mariadb/ndb/test/ndbapi/testOIBasic.cpp
jonas@perch.ndb.mysql.com 81013a01b1 ndb
remove extra ";" from test programs
2005-09-16 14:18:27 +02:00

3614 lines
77 KiB
C++

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
* testOIBasic - ordered index test
*/
#include <ndb_global.h>
#include <NdbMain.h>
#include <NdbOut.hpp>
#include <NdbApi.hpp>
#include <NdbTest.hpp>
#include <NdbMutex.h>
#include <NdbCondition.h>
#include <NdbThread.h>
#include <NdbTick.h>
#include <my_sys.h>
// options
struct Opt {
// common options
unsigned m_batch;
const char* m_bound;
const char* m_case;
bool m_core;
const char* m_csname;
CHARSET_INFO* m_cs;
int m_die;
bool m_dups;
NdbDictionary::Object::FragmentType m_fragtype;
unsigned m_subsubloop;
const char* m_index;
unsigned m_loop;
bool m_msglock;
bool m_nologging;
bool m_noverify;
unsigned m_pctnull;
unsigned m_rows;
unsigned m_samples;
unsigned m_scanbat;
unsigned m_scanpar;
unsigned m_scanstop;
unsigned m_seed;
unsigned m_subloop;
const char* m_table;
unsigned m_threads;
int m_v;
Opt() :
m_batch(32),
m_bound("01234"),
m_case(0),
m_core(false),
m_csname("latin1_bin"),
m_cs(0),
m_die(0),
m_dups(false),
m_fragtype(NdbDictionary::Object::FragUndefined),
m_subsubloop(4),
m_index(0),
m_loop(1),
m_msglock(true),
m_nologging(false),
m_noverify(false),
m_pctnull(10),
m_rows(1000),
m_samples(0),
m_scanbat(0),
m_scanpar(0),
m_scanstop(0),
m_seed(0),
m_subloop(4),
m_table(0),
m_threads(10),
m_v(1) {
}
};
static Opt g_opt;
static void printcases();
static void printtables();
static void
printhelp()
{
Opt d;
ndbout
<< "usage: testOIbasic [options]" << endl
<< " -batch N pk operations in batch [" << d.m_batch << "]" << endl
<< " -bound xyz use only these bound types 0-4 [" << d.m_bound << "]" << endl
<< " -case abc only given test cases (letters a-z)" << endl
<< " -core core dump on error [" << d.m_core << "]" << endl
<< " -csname S charset (collation) of non-pk char column [" << d.m_csname << "]" << endl
<< " -die nnn exit immediately on NDB error code nnn" << endl
<< " -dups allow duplicate tuples from index scan [" << d.m_dups << "]" << endl
<< " -fragtype T fragment type single/small/medium/large" << endl
<< " -index xyz only given index numbers (digits 1-9)" << endl
<< " -loop N loop count full suite 0=forever [" << d.m_loop << "]" << endl
<< " -nologging create tables in no-logging mode" << endl
<< " -noverify skip index verifications" << endl
<< " -pctnull N pct NULL values in nullable column [" << d.m_pctnull << "]" << endl
<< " -rows N rows per thread [" << d.m_rows << "]" << endl
<< " -samples N samples for some timings (0=all) [" << d.m_samples << "]" << endl
<< " -scanbat N scan batch per fragment (ignored by ndb api) [" << d.m_scanbat << "]" << endl
<< " -scanpar N scan parallelism [" << d.m_scanpar << "]" << endl
<< " -seed N srandom seed 0=loop number[" << d.m_seed << "]" << endl
<< " -subloop N subtest loop count [" << d.m_subloop << "]" << endl
<< " -table xyz only given table numbers (digits 1-9)" << endl
<< " -threads N number of threads [" << d.m_threads << "]" << endl
<< " -vN verbosity [" << d.m_v << "]" << endl
<< " -h or -help print this help text" << endl
;
printcases();
printtables();
}
// not yet configurable
static const bool g_store_null_key = true;
// compare NULL like normal value (NULL < not NULL, NULL == NULL)
static const bool g_compare_null = true;
// log and error macros
static NdbMutex *ndbout_mutex= NULL;
static unsigned getthrno();
static const char*
getthrstr()
{
static char buf[20];
unsigned n = getthrno();
if (n == (unsigned)-1)
strcpy(buf, "");
else {
unsigned m =
g_opt.m_threads < 10 ? 1 :
g_opt.m_threads < 100 ? 2 : 3;
sprintf(buf, "[%0*u] ", m, n);
}
return buf;
}
#define LLN(n, s) \
do { \
if ((n) > g_opt.m_v) break; \
if (g_opt.m_msglock) NdbMutex_Lock(ndbout_mutex); \
ndbout << getthrstr() << s << endl; \
if (g_opt.m_msglock) NdbMutex_Unlock(ndbout_mutex); \
} while(0)
#define LL0(s) LLN(0, s)
#define LL1(s) LLN(1, s)
#define LL2(s) LLN(2, s)
#define LL3(s) LLN(3, s)
#define LL4(s) LLN(4, s)
#define LL5(s) LLN(5, s)
// following check a condition and return -1 on failure
#undef CHK // simple check
#undef CHKTRY // check with action on fail
#undef CHKCON // print NDB API errors on failure
#define CHK(x) CHKTRY(x, ;)
#define CHKTRY(x, act) \
do { \
if (x) break; \
LL0("line " << __LINE__ << ": " << #x << " failed"); \
if (g_opt.m_core) abort(); \
act; \
return -1; \
} while (0)
#define CHKCON(x, con) \
do { \
if (x) break; \
LL0("line " << __LINE__ << ": " << #x << " failed"); \
(con).printerror(ndbout); \
if (g_opt.m_core) abort(); \
return -1; \
} while (0)
// method parameters base class
class Thr;
class Con;
class Tab;
class Set;
class Tmr;
struct Par : public Opt {
unsigned m_no;
Con* m_con;
Con& con() const { assert(m_con != 0); return *m_con; }
const Tab* m_tab;
const Tab& tab() const { assert(m_tab != 0); return *m_tab; }
Set* m_set;
Set& set() const { assert(m_set != 0); return *m_set; }
Tmr* m_tmr;
Tmr& tmr() const { assert(m_tmr != 0); return *m_tmr; }
unsigned m_lno;
unsigned m_slno;
unsigned m_totrows;
// value calculation
unsigned m_range;
unsigned m_pctrange;
// choice of key
bool m_randomkey;
// do verify after read
bool m_verify;
// deadlock possible
bool m_deadlock;
// abort percentabge
unsigned m_abortpct;
// timer location
Par(const Opt& opt) :
Opt(opt),
m_no(0),
m_con(0),
m_tab(0),
m_set(0),
m_tmr(0),
m_lno(0),
m_slno(0),
m_totrows(m_threads * m_rows),
m_range(m_rows),
m_pctrange(0),
m_randomkey(false),
m_verify(false),
m_deadlock(false),
m_abortpct(0) {
}
};
static bool
usetable(unsigned i)
{
return g_opt.m_table == 0 || strchr(g_opt.m_table, '1' + i) != 0;
}
static bool
useindex(unsigned i)
{
return g_opt.m_index == 0 || strchr(g_opt.m_index, '1' + i) != 0;
}
static unsigned
thrrow(Par par, unsigned j)
{
return par.m_threads * j + par.m_no;
}
static bool
isthrrow(Par par, unsigned i)
{
return i % par.m_threads == par.m_no;
}
// timer
struct Tmr {
void clr();
void on();
void off(unsigned cnt = 0);
const char* time();
const char* pct(const Tmr& t1);
const char* over(const Tmr& t1);
NDB_TICKS m_on;
unsigned m_ms;
unsigned m_cnt;
char m_time[100];
char m_text[100];
Tmr() { clr(); }
};
void
Tmr::clr()
{
m_on = m_ms = m_cnt = m_time[0] = m_text[0] = 0;
}
void
Tmr::on()
{
assert(m_on == 0);
m_on = NdbTick_CurrentMillisecond();
}
void
Tmr::off(unsigned cnt)
{
NDB_TICKS off = NdbTick_CurrentMillisecond();
assert(m_on != 0 && off >= m_on);
m_ms += off - m_on;
m_cnt += cnt;
m_on = 0;
}
const char*
Tmr::time()
{
if (m_cnt == 0) {
sprintf(m_time, "%u ms", m_ms);
} else {
sprintf(m_time, "%u ms per %u ( %u ms per 1000 )", m_ms, m_cnt, (1000 * m_ms) / m_cnt);
}
return m_time;
}
const char*
Tmr::pct(const Tmr& t1)
{
if (0 < t1.m_ms) {
sprintf(m_text, "%u pct", (100 * m_ms) / t1.m_ms);
} else {
sprintf(m_text, "[cannot measure]");
}
return m_text;
}
const char*
Tmr::over(const Tmr& t1)
{
if (0 < t1.m_ms) {
if (t1.m_ms <= m_ms)
sprintf(m_text, "%u pct", (100 * (m_ms - t1.m_ms)) / t1.m_ms);
else
sprintf(m_text, "-%u pct", (100 * (t1.m_ms - m_ms)) / t1.m_ms);
} else {
sprintf(m_text, "[cannot measure]");
}
return m_text;
}
// list of ints
struct Lst {
Lst();
unsigned m_arr[1000];
unsigned m_cnt;
void push(unsigned i);
unsigned cnt() const;
void reset();
};
Lst::Lst() :
m_cnt(0)
{
}
void
Lst::push(unsigned i)
{
assert(m_cnt < sizeof(m_arr)/sizeof(m_arr[0]));
m_arr[m_cnt++] = i;
}
unsigned
Lst::cnt() const
{
return m_cnt;
}
void
Lst::reset()
{
m_cnt = 0;
}
// tables and indexes
// Col - table column
struct Col {
unsigned m_num;
const char* m_name;
bool m_pk;
NdbDictionary::Column::Type m_type;
unsigned m_length;
bool m_nullable;
void verify(const void* addr) const;
};
void
Col::verify(const void* addr) const
{
switch (m_type) {
case NdbDictionary::Column::Unsigned:
break;
case NdbDictionary::Column::Varchar:
{
const unsigned char* p = (const unsigned char*)addr;
unsigned n = (p[0] << 8) | p[1];
assert(n <= m_length);
unsigned i;
for (i = 0; i < n; i++) {
assert(p[2 + i] != 0);
}
for (i = n; i < m_length; i++) {
assert(p[2 + i] == 0);
}
}
break;
default:
assert(false);
break;
}
}
static NdbOut&
operator<<(NdbOut& out, const Col& col)
{
out << "col " << col.m_num;
out << " " << col.m_name;
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
out << " unsigned";
break;
case NdbDictionary::Column::Varchar:
out << " varchar(" << col.m_length << ")";
break;
default:
out << "type" << (int)col.m_type;
assert(false);
break;
}
out << (col.m_pk ? " pk" : "");
out << (col.m_nullable ? " nullable" : "");
