fixed &&
|
|
args[i]->fix_fields(thd, args + i)) ||
|
|
args[i]->check_cols(1))
|
|
return TRUE;
|
|
with_subselect|= args[i]->with_subselect;
|
|
}
|
|
|
|
/* skip charset aggregation for order columns */
|
|
if (agg_item_charsets_for_string_result(collation, func_name(),
|
|
args, arg_count - arg_count_order))
|
|
return 1;
|
|
|
|
result.set_charset(collation.collation);
|
|
result_field= 0;
|
|
null_value= 1;
|
|
max_length= thd->variables.group_concat_max_len
|
|
/ collation.collation->mbminlen
|
|
* collation.collation->mbmaxlen;
|
|
|
|
uint32 offset;
|
|
if (separator->needs_conversion(separator->length(), separator->charset(),
|
|
collation.collation, &offset))
|
|
{
|
|
uint32 buflen= collation.collation->mbmaxlen * separator->length();
|
|
uint errors, conv_length;
|
|
char *buf;
|
|
String *new_separator;
|
|
|
|
if (!(buf= (char*) thd->stmt_arena->alloc(buflen)) ||
|
|
!(new_separator= new(thd->stmt_arena->mem_root)
|
|
String(buf, buflen, collation.collation)))
|
|
return TRUE;
|
|
|
|
conv_length= copy_and_convert(buf, buflen, collation.collation,
|
|
separator->ptr(), separator->length(),
|
|
separator->charset(), &errors);
|
|
new_separator->length(conv_length);
|
|
separator= new_separator;
|
|
}
|
|
|
|
if (check_sum_func(thd, ref))
|
|
return TRUE;
|
|
|
|
fixed= 1;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool Item_func_group_concat::setup(THD *thd)
|
|
{
|
|
List<Item> list;
|
|
SELECT_LEX *select_lex= thd->lex->current_select;
|
|
DBUG_ENTER("Item_func_group_concat::setup");
|
|
|
|
/*
|
|
Currently setup() can be called twice. Please add
|
|
assertion here when this is fixed.
|
|
*/
|
|
if (table || tree)
|
|
DBUG_RETURN(FALSE);
|
|
|
|
if (!(tmp_table_param= new TMP_TABLE_PARAM))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
/* We'll convert all blobs to varchar fields in the temporary table */
|
|
tmp_table_param->convert_blob_length= max_length *
|
|
collation.collation->mbmaxlen;
|
|
/* Push all not constant fields to the list and create a temp table */
|
|
always_null= 0;
|
|
for (uint i= 0; i < arg_count_field; i++)
|
|
{
|
|
Item *item= args[i];
|
|
if (list.push_back(item))
|
|
DBUG_RETURN(TRUE);
|
|
if (item->const_item())
|
|
{
|
|
if (item->is_null())
|
|
{
|
|
always_null= 1;
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
}
|
|
}
|
|
|
|
List<Item> all_fields(list);
|
|
/*
|
|
Try to find every ORDER expression in the list of GROUP_CONCAT
|
|
arguments. If an expression is not found, prepend it to
|
|
"all_fields". The resulting field list is used as input to create
|
|
tmp table columns.
|
|
*/
|
|
if (arg_count_order)
|
|
{
|
|
uint n_elems= arg_count_order + all_fields.elements;
|
|
ref_pointer_array= static_cast<Item**>(thd->alloc(sizeof(Item*) * n_elems));
|
|
if (!ref_pointer_array)
|
|
DBUG_RETURN(TRUE);
|
|
memcpy(ref_pointer_array, args, arg_count * sizeof(Item*));
|
|
if (setup_order(thd, ref_pointer_array, context->table_list, list,
|
|
all_fields, *order))
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
count_field_types(select_lex, tmp_table_param, all_fields, 0);
|
|
tmp_table_param->force_copy_fields= force_copy_fields;
|
|
DBUG_ASSERT(table == 0);
|
|
if (arg_count_order > 0 || distinct)
|
|
{
|
|
/*
|
|
Currently we have to force conversion of BLOB values to VARCHAR's
|
|
if we are to store them in TREE objects used for ORDER BY and
|
|
DISTINCT. This leads to truncation if the BLOB's size exceeds
|
|
Field_varstring::MAX_SIZE.
|
|
*/
|
|
set_if_smaller(tmp_table_param->convert_blob_length,
|
|
Field_varstring::MAX_SIZE);
|
|
|
|
/*
|
|
Force the create_tmp_table() to convert BIT columns to INT
|
|
as we cannot compare two table records containg BIT fields
|
|
stored in the the tree used for distinct/order by.