return out;
}
// ICol - index column
struct ICol {
unsigned m_num;
struct Col m_col;
};
// ITab - index
struct ITab {
const char* m_name;
unsigned m_icols;
const ICol* m_icol;
};
static NdbOut&
operator<<(NdbOut& out, const ITab& itab)
{
out << "itab " << itab.m_name << " " << itab.m_icols;
for (unsigned k = 0; k < itab.m_icols; k++) {
out << endl;
out << "icol " << k << " " << itab.m_icol[k].m_col;
}
return out;
}
// Tab - table
struct Tab {
const char* m_name;
unsigned m_cols;
const Col* m_col;
unsigned m_itabs;
const ITab* m_itab;
};
static NdbOut&
operator<<(NdbOut& out, const Tab& tab)
{
out << "tab " << tab.m_name << " " << tab.m_cols;
for (unsigned k = 0; k < tab.m_cols; k++) {
out << endl;
out << tab.m_col[k];
}
for (unsigned i = 0; i < tab.m_itabs; i++) {
if (! useindex(i))
continue;
out << endl;
out << tab.m_itab[i];
}
return out;
}
// tt1 + tt1x1 tt1x2 tt1x3 tt1x4 tt1x5
static const Col
tt1col[] = {
{ 0, "A", 1, NdbDictionary::Column::Unsigned, 1, 0 },
{ 1, "B", 0, NdbDictionary::Column::Unsigned, 1, 1 },
{ 2, "C", 0, NdbDictionary::Column::Unsigned, 1, 1 },
{ 3, "D", 0, NdbDictionary::Column::Unsigned, 1, 1 },
{ 4, "E", 0, NdbDictionary::Column::Unsigned, 1, 1 }
};
static const ICol
tt1x1col[] = {
{ 0, tt1col[0] }
};
static const ICol
tt1x2col[] = {
{ 0, tt1col[1] }
};
static const ICol
tt1x3col[] = {
{ 0, tt1col[1] },
{ 1, tt1col[2] }
};
static const ICol
tt1x4col[] = {
{ 0, tt1col[3] },
{ 1, tt1col[2] },
{ 2, tt1col[1] }
};
static const ICol
tt1x5col[] = {
{ 0, tt1col[1] },
{ 1, tt1col[4] },
{ 2, tt1col[2] },
{ 3, tt1col[3] }
};
static const ITab
tt1x1 = {
"TT1X1", 1, tt1x1col
};
static const ITab
tt1x2 = {
"TT1X2", 1, tt1x2col
};
static const ITab
tt1x3 = {
"TT1X3", 2, tt1x3col
};
static const ITab
tt1x4 = {
"TT1X4", 3, tt1x4col
};
static const ITab
tt1x5 = {
"TT1X5", 4, tt1x5col
};
static const ITab
tt1itab[] = {
tt1x1,
tt1x2,
tt1x3,
tt1x4,
tt1x5
};
static const Tab
tt1 = {
"TT1", 5, tt1col, 5, tt1itab
};
// tt2 + tt2x1 tt2x2 tt2x3 tt2x4 tt2x5
static const Col
tt2col[] = {
{ 0, "A", 1, NdbDictionary::Column::Unsigned, 1, 0 },
{ 1, "B", 0, NdbDictionary::Column::Unsigned, 1, 1 },
{ 2, "C", 0, NdbDictionary::Column::Varchar, 20, 1 },
{ 3, "D", 0, NdbDictionary::Column::Varchar, 5, 1 },
{ 4, "E", 0, NdbDictionary::Column::Varchar, 5, 1 }
};
static const ICol
tt2x1col[] = {
{ 0, tt2col[0] }
};
static const ICol
tt2x2col[] = {
{ 0, tt2col[1] },
{ 1, tt2col[2] }
};
static const ICol
tt2x3col[] = {
{ 0, tt2col[2] },
{ 1, tt2col[1] }
};
static const ICol
tt2x4col[] = {
{ 0, tt2col[3] },
{ 1, tt2col[4] }
};
static const ICol
tt2x5col[] = {
{ 0, tt2col[4] },
{ 1, tt2col[3] },
{ 2, tt2col[2] },
{ 3, tt2col[1] }
};
static const ITab
tt2x1 = {
"TT2X1", 1, tt2x1col
};
static const ITab
tt2x2 = {
"TT2X2", 2, tt2x2col
};
static const ITab
tt2x3 = {
"TT2X3", 2, tt2x3col
};
static const ITab
tt2x4 = {
"TT2X4", 2, tt2x4col
};
static const ITab
tt2x5 = {
"TT2X5", 4, tt2x5col
};
static const ITab
tt2itab[] = {
tt2x1,
tt2x2,
tt2x3,
tt2x4,
tt2x5
};
static const Tab
tt2 = {
"TT2", 5, tt2col, 5, tt2itab
};
// all tables
static const Tab
tablist[] = {
tt1,
tt2
};
static const unsigned
tabcount = sizeof(tablist) / sizeof(tablist[0]);
// connections
static Ndb_cluster_connection* g_ncc = 0;
struct Con {
Ndb* m_ndb;
NdbDictionary::Dictionary* m_dic;
NdbConnection* m_tx;
NdbOperation* m_op;
NdbScanOperation* m_scanop;
NdbIndexScanOperation* m_indexscanop;
NdbResultSet* m_resultset;
enum ScanMode { ScanNo = 0, Committed, Latest, Exclusive };
ScanMode m_scanmode;
enum ErrType { ErrNone = 0, ErrDeadlock, ErrNospace, ErrOther };
ErrType m_errtype;
Con() :
m_ndb(0), m_dic(0), m_tx(0), m_op(0),
m_scanop(0), m_indexscanop(0), m_resultset(0), m_scanmode(ScanNo), m_errtype(ErrNone) {}
~Con() {
if (m_tx != 0)
closeTransaction();
}
int connect();
void connect(const Con& con);
void disconnect();
int startTransaction();
int getNdbOperation(const Tab& tab);
int getNdbScanOperation(const Tab& tab);
int getNdbScanOperation(const ITab& itab, const Tab& tab);
int equal(int num, const char* addr);
int getValue(int num, NdbRecAttr*& rec);
int setValue(int num, const char* addr);
int setBound(int num, int type, const void* value);
int execute(ExecType t);
int execute(ExecType t, bool& deadlock, bool& nospace);
int openScanRead(unsigned scanbat, unsigned scanpar);
int openScanExclusive(unsigned scanbat, unsigned scanpar);
int executeScan();
int nextScanResult(bool fetchAllowed);
int nextScanResult(bool fetchAllowed, bool& deadlock);
int updateScanTuple(Con& con2);
int deleteScanTuple(Con& con2);
void closeScan();
void closeTransaction();
void printerror(NdbOut& out);
};
int
Con::connect()
{
assert(m_ndb == 0);
m_ndb = new Ndb(g_ncc, "TEST_DB");
CHKCON(m_ndb->init() == 0, *this);
CHKCON(m_ndb->waitUntilReady(30) == 0, *this);
m_tx = 0, m_op = 0;
return 0;
}
void
Con::connect(const Con& con)
{
assert(m_ndb == 0);
m_ndb = con.m_ndb;
}
void
Con::disconnect()
{
delete m_ndb;
m_ndb = 0, m_dic = 0, m_tx = 0, m_op = 0;
}
int
Con::startTransaction()
{
assert(m_ndb != 0);
if (m_tx != 0)
closeTransaction();
CHKCON((m_tx = m_ndb->startTransaction()) != 0, *this);
return 0;
}
int
Con::getNdbOperation(const Tab& tab)
{
assert(m_tx != 0);
CHKCON((m_op = m_tx->getNdbOperation(tab.m_name)) != 0, *this);
return 0;
}
int
Con::getNdbScanOperation(const Tab& tab)
{
assert(m_tx != 0);
CHKCON((m_op = m_scanop = m_tx->getNdbScanOperation(tab.m_name)) != 0, *this);
return 0;
}
int
Con::getNdbScanOperation(const ITab& itab, const Tab& tab)
{
assert(m_tx != 0);
CHKCON((m_op = m_scanop = m_indexscanop = m_tx->getNdbIndexScanOperation(itab.m_name, tab.m_name)) != 0, *this);
return 0;
}
int
Con::equal(int num, const char* addr)
{
assert(m_tx != 0 && m_op != 0);
CHKCON(m_op->equal(num, addr) == 0, *this);
return 0;
}
int
Con::getValue(int num, NdbRecAttr*& rec)
{
assert(m_tx != 0 && m_op != 0);
CHKCON((rec = m_op->getValue(num, 0)) != 0, *this);
return 0;
}
int
Con::setValue(int num, const char* addr)
{
assert(m_tx != 0 && m_op != 0);
CHKCON(m_op->setValue(num, addr) == 0, *this);
return 0;
}
int
Con::setBound(int num, int type, const void* value)
{
assert(m_tx != 0 && m_op != 0);
CHKCON(m_indexscanop->setBound(num, type, value) == 0, *this);
return 0;
}
int
Con::execute(ExecType t)
{
assert(m_tx != 0);
CHKCON(m_tx->execute(t) == 0, *this);
return 0;
}
int
Con::execute(ExecType t, bool& deadlock, bool& nospace)
{
int ret = execute(t);
if (ret != 0 && deadlock && m_errtype == ErrDeadlock) {
LL3("caught deadlock");
ret = 0;
} else {
deadlock = false;
}
if (ret != 0 && nospace && m_errtype == ErrNospace) {
LL3("caught nospace");
ret = 0;
} else {
nospace = false;
}
CHK(ret == 0);
return 0;
}
int
Con::openScanRead(unsigned scanbat, unsigned scanpar)
{
assert(m_tx != 0 && m_op != 0);
NdbOperation::LockMode lm = NdbOperation::LM_Read;
CHKCON((m_resultset = m_scanop->readTuples(lm, scanbat, scanpar)) != 0, *this);
return 0;
}
int
Con::openScanExclusive(unsigned scanbat, unsigned scanpar)
{
assert(m_tx != 0 && m_op != 0);
NdbOperation::LockMode lm = NdbOperation::LM_Exclusive;
CHKCON((m_resultset = m_scanop->readTuples(lm, scanbat, scanpar)) != 0, *this);
return 0;
}
int
Con::executeScan()
{
CHKCON(m_tx->execute(NoCommit) == 0, *this);
return 0;
}
int
Con::nextScanResult(bool fetchAllowed)
{
int ret;
assert(m_resultset != 0);
CHKCON((ret = m_resultset->nextResult(fetchAllowed)) != -1, *this);
assert(ret == 0 || ret == 1 || (! fetchAllowed && ret == 2));
return ret;
}
int
Con::nextScanResult(bool fetchAllowed, bool& deadlock)
{
int ret = nextScanResult(fetchAllowed);
if (ret == -1) {
if (deadlock && m_errtype == ErrDeadlock) {
LL3("caught deadlock");
ret = 0;
}
} else {
deadlock = false;
}
CHK(ret == 0 || ret == 1 || (! fetchAllowed && ret == 2));
return ret;
}
int
Con::updateScanTuple(Con& con2)
{
assert(con2.m_tx != 0);
CHKCON((con2.m_op = m_resultset->updateTuple(con2.m_tx)) != 0, *this);
return 0;
}
int
Con::deleteScanTuple(Con& con2)
{
assert(con2.m_tx != 0);
CHKCON(m_resultset->deleteTuple(con2.m_tx) == 0, *this);
return 0;
}
void
Con::closeScan()
{
assert(m_resultset != 0);
m_resultset->close();
m_scanop = 0, m_indexscanop = 0, m_resultset = 0;
}
void
Con::closeTransaction()
{
assert(m_ndb != 0 && m_tx != 0);
m_ndb->closeTransaction(m_tx);
m_tx = 0, m_op = 0;
m_scanop = 0, m_indexscanop = 0, m_resultset = 0;
}
void
Con::printerror(NdbOut& out)
{
m_errtype = ErrOther;
unsigned any = 0;
int code;
int die = 0;
if (m_ndb) {
if ((code = m_ndb->getNdbError().code) != 0) {
LL0(++any << " ndb: error " << m_ndb->getNdbError());
die += (code == g_opt.m_die);
}
if (m_dic && (code = m_dic->getNdbError().code) != 0) {
LL0(++any << " dic: error " << m_dic->getNdbError());
die += (code == g_opt.m_die);
}
if (m_tx) {
if ((code = m_tx->getNdbError().code) != 0) {
LL0(++any << " con: error " << m_tx->getNdbError());
die += (code == g_opt.m_die);
if (code == 266 || code == 274 || code == 296 || code == 297 || code == 499)
m_errtype = ErrDeadlock;
if (code == 826 || code == 827 || code == 902)
m_errtype = ErrNospace;
}
if (m_op && m_op->getNdbError().code != 0) {
LL0(++any << " op : error " << m_op->getNdbError());
die += (code == g_opt.m_die);
}
}
}
if (! any) {
LL0("failed but no NDB error code");
}
if (die) {
if (g_opt.m_core)
abort();
exit(1);
}
}
// dictionary operations
static int
invalidateindex(Par par, const ITab& itab)
{
Con& con = par.con();
const Tab& tab = par.tab();
con.m_ndb->getDictionary()->invalidateIndex(itab.m_name, tab.m_name);
return 0;
}
static int
invalidateindex(Par par)
{
Con& con = par.con();
const Tab& tab = par.tab();
for (unsigned i = 0; i < tab.m_itabs; i++) {
if (! useindex(i))
continue;
const ITab& itab = tab.m_itab[i];
invalidateindex(par, itab);
}
return 0;
}
static int
invalidatetable(Par par)
{
Con& con = par.con();
const Tab& tab = par.tab();
invalidateindex(par);
con.m_ndb->getDictionary()->invalidateTable(tab.m_name);
return 0;
}
static int
droptable(Par par)
{
Con& con = par.con();
const Tab& tab = par.tab();
con.m_dic = con.m_ndb->getDictionary();
if (con.m_dic->getTable(tab.m_name) == 0) {
// how to check for error
LL4("no table " << tab.m_name);
} else {
LL3("drop table " << tab.m_name);
CHKCON(con.m_dic->dropTable(tab.m_name) == 0, con);
}
con.m_dic = 0;
return 0;
}
static int
createtable(Par par)
{
Con& con = par.con();
const Tab& tab = par.tab();
LL3("create table " << tab.m_name);
LL4(tab);
NdbDictionary::Table t(tab.m_name);
if (par.m_fragtype != NdbDictionary::Object::FragUndefined) {
t.setFragmentType(par.m_fragtype);
}
if (par.m_nologging) {
t.setLogging(false);
}
for (unsigned k = 0; k < tab.m_cols; k++) {
const Col& col = tab.m_col[k];
NdbDictionary::Column c(col.m_name);
c.setType(col.m_type);
c.setLength(col.m_length);
c.setPrimaryKey(col.m_pk);
c.setNullable(col.m_nullable);
if (c.getCharset()) { // test if char type
if (! col.m_pk)
c.setCharset(par.m_cs);
}
t.addColumn(c);
}
con.m_dic = con.m_ndb->getDictionary();
CHKCON(con.m_dic->createTable(t) == 0, con);
con.m_dic = 0;
return 0;
}
static int
dropindex(Par par, const ITab& itab)
{
Con& con = par.con();
const Tab& tab = par.tab();
con.m_dic = con.m_ndb->getDictionary();
if (con.m_dic->getIndex(itab.m_name, tab.m_name) == 0) {
// how to check for error
LL4("no index " << itab.m_name);
} else {
LL3("drop index " << itab.m_name);
CHKCON(con.m_dic->dropIndex(itab.m_name, tab.m_name) == 0, con);
}
con.m_dic = 0;
return 0;
}
static int
dropindex(Par par)
{
const Tab& tab = par.tab();
for (unsigned i = 0; i < tab.m_itabs; i++) {
if (! useindex(i))
continue;
const ITab& itab = tab.m_itab[i];
CHK(dropindex(par, itab) == 0);
}
return 0;
}
static int
createindex(Par par, const ITab& itab)
{
Con& con = par.con();
const Tab& tab = par.tab();
LL3("create index " << itab.m_name);
LL4(itab);
NdbDictionary::Index x(itab.m_name);
x.setTable(tab.m_name);
x.setType(NdbDictionary::Index::OrderedIndex);
x.setLogging(false);
for (unsigned k = 0; k < itab.m_icols; k++) {
const Col& col = itab.m_icol[k].m_col;
x.addColumnName(col.m_name);
}
con.m_dic = con.m_ndb->getDictionary();
CHKCON(con.m_dic->createIndex(x) == 0, con);
con.m_dic = 0;
return 0;
}
static int
createindex(Par par)
{
const Tab& tab = par.tab();
for (unsigned i = 0; i < tab.m_itabs; i++) {
if (! useindex(i))
continue;
const ITab& itab = tab.m_itab[i];
CHK(createindex(par, itab) == 0);
}
return 0;
}
// data sets
static unsigned
urandom(unsigned n)
{
if (n == 0)
return 0;
unsigned i = random() % n;
return i;
}
static int
irandom(unsigned n)
{
if (n == 0)
return 0;
int i = random() % n;
if (random() & 0x1)
i = -i;
return i;
}
static bool
randompct(unsigned pct)
{
if (pct == 0)
return false;
if (pct >= 100)
return true;
return urandom(100) < pct;
}
// Val - typed column value
struct Val {
const Col& m_col;
union {
Uint32 m_uint32;
char* m_varchar;
};
Val(const Col& col);
~Val();
void copy(const Val& val2);
void copy(const void* addr);
const void* dataaddr() const;
bool m_null;
int setval(Par par) const;
void calc(Par par, unsigned i);
int verify(const Val& val2) const;
int cmp(const Val& val2) const;
private:
Val& operator=(const Val& val2);
};
static NdbOut&
operator<<(NdbOut& out, const Val& val);
Val::Val(const Col& col) :
m_col(col)
{
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
break;
case NdbDictionary::Column::Varchar:
m_varchar = new char [2 + col.m_length];
break;
default:
assert(false);
break;
}
}
Val::~Val()
{
const Col& col = m_col;
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
break;
case NdbDictionary::Column::Varchar:
delete [] m_varchar;
break;
default:
assert(false);
break;
}
}
void
Val::copy(const Val& val2)
{
const Col& col = m_col;
const Col& col2 = val2.m_col;
assert(col.m_type == col2.m_type && col.m_length == col2.m_length);
if (val2.m_null) {
m_null = true;
return;
}
copy(val2.dataaddr());
}
void
Val::copy(const void* addr)
{
const Col& col = m_col;
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
m_uint32 = *(const Uint32*)addr;
break;
case NdbDictionary::Column::Varchar:
memcpy(m_varchar, addr, 2 + col.m_length);
break;
default:
assert(false);
break;
}
m_null = false;
}
const void*
Val::dataaddr() const
{
const Col& col = m_col;
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
return &m_uint32;
case NdbDictionary::Column::Varchar:
return m_varchar;
default:
break;
}
assert(false);
return 0;
}
int
Val::setval(Par par) const
{
Con& con = par.con();
const Col& col = m_col;
const char* addr = (const char*)dataaddr();
if (m_null)
addr = 0;
if (col.m_pk)
CHK(con.equal(col.m_num, addr) == 0);
else
CHK(con.setValue(col.m_num, addr) == 0);
LL5("setval [" << m_col << "] " << *this);
return 0;
}
void
Val::calc(Par par, unsigned i)
{
const Col& col = m_col;
m_null = false;
if (col.m_pk) {
m_uint32 = i;
return;
}
if (col.m_nullable && urandom(100) < par.m_pctnull) {
m_null = true;
return;
}
unsigned v = par.m_range + irandom((par.m_pctrange * par.m_range) / 100);
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
m_uint32 = v;
break;
case NdbDictionary::Column::Varchar:
{
unsigned n = 0;
while (n < col.m_length) {
if (urandom(1 + col.m_length) == 0) {
// nice distribution on lengths
break;
}
m_varchar[2 + n++] = 'a' + urandom((par.m_pctrange * 10) / 100);
}
m_varchar[0] = (n >> 8);
m_varchar[1] = (n & 0xff);
while (n < col.m_length) {
m_varchar[2 + n++] = 0;
}
}
break;
default:
assert(false);
break;
}
// verify format
col.verify(dataaddr());
}
int
Val::verify(const Val& val2) const
{
CHK(cmp(val2) == 0);
return 0;
}
int
Val::cmp(const Val& val2) const
{
const Col& col = m_col;
const Col& col2 = val2.m_col;
assert(col.m_type == col2.m_type && col.m_length == col2.m_length);
if (m_null || val2.m_null) {
if (! m_null)
return +1;
if (! val2.m_null)
return -1;
return 0;
}
// verify data formats
col.verify(dataaddr());
col.verify(val2.dataaddr());
// compare
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
if (m_uint32 < val2.m_uint32)
return -1;
if (m_uint32 > val2.m_uint32)
return +1;
return 0;
case NdbDictionary::Column::Varchar:
return memcmp(&m_varchar[2], &val2.m_varchar[2], col.m_length);
default:
break;
}
assert(false);
return 0;
}
static NdbOut&
operator<<(NdbOut& out, const Val& val)
{
const Col& col = val.m_col;
if (val.m_null) {
out << "NULL";
return out;
}
switch (col.m_type) {
case NdbDictionary::Column::Unsigned:
out << val.m_uint32;
break;
case NdbDictionary::Column::Varchar:
{
char buf[8000];
unsigned n = (val.m_varchar[0] << 8) | val.m_varchar[1];
assert(n <= col.m_length);
sprintf(buf, "'%.*s'[%d]", n, &val.m_varchar[2], n);
out << buf;
}
break;
default:
out << "type" << col.m_type;
assert(false);
break;
}
return out;
}
// Row - table tuple
struct Row {
const Tab& m_tab;
Val** m_val;
bool m_exist;
enum Op { NoOp = 0, ReadOp, InsOp, UpdOp, DelOp };
Op m_pending;
Row(const Tab& tab);
~Row();
void copy(const Row& row2);
void calc(Par par, unsigned i);
int verify(const Row& row2) const;
int insrow(Par par);
int updrow(Par par);
int delrow(Par par);
int selrow(Par par);
int setrow(Par par);
int cmp(const Row& row2) const;
private:
Row& operator=(const Row& row2);
};
Row::Row(const Tab& tab) :
m_tab(tab)