|
|
Moreover we don't even save in the tree record null bits
|
|
where BIT fields store parts of their data.
|
|
*/
|
|
List_iterator_fast<Item> li(all_fields);
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
if (item->type() == Item::FIELD_ITEM &&
|
|
((Item_field*) item)->field->type() == FIELD_TYPE_BIT)
|
|
item->marker= 4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
We have to create a temporary table to get descriptions of fields
|
|
(types, sizes and so on).
|
|
|
|
Note that in the table, we first have the ORDER BY fields, then the
|
|
field list.
|
|
*/
|
|
if (!(table= create_tmp_table(thd, tmp_table_param, all_fields,
|
|
(ORDER*) 0, 0, TRUE,
|
|
(select_lex->options |
|
|
thd->variables.option_bits),
|
|
HA_POS_ERROR, (char*) "")))
|
|
DBUG_RETURN(TRUE);
|
|
table->file->extra(HA_EXTRA_NO_ROWS);
|
|
table->no_rows= 1;
|
|
|
|
/*
|
|
Need sorting or uniqueness: init tree and choose a function to sort.
|
|
Don't reserve space for NULLs: if any of gconcat arguments is NULL,
|
|
the row is not added to the result.
|
|
*/
|
|
uint tree_key_length= table->s->reclength - table->s->null_bytes;
|
|
|
|
if (arg_count_order)
|
|
{
|
|
tree= &tree_base;
|
|
/*
|
|
Create a tree for sorting. The tree is used to sort (according to the
|
|
syntax of this function). If there is no ORDER BY clause, we don't
|
|
create this tree.
|
|
*/
|
|
init_tree(tree, (uint) MY_MIN(thd->variables.max_heap_table_size,
|
|
thd->variables.sortbuff_size/16), 0,
|
|
tree_key_length,
|
|
group_concat_key_cmp_with_order, NULL, (void*) this,
|
|
MYF(MY_THREAD_SPECIFIC));
|
|
}
|
|
|
|
if (distinct)
|
|
unique_filter= new Unique(group_concat_key_cmp_with_distinct,
|
|
(void*)this,
|
|
tree_key_length,
|
|
ram_limitation(thd));
|
|
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/* This is used by rollup to create a separate usable copy of the function */
|
|
|
|
void Item_func_group_concat::make_unique()
|
|
{
|
|
tmp_table_param= 0;
|
|
table=0;
|
|
original= 0;
|
|
force_copy_fields= 1;
|
|
tree= 0;
|
|
}
|
|
|
|
|
|
String* Item_func_group_concat::val_str(String* str)
|
|
{
|
|
DBUG_ASSERT(fixed == 1);
|
|
if (null_value)
|
|
return 0;
|
|
if (no_appended && tree)
|
|
/* Tree is used for sorting as in ORDER BY */
|
|
tree_walk(tree, &dump_leaf_key, this, left_root_right);
|
|
return &result;
|
|
}
|
|
|
|
|
|
void Item_func_group_concat::print(String *str, enum_query_type query_type)
|
|
{
|
|
str->append(STRING_WITH_LEN("group_concat("));
|
|
if (distinct)
|
|
str->append(STRING_WITH_LEN("distinct "));
|
|
for (uint i= 0; i < arg_count_field; i++)
|
|
{
|
|
if (i)
|
|
str->append(',');
|
|
orig_args[i]->print(str, query_type);
|
|
}
|
|
if (arg_count_order)
|
|
{
|
|
str->append(STRING_WITH_LEN(" order by "));
|
|
for (uint i= 0 ; i < arg_count_order ; i++)
|
|
{
|
|
if (i)
|
|
str->append(',');
|
|
orig_args[i + arg_count_field]->print(str, query_type);
|
|
if (order[i]->asc)
|
|
str->append(STRING_WITH_LEN(" ASC"));
|
|
else
|
|
str->append(STRING_WITH_LEN(" DESC"));
|
|
}
|
|
}
|
|
str->append(STRING_WITH_LEN(" separator \'"));
|
|
str->append(*separator);
|
|
str->append(STRING_WITH_LEN("\')"));
|
|
}
|
|
|
|
|
|
Item_func_group_concat::~Item_func_group_concat()
|
|
{
|
|
if (!original && unique_filter)
|
|
delete unique_filter;
|
|
}
|