{
m_val = new Val* [tab.m_cols];
for (unsigned k = 0; k < tab.m_cols; k++) {
const Col& col = tab.m_col[k];
m_val[k] = new Val(col);
}
m_exist = false;
m_pending = NoOp;
}
Row::~Row()
{
const Tab& tab = m_tab;
for (unsigned k = 0; k < tab.m_cols; k++) {
delete m_val[k];
}
delete [] m_val;
}
void
Row::copy(const Row& row2)
{
const Tab& tab = m_tab;
assert(&tab == &row2.m_tab);
for (unsigned k = 0; k < tab.m_cols; k++) {
Val& val = *m_val[k];
const Val& val2 = *row2.m_val[k];
val.copy(val2);
}
}
void
Row::calc(Par par, unsigned i)
{
const Tab& tab = m_tab;
for (unsigned k = 0; k < tab.m_cols; k++) {
Val& val = *m_val[k];
val.calc(par, i);
}
}
int
Row::verify(const Row& row2) const
{
const Tab& tab = m_tab;
assert(&tab == &row2.m_tab && m_exist && row2.m_exist);
for (unsigned k = 0; k < tab.m_cols; k++) {
const Val& val = *m_val[k];
const Val& val2 = *row2.m_val[k];
CHK(val.verify(val2) == 0);
}
return 0;
}
int
Row::insrow(Par par)
{
Con& con = par.con();
const Tab& tab = m_tab;
assert(! m_exist);
CHK(con.getNdbOperation(tab) == 0);
CHKCON(con.m_op->insertTuple() == 0, con);
for (unsigned k = 0; k < tab.m_cols; k++) {
const Val& val = *m_val[k];
CHK(val.setval(par) == 0);
}
m_pending = InsOp;
return 0;
}
int
Row::updrow(Par par)
{
Con& con = par.con();
const Tab& tab = m_tab;
assert(m_exist);
CHK(con.getNdbOperation(tab) == 0);
CHKCON(con.m_op->updateTuple() == 0, con);
for (unsigned k = 0; k < tab.m_cols; k++) {
const Val& val = *m_val[k];
CHK(val.setval(par) == 0);
}
m_pending = UpdOp;
return 0;
}
int
Row::delrow(Par par)
{
Con& con = par.con();
const Tab& tab = m_tab;
assert(m_exist);
CHK(con.getNdbOperation(m_tab) == 0);
CHKCON(con.m_op->deleteTuple() == 0, con);
for (unsigned k = 0; k < tab.m_cols; k++) {
const Val& val = *m_val[k];
const Col& col = val.m_col;
if (col.m_pk)
CHK(val.setval(par) == 0);
}
m_pending = DelOp;
return 0;
}
int
Row::selrow(Par par)
{
Con& con = par.con();
const Tab& tab = m_tab;
CHK(con.getNdbOperation(m_tab) == 0);
CHKCON(con.m_op->readTuple() == 0, con);
for (unsigned k = 0; k < tab.m_cols; k++) {
const Val& val = *m_val[k];
const Col& col = val.m_col;
if (col.m_pk)
CHK(val.setval(par) == 0);
}
return 0;
}
int
Row::setrow(Par par)
{
Con& con = par.con();
const Tab& tab = m_tab;
for (unsigned k = 0; k < tab.m_cols; k++) {
const Val& val = *m_val[k];
const Col& col = val.m_col;
if (! col.m_pk)
CHK(val.setval(par) == 0);
}
m_pending = UpdOp;
return 0;
}
int
Row::cmp(const Row& row2) const
{
const Tab& tab = m_tab;
assert(&tab == &row2.m_tab);
int c = 0;
for (unsigned k = 0; k < tab.m_cols; k++) {
const Val& val = *m_val[k];
const Val& val2 = *row2.m_val[k];
if ((c = val.cmp(val2)) != 0)
break;
}
return c;
}
static NdbOut&
operator<<(NdbOut& out, const Row& row)
{
const Tab& tab = row.m_tab;
for (unsigned i = 0; i < tab.m_cols; i++) {
if (i > 0)
out << " ";
out << *row.m_val[i];
}
out << " [exist=" << row.m_exist;
if (row.m_pending)
out << " pending=" << row.m_pending;
out << "]";
return out;
}
// Set - set of table tuples
struct Set {
const Tab& m_tab;
unsigned m_rows;
Row** m_row;
Row** m_saverow;
Row* m_keyrow;
NdbRecAttr** m_rec;
Set(const Tab& tab, unsigned rows);
~Set();
void reset();
unsigned count() const;
// row methods
bool exist(unsigned i) const;
Row::Op pending(unsigned i) const;
void notpending(unsigned i, ExecType et = Commit);
void notpending(const Lst& lst, ExecType et = Commit);
void calc(Par par, unsigned i);
int insrow(Par par, unsigned i);
int updrow(Par par, unsigned i);
int delrow(Par par, unsigned i);
int selrow(Par par, unsigned i);
int setrow(Par par, unsigned i);
int getval(Par par);
int getkey(Par par, unsigned* i);
int putval(unsigned i, bool force);
// set methods
int verify(const Set& set2) const;
void savepoint();
void commit();
void rollback();
// protect structure
NdbMutex* m_mutex;
void lock() {
NdbMutex_Lock(m_mutex);
}
void unlock() {
NdbMutex_Unlock(m_mutex);
}
private:
Set& operator=(const Set& set2);
};
Set::Set(const Tab& tab, unsigned rows) :
m_tab(tab)
{
m_rows = rows;
m_row = new Row* [m_rows];
for (unsigned i = 0; i < m_rows; i++) {
// allocate on need to save space
m_row[i] = 0;
}
m_saverow = 0;
m_keyrow = new Row(tab);
m_rec = new NdbRecAttr* [tab.m_cols];
for (unsigned k = 0; k < tab.m_cols; k++) {
m_rec[k] = 0;
}
m_mutex = NdbMutex_Create();
assert(m_mutex != 0);
}
Set::~Set()
{
for (unsigned i = 0; i < m_rows; i++) {
delete m_row[i];
if (m_saverow != 0)
delete m_saverow[i];
}
delete [] m_row;
delete [] m_saverow;
delete m_keyrow;
delete [] m_rec;
NdbMutex_Destroy(m_mutex);
}
void
Set::reset()
{
for (unsigned i = 0; i < m_rows; i++) {
if (m_row[i] != 0) {
Row& row = *m_row[i];
row.m_exist = false;
}
}
}
unsigned
Set::count() const
{
unsigned count = 0;
for (unsigned i = 0; i < m_rows; i++) {
if (m_row[i] != 0) {
Row& row = *m_row[i];
if (row.m_exist)
count++;
}
}
return count;
}
bool
Set::exist(unsigned i) const
{
assert(i < m_rows);
if (m_row[i] == 0) // not allocated => not exist
return false;
return m_row[i]->m_exist;
}
Row::Op
Set::pending(unsigned i) const
{
assert(i < m_rows);
if (m_row[i] == 0) // not allocated => not pending
return Row::NoOp;
return m_row[i]->m_pending;
}
void
Set::calc(Par par, unsigned i)
{
const Tab& tab = m_tab;
if (m_row[i] == 0)
m_row[i] = new Row(tab);
Row& row = *m_row[i];
// value generation parameters
par.m_pctrange = 40;
row.calc(par, i);
}
int
Set::insrow(Par par, unsigned i)
{
assert(m_row[i] != 0);
Row& row = *m_row[i];
CHK(row.insrow(par) == 0);
return 0;
}
int
Set::updrow(Par par, unsigned i)
{
assert(m_row[i] != 0);
Row& row = *m_row[i];
CHK(row.updrow(par) == 0);
return 0;
}
int
Set::delrow(Par par, unsigned i)
{
assert(m_row[i] != 0);
Row& row = *m_row[i];
CHK(row.delrow(par) == 0);
return 0;
}
int
Set::selrow(Par par, unsigned i)
{
Con& con = par.con();
m_keyrow->calc(par, i);
CHK(m_keyrow->selrow(par) == 0);
CHK(getval(par) == 0);
return 0;
}
int
Set::setrow(Par par, unsigned i)
{
Con& con = par.con();
assert(m_row[i] != 0);
CHK(m_row[i]->setrow(par) == 0);
return 0;
}
int
Set::getval(Par par)
{
Con& con = par.con();
const Tab& tab = m_tab;
for (unsigned k = 0; k < tab.m_cols; k++) {
CHK(con.getValue(k, m_rec[k]) == 0);
}
return 0;
}
int
Set::getkey(Par par, unsigned* i)
{
assert(m_rec[0] != 0);
const char* aRef0 = m_rec[0]->aRef();
Uint32 key = *(const Uint32*)aRef0;
CHK(key < m_rows);
*i = key;
return 0;
}
int
Set::putval(unsigned i, bool force)
{
const Tab& tab = m_tab;
if (m_row[i] == 0)
m_row[i] = new Row(tab);
Row& row = *m_row[i];
CHK(! row.m_exist || force);
for (unsigned k = 0; k < tab.m_cols; k++) {
Val& val = *row.m_val[k];
NdbRecAttr* rec = m_rec[k];
assert(rec != 0);
if (rec->isNULL()) {
val.m_null = true;
continue;
}
const char* aRef = m_rec[k]->aRef();
val.copy(aRef);
val.m_null = false;
}
if (! row.m_exist)
row.m_exist = true;
return 0;
}
void
Set::notpending(unsigned i, ExecType et)
{
assert(m_row[i] != 0);
Row& row = *m_row[i];
if (et == Commit) {
if (row.m_pending == Row::InsOp)
row.m_exist = true;
if (row.m_pending == Row::DelOp)
row.m_exist = false;
} else {
if (row.m_pending == Row::InsOp)
row.m_exist = false;
if (row.m_pending == Row::DelOp)
row.m_exist = true;
}
row.m_pending = Row::NoOp;
}
void
Set::notpending(const Lst& lst, ExecType et)
{
for (unsigned j = 0; j < lst.m_cnt; j++) {
unsigned i = lst.m_arr[j];
notpending(i, et);
}
}
int
Set::verify(const Set& set2) const
{
const Tab& tab = m_tab;
assert(&tab == &set2.m_tab && m_rows == set2.m_rows);
for (unsigned i = 0; i < m_rows; i++) {
CHK(exist(i) == set2.exist(i));
if (! exist(i))
continue;
Row& row = *m_row[i];
Row& row2 = *set2.m_row[i];
CHK(row.verify(row2) == 0);
}
return 0;
}
void
Set::savepoint()
{
const Tab& tab = m_tab;
assert(m_saverow == 0);
m_saverow = new Row* [m_rows];
for (unsigned i = 0; i < m_rows; i++) {
if (m_row[i] == 0)
m_saverow[i] = 0;
else {
m_saverow[i] = new Row(tab);
m_saverow[i]->copy(*m_row[i]);
}
}
}
void
Set::commit()
{
delete [] m_saverow;
m_saverow = 0;
}
void
Set::rollback()
{
assert(m_saverow != 0);
m_row = m_saverow;
m_saverow = 0;
}
static NdbOut&
operator<<(NdbOut& out, const Set& set)
{
for (unsigned i = 0; i < set.m_rows; i++) {
const Row& row = *set.m_row[i];
if (i > 0)
out << endl;
out << row;
}
return out;
}
// BVal - range scan bound
struct BVal : public Val {
const ICol& m_icol;
int m_type;
BVal(const ICol& icol);
int setbnd(Par par) const;
};
BVal::BVal(const ICol& icol) :
Val(icol.m_col),
m_icol(icol)
{
}
int
BVal::setbnd(Par par) const
{
Con& con = par.con();
assert(g_compare_null || ! m_null);
const char* addr = ! m_null ? (const char*)dataaddr() : 0;
const ICol& icol = m_icol;
CHK(con.setBound(icol.m_num, m_type, addr) == 0);
return 0;
}
static NdbOut&
operator<<(NdbOut& out, const BVal& bval)
{
const ICol& icol = bval.m_icol;
const Col& col = icol.m_col;
const Val& val = bval;
out << "type " << bval.m_type;
out << " icol " << icol.m_num;
out << " col " << col.m_name << "(" << col.m_num << ")";
out << " value " << val;
return out;
}
// BSet - set of bounds
struct BSet {
const Tab& m_tab;
const ITab& m_itab;
unsigned m_alloc;
unsigned m_bvals;
BVal** m_bval;
BSet(const Tab& tab, const ITab& itab, unsigned rows);
~BSet();
void reset();
void calc(Par par);
void calcpk(Par par, unsigned i);
int setbnd(Par par) const;
void filter(const Set& set, Set& set2) const;
};
BSet::BSet(const Tab& tab, const ITab& itab, unsigned rows) :
m_tab(tab),
m_itab(itab),
m_alloc(2 * itab.m_icols),
m_bvals(0)
{
m_bval = new BVal* [m_alloc];
for (unsigned i = 0; i < m_alloc; i++) {
m_bval[i] = 0;
}
}
BSet::~BSet()
{
delete [] m_bval;
}
void
BSet::reset()
{
while (m_bvals > 0) {
unsigned i = --m_bvals;
delete m_bval[i];
m_bval[i] = 0;
}
}
void
BSet::calc(Par par)
{
const ITab& itab = m_itab;
reset();
for (unsigned k = 0; k < itab.m_icols; k++) {
const ICol& icol = itab.m_icol[k];
const Col& col = icol.m_col;
for (unsigned i = 0; i <= 1; i++) {
if (urandom(10) == 0)
return;
assert(m_bvals < m_alloc);
BVal& bval = *new BVal(icol);
m_bval[m_bvals++] = &bval;
bval.m_null = false;
unsigned sel;
do {
// equality bound only on i==0
sel = urandom(5 - i);
} while (strchr(par.m_bound, '0' + sel) == 0);
if (sel < 2)
bval.m_type = 0 | (1 << i);
else if (sel < 4)
bval.m_type = 1 | (1 << i);
else
bval.m_type = 4;
if (k + 1 < itab.m_icols)
bval.m_type = 4;
// value generation parammeters
if (! g_compare_null)
par.m_pctnull = 0;
par.m_pctrange = 50; // bit higher
do {
bval.calc(par, 0);
if (i == 1) {
assert(m_bvals >= 2);
const BVal& bv1 = *m_bval[m_bvals - 2];
const BVal& bv2 = *m_bval[m_bvals - 1];
if (bv1.cmp(bv2) > 0 && urandom(100) != 0)
continue;
}
} while (0);
// equality bound only once
if (bval.m_type == 4)
break;
}
}
}
void
BSet::calcpk(Par par, unsigned i)
{
const ITab& itab = m_itab;
reset();
for (unsigned k = 0; k < itab.m_icols; k++) {
const ICol& icol = itab.m_icol[k];
const Col& col = icol.m_col;
assert(col.m_pk);
assert(m_bvals < m_alloc);
BVal& bval = *new BVal(icol);
m_bval[m_bvals++] = &bval;
bval.m_type = 4;
bval.calc(par, i);
}
}
int
BSet::setbnd(Par par) const
{
if (m_bvals != 0) {
unsigned p1 = urandom(m_bvals);
unsigned p2 = 10009; // prime
// random order
for (unsigned j = 0; j < m_bvals; j++) {
unsigned k = p1 + p2 * j;
const BVal& bval = *m_bval[k % m_bvals];
CHK(bval.setbnd(par) == 0);
}
// duplicate
if (urandom(5) == 0) {
unsigned k = urandom(m_bvals);
const BVal& bval = *m_bval[k];
CHK(bval.setbnd(par) == 0);
}
}
return 0;
}
void
BSet::filter(const Set& set, Set& set2) const
{
const Tab& tab = m_tab;
const ITab& itab = m_itab;
assert(&tab == &set2.m_tab && set.m_rows == set2.m_rows);
assert(set2.count() == 0);
for (unsigned i = 0; i < set.m_rows; i++) {
if (! set.exist(i))
continue;
const Row& row = *set.m_row[i];
if (! g_store_null_key) {
bool ok1 = false;
for (unsigned k = 0; k < itab.m_icols; k++) {
const ICol& icol = itab.m_icol[k];
const Col& col = icol.m_col;
const Val& val = *row.m_val[col.m_num];
if (! val.m_null) {
ok1 = true;
break;
}
}
if (! ok1)
continue;
}
bool ok2 = true;
for (unsigned j = 0; j < m_bvals; j++) {
const BVal& bval = *m_bval[j];
const ICol& icol = bval.m_icol;
const Col& col = icol.m_col;
const Val& val = *row.m_val[col.m_num];
int ret = bval.cmp(val);
if (bval.m_type == 0)
ok2 = (ret <= 0);
else if (bval.m_type == 1)
ok2 = (ret < 0);
else if (bval.m_type == 2)
ok2 = (ret >= 0);
else if (bval.m_type == 3)
ok2 = (ret > 0);
else if (bval.m_type == 4)
ok2 = (ret == 0);
else {
assert(false);
}
if (! ok2)
break;
}
if (! ok2)
continue;
if (set2.m_row[i] == 0)
set2.m_row[i] = new Row(tab);
Row& row2 = *set2.m_row[i];
assert(! row2.m_exist);
row2.copy(row);
row2.m_exist = true;
}
}
static NdbOut&
operator<<(NdbOut& out, const BSet& bset)
{
out << "bounds=" << bset.m_bvals;
for (unsigned j = 0; j < bset.m_bvals; j++) {
out << endl;
const BVal& bval = *bset.m_bval[j];
out << "bound " << j << ": " << bval;
}
return out;
}
// pk operations
static int
pkinsert(Par par)
{
Con& con = par.con();
Set& set = par.set();
LL3("pkinsert");
CHK(con.startTransaction() == 0);
Lst lst;
for (unsigned j = 0; j < par.m_rows; j++) {
unsigned j2 = ! par.m_randomkey ? j : urandom(par.m_rows);
unsigned i = thrrow(par, j2);
set.lock();
if (set.exist(i) || set.pending(i)) {
set.unlock();
continue;
}
set.calc(par, i);
CHK(set.insrow(par, i) == 0);
set.unlock();
LL4("pkinsert " << i << ": " << *set.m_row[i]);
lst.push(i);
if (lst.cnt() == par.m_batch) {
bool deadlock = par.m_deadlock;
bool nospace = true;
ExecType et = randompct(par.m_abortpct) ? Rollback : Commit;
CHK(con.execute(et, deadlock, nospace) == 0);
con.closeTransaction();
if (deadlock) {
LL1("pkinsert: stop on deadlock");
return 0;
}
if (nospace) {
LL1("pkinsert: cnt=" << j << " stop on nospace");
return 0;
}
set.lock();
set.notpending(lst, et);
set.unlock();
lst.reset();
CHK(con.startTransaction() == 0);
}
}
if (lst.cnt() != 0) {
bool deadlock = par.m_deadlock;
bool nospace = true;
ExecType et = randompct(par.m_abortpct) ? Rollback : Commit;
CHK(con.execute(et, deadlock, nospace) == 0);
con.closeTransaction();
if (deadlock) {
LL1("pkinsert: stop on deadlock");
return 0;
}
if (nospace) {
LL1("pkinsert: end: stop on nospace");
return 0;
}
set.lock();
set.notpending(lst, et);
set.unlock();
return 0;
}
con.closeTransaction();
return 0;
}
static int
pkupdate(Par par)
{
Con& con = par.con();
Set& set = par.set();
LL3("pkupdate");
CHK(con.startTransaction() == 0);
Lst lst;
bool deadlock = false;
bool nospace = false;
for (unsigned j = 0; j < par.m_rows; j++) {
unsigned j2 = ! par.m_randomkey ? j : urandom(par.m_rows);
unsigned i = thrrow(par, j2);
set.lock();
if (! set.exist(i) || set.pending(i)) {
set.unlock();
continue;
}
set.calc(par, i);
CHK(set.updrow(par, i) == 0);
set.unlock();
LL4("pkupdate " << i << ": " << *set.m_row[i]);
lst.push(i);
if (lst.cnt() == par.m_batch) {
deadlock = par.m_deadlock;
nospace = true;
ExecType et = randompct(par.m_abortpct) ? Rollback : Commit;
CHK(con.execute(et, deadlock, nospace) == 0);
if (deadlock) {
LL1("pkupdate: stop on deadlock");
break;
}
if (nospace) {
LL1("pkupdate: cnt=" << j << " stop on nospace");
break;
}
con.closeTransaction();
set.lock();
set.notpending(lst, et);
set.unlock();
lst.reset();
CHK(con.startTransaction() == 0);
}
}
if (! deadlock && ! nospace && lst.cnt() != 0) {
deadlock = par.m_deadlock;
nospace = true;
ExecType et = randompct(par.m_abortpct) ? Rollback : Commit;
CHK(con.execute(et, deadlock, nospace) == 0);
if (deadlock) {
LL1("pkupdate: stop on deadlock");
} else if (nospace) {
LL1("pkupdate: end: stop on nospace");
} else {
set.lock();
set.notpending(lst, et);
set.unlock();
}
}
con.closeTransaction();
return 0;
}
static int
pkdelete(Par par)
{
Con& con = par.con();
Set& set = par.set();
LL3("pkdelete");
CHK(con.startTransaction() == 0);
Lst lst;
bool deadlock = false;
bool nospace = false;
for (unsigned j = 0; j < par.m_rows; j++) {
unsigned j2 = ! par.m_randomkey ? j : urandom(par.m_rows);
unsigned i = thrrow(par, j2);
set.lock();
if (! set.exist(i) || set.pending(i)) {
set.unlock();
continue;
}
CHK(set.delrow(par, i) == 0);
set.unlock();
LL4("pkdelete " << i << ": " << *set.m_row[i]);
lst.push(i);
if (lst.cnt() == par.m_batch) {
deadlock = par.m_deadlock;
nospace = true;
ExecType et = randompct(par.m_abortpct) ? Rollback : Commit;
CHK(con.execute(et, deadlock, nospace) == 0);
if (deadlock) {
LL1("pkdelete: stop on deadlock");
break;
}
con.closeTransaction();
set.lock();
set.notpending(lst, et);
set.unlock();
lst.reset();
CHK(con.startTransaction() == 0);
}
}
if (! deadlock && ! nospace && lst.cnt() != 0) {
deadlock = par.m_deadlock;
nospace = true;
ExecType et = randompct(par.m_abortpct) ? Rollback : Commit;
CHK(con.execute(et, deadlock, nospace) == 0);
if (deadlock) {
LL1("pkdelete: stop on deadlock");
} else {
set.lock();
set.notpending(lst, et);
set.unlock();
}
}
con.closeTransaction();
return 0;
}
static int
pkread(Par par)
{
Con& con = par.con();
const Tab& tab = par.tab();
Set& set = par.set();
LL3((par.m_verify ? "pkverify " : "pkread ") << tab.m_name);
// expected
const Set& set1 = set;
Set set2(tab, set.m_rows);
for (unsigned i = 0; i < set.m_rows; i++) {
set.lock();
if (! set.exist(i) || set.pending(i)) {
set.unlock();
continue;
}
set.unlock();
CHK(con.startTransaction() == 0);
CHK(set2.selrow(par, i) == 0);
CHK(con.execute(Commit) == 0);
unsigned i2 = (unsigned)-1;
CHK(set2.getkey(par, &i2) == 0 && i == i2);
CHK(set2.putval(i, false) == 0);
LL4("row " << set2.count() << ": " << *set2.m_row[i]);
con.closeTransaction();
}
if (par.m_verify)
CHK(set1.verify(set2) == 0);
return 0;
}
static int
pkreadfast(Par par, unsigned count)
{
Con& con = par.con();
const Tab& tab = par.tab();
const Set& set = par.set();
LL3("pkfast " << tab.m_name);
Row keyrow(tab);
// not batched on purpose
for (unsigned j = 0; j < count; j++) {
unsigned i = urandom(set.m_rows);
assert(set.exist(i));
CHK(con.startTransaction() == 0);
// define key
keyrow.calc(par, i);
CHK(keyrow.selrow(par) == 0);
NdbRecAttr* rec;
// get 1st column
CHK(con.getValue((Uint32)0, rec) == 0);
CHK(con.execute(Commit) == 0);
con.closeTransaction();
}
return 0;
}
// scan read
static int
scanreadtable(Par par)
{
Con& con = par.con();
const Tab& tab = par.tab();
const Set& set = par.set();
// expected
const Set& set1 = set;
LL3((par.m_verify ? "scanverify " : "scanread ") << tab.m_name);
Set set2(tab, set.m_rows);
CHK(con.startTransaction() == 0);
CHK(con.getNdbScanOperation(tab) == 0);
CHK(con.openScanRead(par.m_scanbat, par.m_scanpar) == 0);
set2.getval(par);
CHK(con.executeScan() == 0);
while (1) {
int ret;
CHK((ret = con.nextScanResult(true)) == 0 || ret == 1);
if (ret == 1)
break;
unsigned i = (unsigned)-1;
CHK(set2.getkey(par, &i) == 0);
CHK(set2.putval(i, false) == 0);
LL4("row " << set2.count() << ": " << *set2.m_row[i]);
}
con.closeTransaction();
if (par.m_verify)
CHK(set1.verify(set2) == 0);
return 0;
}
static int
scanreadtablefast(Par par, unsigned countcheck)
{
Con& con = par.con();
const Tab& tab = par.tab();
const Set& set = par.set();
LL3("scanfast " << tab.m_name);
CHK(con.startTransaction() == 0);
CHK(con.getNdbScanOperation(tab) == 0);
CHK(con.openScanRead(par.m_scanbat, par.m_scanpar) == 0);
// get 1st column
NdbRecAttr* rec;
CHK(con.getValue((Uint32)0, rec) == 0);
CHK(con.executeScan() == 0);
unsigned count = 0;
while (1) {
int ret;
CHK((ret = con.nextScanResult(true)) == 0 || ret == 1);
if (ret == 1)
break;
count++;
}
con.closeTransaction();
CHK(count == countcheck);
return 0;
}
static int
scanreadindex(Par par, const ITab& itab, const BSet& bset)
{
Con& con = par.con();
const Tab& tab = par.tab();
const Set& set = par.set();
// expected
Set set1(tab, set.m_rows);
bset.filter(set, set1);
LL3((par.m_verify ? "scanverify " : "scanread ") << itab.m_name << " bounds=" << bset.m_bvals);
LL4(bset);
Set set2(tab, set.m_rows);
CHK(con.startTransaction() == 0);
CHK(con.getNdbScanOperation(itab, tab) == 0);
CHK(con.openScanRead(par.m_scanbat, par.m_scanpar) == 0);
CHK(bset.setbnd(par) == 0);
set2.getval(par);
CHK(con.executeScan() == 0);
while (1) {
int ret;
CHK((ret = con.nextScanResult(true)) == 0 || ret == 1);
if (ret == 1)
break;
unsigned i = (unsigned)-1;
CHK(set2.getkey(par, &i) == 0);
LL4("key " << i);
CHK(set2.putval(i, par.m_dups) == 0);
LL4("row " << set2.count() << ": " << *set2.m_row[i]);
}
con.closeTransaction();
if (par.m_verify)
CHK(set1.verify(set2) == 0);
return 0;
}
static int
scanreadindexfast(Par par, const ITab& itab, const BSet& bset, unsigned countcheck)
{
Con& con = par.con();
const Tab& tab = par.tab();
const Set& set = par.set();
LL3("scanfast " << itab.m_name << " bounds=" << bset.m_bvals);
LL4(bset);
CHK(con.startTransaction() == 0);
CHK(con.getNdbScanOperation(itab, tab) == 0);
CHK(con.openScanRead(par.m_scanbat, par.m_scanpar) == 0);
CHK(bset.setbnd(par) == 0);
// get 1st column
NdbRecAttr* rec;
CHK(con.getValue((Uint32)0, rec) == 0);
CHK(con.executeScan() == 0);
unsigned count = 0;
while (1) {
int ret;
CHK((ret = con.nextScanResult(true)) == 0 || ret == 1);
if (ret == 1)
break;
count++;
}
con.closeTransaction();
CHK(count == countcheck);
return 0;
}
static int
scanreadindex(Par par, const ITab& itab)
{
const Tab& tab = par.tab();
for (unsigned i = 0; i < par.m_subsubloop; i++) {
BSet bset(tab, itab, par.m_rows);
bset.calc(par);
CHK(scanreadindex(par, itab, bset) == 0);
}
return 0;
}
static int
scanreadindex(Par par)
{
const Tab& tab = par.tab();
for (unsigned i = 0; i < tab.m_itabs; i++) {
if (! useindex(i))
continue;
const ITab& itab = tab.m_itab[i];
CHK(scanreadindex(par, itab) == 0);
}
return 0;
}
static int
scanreadall(Par par)
{
if (par.m_no < 11)
CHK(scanreadtable(par) == 0);
CHK(scanreadindex(par) == 0);
return 0;
}
// timing scans
static int
timescantable(Par par)
{
par.tmr().on();
CHK(scanreadtablefast(par, par.m_totrows) == 0);
par.tmr().off(par.set().m_rows);
return 0;
}
static int
timescanpkindex(Par par)
{
const Tab& tab = par.tab();
const ITab& itab = tab.m_itab[0]; // 1st index is on PK
BSet bset(tab, itab, par.m_rows);
par.tmr().on();
CHK(scanreadindexfast(par, itab, bset, par.m_totrows) == 0);
par.tmr().off(par.set().m_rows);
return 0;
}
static int
timepkreadtable(Par par)
{
par.tmr().on();
unsigned count = par.m_samples;
if (count == 0)
count = par.m_totrows;
CHK(pkreadfast(par, count) == 0);
par.tmr().off(count);
return 0;
}
static int
timepkreadindex(Par par)
{
const Tab& tab = par.tab();
const ITab& itab = tab.m_itab[0]; // 1st index is on PK
BSet bset(tab, itab, par.m_rows);
unsigned count = par.m_samples;
if (count == 0)
count = par.m_totrows;
par.tmr().on();
for (unsigned j = 0; j < count; j++) {
unsigned i = urandom(par.m_totrows);
bset.calcpk(par, i);
CHK(scanreadindexfast(par, itab, bset, 1) == 0);
}
par.tmr().off(count);
return 0;
}
// scan update
static int
scanupdatetable(Par par)
{
Con& con = par.con();
const Tab& tab = par.tab();
Set& set = par.set();
LL3("scan update " << tab.m_name);
Set set2(tab, set.m_rows);
CHK(con.startTransaction() == 0);
CHK(con.getNdbScanOperation(tab) == 0);
CHK(con.openScanExclusive(par.m_scanbat, par.m_scanpar) == 0);
set2.getval(par);
CHK(con.executeScan() == 0);
unsigned count = 0;
// updating trans
Con con2;
con2.connect(con);
CHK(con2.startTransaction() == 0);
Lst lst;
bool deadlock = false;
while (1) {
int ret;
deadlock = par.m_deadlock;
CHK((ret = con.nextScanResult(true, deadlock)) == 0 || ret == 1);
if (ret == 1)
break;
if (deadlock) {
LL1("scanupdatetable: stop on deadlock");
break;
}
if (par.m_scanstop != 0 && urandom(par.m_scanstop) == 0) {
con.closeScan();
break;
}
do {
unsigned i = (unsigned)-1;
CHK(set2.getkey(par, &i) == 0);
const Row& row = *set.m_row[i];
set.lock();
if (! set.exist(i) || set.pending(i)) {
LL4("scan update " << tab.m_name << ": skip: " << row);
} else {
CHKTRY(set2.putval(i, false) == 0, set.unlock());
CHKTRY(con.updateScanTuple(con2) == 0, set.unlock());
Par par2 = par;
par2.m_con = &con2;
set.calc(par, i);
CHKTRY(set.setrow(par2, i) == 0, set.unlock());
LL4("scan update " << tab.m_name << ": " << row);
lst.push(i);
}
set.unlock();
if (lst.cnt() == par.m_batch) {
CHK(con2.execute(Commit) == 0);
con2.closeTransaction();
set.lock();
set.notpending(lst);
set.unlock();
count += lst.cnt();
lst.reset();
CHK(con2.startTransaction() == 0);
}
CHK((ret = con.nextScanResult(false)) == 0 || ret == 1 || ret == 2);
if (ret == 2 && lst.cnt() != 0) {
CHK(con2.execute(Commit) == 0);
con2.closeTransaction();
set.lock();
set.notpending(lst);
set.unlock();
count += lst.cnt();
lst.reset();
CHK(con2.startTransaction() == 0);
}
} while (ret == 0);
if (ret == 1)
break;
}
con2.closeTransaction();
LL3("scan update " << tab.m_name << " rows updated=" << count);
con.closeTransaction();
return 0;
}
static int
scanupdateindex(Par par, const ITab& itab, const BSet& bset)
{
Con& con = par.con();
const Tab& tab = par.tab();
Set& set = par.set();
LL3("scan update " << itab.m_name);
Set set2(tab, set.m_rows);
CHK(con.startTransaction() == 0);
CHK(con.getNdbScanOperation(itab, tab) == 0);
CHK(con.openScanExclusive(par.m_scanbat, par.m_scanpar) == 0);
CHK(bset.setbnd(par) == 0);
set2.getval(par);
CHK(con.executeScan() == 0);
unsigned count = 0;
// updating trans
Con con2;
con2.connect(con);
CHK(con2.startTransaction() == 0);
Lst lst;
bool deadlock = false;
while (1) {
int ret;
deadlock = par.m_deadlock;
CHK((ret = con.nextScanResult(true, deadlock)) == 0 || ret == 1);
if (ret == 1)
break;
if (deadlock) {
LL1("scanupdateindex: stop on deadlock");
break;
}
if (par.m_scanstop != 0 && urandom(par.m_scanstop) == 0) {
con.closeScan();
break;
}
do {
unsigned i = (unsigned)-1;
CHK(set2.getkey(par, &i) == 0);
const Row& row = *set.m_row[i];
set.lock();
if (! set.exist(i) || set.pending(i)) {
LL4("scan update " << itab.m_name << ": skip: " << row);
} else {
CHKTRY(set2.putval(i, par.m_dups) == 0, set.unlock());
CHKTRY(con.updateScanTuple(con2) == 0, set.unlock());
Par par2 = par;
par2.m_con = &con2;
set.calc(par, i);
CHKTRY(set.setrow(par2, i) == 0, set.unlock());
LL4("scan update " << itab.m_name << ": " << row);
lst.push(i);
}
set.unlock();
if (lst.cnt() == par.m_batch) {
CHK(con2.execute(Commit) == 0);
con2.closeTransaction();
set.lock();
set.notpending(lst);
set.unlock();
count += lst.cnt();
lst.reset();
CHK(con2.startTransaction() == 0);
}
CHK((ret = con.nextScanResult(false)) == 0 || ret == 1 || ret == 2);
if (ret == 2 && lst.cnt() != 0) {
CHK(con2.execute(Commit) == 0);
con2.closeTransaction();
set.lock();
set.notpending(lst);
set.unlock();
count += lst.cnt();
lst.reset();
CHK(con2.startTransaction() == 0);
}
} while (ret == 0);
}
con2.closeTransaction();
LL3("scan update " << itab.m_name << " rows updated=" << count);
con.closeTransaction();
return 0;
}
static int
scanupdateindex(Par par, const ITab& itab)
{
const Tab& tab = par.tab();
for (unsigned i = 0; i < par.m_subsubloop; i++) {
BSet bset(tab, itab, par.m_rows);
bset.calc(par);
CHK(scanupdateindex(par, itab, bset) == 0);
}
return 0;
}
static int
scanupdateindex(Par par)
{
const Tab& tab = par.tab();
for (unsigned i = 0; i < tab.m_itabs; i++) {
if (! useindex(i))
continue;
const ITab& itab = tab.m_itab[i];
CHK(scanupdateindex(par, itab) == 0);
}
return 0;
}
static int
scanupdateall(Par par)
{
CHK(scanupdatetable(par) == 0);
CHK(scanupdateindex(par) == 0);
return 0;
}
// medium level routines
static int
readverify(Par par)
{
if (par.m_noverify)
return 0;
par.m_verify = true;
if (par.m_abortpct != 0) {
LL2("skip verify in this version"); // implement in 5.0 version
par.m_verify = false;
}
CHK(pkread(par) == 0);
CHK(scanreadall(par) == 0);
return 0;
}
static int
readverifyfull(Par par)
{
if (par.m_noverify)
return 0;
par.m_verify = true;
if (par.m_no == 0)
CHK(scanreadtable(par) == 0);
else {
const Tab& tab = par.tab();
unsigned i = par.m_no;
if (i <= tab.m_itabs && useindex(i)) {
const ITab& itab = tab.m_itab[i - 1];
BSet bset(tab, itab, par.m_rows);
CHK(scanreadindex(par, itab, bset) == 0);
}
}
return 0;
}
static int
pkops(Par par)
{
par.m_randomkey = true;
for (unsigned i = 0; i < par.m_subsubloop; i++) {
unsigned sel = urandom(10);
if (par.m_slno % 2 == 0) {
// favor insert
if (sel < 8) {
CHK(pkinsert(par) == 0);
} else if (sel < 9) {
CHK(pkupdate(par) == 0);
} else {
CHK(pkdelete(par) == 0);
}
} else {
// favor delete
if (sel < 1) {
CHK(pkinsert(par) == 0);
} else if (sel < 2) {
CHK(pkupdate(par) == 0);
} else {
CHK(pkdelete(par) == 0);
}
}
}
return 0;
}
static int
pkupdatescanread(Par par)
{
par.m_dups = true;
unsigned sel = urandom(10);
if (sel < 5) {
CHK(pkupdate(par) == 0);
} else if (sel < 6) {
par.m_verify = false;
CHK(scanreadtable(par) == 0);
} else {
par.m_verify = false;
CHK(scanreadindex(par) == 0);
}
return 0;
}
static int
mixedoperations(Par par)
{
par.m_dups = true;
par.m_deadlock = true;
par.m_scanstop = par.m_totrows; // randomly close scans
unsigned sel = urandom(10);
if (sel < 2) {
CHK(pkdelete(par) == 0);
} else if (sel < 4) {
CHK(pkupdate(par) == 0);
} else if (sel < 6) {
CHK(scanupdatetable(par) == 0);
} else {
CHK(scanupdateindex(par) == 0);
}
return 0;
}
static int
pkupdateindexbuild(Par par)
{
if (par.m_no == 0) {
CHK(createindex(par) == 0);
} else {
par.m_randomkey = true;
CHK(pkupdate(par) == 0);
}
return 0;
}
// threads
typedef int (*TFunc)(Par par);
enum TMode { ST = 1, MT = 2 };
extern "C" { static void* runthread(void* arg); }
struct Thr {
enum State { Wait, Start, Stop, Stopped, Exit };
State m_state;
Par m_par;
Uint64 m_id;
NdbThread* m_thread;
NdbMutex* m_mutex;
NdbCondition* m_cond;
TFunc m_func;
int m_ret;
void* m_status;
Thr(Par par, unsigned n);
~Thr();
int run();
void start();
void stop();
void stopped();
void exit();
//
void lock() {
NdbMutex_Lock(m_mutex);
}
void unlock() {
NdbMutex_Unlock(m_mutex);
}
void wait() {
NdbCondition_Wait(m_cond, m_mutex);
}
void signal() {
NdbCondition_Signal(m_cond);
}
void join() {
NdbThread_WaitFor(m_thread, &m_status);
m_thread = 0;
}
};
Thr::Thr(Par par, unsigned n) :
m_state(Wait),
m_par(par),
m_id(0),
m_thread(0),
m_mutex(0),
m_cond(0),
m_func(0),
m_ret(0),
m_status(0)
{
m_par.m_no = n;
char buf[10];
sprintf(buf, "thr%03u", par.m_no);
const char* name = strcpy(new char[10], buf);
// mutex
m_mutex = NdbMutex_Create();
m_cond = NdbCondition_Create();
assert(m_mutex != 0 && m_cond != 0);
// run
const unsigned stacksize = 256 * 1024;
const NDB_THREAD_PRIO prio = NDB_THREAD_PRIO_LOW;
m_thread = NdbThread_Create(runthread, (void**)this, stacksize, name, prio);
}
Thr::~Thr()
{
if (m_thread != 0) {
NdbThread_Destroy(&m_thread);
m_thread = 0;
}
if (m_cond != 0) {
NdbCondition_Destroy(m_cond);
m_cond = 0;
}
if (m_mutex != 0) {
NdbMutex_Destroy(m_mutex);
m_mutex = 0;
}
}
static void*
runthread(void* arg)
{
Thr& thr = *(Thr*)arg;
thr.m_id = (Uint64)pthread_self();
if (thr.run() < 0) {
LL1("exit on error");
} else {
LL4("exit ok");
}
return 0;
}
int
Thr::run()
{
LL4("run");
Con con;
CHK(con.connect() == 0);
m_par.m_con = &con;
LL4("connected");
while (1) {
lock();
while (m_state != Start && m_state != Exit) {
LL4("wait");
wait();
}
if (m_state == Exit) {
LL4("exit");
unlock();
break;
}
LL4("start");
assert(m_state == Start);
m_ret = (*m_func)(m_par);
m_state = Stopped;
LL4("stop");
signal();
unlock();
CHK(m_ret == 0);
}
con.disconnect();
return 0;
}
void
Thr::start()
{
lock();
m_state = Start;
signal();
unlock();
}
void
Thr::stop()
{
lock();
m_state = Stop;
signal();
unlock();
}
void
Thr::stopped()
{
lock();
while (m_state != Stopped)
wait();
m_state = Wait;
unlock();
}
void
Thr::exit()
{
lock();
m_state = Exit;
signal();
unlock();
}
// test run
static Thr** g_thrlist = 0;
static unsigned
getthrno()
{
if (g_thrlist != 0) {
Uint64 id = (Uint64)pthread_self();
for (unsigned n = 0; n < g_opt.m_threads; n++) {
if (g_thrlist[n] != 0) {
const Thr& thr = *g_thrlist[n];
if (thr.m_id == id)
return thr.m_par.m_no;
}
}
}
return (unsigned)-1;
}
static int
runstep(Par par, const char* fname, TFunc func, unsigned mode)
{
LL2(fname);
const int threads = (mode & ST ? 1 : par.m_threads);
int n;
for (n = 0; n < threads; n++) {
LL4("start " << n);
Thr& thr = *g_thrlist[n];
Par oldpar = thr.m_par;
// update parameters
thr.m_par = par;
thr.m_par.m_no = oldpar.m_no;
thr.m_par.m_con = oldpar.m_con;
thr.m_func = func;
thr.start();
}
unsigned errs = 0;
for (n = threads - 1; n >= 0; n--) {
LL4("stop " << n);
Thr& thr = *g_thrlist[n];
thr.stopped();
if (thr.m_ret != 0)
errs++;
}
CHK(errs == 0);
return 0;
}
#define RUNSTEP(par, func, mode) CHK(runstep(par, #func, func, mode) == 0)
static int
tbuild(Par par)
{
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
if (par.m_slno % 2 == 0) {
RUNSTEP(par, createindex, ST);
RUNSTEP(par, invalidateindex, MT);
RUNSTEP(par, pkinsert, MT);
} else {
RUNSTEP(par, pkinsert, MT);
RUNSTEP(par, createindex, ST);
RUNSTEP(par, invalidateindex, MT);
}
RUNSTEP(par, pkupdate, MT);
RUNSTEP(par, readverifyfull, MT);
RUNSTEP(par, pkdelete, MT);
RUNSTEP(par, readverifyfull, MT);
RUNSTEP(par, dropindex, ST);
}
return 0;
}
static int
tpkops(Par par)
{
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
RUNSTEP(par, createindex, ST);
RUNSTEP(par, invalidateindex, MT);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, pkops, MT);
LL2("rows=" << par.set().count());
RUNSTEP(par, readverifyfull, MT);
}
return 0;
}
static int
tpkopsread(Par par)
{
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
RUNSTEP(par, pkinsert, MT);
RUNSTEP(par, createindex, ST);
RUNSTEP(par, invalidateindex, MT);
RUNSTEP(par, readverify, ST);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, pkupdatescanread, MT);
RUNSTEP(par, readverify, ST);
}
RUNSTEP(par, pkdelete, MT);
RUNSTEP(par, readverify, ST);
return 0;
}
static int
tmixedops(Par par)
{
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
RUNSTEP(par, pkinsert, MT);
RUNSTEP(par, createindex, ST);
RUNSTEP(par, invalidateindex, MT);
RUNSTEP(par, readverify, ST);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, mixedoperations, MT);
RUNSTEP(par, readverify, ST);
}
return 0;
}
static int
tbusybuild(Par par)
{
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
RUNSTEP(par, pkinsert, MT);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, pkupdateindexbuild, MT);
RUNSTEP(par, invalidateindex, MT);
RUNSTEP(par, readverify, ST);
RUNSTEP(par, dropindex, ST);
}
return 0;
}
static int
trollback(Par par)
{
par.m_abortpct = 50;
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
RUNSTEP(par, pkinsert, MT);
RUNSTEP(par, createindex, ST);
RUNSTEP(par, invalidateindex, MT);
RUNSTEP(par, readverify, ST);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, mixedoperations, MT);
RUNSTEP(par, readverify, ST);
}
return 0;
}
static int
ttimebuild(Par par)
{
Tmr t1;
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, pkinsert, MT);
t1.on();
RUNSTEP(par, createindex, ST);
t1.off(par.m_totrows);
RUNSTEP(par, invalidateindex, MT);
RUNSTEP(par, dropindex, ST);
}
LL1("build index - " << t1.time());
return 0;
}
static int
ttimemaint(Par par)
{
Tmr t1, t2;
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, pkinsert, MT);
t1.on();
RUNSTEP(par, pkupdate, MT);
t1.off(par.m_totrows);
RUNSTEP(par, createindex, ST);
RUNSTEP(par, invalidateindex, MT);
t2.on();
RUNSTEP(par, pkupdate, MT);
t2.off(par.m_totrows);
RUNSTEP(par, dropindex, ST);
}
LL1("update - " << t1.time());
LL1("update indexed - " << t2.time());
LL1("overhead - " << t2.over(t1));
return 0;
}
static int
ttimescan(Par par)
{
Tmr t1, t2;
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, pkinsert, MT);
RUNSTEP(par, createindex, ST);
par.m_tmr = &t1;
RUNSTEP(par, timescantable, ST);
par.m_tmr = &t2;
RUNSTEP(par, timescanpkindex, ST);
RUNSTEP(par, dropindex, ST);
}
LL1("full scan table - " << t1.time());
LL1("full scan PK index - " << t2.time());
LL1("overhead - " << t2.over(t1));
return 0;
}
static int
ttimepkread(Par par)
{
Tmr t1, t2;
RUNSTEP(par, droptable, ST);
RUNSTEP(par, createtable, ST);
RUNSTEP(par, invalidatetable, MT);
for (par.m_slno = 0; par.m_slno < par.m_subloop; par.m_slno++) {
RUNSTEP(par, pkinsert, MT);
RUNSTEP(par, createindex, ST);
par.m_tmr = &t1;
RUNSTEP(par, timepkreadtable, ST);
par.m_tmr = &t2;
RUNSTEP(par, timepkreadindex, ST);
RUNSTEP(par, dropindex, ST);
}
LL1("pk read table - " << t1.time());
LL1("pk read PK index - " << t2.time());
LL1("overhead - " << t2.over(t1));
return 0;
}
static int
tdrop(Par par)
{
RUNSTEP(par, droptable, ST);
return 0;
}
struct TCase {
const char* m_name;
TFunc m_func;
const char* m_desc;
TCase(const char* name, TFunc func, const char* desc) :
m_name(name),
m_func(func),
m_desc(desc) {
}
};
static const TCase
tcaselist[] = {
TCase("a", tbuild, "index build"),
// "b" in 5.0
TCase("c", tpkops, "pk operations"),
TCase("d", tpkopsread, "pk operations and scan reads"),
TCase("e", tmixedops, "pk operations and scan operations"),
TCase("f", tbusybuild, "pk operations and index build"),
TCase("g", trollback, "operations with random rollbacks"),
TCase("t", ttimebuild, "time index build"),
TCase("u", ttimemaint, "time index maintenance"),
TCase("v", ttimescan, "time full scan table vs index on pk"),
TCase("w", ttimepkread, "time pk read table vs index on pk"),
TCase("z", tdrop, "drop test tables")
};
static const unsigned
tcasecount = sizeof(tcaselist) / sizeof(tcaselist[0]);
static void
printcases()
{
ndbout << "test cases:" << endl;
for (unsigned i = 0; i < tcasecount; i++) {
const TCase& tcase = tcaselist[i];
ndbout << " " << tcase.m_name << " - " << tcase.m_desc << endl;
}
}
static void
printtables()
{
ndbout << "tables and indexes (X1 is on table PK):" << endl;
for (unsigned j = 0; j < tabcount; j++) {
const Tab& tab = tablist[j];
ndbout << " " << tab.m_name;
for (unsigned i = 0; i < tab.m_itabs; i++) {
const ITab& itab = tab.m_itab[i];
ndbout << " " << itab.m_name;
}
ndbout << endl;
}
}
static int
runtest(Par par)
{
LL1("start");
if (par.m_seed != 0)
srandom(par.m_seed);
assert(par.m_csname != 0);
CHARSET_INFO* cs;
CHK((cs = get_charset_by_name(par.m_csname, MYF(0))) != 0 || (cs = get_charset_by_csname(par.m_csname, MY_CS_PRIMARY, MYF(0))) != 0);
par.m_cs = cs;
Con con;
CHK(con.connect() == 0);
par.m_con = &con;
g_thrlist = new Thr* [par.m_threads];
unsigned n;
for (n = 0; n < par.m_threads; n++) {
g_thrlist[n] = 0;
}
for (n = 0; n < par.m_threads; n++) {
g_thrlist[n] = new Thr(par, n);
Thr& thr = *g_thrlist[n];
assert(thr.m_thread != 0);
}
for (par.m_lno = 0; par.m_loop == 0 || par.m_lno < par.m_loop; par.m_lno++) {
LL1("loop " << par.m_lno);
if (par.m_seed == 0)
srandom(par.m_lno);
for (unsigned i = 0; i < tcasecount; i++) {
const TCase& tcase = tcaselist[i];
if (par.m_case != 0 && strchr(par.m_case, tcase.m_name[0]) == 0)
continue;
LL1("case " << tcase.m_name << " - " << tcase.m_desc);
for (unsigned j = 0; j < tabcount; j++) {
if (! usetable(j))
continue;
const Tab& tab = tablist[j];
par.m_tab = &tab;
delete par.m_set;
par.m_set = new Set(tab, par.m_totrows);
LL1("table " << tab.m_name);
CHK(tcase.m_func(par) == 0);
}
}
}
for (n = 0; n < par.m_threads; n++) {
Thr& thr = *g_thrlist[n];
thr.exit();
}
for (n = 0; n < par.m_threads; n++) {
Thr& thr = *g_thrlist[n];
thr.join();
delete &thr;
}
delete [] g_thrlist;
g_thrlist = 0;
con.disconnect();
LL1("done");
return 0;
}
NDB_COMMAND(testOIBasic, "testOIBasic", "testOIBasic", "testOIBasic", 65535)
{
ndb_init();
if (ndbout_mutex == NULL)
ndbout_mutex= NdbMutex_Create();
while (++argv, --argc > 0) {
const char* arg = argv[0];
if (*arg != '-') {
ndbout << "testOIBasic: unknown argument " << arg;
goto usage;
}
if (strcmp(arg, "-batch") == 0) {
if (++argv, --argc > 0) {
g_opt.m_batch = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-bound") == 0) {
if (++argv, --argc > 0) {
const char* p = argv[0];
if (strlen(p) != 0 && strlen(p) == strspn(p, "01234")) {
g_opt.m_bound = strdup(p);
continue;
}
}
}
if (strcmp(arg, "-case") == 0) {
if (++argv, --argc > 0) {
g_opt.m_case = strdup(argv[0]);
continue;
}
}
if (strcmp(arg, "-core") == 0) {
g_opt.m_core = true;
continue;
}
if (strcmp(arg, "-csname") == 0) {
if (++argv, --argc > 0) {
g_opt.m_csname = strdup(argv[0]);
continue;
}
}
if (strcmp(arg, "-die") == 0) {
if (++argv, --argc > 0) {
g_opt.m_die = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-dups") == 0) {
g_opt.m_dups = true;
continue;
}
if (strcmp(arg, "-fragtype") == 0) {
if (++argv, --argc > 0) {
if (strcmp(argv[0], "single") == 0) {
g_opt.m_fragtype = NdbDictionary::Object::FragSingle;
continue;
}
if (strcmp(argv[0], "small") == 0) {
g_opt.m_fragtype = NdbDictionary::Object::FragAllSmall;
continue;
}
if (strcmp(argv[0], "medium") == 0) {
g_opt.m_fragtype = NdbDictionary::Object::FragAllMedium;
continue;
}
if (strcmp(argv[0], "large") == 0) {
g_opt.m_fragtype = NdbDictionary::Object::FragAllLarge;
continue;
}
}
}
if (strcmp(arg, "-index") == 0) {
if (++argv, --argc > 0) {
g_opt.m_index = strdup(argv[0]);
continue;
}
}
if (strcmp(arg, "-loop") == 0) {
if (++argv, --argc > 0) {
g_opt.m_loop = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-nologging") == 0) {
g_opt.m_nologging = true;
continue;
}
if (strcmp(arg, "-noverify") == 0) {
g_opt.m_noverify = true;
continue;
}
if (strcmp(arg, "-pctnull") == 0) {
if (++argv, --argc > 0) {
g_opt.m_pctnull = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-rows") == 0) {
if (++argv, --argc > 0) {
g_opt.m_rows = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-samples") == 0) {
if (++argv, --argc > 0) {
g_opt.m_samples = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-scanbat") == 0) {
if (++argv, --argc > 0) {
g_opt.m_scanbat = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-scanpar") == 0) {
if (++argv, --argc > 0) {
g_opt.m_scanpar = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-seed") == 0) {
if (++argv, --argc > 0) {
g_opt.m_seed = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-subloop") == 0) {
if (++argv, --argc > 0) {
g_opt.m_subloop = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-table") == 0) {
if (++argv, --argc > 0) {
g_opt.m_table = strdup(argv[0]);
continue;
}
}
if (strcmp(arg, "-threads") == 0) {
if (++argv, --argc > 0) {
g_opt.m_threads = atoi(argv[0]);
continue;
}
}
if (strcmp(arg, "-v") == 0) {
if (++argv, --argc > 0) {
g_opt.m_v = atoi(argv[0]);
continue;
}
}
if (strncmp(arg, "-v", 2) == 0 && isdigit(arg[2])) {
g_opt.m_v = atoi(&arg[2]);
continue;
}
if (strcmp(arg, "-h") == 0 || strcmp(arg, "-help") == 0) {
printhelp();
goto wrongargs;
}
ndbout << "testOIBasic: unknown option " << arg;
goto usage;
}
{
Par par(g_opt);
g_ncc = new Ndb_cluster_connection();
if (g_ncc->connect(30) != 0 || runtest(par) < 0)
goto failed;
delete g_ncc;
g_ncc = 0;
}
// always exit with NDBT code
ok:
return NDBT_ProgramExit(NDBT_OK);
failed:
return NDBT_ProgramExit(NDBT_FAILED);
usage:
ndbout << " (use -h for help)" << endl;
wrongargs:
return NDBT_ProgramExit(NDBT_WRONGARGS);
}
// vim: set sw=2 et: