mariadb/sql/sp_head.cc
unknown 346694bddf Merge mysql.com:/home/dlenev/src/mysql-5.0-merges
into  mysql.com:/home/dlenev/src/mysql-5.1-merges


mysql-test/r/view.result:
  Auto merged
mysql-test/t/view.test:
  Auto merged
sql/sp.cc:
  Auto merged
sql/sp_head.cc:
  Auto merged
sql/sp_head.h:
  Auto merged
sql/sql_base.cc:
  Auto merged
sql/sql_parse.cc:
  Auto merged
tests/mysql_client_test.c:
  Auto merged
2005-12-12 14:59:14 +03:00

3360 lines
84 KiB
C++

/* Copyright (C) 2002 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "mysql_priv.h"
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation
#endif
#include "sp_head.h"
#include "sp.h"
#include "sp_pcontext.h"
#include "sp_rcontext.h"
#include "sp_cache.h"
Item_result
sp_map_result_type(enum enum_field_types type)
{
switch (type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_INT24:
return INT_RESULT;
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
return DECIMAL_RESULT;
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
return REAL_RESULT;
default:
return STRING_RESULT;
}
}
Item::Type
sp_map_item_type(enum enum_field_types type)
{
switch (type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_INT24:
return Item::INT_ITEM;
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
return Item::DECIMAL_ITEM;
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
return Item::REAL_ITEM;
default:
return Item::STRING_ITEM;
}
}
/*
Return a string representation of the Item value.
NOTE: this is a legacy-compatible implementation. It fails if the value
contains non-ordinary symbols, which should be escaped.
SYNOPSIS
item a pointer to the Item
str string buffer for representation of the value
RETURN
NULL on error
a pointer to valid a valid string on success
*/
static String *
sp_get_item_value(Item *item, String *str)
{
Item_result result_type= item->result_type();
switch (item->result_type()) {
case REAL_RESULT:
case INT_RESULT:
case DECIMAL_RESULT:
return item->val_str(str);
case STRING_RESULT:
{
char buf_holder[STRING_BUFFER_USUAL_SIZE];
String buf(buf_holder, sizeof(buf_holder), &my_charset_latin1);
String *result= item->val_str(str);
if (!result)
return NULL;
buf.append('_');
buf.append(result->charset()->csname);
buf.append('\'');
buf.append(*result);
buf.append('\'');
str->copy(buf);
return str;
}
case ROW_RESULT:
default:
return NULL;
}
}
/*
SYNOPSIS
sp_get_flags_for_command()
DESCRIPTION
Returns a combination of:
* sp_head::MULTI_RESULTS: added if the 'cmd' is a command that might
result in multiple result sets being sent back.
* sp_head::CONTAINS_DYNAMIC_SQL: added if 'cmd' is one of PREPARE,
EXECUTE, DEALLOCATE.
*/
uint
sp_get_flags_for_command(LEX *lex)
{
uint flags;
switch (lex->sql_command) {
case SQLCOM_SELECT:
if (lex->result)
{
flags= 0; /* This is a SELECT with INTO clause */
break;
}
/* fallthrough */
case SQLCOM_ANALYZE:
case SQLCOM_OPTIMIZE:
case SQLCOM_PRELOAD_KEYS:
case SQLCOM_ASSIGN_TO_KEYCACHE:
case SQLCOM_CHECKSUM:
case SQLCOM_CHECK:
case SQLCOM_HA_READ:
case SQLCOM_SHOW_BINLOGS:
case SQLCOM_SHOW_BINLOG_EVENTS:
case SQLCOM_SHOW_CHARSETS:
case SQLCOM_SHOW_COLLATIONS:
case SQLCOM_SHOW_COLUMN_TYPES:
case SQLCOM_SHOW_CREATE:
case SQLCOM_SHOW_CREATE_DB:
case SQLCOM_SHOW_CREATE_FUNC:
case SQLCOM_SHOW_CREATE_PROC:
case SQLCOM_SHOW_DATABASES:
case SQLCOM_SHOW_ERRORS:
case SQLCOM_SHOW_FIELDS:
case SQLCOM_SHOW_GRANTS:
case SQLCOM_SHOW_ENGINE_STATUS:
case SQLCOM_SHOW_ENGINE_LOGS:
case SQLCOM_SHOW_ENGINE_MUTEX:
case SQLCOM_SHOW_KEYS:
case SQLCOM_SHOW_MASTER_STAT:
case SQLCOM_SHOW_NEW_MASTER:
case SQLCOM_SHOW_OPEN_TABLES:
case SQLCOM_SHOW_PRIVILEGES:
case SQLCOM_SHOW_PROCESSLIST:
case SQLCOM_SHOW_SLAVE_HOSTS:
case SQLCOM_SHOW_SLAVE_STAT:
case SQLCOM_SHOW_STATUS:
case SQLCOM_SHOW_STATUS_FUNC:
case SQLCOM_SHOW_STATUS_PROC:
case SQLCOM_SHOW_STORAGE_ENGINES:
case SQLCOM_SHOW_TABLES:
case SQLCOM_SHOW_VARIABLES:
case SQLCOM_SHOW_WARNS:
case SQLCOM_SHOW_PROC_CODE:
case SQLCOM_SHOW_FUNC_CODE:
case SQLCOM_REPAIR:
case SQLCOM_BACKUP_TABLE:
case SQLCOM_RESTORE_TABLE:
flags= sp_head::MULTI_RESULTS;
break;
/*
EXECUTE statement may return a result set, but doesn't have to.
We can't, however, know it in advance, and therefore must add
this statement here. This is ok, as is equivalent to a result-set
statement within an IF condition.
*/
case SQLCOM_EXECUTE:
flags= sp_head::MULTI_RESULTS | sp_head::CONTAINS_DYNAMIC_SQL;
break;
case SQLCOM_PREPARE:
case SQLCOM_DEALLOCATE_PREPARE:
flags= sp_head::CONTAINS_DYNAMIC_SQL;
break;
case SQLCOM_CREATE_TABLE:
if (lex->create_info.options & HA_LEX_CREATE_TMP_TABLE)
flags= 0;
else
flags= sp_head::HAS_COMMIT_OR_ROLLBACK;
break;
case SQLCOM_DROP_TABLE:
if (lex->drop_temporary)
flags= 0;
else
flags= sp_head::HAS_COMMIT_OR_ROLLBACK;
break;
case SQLCOM_CREATE_INDEX:
case SQLCOM_CREATE_DB:
case SQLCOM_CREATE_VIEW:
case SQLCOM_CREATE_TRIGGER:
case SQLCOM_CREATE_USER:
case SQLCOM_ALTER_TABLE:
case SQLCOM_BEGIN:
case SQLCOM_RENAME_TABLE:
case SQLCOM_RENAME_USER:
case SQLCOM_DROP_INDEX:
case SQLCOM_DROP_DB:
case SQLCOM_DROP_USER:
case SQLCOM_DROP_VIEW:
case SQLCOM_DROP_TRIGGER:
case SQLCOM_TRUNCATE:
case SQLCOM_COMMIT:
case SQLCOM_ROLLBACK:
case SQLCOM_LOAD_MASTER_DATA:
case SQLCOM_LOCK_TABLES:
case SQLCOM_CREATE_PROCEDURE:
case SQLCOM_CREATE_SPFUNCTION:
case SQLCOM_ALTER_PROCEDURE:
case SQLCOM_ALTER_FUNCTION:
case SQLCOM_DROP_PROCEDURE:
case SQLCOM_DROP_FUNCTION:
flags= sp_head::HAS_COMMIT_OR_ROLLBACK;
break;
default:
flags= 0;
break;
}
return flags;
}
/*
Prepare an Item for evaluation (call of fix_fields).
SYNOPSIS
sp_prepare_func_item()
thd thread handler
it_addr pointer on item refernce
RETURN
NULL error
prepared item
*/
Item *
sp_prepare_func_item(THD* thd, Item **it_addr)
{
DBUG_ENTER("sp_prepare_func_item");
it_addr= (*it_addr)->this_item_addr(thd, it_addr);
if (!(*it_addr)->fixed &&
((*it_addr)->fix_fields(thd, it_addr) ||
(*it_addr)->check_cols(1)))
{
DBUG_PRINT("info", ("fix_fields() failed"));
DBUG_RETURN(NULL);
}
DBUG_RETURN(*it_addr);
}
/*
Evaluate an expression and store the result in the field.
SYNOPSIS
sp_eval_expr()
thd - current thread object
expr_item - the root item of the expression
result_field - the field to store the result
RETURN VALUES
FALSE on success
TRUE on error
*/
bool
sp_eval_expr(THD *thd, Field *result_field, Item *expr_item)
{
DBUG_ENTER("sp_eval_expr");
if (!expr_item)
DBUG_RETURN(TRUE);
if (!(expr_item= sp_prepare_func_item(thd, &expr_item)))
DBUG_RETURN(TRUE);
bool err_status= FALSE;
/*
Set THD flags to emit warnings/errors in case of overflow/type errors
during saving the item into the field.
Save original values and restore them after save.
*/
enum_check_fields save_count_cuted_fields= thd->count_cuted_fields;
bool save_abort_on_warning= thd->abort_on_warning;
bool save_no_trans_update= thd->no_trans_update;
thd->count_cuted_fields= CHECK_FIELD_ERROR_FOR_NULL;
thd->abort_on_warning=
thd->variables.sql_mode &
(MODE_STRICT_TRANS_TABLES | MODE_STRICT_ALL_TABLES);
thd->no_trans_update= 0;
/* Save the value in the field. Convert the value if needed. */
expr_item->save_in_field(result_field, 0);
thd->count_cuted_fields= save_count_cuted_fields;
thd->abort_on_warning= save_abort_on_warning;
thd->no_trans_update= save_no_trans_update;
if (thd->net.report_error)
{
/* Return error status if something went wrong. */
err_status= TRUE;
}
DBUG_RETURN(err_status);
}
/*
*
* sp_name
*
*/
void
sp_name::init_qname(THD *thd)
{
m_sroutines_key.length= m_db.length + m_name.length + 2;
if (!(m_sroutines_key.str= thd->alloc(m_sroutines_key.length + 1)))
return;
m_qname.length= m_sroutines_key.length - 1;
m_qname.str= m_sroutines_key.str + 1;
sprintf(m_qname.str, "%.*s.%.*s",
m_db.length, (m_db.length ? m_db.str : ""),
m_name.length, m_name.str);
}
sp_name *
sp_name_current_db_new(THD *thd, LEX_STRING name)
{
sp_name *qname;
if (! thd->db)
qname= new sp_name(name);
else
{
LEX_STRING db;
db.length= strlen(thd->db);
db.str= thd->strmake(thd->db, db.length);
qname= new sp_name(db, name);
}
qname->init_qname(thd);
return qname;
}
/* ------------------------------------------------------------------ */
/*
*
* sp_head
*
*/
void *
sp_head::operator new(size_t size)
{
DBUG_ENTER("sp_head::operator new");
MEM_ROOT own_root;
sp_head *sp;
init_alloc_root(&own_root, MEM_ROOT_BLOCK_SIZE, MEM_ROOT_PREALLOC);
sp= (sp_head *) alloc_root(&own_root, size);
sp->main_mem_root= own_root;
DBUG_PRINT("info", ("mem_root 0x%lx", (ulong) &sp->mem_root));
DBUG_RETURN(sp);
}
void
sp_head::operator delete(void *ptr, size_t size)
{
DBUG_ENTER("sp_head::operator delete");
MEM_ROOT own_root;
sp_head *sp= (sp_head *) ptr;
/* Make a copy of main_mem_root as free_root will free the sp */
own_root= sp->main_mem_root;
DBUG_PRINT("info", ("mem_root 0x%lx moved to 0x%lx",
(ulong) &sp->mem_root, (ulong) &own_root));
free_root(&own_root, MYF(0));
DBUG_VOID_RETURN;
}
sp_head::sp_head()
:Query_arena(&main_mem_root, INITIALIZED_FOR_SP),
m_flags(0), m_recursion_level(0), m_next_cached_sp(0),
m_first_instance(this), m_first_free_instance(this), m_last_cached_sp(this)
{
m_return_field_def.charset = NULL;
extern byte *
sp_table_key(const byte *ptr, uint *plen, my_bool first);
DBUG_ENTER("sp_head::sp_head");
m_backpatch.empty();
m_lex.empty();
hash_init(&m_sptabs, system_charset_info, 0, 0, 0, sp_table_key, 0, 0);
hash_init(&m_sroutines, system_charset_info, 0, 0, 0, sp_sroutine_key, 0, 0);
DBUG_VOID_RETURN;
}
void
sp_head::init(LEX *lex)
{
DBUG_ENTER("sp_head::init");
lex->spcont= m_pcont= new sp_pcontext(NULL);
/*
Altough trg_table_fields list is used only in triggers we init for all
types of stored procedures to simplify reset_lex()/restore_lex() code.
*/
lex->trg_table_fields.empty();
my_init_dynamic_array(&m_instr, sizeof(sp_instr *), 16, 8);
m_param_begin= m_param_end= m_body_begin= 0;
m_qname.str= m_db.str= m_name.str= m_params.str=
m_body.str= m_defstr.str= 0;
m_qname.length= m_db.length= m_name.length= m_params.length=
m_body.length= m_defstr.length= 0;
m_return_field_def.charset= NULL;
DBUG_VOID_RETURN;
}
void
sp_head::init_strings(THD *thd, LEX *lex, sp_name *name)
{
DBUG_ENTER("sp_head::init_strings");
const uchar *endp; /* Used to trim the end */
/* During parsing, we must use thd->mem_root */
MEM_ROOT *root= thd->mem_root;
/* We have to copy strings to get them into the right memroot */
if (name)
{
m_db.length= name->m_db.length;
if (name->m_db.length == 0)
m_db.str= NULL;
else
m_db.str= strmake_root(root, name->m_db.str, name->m_db.length);
m_name.length= name->m_name.length;
m_name.str= strmake_root(root, name->m_name.str, name->m_name.length);
if (name->m_qname.length == 0)
name->init_qname(thd);
m_qname.length= name->m_qname.length;
m_qname.str= strmake_root(root, name->m_qname.str, m_qname.length);
}
else if (thd->db)
{
m_db.length= thd->db_length;
m_db.str= strmake_root(root, thd->db, m_db.length);
}
if (m_param_begin && m_param_end)
{
m_params.length= m_param_end - m_param_begin;
m_params.str= strmake_root(root,
(char *)m_param_begin, m_params.length);
}
/* If ptr has overrun end_of_query then end_of_query is the end */
endp= (lex->ptr > lex->end_of_query ? lex->end_of_query : lex->ptr);
/*
Trim "garbage" at the end. This is sometimes needed with the
"/ * ! VERSION... * /" wrapper in dump files.
*/
while (m_body_begin < endp &&
(endp[-1] <= ' ' || endp[-1] == '*' ||
endp[-1] == '/' || endp[-1] == ';'))
endp-= 1;
m_body.length= endp - m_body_begin;
m_body.str= strmake_root(root, (char *)m_body_begin, m_body.length);
m_defstr.length= endp - lex->buf;
m_defstr.str= strmake_root(root, (char *)lex->buf, m_defstr.length);
DBUG_VOID_RETURN;
}
static TYPELIB *
create_typelib(MEM_ROOT *mem_root, create_field *field_def, List<String> *src)
{
TYPELIB *result= NULL;
CHARSET_INFO *cs= field_def->charset;
DBUG_ENTER("create_typelib");
if (src->elements)
{
result= (TYPELIB*) alloc_root(mem_root, sizeof(TYPELIB));
result->count= src->elements;
result->name= "";
if (!(result->type_names=(const char **)
alloc_root(mem_root,(sizeof(char *)+sizeof(int))*(result->count+1))))
return 0;
result->type_lengths= (unsigned int *)(result->type_names + result->count+1);
List_iterator<String> it(*src);
String conv;
for (uint i=0; i < result->count; i++)
{
uint32 dummy;
uint length;
String *tmp= it++;
if (String::needs_conversion(tmp->length(), tmp->charset(),
cs, &dummy))
{
uint cnv_errs;
conv.copy(tmp->ptr(), tmp->length(), tmp->charset(), cs, &cnv_errs);
length= conv.length();
result->type_names[i]= (char*) strmake_root(mem_root, conv.ptr(),
length);
}
else
{
length= tmp->length();
result->type_names[i]= strmake_root(mem_root, tmp->ptr(), length);
}
// Strip trailing spaces.
length= cs->cset->lengthsp(cs, result->type_names[i], length);
result->type_lengths[i]= length;
((uchar *)result->type_names[i])[length]= '\0';
}
result->type_names[result->count]= 0;
result->type_lengths[result->count]= 0;
}
return result;
}
int
sp_head::create(THD *thd)
{
DBUG_ENTER("sp_head::create");
int ret;
DBUG_PRINT("info", ("type: %d name: %s params: %s body: %s",
m_type, m_name.str, m_params.str, m_body.str));
#ifndef DBUG_OFF
optimize();
{
String s;
sp_instr *i;
uint ip= 0;
while ((i = get_instr(ip)))
{
char buf[8];
sprintf(buf, "%4u: ", ip);
s.append(buf);
i->print(&s);
s.append('\n');
ip+= 1;
}
s.append('\0');
DBUG_PRINT("info", ("Code %s\n%s", m_qname.str, s.ptr()));
}
#endif
if (m_type == TYPE_ENUM_FUNCTION)
ret= sp_create_function(thd, this);
else
ret= sp_create_procedure(thd, this);
DBUG_RETURN(ret);
}
sp_head::~sp_head()
{
destroy();
delete m_next_cached_sp;
if (m_thd)
restore_thd_mem_root(m_thd);
}
void
sp_head::destroy()
{
sp_instr *i;
LEX *lex;
DBUG_ENTER("sp_head::destroy");
DBUG_PRINT("info", ("name: %s", m_name.str));
for (uint ip = 0 ; (i = get_instr(ip)) ; ip++)
delete i;
delete_dynamic(&m_instr);
m_pcont->destroy();
free_items();
/*
If we have non-empty LEX stack then we just came out of parser with
error. Now we should delete all auxilary LEXes and restore original
THD::lex (In this case sp_head::restore_thd_mem_root() was not called
too, so m_thd points to the current thread context).
It is safe to not update LEX::ptr because further query string parsing
and execution will be stopped anyway.
*/
DBUG_ASSERT(m_lex.is_empty() || m_thd);
while ((lex= (LEX *)m_lex.pop()))
{
delete m_thd->lex;
m_thd->lex= lex;
}
hash_free(&m_sptabs);
hash_free(&m_sroutines);
DBUG_VOID_RETURN;
}
/*
This is only used for result fields from functions (both during
fix_length_and_dec() and evaluation).
*/
Field *
sp_head::create_result_field(uint field_max_length, const char *field_name,
TABLE *table)
{
uint field_length;
Field *field;
DBUG_ENTER("sp_head::create_result_field");
field_length= !m_return_field_def.length ?
field_max_length : m_return_field_def.length;
field= ::make_field(table->s, /* TABLE_SHARE ptr */
(char*) 0, /* field ptr */
field_length, /* field [max] length */
(uchar*) "", /* null ptr */
0, /* null bit */
m_return_field_def.pack_flag,
m_return_field_def.sql_type,
m_return_field_def.charset,
m_return_field_def.geom_type,
Field::NONE, /* unreg check */
m_return_field_def.interval,
field_name ? field_name : (const char *) m_name.str);
if (field)
field->init(table);
DBUG_RETURN(field);
}
int cmp_splocal_locations(Item_splocal * const *a, Item_splocal * const *b)
{
return (int)((*a)->pos_in_query - (*b)->pos_in_query);
}
/*
StoredRoutinesBinlogging
Top-down overview:
1. Statements
Statements that have is_update_query(stmt) == TRUE are written into the
binary log verbatim.
Examples:
UPDATE tbl SET tbl.x = spfunc_w_side_effects()
UPDATE tbl SET tbl.x=1 WHERE spfunc_w_side_effect_that_returns_false(tbl.y)
Statements that have is_update_query(stmt) == FALSE (e.g. SELECTs) are not
written into binary log. Instead we catch function calls the statement
makes and write it into binary log separately (see #3).
We actually can easily write SELECT statements into the binary log in the
right order (we don't have issues with const tables being unlocked early
because SELECTs that use FUNCTIONs unlock all tables at once) We don't do
it because replication slave thread currently can't execute SELECT
statements. Fixing this is on the TODO.
2. PROCEDURE calls
CALL statements are not written into binary log. Instead
* Any FUNCTION invocation (in SET, IF, WHILE, OPEN CURSOR and other SP
instructions) is written into binlog separately.
* Each statement executed in SP is binlogged separately, according to rules
in #1, with the exception that we modify query string: we replace uses
of SP local variables with NAME_CONST('spvar_name', <spvar-value>) calls.
This substitution is done in subst_spvars().
3. FUNCTION calls
In sp_head::execute_function(), we check
* If this function invocation is done from a statement that is written
into the binary log.
* If there were any attempts to write events to the binary log during
function execution (grep for start_union_events and stop_union_events)
If the answers are No and Yes, we write the function call into the binary
log as "DO spfunc(<param1value>, <param2value>, ...)"
4. Miscellaneous issues.
4.1 User variables.
When we call mysql_bin_log.write() for an SP statement, thd->user_var_events
must hold set<{var_name, value}> pairs for all user variables used during
the statement execution.
This set is produced by tracking user variable reads during statement
execution.
Fo SPs, this has the following implications:
1) thd->user_var_events may contain events from several SP statements and
needs to be valid after exection of these statements was finished. In
order to achieve that, we
* Allocate user_var_events array elements on appropriate mem_root (grep
for user_var_events_alloc).
* Use is_query_in_union() to determine if user_var_event is created.
2) We need to empty thd->user_var_events after we have wrote a function
call. This is currently done by making
reset_dynamic(&thd->user_var_events);
calls in several different places. (TODO cosider moving this into
mysql_bin_log.write() function)
*/
/*
Replace thd->query{_length} with a string that one can write to the binlog.
SYNOPSIS
subst_spvars()
thd Current thread.
instr Instruction (we look for Item_splocal instances in
instr->free_list)
query_str Original query string
DESCRIPTION
The binlog-suitable string is produced by replacing references to SP local
variables with NAME_CONST('sp_var_name', value) calls.
RETURN
FALSE on success
thd->query{_length} either has been appropriately replaced or there
is no need for replacements.
TRUE out of memory error.
*/
static bool
subst_spvars(THD *thd, sp_instr *instr, LEX_STRING *query_str)
{
DBUG_ENTER("subst_spvars");
if (thd->prelocked_mode == NON_PRELOCKED && mysql_bin_log.is_open())
{
Dynamic_array<Item_splocal*> sp_vars_uses;
char *pbuf, *cur, buffer[512];
String qbuf(buffer, sizeof(buffer), &my_charset_bin);
int prev_pos, res;
/* Find all instances of Item_splocal used in this statement */
for (Item *item= instr->free_list; item; item= item->next)
{
if (item->is_splocal())
{
Item_splocal *item_spl= (Item_splocal*)item;
if (item_spl->pos_in_query)
sp_vars_uses.append(item_spl);
}
}
if (!sp_vars_uses.elements())
DBUG_RETURN(FALSE);
/* Sort SP var refs by their occurences in the query */
sp_vars_uses.sort(cmp_splocal_locations);
/*
Construct a statement string where SP local var refs are replaced
with "NAME_CONST(name, value)"
*/
qbuf.length(0);
cur= query_str->str;
prev_pos= res= 0;
for (Item_splocal **splocal= sp_vars_uses.front();
splocal < sp_vars_uses.back(); splocal++)
{
Item *val;
char str_buffer[STRING_BUFFER_USUAL_SIZE];
String str_value_holder(str_buffer, sizeof(str_buffer),
&my_charset_latin1);
String *str_value;
/* append the text between sp ref occurences */
res|= qbuf.append(cur + prev_pos, (*splocal)->pos_in_query - prev_pos);
prev_pos= (*splocal)->pos_in_query + (*splocal)->m_name.length;
/* append the spvar substitute */
res|= qbuf.append(STRING_WITH_LEN(" NAME_CONST('"));
res|= qbuf.append((*splocal)->m_name.str, (*splocal)->m_name.length);
res|= qbuf.append(STRING_WITH_LEN("',"));
res|= (*splocal)->fix_fields(thd, (Item **) splocal);
if (res)
break;
val= (*splocal)->this_item();
DBUG_PRINT("info", ("print %p", val));
str_value= sp_get_item_value(val, &str_value_holder);
if (str_value)
res|= qbuf.append(*str_value);
else
res|= qbuf.append(STRING_WITH_LEN("NULL"));
res|= qbuf.append(')');
if (res)
break;
}
res|= qbuf.append(cur + prev_pos, query_str->length - prev_pos);
if (res)
DBUG_RETURN(TRUE);
if (!(pbuf= thd->strmake(qbuf.ptr(), qbuf.length())))
DBUG_RETURN(TRUE);
thd->query= pbuf;
thd->query_length= qbuf.length();
}
DBUG_RETURN(FALSE);
}
/*
Return appropriate error about recursion limit reaching
SYNOPSIS
sp_head::recursion_level_error()
NOTE
For functions and triggers we return error about prohibited recursion.
For stored procedures we return about reaching recursion limit.
*/
void sp_head::recursion_level_error()
{
if (m_type == TYPE_ENUM_PROCEDURE)
{
THD *thd= current_thd;
my_error(ER_SP_RECURSION_LIMIT, MYF(0),
thd->variables.max_sp_recursion_depth,
m_name);
}
else
my_error(ER_SP_NO_RECURSION, MYF(0));
}
/*
Execute the routine. The main instruction jump loop is there
Assume the parameters already set.
RETURN
FALSE on success
TRUE on error
*/
bool
sp_head::execute(THD *thd)
{
DBUG_ENTER("sp_head::execute");
char olddb[128];
bool dbchanged;
sp_rcontext *ctx;
bool err_status= FALSE;
uint ip= 0;
ulong save_sql_mode;
Query_arena *old_arena;
/* per-instruction arena */
MEM_ROOT execute_mem_root;
Query_arena execute_arena(&execute_mem_root, INITIALIZED_FOR_SP),
backup_arena;
query_id_t old_query_id;
TABLE *old_derived_tables;
LEX *old_lex;
Item_change_list old_change_list;
String old_packet;
/* Use some extra margin for possible SP recursion and functions */
if (check_stack_overrun(thd, 8 * STACK_MIN_SIZE, (char*)&old_packet))
DBUG_RETURN(TRUE);
/* init per-instruction memroot */
init_alloc_root(&execute_mem_root, MEM_ROOT_BLOCK_SIZE, 0);
DBUG_ASSERT(!(m_flags & IS_INVOKED));
m_flags|= IS_INVOKED;
m_first_instance->m_first_free_instance= m_next_cached_sp;
DBUG_PRINT("info", ("first free for 0x%lx ++: 0x%lx->0x%lx, level: %lu, flags %x",
(ulong)m_first_instance, this, m_next_cached_sp,
(m_next_cached_sp ?
m_next_cached_sp->m_recursion_level :
0),
(m_next_cached_sp ?
m_next_cached_sp->m_flags :
0)));
/*
Check that if there are not any instances after this one then
pointer to the last instance points on this instance or if there are
some instances after this one then recursion level of next instance
greater then recursion level of current instance on 1
*/
DBUG_ASSERT((m_next_cached_sp == 0 &&
m_first_instance->m_last_cached_sp == this) ||
(m_recursion_level + 1 == m_next_cached_sp->m_recursion_level));
dbchanged= FALSE;
if (m_db.length &&
(err_status= sp_use_new_db(thd, m_db.str, olddb, sizeof(olddb), 0,
&dbchanged)))
goto done;
if ((ctx= thd->spcont))
ctx->clear_handler();
thd->query_error= 0;
old_arena= thd->stmt_arena;
/*
We have to save/restore this info when we are changing call level to
be able properly do close_thread_tables() in instructions.
*/
old_query_id= thd->query_id;
old_derived_tables= thd->derived_tables;
thd->derived_tables= 0;
save_sql_mode= thd->variables.sql_mode;
thd->variables.sql_mode= m_sql_mode;
/*
It is also more efficient to save/restore current thd->lex once when
do it in each instruction
*/
old_lex= thd->lex;
/*
We should also save Item tree change list to avoid rollback something
too early in the calling query.
*/
old_change_list= thd->change_list;
thd->change_list.empty();
/*
Cursors will use thd->packet, so they may corrupt data which was prepared
for sending by upper level. OTOH cursors in the same routine can share this
buffer safely so let use use routine-local packet instead of having own
packet buffer for each cursor.
It is probably safe to use same thd->convert_buff everywhere.
*/
old_packet.swap(thd->packet);
/*
Switch to per-instruction arena here. We can do it since we cleanup
arena after every instruction.
*/
thd->set_n_backup_active_arena(&execute_arena, &backup_arena);
/*
Save callers arena in order to store instruction results and out
parameters in it later during sp_eval_func_item()
*/
thd->spcont->callers_arena= &backup_arena;
do
{
sp_instr *i;
uint hip; // Handler ip
i = get_instr(ip); // Returns NULL when we're done.
if (i == NULL)
break;
DBUG_PRINT("execute", ("Instruction %u", ip));
/* Don't change NOW() in FUNCTION or TRIGGER */
if (!thd->in_sub_stmt)
thd->set_time(); // Make current_time() et al work
/*
We have to set thd->stmt_arena before executing the instruction
to store in the instruction free_list all new items, created
during the first execution (for example expanding of '*' or the
items made during other permanent subquery transformations).
*/
thd->stmt_arena= i;
/*
Will write this SP statement into binlog separately
(TODO: consider changing the condition to "not inside event union")
*/
if (thd->prelocked_mode == NON_PRELOCKED)
thd->user_var_events_alloc= thd->mem_root;
err_status= i->execute(thd, &ip);
/*
If this SP instruction have sent eof, it has caused no_send_error to be
set. Clear it back to allow the next instruction to send error. (multi-
statement execution code clears no_send_error between statements too)
*/
thd->net.no_send_error= 0;
if (i->free_list)
cleanup_items(i->free_list);
i->state= Query_arena::EXECUTED;
/*
If we've set thd->user_var_events_alloc to mem_root of this SP
statement, clean all the events allocated in it.
*/
if (thd->prelocked_mode == NON_PRELOCKED)
{
reset_dynamic(&thd->user_var_events);
thd->user_var_events_alloc= NULL;//DEBUG
}
/* we should cleanup free_list and memroot, used by instruction */
thd->cleanup_after_query();
free_root(&execute_mem_root, MYF(0));
/*
Check if an exception has occurred and a handler has been found
Note: We have to check even if err_status == FALSE, since warnings (and
some errors) don't return a non-zero value. We also have to check even
if thd->killed != 0, since some errors return with this even when a
handler has been found (e.g. "bad data").
*/
if (ctx)
{
uint hf;
switch (ctx->found_handler(&hip, &hf)) {
case SP_HANDLER_NONE:
break;
case SP_HANDLER_CONTINUE:
thd->restore_active_arena(&execute_arena, &backup_arena);
thd->set_n_backup_active_arena(&execute_arena, &backup_arena);
ctx->push_hstack(ip);
// Fall through
default:
ip= hip;
err_status= FALSE;
ctx->clear_handler();
ctx->enter_handler(hip);
thd->clear_error();
thd->killed= THD::NOT_KILLED;
continue;
}
}
} while (!err_status && !thd->killed);
thd->restore_active_arena(&execute_arena, &backup_arena);
/* Restore all saved */
old_packet.swap(thd->packet);
DBUG_ASSERT(thd->change_list.is_empty());
thd->change_list= old_change_list;
/* To avoid wiping out thd->change_list on old_change_list destruction */
old_change_list.empty();
thd->lex= old_lex;
thd->query_id= old_query_id;
DBUG_ASSERT(!thd->derived_tables);
thd->derived_tables= old_derived_tables;
thd->variables.sql_mode= save_sql_mode;
thd->stmt_arena= old_arena;
state= EXECUTED;
done:
DBUG_PRINT("info", ("err_status=%d killed=%d query_error=%d",
err_status, thd->killed, thd->query_error));
if (thd->killed)
err_status= TRUE;
/* If the DB has changed, the pointer has changed too, but the
original thd->db will then have been freed */
if (dbchanged)
{
/*
No access check when changing back to where we came from.
(It would generate an error from mysql_change_db() when olddb=="")
*/
if (! thd->killed)
err_status|= mysql_change_db(thd, olddb, 1);
}
m_flags&= ~IS_INVOKED;
DBUG_PRINT("info", ("first free for 0x%lx --: 0x%lx->0x%lx, level: %lu, flags %x",
(ulong)m_first_instance,
m_first_instance->m_first_free_instance, this,
m_recursion_level, m_flags));
/*
Check that we have one of following:
1) there are not free instances which means that this instance is last
in the list of instances (pointer to the last instance point on it and
ther are not other instances after this one in the list)
2) There are some free instances which mean that first free instance
should go just after this one and recursion level of that free instance
should be on 1 more then recursion leven of this instance.
*/
DBUG_ASSERT((m_first_instance->m_first_free_instance == 0 &&
this == m_first_instance->m_last_cached_sp &&
m_next_cached_sp == 0) ||
(m_first_instance->m_first_free_instance != 0 &&
m_first_instance->m_first_free_instance == m_next_cached_sp &&
m_first_instance->m_first_free_instance->m_recursion_level ==
m_recursion_level + 1));
m_first_instance->m_first_free_instance= this;
DBUG_RETURN(err_status);
}
/*
Execute a function:
- evaluate parameters
- call sp_head::execute
- evaluate the return value
SYNOPSIS
sp_head::execute_function()
thd Thread handle
argp Passed arguments (these are items from containing
statement?)
argcount Number of passed arguments. We need to check if this is
correct.
return_value_fld Save result here.
RETURN
FALSE on success
TRUE on error
*/
bool
sp_head::execute_function(THD *thd, Item **argp, uint argcount,
Field *return_value_fld)
{
Item_cache **param_values;
ulonglong binlog_save_options;
bool need_binlog_call;
uint params;
sp_rcontext *octx = thd->spcont;
sp_rcontext *nctx = NULL;
bool err_status= FALSE;
DBUG_ENTER("sp_head::execute_function");
DBUG_PRINT("info", ("function %s", m_name.str));
params = m_pcont->context_pvars();
/*
Check that the function is called with all specified arguments.
If it is not, use my_error() to report an error, or it will not terminate
the invoking query properly.
*/
if (argcount != params)
{
/*
Need to use my_error here, or it will not terminate the
invoking query properly.
*/
my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0),
"FUNCTION", m_qname.str, params, argcount);
DBUG_RETURN(TRUE);
}
/* Allocate param_values to be used for dumping the call into binlog. */
if (!(param_values= (Item_cache**)thd->alloc(sizeof(Item_cache*)*argcount)))
DBUG_RETURN(TRUE);
// QQ Should have some error checking here? (types, etc...)
if (!(nctx= new sp_rcontext(m_pcont, return_value_fld, octx)) ||
nctx->init(thd))
{
delete nctx; /* Delete nctx if it was init() that failed. */
DBUG_RETURN(TRUE);
}
#ifndef DBUG_OFF
nctx->sp= this;
#endif
/* Pass arguments. */
{
uint i;
for (i= 0 ; i < argcount ; i++)
{
if (!argp[i]->fixed && argp[i]->fix_fields(thd, &argp[i]))
{
err_status= TRUE;
break;
}
param_values[i]= Item_cache::get_cache(argp[i]->result_type());
param_values[i]->store(argp[i]);
if (nctx->set_variable(thd, i, param_values[i]))
{
err_status= TRUE;
break;
}
}
}
if (err_status)
{
delete nctx;
DBUG_RETURN(TRUE);
}
thd->spcont= nctx;
binlog_save_options= thd->options;
need_binlog_call= mysql_bin_log.is_open() && (thd->options & OPTION_BIN_LOG);
if (need_binlog_call)
{
reset_dynamic(&thd->user_var_events);
mysql_bin_log.start_union_events(thd);
}
thd->options&= ~OPTION_BIN_LOG;
err_status= execute(thd);
thd->options= binlog_save_options;
if (need_binlog_call)
mysql_bin_log.stop_union_events(thd);
if (need_binlog_call && thd->binlog_evt_union.unioned_events)
{
char buf[256];
String bufstr(buf, sizeof(buf), &my_charset_bin);
bufstr.length(0);
bufstr.append(STRING_WITH_LEN("DO "));
append_identifier(thd, &bufstr, m_name.str, m_name.length);
bufstr.append('(');
for (uint i=0; i < argcount; i++)
{
String str_value_holder;
String *str_value;
if (i)
bufstr.append(',');
str_value= sp_get_item_value(param_values[i], &str_value_holder);
if (str_value)
bufstr.append(*str_value);
else
bufstr.append(STRING_WITH_LEN("NULL"));
}
bufstr.append(')');
Query_log_event qinfo(thd, bufstr.ptr(), bufstr.length(),
thd->binlog_evt_union.unioned_events_trans, FALSE);
if (mysql_bin_log.write(&qinfo) &&
thd->binlog_evt_union.unioned_events_trans)
{
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR,
"Invoked ROUTINE modified a transactional table but MySQL "
"failed to reflect this change in the binary log");
}
reset_dynamic(&thd->user_var_events);
}
if (m_type == TYPE_ENUM_FUNCTION && !err_status)
{
/* We need result only in function but not in trigger */
if (!nctx->is_return_value_set())
{
my_error(ER_SP_NORETURNEND, MYF(0), m_name.str);
err_status= TRUE;
}
}
nctx->pop_all_cursors(); // To avoid memory leaks after an error
delete nctx;
thd->spcont= octx;
DBUG_RETURN(err_status);
}
static Item_func_get_user_var *item_is_user_var(Item *it)
{
if (it->type() == Item::FUNC_ITEM)
{
Item_func *fi= static_cast<Item_func*>(it);
if (fi->functype() == Item_func::GUSERVAR_FUNC)
return static_cast<Item_func_get_user_var*>(fi);
}
return NULL;
}
/*
Execute a procedure.
SYNOPSIS
sp_head::execute_procedure()
thd Thread handle
args List of values passed as arguments.
DESCRIPTION
The function does the following steps:
- Set all parameters
- call sp_head::execute
- copy back values of INOUT and OUT parameters
RETURN
FALSE on success
TRUE on error
*/
bool
sp_head::execute_procedure(THD *thd, List<Item> *args)
{
bool err_status= FALSE;
uint params = m_pcont->context_pvars();
sp_rcontext *save_spcont, *octx;
sp_rcontext *nctx = NULL;
DBUG_ENTER("sp_head::execute_procedure");
DBUG_PRINT("info", ("procedure %s", m_name.str));
if (args->elements != params)
{
my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "PROCEDURE",
m_qname.str, params, args->elements);
DBUG_RETURN(TRUE);
}
save_spcont= octx= thd->spcont;
if (! octx)
{ // Create a temporary old context
if (!(octx= new sp_rcontext(m_pcont, NULL, octx)) ||
octx->init(thd))
{
delete octx; /* Delete octx if it was init() that failed. */
DBUG_RETURN(TRUE);
}
#ifndef DBUG_OFF
octx->sp= 0;
#endif
thd->spcont= octx;
/* set callers_arena to thd, for upper-level function to work */
thd->spcont->callers_arena= thd;
}
if (!(nctx= new sp_rcontext(m_pcont, NULL, octx)) ||
nctx->init(thd))
{
delete nctx; /* Delete nctx if it was init() that failed. */
thd->spcont= save_spcont;
DBUG_RETURN(TRUE);
}
#ifndef DBUG_OFF
nctx->sp= this;
#endif
if (params > 0)
{
List_iterator<Item> it_args(*args);
DBUG_PRINT("info",(" %.*s: eval args", m_name.length, m_name.str));
for (uint i= 0 ; i < params ; i++)
{
Item *arg_item= it_args++;
sp_pvar_t *pvar= m_pcont->find_pvar(i);
if (!arg_item)
break;
if (!pvar)
continue;
if (pvar->mode != sp_param_in)
{
if (!arg_item->is_splocal() && !item_is_user_var(arg_item))
{
my_error(ER_SP_NOT_VAR_ARG, MYF(0), i+1, m_qname.str);
err_status= TRUE;
break;
}
}
if (pvar->mode == sp_param_out)
{
Item_null *null_item= new Item_null();
if (!null_item ||
nctx->set_variable(thd, i, null_item))
{
err_status= TRUE;
break;
}
}
else
{
if (nctx->set_variable(thd, i, *it_args.ref()))
{
err_status= TRUE;
break;
}
}
}
/*
Okay, got values for all arguments. Close tables that might be used by
arguments evaluation. If arguments evaluation required prelocking mode,
we'll leave it here.
*/
if (!thd->in_sub_stmt)
close_thread_tables(thd, 0, 0);
DBUG_PRINT("info",(" %.*s: eval args done", m_name.length, m_name.str));
}
thd->spcont= nctx;
if (!err_status)
err_status= execute(thd);
/*
In the case when we weren't able to employ reuse mechanism for
OUT/INOUT paranmeters, we should reallocate memory. This
allocation should be done on the arena which will live through
all execution of calling routine.
*/
thd->spcont->callers_arena= octx->callers_arena;
if (!err_status && params > 0)
{
List_iterator<Item> it_args(*args);
/*
Copy back all OUT or INOUT values to the previous frame, or
set global user variables
*/
for (uint i= 0 ; i < params ; i++)
{
Item *arg_item= it_args++;
if (!arg_item)
break;
sp_pvar_t *pvar= m_pcont->find_pvar(i);
if (pvar->mode == sp_param_in)
continue;
if (arg_item->is_splocal())
{
if (octx->set_variable(thd,
((Item_splocal*) arg_item)->get_var_idx(),
nctx->get_item(i)))
{
err_status= TRUE;
break;
}
}
else
{
Item_func_get_user_var *guv= item_is_user_var(arg_item);
if (guv)
{
Item *item= nctx->get_item(i);
Item_func_set_user_var *suv;
suv= new Item_func_set_user_var(guv->get_name(), item);
/*
Item_func_set_user_var is not fixed after construction,
call fix_fields().
*/
if ((err_status= test(!suv || suv->fix_fields(thd, &item) ||
suv->check() || suv->update())))
break;
}
}
}
}
if (!save_spcont)
delete octx;
nctx->pop_all_cursors(); // To avoid memory leaks after an error
delete nctx;
thd->spcont= save_spcont;
DBUG_RETURN(err_status);
}
// Reset lex during parsing, before we parse a sub statement.
void
sp_head::reset_lex(THD *thd)
{
DBUG_ENTER("sp_head::reset_lex");
LEX *sublex;
LEX *oldlex= thd->lex;
my_lex_states state= oldlex->next_state; // Keep original next_state
(void)m_lex.push_front(oldlex);
thd->lex= sublex= new st_lex;
/* Reset most stuff. The length arguments doesn't matter here. */
lex_start(thd, oldlex->buf, (ulong) (oldlex->end_of_query - oldlex->ptr));
/*
* next_state is normally the same (0), but it happens that we swap lex in
* "mid-sentence", so we must restore it.
*/
sublex->next_state= state;
/* We must reset ptr and end_of_query again */
sublex->ptr= oldlex->ptr;
sublex->end_of_query= oldlex->end_of_query;
sublex->tok_start= oldlex->tok_start;
sublex->yylineno= oldlex->yylineno;
/* And keep the SP stuff too */
sublex->sphead= oldlex->sphead;
sublex->spcont= oldlex->spcont;
/* And trigger related stuff too */
sublex->trg_chistics= oldlex->trg_chistics;
sublex->trg_table_fields.empty();
sublex->sp_lex_in_use= FALSE;
/* Reset type info. */
sublex->charset= NULL;
sublex->length= NULL;
sublex->dec= NULL;
sublex->interval_list.empty();
sublex->type= 0;
DBUG_VOID_RETURN;
}
// Restore lex during parsing, after we have parsed a sub statement.
void
sp_head::restore_lex(THD *thd)
{
DBUG_ENTER("sp_head::restore_lex");
LEX *sublex= thd->lex;
LEX *oldlex= (LEX *)m_lex.pop();
if (! oldlex)
return; // Nothing to restore
// Update some state in the old one first
oldlex->ptr= sublex->ptr;
oldlex->next_state= sublex->next_state;
oldlex->trg_table_fields.push_back(&sublex->trg_table_fields);
/*
Add routines which are used by statement to respective set for
this routine.
*/
sp_update_sp_used_routines(&m_sroutines, &sublex->sroutines);
/*
Merge tables used by this statement (but not by its functions or
procedures) to multiset of tables used by this routine.
*/
merge_table_list(thd, sublex->query_tables, sublex);
if (! sublex->sp_lex_in_use)
delete sublex;
thd->lex= oldlex;
DBUG_VOID_RETURN;
}
void
sp_head::push_backpatch(sp_instr *i, sp_label_t *lab)
{
bp_t *bp= (bp_t *)sql_alloc(sizeof(bp_t));
if (bp)
{
bp->lab= lab;
bp->instr= i;
(void)m_backpatch.push_front(bp);
}
}
void
sp_head::backpatch(sp_label_t *lab)
{
bp_t *bp;
uint dest= instructions();
List_iterator_fast<bp_t> li(m_backpatch);
while ((bp= li++))
{
if (bp->lab == lab ||
(bp->lab->type == SP_LAB_REF &&
my_strcasecmp(system_charset_info, bp->lab->name, lab->name) == 0))
{
if (bp->lab->type != SP_LAB_REF)
bp->instr->backpatch(dest, lab->ctx);
else
{
sp_label_t *dstlab= bp->lab->ctx->find_label(lab->name);
if (dstlab)
{
bp->lab= lab;
bp->instr->backpatch(dest, dstlab->ctx);
}
}
}
}
}
int
sp_head::check_backpatch(THD *thd)
{
bp_t *bp;
List_iterator_fast<bp_t> li(m_backpatch);
while ((bp= li++))
{
if (bp->lab->type == SP_LAB_REF)
{
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "GOTO", bp->lab->name);
return -1;
}
}
return 0;
}
/*
Prepare an instance of create_field for field creation (fill all necessary
attributes).
SYNOPSIS
sp_head::fill_field_definition()
thd [IN] Thread handle
lex [IN] Yacc parsing context
field_type [IN] Field type
field_def [OUT] An instance of create_field to be filled
RETURN
FALSE on success
TRUE on error
*/
bool
sp_head::fill_field_definition(THD *thd, LEX *lex,
enum enum_field_types field_type,
create_field *field_def)
{
LEX_STRING cmt = { 0, 0 };
uint unused1= 0;
int unused2= 0;
if (field_def->init(thd, (char*) "", field_type, lex->length, lex->dec,
lex->type, (Item*) 0, (Item*) 0, &cmt, 0,
&lex->interval_list,
(lex->charset ? lex->charset : default_charset_info),
lex->uint_geom_type))
return TRUE;
if (field_def->interval_list.elements)
field_def->interval= create_typelib(mem_root, field_def,
&field_def->interval_list);
sp_prepare_create_field(thd, field_def);
if (prepare_create_field(field_def, &unused1, &unused2, &unused2,
HA_CAN_GEOMETRY))
{
return TRUE;
}
return FALSE;
}
void
sp_head::set_info(longlong created, longlong modified,
st_sp_chistics *chistics, ulong sql_mode)
{
m_created= created;
m_modified= modified;
m_chistics= (st_sp_chistics *) memdup_root(mem_root, (char*) chistics,
sizeof(*chistics));
if (m_chistics->comment.length == 0)
m_chistics->comment.str= 0;
else
m_chistics->comment.str= strmake_root(mem_root,
m_chistics->comment.str,
m_chistics->comment.length);
m_sql_mode= sql_mode;
}
void
sp_head::set_definer(char *definer, uint definerlen)
{
char *p= strrchr(definer, '@');
if (!p)
{
m_definer_user.str= strmake_root(mem_root, "", 0);
m_definer_user.length= 0;
m_definer_host.str= strmake_root(mem_root, "", 0);
m_definer_host.length= 0;
}
else
{
const uint user_name_len= p - definer;
const uint host_name_len= definerlen - user_name_len - 1;
m_definer_user.str= strmake_root(mem_root, definer, user_name_len);
m_definer_user.length= user_name_len;
m_definer_host.str= strmake_root(mem_root, p + 1, host_name_len);
m_definer_host.length= host_name_len;
}
}
void
sp_head::reset_thd_mem_root(THD *thd)
{
DBUG_ENTER("sp_head::reset_thd_mem_root");
m_thd_root= thd->mem_root;
thd->mem_root= &main_mem_root;
DBUG_PRINT("info", ("mem_root 0x%lx moved to thd mem root 0x%lx",
(ulong) &mem_root, (ulong) &thd->mem_root));
free_list= thd->free_list; // Keep the old list
thd->free_list= NULL; // Start a new one
/* Copy the db, since substatements will point to it */
m_thd_db= thd->db;
thd->db= thd->strmake(thd->db, thd->db_length);
m_thd= thd;
DBUG_VOID_RETURN;
}
void
sp_head::restore_thd_mem_root(THD *thd)
{
DBUG_ENTER("sp_head::restore_thd_mem_root");
Item *flist= free_list; // The old list
set_query_arena(thd); // Get new free_list and mem_root
state= INITIALIZED_FOR_SP;
DBUG_PRINT("info", ("mem_root 0x%lx returned from thd mem root 0x%lx",
(ulong) &mem_root, (ulong) &thd->mem_root));
thd->free_list= flist; // Restore the old one
thd->db= m_thd_db; // Restore the original db pointer
thd->mem_root= m_thd_root;
m_thd= NULL;
DBUG_VOID_RETURN;
}
/*
Check if a user has access right to a routine
SYNOPSIS
check_show_routine_access()
thd Thread handler
sp SP
full_access Set to 1 if the user has SELECT right to the
'mysql.proc' able or is the owner of the routine
RETURN
0 ok
1 error
*/
bool check_show_routine_access(THD *thd, sp_head *sp, bool *full_access)
{
TABLE_LIST tables;
bzero((char*) &tables,sizeof(tables));
tables.db= (char*) "mysql";
tables.table_name= tables.alias= (char*) "proc";
*full_access= (!check_table_access(thd, SELECT_ACL, &tables, 1) ||
(!strcmp(sp->m_definer_user.str,
thd->security_ctx->priv_user) &&
!strcmp(sp->m_definer_host.str,
thd->security_ctx->priv_host)));
if (!*full_access)
return check_some_routine_access(thd, sp->m_db.str, sp->m_name.str,
sp->m_type == TYPE_ENUM_PROCEDURE);
return 0;
}
int
sp_head::show_create_procedure(THD *thd)
{
Protocol *protocol= thd->protocol;
char buff[2048];
String buffer(buff, sizeof(buff), system_charset_info);
int res;
List<Item> field_list;
byte *sql_mode_str;
ulong sql_mode_len;
bool full_access;
DBUG_ENTER("sp_head::show_create_procedure");
DBUG_PRINT("info", ("procedure %s", m_name.str));
LINT_INIT(sql_mode_str);
LINT_INIT(sql_mode_len);
if (check_show_routine_access(thd, this, &full_access))
DBUG_RETURN(1);
sql_mode_str=
sys_var_thd_sql_mode::symbolic_mode_representation(thd,
m_sql_mode,
&sql_mode_len);
field_list.push_back(new Item_empty_string("Procedure", NAME_LEN));
field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len));
// 1024 is for not to confuse old clients
field_list.push_back(new Item_empty_string("Create Procedure",
max(buffer.length(), 1024)));
if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS |
Protocol::SEND_EOF))
DBUG_RETURN(1);
protocol->prepare_for_resend();
protocol->store(m_name.str, m_name.length, system_charset_info);
protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info);
if (full_access)
protocol->store(m_defstr.str, m_defstr.length, system_charset_info);
res= protocol->write();
send_eof(thd);
DBUG_RETURN(res);
}
/*
Add instruction to SP
SYNOPSIS
sp_head::add_instr()
instr Instruction
*/
void sp_head::add_instr(sp_instr *instr)
{
instr->free_list= m_thd->free_list;
m_thd->free_list= 0;
/*
Memory root of every instruction is designated for permanent
transformations (optimizations) made on the parsed tree during
the first execution. It points to the memory root of the
entire stored procedure, as their life span is equal.
*/
instr->mem_root= &main_mem_root;
insert_dynamic(&m_instr, (gptr)&instr);
}
int
sp_head::show_create_function(THD *thd)
{
Protocol *protocol= thd->protocol;
char buff[2048];
String buffer(buff, sizeof(buff), system_charset_info);
int res;
List<Item> field_list;
byte *sql_mode_str;
ulong sql_mode_len;
bool full_access;
DBUG_ENTER("sp_head::show_create_function");
DBUG_PRINT("info", ("procedure %s", m_name.str));
LINT_INIT(sql_mode_str);
LINT_INIT(sql_mode_len);
if (check_show_routine_access(thd, this, &full_access))
DBUG_RETURN(1);
sql_mode_str=
sys_var_thd_sql_mode::symbolic_mode_representation(thd,
m_sql_mode,
&sql_mode_len);
field_list.push_back(new Item_empty_string("Function",NAME_LEN));
field_list.push_back(new Item_empty_string("sql_mode", sql_mode_len));
field_list.push_back(new Item_empty_string("Create Function",
max(buffer.length(),1024)));
if (protocol->send_fields(&field_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
DBUG_RETURN(1);
protocol->prepare_for_resend();
protocol->store(m_name.str, m_name.length, system_charset_info);
protocol->store((char*) sql_mode_str, sql_mode_len, system_charset_info);
if (full_access)
protocol->store(m_defstr.str, m_defstr.length, system_charset_info);
res= protocol->write();
send_eof(thd);
DBUG_RETURN(res);
}
/*
TODO: what does this do??
*/
void sp_head::optimize()
{
List<sp_instr> bp;
sp_instr *i;
uint src, dst;
opt_mark(0);
bp.empty();
src= dst= 0;
while ((i= get_instr(src)))
{
if (! i->marked)
{
delete i;
src+= 1;
}
else
{
if (src != dst)
{
sp_instr *ibp;
List_iterator_fast<sp_instr> li(bp);
set_dynamic(&m_instr, (gptr)&i, dst);
while ((ibp= li++))
{
sp_instr_jump *ji= static_cast<sp_instr_jump *>(ibp);
if (ji->m_dest == src)
ji->m_dest= dst;
}
}
i->opt_move(dst, &bp);
src+= 1;
dst+= 1;
}
}
m_instr.elements= dst;
bp.empty();
}
void
sp_head::opt_mark(uint ip)
{
sp_instr *i;
while ((i= get_instr(ip)) && !i->marked)
ip= i->opt_mark(this);
}
#ifndef DBUG_OFF
int
sp_head::show_routine_code(THD *thd)
{
Protocol *protocol= thd->protocol;
char buff[2048];
String buffer(buff, sizeof(buff), system_charset_info);
List<Item> field_list;
sp_instr *i;
bool full_access;
int res= 0;
uint ip;
DBUG_ENTER("sp_head::show_routine_code");
DBUG_PRINT("info", ("procedure: %s", m_name.str));
if (check_show_routine_access(thd, this, &full_access) || !full_access)
DBUG_RETURN(1);
field_list.push_back(new Item_uint("Pos", 9));
// 1024 is for not to confuse old clients
field_list.push_back(new Item_empty_string("Instruction",
max(buffer.length(), 1024)));
if (protocol->send_fields(&field_list, Protocol::SEND_NUM_ROWS |
Protocol::SEND_EOF))
DBUG_RETURN(1);
for (ip= 0; (i = get_instr(ip)) ; ip++)
{
protocol->prepare_for_resend();
protocol->store((longlong)ip);
buffer.set("", 0, system_charset_info);
i->print(&buffer);
protocol->store(buffer.ptr(), buffer.length(), system_charset_info);
if ((res= protocol->write()))
break;
}
send_eof(thd);
DBUG_RETURN(res);
}
#endif // ifndef DBUG_OFF
/*
Prepare LEX and thread for execution of instruction, if requested open
and lock LEX's tables, execute instruction's core function, perform
cleanup afterwards.
SYNOPSIS
reset_lex_and_exec_core()
thd - thread context
nextp - out - next instruction
open_tables - if TRUE then check read access to tables in LEX's table
list and open and lock them (used in instructions which
need to calculate some expression and don't execute
complete statement).
sp_instr - instruction for which we prepare context, and which core
function execute by calling its exec_core() method.
NOTE
We are not saving/restoring some parts of THD which may need this because
we do this once for whole routine execution in sp_head::execute().
RETURN VALUE
0/non-0 - Success/Failure
*/
int
sp_lex_keeper::reset_lex_and_exec_core(THD *thd, uint *nextp,
bool open_tables, sp_instr* instr)
{
int res= 0;
DBUG_ASSERT(!thd->derived_tables);
DBUG_ASSERT(thd->change_list.is_empty());
/*
Use our own lex.
We should not save old value since it is saved/restored in
sp_head::execute() when we are entering/leaving routine.
*/
thd->lex= m_lex;
VOID(pthread_mutex_lock(&LOCK_thread_count));
thd->query_id= next_query_id();
VOID(pthread_mutex_unlock(&LOCK_thread_count));
if (thd->prelocked_mode == NON_PRELOCKED)
{
/*
This statement will enter/leave prelocked mode on its own.
Entering prelocked mode changes table list and related members
of LEX, so we'll need to restore them.
*/
if (lex_query_tables_own_last)
{
/*
We've already entered/left prelocked mode with this statement.
Attach the list of tables that need to be prelocked and mark m_lex
as having such list attached.
*/
*lex_query_tables_own_last= prelocking_tables;
m_lex->mark_as_requiring_prelocking(lex_query_tables_own_last);
}
}
reinit_stmt_before_use(thd, m_lex);
/*
If requested check whenever we have access to tables in LEX's table list
and open and lock them before executing instructtions core function.
*/
if (open_tables &&
(check_table_access(thd, SELECT_ACL, m_lex->query_tables, 0) ||
open_and_lock_tables(thd, m_lex->query_tables)))
res= -1;
if (!res)
res= instr->exec_core(thd, nextp);
m_lex->unit.cleanup();
thd->proc_info="closing tables";
close_thread_tables(thd);
thd->proc_info= 0;
if (m_lex->query_tables_own_last)
{
/*
We've entered and left prelocking mode when executing statement
stored in m_lex.
m_lex->query_tables(->next_global)* list now has a 'tail' - a list
of tables that are added for prelocking. (If this is the first
execution, the 'tail' was added by open_tables(), otherwise we've
attached it above in this function).
Now we'll save the 'tail', and detach it.
*/
lex_query_tables_own_last= m_lex->query_tables_own_last;
prelocking_tables= *lex_query_tables_own_last;
*lex_query_tables_own_last= NULL;
m_lex->mark_as_requiring_prelocking(NULL);
}
thd->rollback_item_tree_changes();
/*
Unlike for PS we should not call Item's destructors for newly created
items after execution of each instruction in stored routine. This is
because SP often create Item (like Item_int, Item_string etc...) when
they want to store some value in local variable, pass return value and
etc... So their life time should be longer than one instruction.
cleanup_items() is called in sp_head::execute()
*/
return res || thd->net.report_error;
}
/*
sp_instr class functions
*/
int sp_instr::exec_core(THD *thd, uint *nextp)
{
DBUG_ASSERT(0);
return 0;
}
/*
sp_instr_stmt class functions
*/
int
sp_instr_stmt::execute(THD *thd, uint *nextp)
{
char *query;
uint32 query_length;
int res;
DBUG_ENTER("sp_instr_stmt::execute");
DBUG_PRINT("info", ("command: %d", m_lex_keeper.sql_command()));
query= thd->query;
query_length= thd->query_length;
if (!(res= alloc_query(thd, m_query.str, m_query.length+1)) &&
!(res=subst_spvars(thd, this, &m_query)))
{
/*
(the order of query cache and subst_spvars calls is irrelevant because
queries with SP vars can't be cached)
*/
if (query_cache_send_result_to_client(thd,
thd->query, thd->query_length) <= 0)
{
res= m_lex_keeper.reset_lex_and_exec_core(thd, nextp, FALSE, this);
query_cache_end_of_result(thd);
}
else
*nextp= m_ip+1;
thd->query= query;
thd->query_length= query_length;
}
DBUG_RETURN(res);
}
/*
Sufficient max length of printed destinations and frame offsets (all uints).
*/
#define SP_INSTR_UINT_MAXLEN 8
#define SP_STMT_PRINT_MAXLEN 40
void
sp_instr_stmt::print(String *str)
{
uint i, len;
/* stmt CMD "..." */
if (str->reserve(SP_STMT_PRINT_MAXLEN+SP_INSTR_UINT_MAXLEN+8))
return;
str->qs_append(STRING_WITH_LEN("stmt "));
str->qs_append((uint)m_lex_keeper.sql_command());
str->qs_append(STRING_WITH_LEN(" \""));
len= m_query.length;
/*
Print the query string (but not too much of it), just to indicate which
statement it is.
*/
if (len > SP_STMT_PRINT_MAXLEN)
len= SP_STMT_PRINT_MAXLEN-3;
/* Copy the query string and replace '\n' with ' ' in the process */
for (i= 0 ; i < len ; i++)
{
if (m_query.str[i] == '\n')
str->qs_append(' ');
else
str->qs_append(m_query.str[i]);
}
if (m_query.length > SP_STMT_PRINT_MAXLEN)
str->qs_append(STRING_WITH_LEN("...")); /* Indicate truncated string */
str->qs_append('"');
}
#undef SP_STMT_PRINT_MAXLEN
int
sp_instr_stmt::exec_core(THD *thd, uint *nextp)
{
int res= mysql_execute_command(thd);
*nextp= m_ip+1;
return res;
}
/*
sp_instr_set class functions
*/
int
sp_instr_set::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_set::execute");
DBUG_PRINT("info", ("offset: %u", m_offset));
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_set::exec_core(THD *thd, uint *nextp)
{
int res= thd->spcont->set_variable(thd, m_offset, m_value);
if (res && thd->spcont->found_handler_here())
{
/*
Failed to evaluate the value, and a handler has been found. Reset the
variable to NULL.
*/
if (thd->spcont->set_variable(thd, m_offset, 0))
{
/* If this also failed, let's abort. */
sp_rcontext *spcont= thd->spcont;
thd->spcont= 0; /* Avoid handlers */
my_error(ER_OUT_OF_RESOURCES, MYF(0));
spcont->clear_handler();
thd->spcont= spcont;
}
}
*nextp = m_ip+1;
return res;
}
void
sp_instr_set::print(String *str)
{
/* set name@offset ... */
int rsrv = SP_INSTR_UINT_MAXLEN+6;
sp_pvar_t *var = m_ctx->find_pvar(m_offset);
/* 'var' should always be non-null, but just in case... */
if (var)
rsrv+= var->name.length;
if (str->reserve(rsrv))
return;
str->qs_append(STRING_WITH_LEN("set "));
if (var)
{
str->qs_append(var->name.str, var->name.length);
str->qs_append('@');
}
str->qs_append(m_offset);
str->qs_append(' ');
m_value->print(str);
}
/*
sp_instr_set_trigger_field class functions
*/
int
sp_instr_set_trigger_field::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_set_trigger_field::execute");
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_set_trigger_field::exec_core(THD *thd, uint *nextp)
{
int res= 0;
Item *it= sp_prepare_func_item(thd, &value);
if (!it ||
!trigger_field->fixed && trigger_field->fix_fields(thd, 0) ||
(it->save_in_field(trigger_field->field, 0) < 0))
res= -1;
*nextp = m_ip+1;
return res;
}
void
sp_instr_set_trigger_field::print(String *str)
{
str->append(STRING_WITH_LEN("set_trigger_field "));
trigger_field->print(str);
str->append(STRING_WITH_LEN(":="));
value->print(str);
}
/*
sp_instr_jump class functions
*/
int
sp_instr_jump::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_jump::execute");
DBUG_PRINT("info", ("destination: %u", m_dest));
*nextp= m_dest;
DBUG_RETURN(0);
}
void
sp_instr_jump::print(String *str)
{
/* jump dest */
if (str->reserve(SP_INSTR_UINT_MAXLEN+5))
return;
str->qs_append(STRING_WITH_LEN("jump "));
str->qs_append(m_dest);
}
uint
sp_instr_jump::opt_mark(sp_head *sp)
{
m_dest= opt_shortcut_jump(sp, this);
if (m_dest != m_ip+1) /* Jumping to following instruction? */
marked= 1;
m_optdest= sp->get_instr(m_dest);
return m_dest;
}
uint
sp_instr_jump::opt_shortcut_jump(sp_head *sp, sp_instr *start)
{
uint dest= m_dest;
sp_instr *i;
while ((i= sp->get_instr(dest)))
{
uint ndest;
if (start == i || this == i)
break;
ndest= i->opt_shortcut_jump(sp, start);
if (ndest == dest)
break;
dest= ndest;
}
return dest;
}
void
sp_instr_jump::opt_move(uint dst, List<sp_instr> *bp)
{
if (m_dest > m_ip)
bp->push_back(this); // Forward
else if (m_optdest)
m_dest= m_optdest->m_ip; // Backward
m_ip= dst;
}
/*
sp_instr_jump_if class functions
*/
int
sp_instr_jump_if::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_jump_if::execute");
DBUG_PRINT("info", ("destination: %u", m_dest));
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_jump_if::exec_core(THD *thd, uint *nextp)
{
Item *it;
int res;
it= sp_prepare_func_item(thd, &m_expr);
if (!it)
res= -1;
else
{
res= 0;
if (it->val_bool())
*nextp = m_dest;
else
*nextp = m_ip+1;
}
return res;
}
void
sp_instr_jump_if::print(String *str)
{
/* jump_if dest ... */
if (str->reserve(SP_INSTR_UINT_MAXLEN+8+32)) // Add some for the expr. too
return;
str->qs_append(STRING_WITH_LEN("jump_if "));
str->qs_append(m_dest);
str->qs_append(' ');
m_expr->print(str);
}
uint
sp_instr_jump_if::opt_mark(sp_head *sp)
{
sp_instr *i;
marked= 1;
if ((i= sp->get_instr(m_dest)))
{
m_dest= i->opt_shortcut_jump(sp, this);
m_optdest= sp->get_instr(m_dest);
}
sp->opt_mark(m_dest);
return m_ip+1;
}
/*
sp_instr_jump_if_not class functions
*/
int
sp_instr_jump_if_not::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_jump_if_not::execute");
DBUG_PRINT("info", ("destination: %u", m_dest));
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_jump_if_not::exec_core(THD *thd, uint *nextp)
{
Item *it;
int res;
it= sp_prepare_func_item(thd, &m_expr);
if (! it)
res= -1;
else
{
res= 0;
if (! it->val_bool())
*nextp = m_dest;
else
*nextp = m_ip+1;
}
return res;
}
void
sp_instr_jump_if_not::print(String *str)
{
/* jump_if_not dest ... */
if (str->reserve(SP_INSTR_UINT_MAXLEN+12+32)) // Add some for the expr. too
return;
str->qs_append(STRING_WITH_LEN("jump_if_not "));
str->qs_append(m_dest);
str->qs_append(' ');
m_expr->print(str);
}
uint
sp_instr_jump_if_not::opt_mark(sp_head *sp)
{
sp_instr *i;
marked= 1;
if ((i= sp->get_instr(m_dest)))
{
m_dest= i->opt_shortcut_jump(sp, this);
m_optdest= sp->get_instr(m_dest);
}
sp->opt_mark(m_dest);
return m_ip+1;
}
/*
sp_instr_freturn class functions
*/
int
sp_instr_freturn::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_freturn::execute");
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_freturn::exec_core(THD *thd, uint *nextp)
{
/*
Change <next instruction pointer>, so that this will be the last
instruction in the stored function.
*/
*nextp= UINT_MAX;
/*
Evaluate the value of return expression and store it in current runtime
context.
NOTE: It's necessary to evaluate result item right here, because we must
do it in scope of execution the current context/block.
*/
return thd->spcont->set_return_value(thd, m_value);
}
void
sp_instr_freturn::print(String *str)
{
/* freturn type expr... */
if (str->reserve(UINT_MAX+8+32)) // Add some for the expr. too
return;
str->qs_append(STRING_WITH_LEN("freturn "));
str->qs_append((uint)m_type);
str->qs_append(' ');
m_value->print(str);
}
/*
sp_instr_hpush_jump class functions
*/
int
sp_instr_hpush_jump::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_hpush_jump::execute");
List_iterator_fast<sp_cond_type_t> li(m_cond);
sp_cond_type_t *p;
while ((p= li++))
thd->spcont->push_handler(p, m_ip+1, m_type, m_frame);
*nextp= m_dest;
DBUG_RETURN(0);
}
void
sp_instr_hpush_jump::print(String *str)
{
/* hpush_jump dest fsize type */
if (str->reserve(SP_INSTR_UINT_MAXLEN*2 + 21))
return;
str->qs_append(STRING_WITH_LEN("hpush_jump "));
str->qs_append(m_dest);
str->qs_append(' ');
str->qs_append(m_frame);
switch (m_type)
{
case SP_HANDLER_NONE:
str->qs_append(STRING_WITH_LEN(" NONE")); // This would be a bug
break;
case SP_HANDLER_EXIT:
str->qs_append(STRING_WITH_LEN(" EXIT"));
break;
case SP_HANDLER_CONTINUE:
str->qs_append(STRING_WITH_LEN(" CONTINUE"));
break;
case SP_HANDLER_UNDO:
str->qs_append(STRING_WITH_LEN(" UNDO"));
break;
default:
str->qs_append(STRING_WITH_LEN(" UNKNOWN:")); // This would be a bug as well
str->qs_append(m_type);
}
}
uint
sp_instr_hpush_jump::opt_mark(sp_head *sp)
{
sp_instr *i;
marked= 1;
if ((i= sp->get_instr(m_dest)))
{
m_dest= i->opt_shortcut_jump(sp, this);
m_optdest= sp->get_instr(m_dest);
}
sp->opt_mark(m_dest);
return m_ip+1;
}
/*
sp_instr_hpop class functions
*/
int
sp_instr_hpop::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_hpop::execute");
thd->spcont->pop_handlers(m_count);
*nextp= m_ip+1;
DBUG_RETURN(0);
}
void
sp_instr_hpop::print(String *str)
{
/* hpop count */
if (str->reserve(SP_INSTR_UINT_MAXLEN+5))
return;
str->qs_append(STRING_WITH_LEN("hpop "));
str->qs_append(m_count);
}
void
sp_instr_hpop::backpatch(uint dest, sp_pcontext *dst_ctx)
{
m_count= m_ctx->diff_handlers(dst_ctx);
}
/*
sp_instr_hreturn class functions
*/
int
sp_instr_hreturn::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_hreturn::execute");
if (m_dest)
*nextp= m_dest;
else
{
*nextp= thd->spcont->pop_hstack();
}
thd->spcont->exit_handler();
DBUG_RETURN(0);
}
void
sp_instr_hreturn::print(String *str)
{
/* hreturn framesize dest */
if (str->reserve(SP_INSTR_UINT_MAXLEN*2 + 9))
return;
str->qs_append(STRING_WITH_LEN("hreturn "));
str->qs_append(m_frame);
if (m_dest)
{
str->qs_append(' ');
str->qs_append(m_dest);
}
}
uint
sp_instr_hreturn::opt_mark(sp_head *sp)
{
if (m_dest)
return sp_instr_jump::opt_mark(sp);
else
{
marked= 1;
return UINT_MAX;
}
}
/*
sp_instr_cpush class functions
*/
int
sp_instr_cpush::execute(THD *thd, uint *nextp)
{
Query_arena backup_arena;
DBUG_ENTER("sp_instr_cpush::execute");
/*
We should create cursors in the callers arena, as
it could be (and usually is) used in several instructions.
*/
thd->set_n_backup_active_arena(thd->spcont->callers_arena, &backup_arena);
thd->spcont->push_cursor(&m_lex_keeper, this);
thd->restore_active_arena(thd->spcont->callers_arena, &backup_arena);
*nextp= m_ip+1;
DBUG_RETURN(0);
}
void
sp_instr_cpush::print(String *str)
{
LEX_STRING n;
my_bool found= m_ctx->find_cursor(m_cursor, &n);
/* cpush name@offset */
uint rsrv= SP_INSTR_UINT_MAXLEN+7;
if (found)
rsrv+= n.length;
if (str->reserve(rsrv))
return;
str->qs_append(STRING_WITH_LEN("cpush "));
if (found)
{
str->qs_append(n.str, n.length);
str->qs_append('@');
}
str->qs_append(m_cursor);
}
/*
sp_instr_cpop class functions
*/
int
sp_instr_cpop::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_cpop::execute");
thd->spcont->pop_cursors(m_count);
*nextp= m_ip+1;
DBUG_RETURN(0);
}
void
sp_instr_cpop::print(String *str)
{
/* cpop count */
if (str->reserve(SP_INSTR_UINT_MAXLEN+5))
return;
str->qs_append(STRING_WITH_LEN("cpop "));
str->qs_append(m_count);
}
void
sp_instr_cpop::backpatch(uint dest, sp_pcontext *dst_ctx)
{
m_count= m_ctx->diff_cursors(dst_ctx);
}
/*
sp_instr_copen class functions
*/
int
sp_instr_copen::execute(THD *thd, uint *nextp)
{
/*
We don't store a pointer to the cursor in the instruction to be
able to reuse the same instruction among different threads in future.
*/
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res;
DBUG_ENTER("sp_instr_copen::execute");
if (! c)
res= -1;
else
{
sp_lex_keeper *lex_keeper= c->get_lex_keeper();
Query_arena *old_arena= thd->stmt_arena;
/*
Get the Query_arena from the cpush instruction, which contains
the free_list of the query, so new items (if any) are stored in
the right free_list, and we can cleanup after each open.
*/
thd->stmt_arena= c->get_instr();
res= lex_keeper->reset_lex_and_exec_core(thd, nextp, FALSE, this);
/* Cleanup the query's items */
if (thd->stmt_arena->free_list)
cleanup_items(thd->stmt_arena->free_list);
thd->stmt_arena= old_arena;
/*
Work around the fact that errors in selects are not returned properly
(but instead converted into a warning), so if a condition handler
caught, we have lost the result code.
*/
if (!res)
{
uint dummy1, dummy2;
if (thd->spcont->found_handler(&dummy1, &dummy2))
res= -1;
}
/* TODO: Assert here that we either have an error or a cursor */
}
DBUG_RETURN(res);
}
int
sp_instr_copen::exec_core(THD *thd, uint *nextp)
{
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res= c->open(thd);
*nextp= m_ip+1;
return res;
}
void
sp_instr_copen::print(String *str)
{
LEX_STRING n;
my_bool found= m_ctx->find_cursor(m_cursor, &n);
/* copen name@offset */
uint rsrv= SP_INSTR_UINT_MAXLEN+7;
if (found)
rsrv+= n.length;
if (str->reserve(rsrv))
return;
str->qs_append(STRING_WITH_LEN("copen "));
if (found)
{
str->qs_append(n.str, n.length);
str->qs_append('@');
}
str->qs_append(m_cursor);
}
/*
sp_instr_cclose class functions
*/
int
sp_instr_cclose::execute(THD *thd, uint *nextp)
{
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res;
DBUG_ENTER("sp_instr_cclose::execute");
if (! c)
res= -1;
else
res= c->close(thd);
*nextp= m_ip+1;
DBUG_RETURN(res);
}
void
sp_instr_cclose::print(String *str)
{
LEX_STRING n;
my_bool found= m_ctx->find_cursor(m_cursor, &n);
/* cclose name@offset */
uint rsrv= SP_INSTR_UINT_MAXLEN+8;
if (found)
rsrv+= n.length;
if (str->reserve(rsrv))
return;
str->qs_append(STRING_WITH_LEN("cclose "));
if (found)
{
str->qs_append(n.str, n.length);
str->qs_append('@');
}
str->qs_append(m_cursor);
}
/*
sp_instr_cfetch class functions
*/
int
sp_instr_cfetch::execute(THD *thd, uint *nextp)
{
sp_cursor *c= thd->spcont->get_cursor(m_cursor);
int res;
Query_arena backup_arena;
DBUG_ENTER("sp_instr_cfetch::execute");
res= c ? c->fetch(thd, &m_varlist) : -1;
*nextp= m_ip+1;
DBUG_RETURN(res);
}
void
sp_instr_cfetch::print(String *str)
{
List_iterator_fast<struct sp_pvar> li(m_varlist);
sp_pvar_t *pv;
LEX_STRING n;
my_bool found= m_ctx->find_cursor(m_cursor, &n);
/* cfetch name@offset vars... */
uint rsrv= SP_INSTR_UINT_MAXLEN+8;
if (found)
rsrv+= n.length;
if (str->reserve(rsrv))
return;
str->qs_append(STRING_WITH_LEN("cfetch "));
if (found)
{
str->qs_append(n.str, n.length);
str->qs_append('@');
}
str->qs_append(m_cursor);
while ((pv= li++))
{
if (str->reserve(pv->name.length+SP_INSTR_UINT_MAXLEN+2))
return;
str->qs_append(' ');
str->qs_append(pv->name.str, pv->name.length);
str->qs_append('@');
str->qs_append(pv->offset);
}
}
/*
sp_instr_error class functions
*/
int
sp_instr_error::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_error::execute");
my_message(m_errcode, ER(m_errcode), MYF(0));
*nextp= m_ip+1;
DBUG_RETURN(-1);
}
void
sp_instr_error::print(String *str)
{
/* error code */
if (str->reserve(SP_INSTR_UINT_MAXLEN+6))
return;
str->qs_append(STRING_WITH_LEN("error "));
str->qs_append(m_errcode);
}
/**************************************************************************
sp_instr_set_case_expr class implementation
**************************************************************************/
int
sp_instr_set_case_expr::execute(THD *thd, uint *nextp)
{
DBUG_ENTER("sp_instr_set_case_expr::execute");
DBUG_RETURN(m_lex_keeper.reset_lex_and_exec_core(thd, nextp, TRUE, this));
}
int
sp_instr_set_case_expr::exec_core(THD *thd, uint *nextp)
{
int res= thd->spcont->set_case_expr(thd, m_case_expr_id, m_case_expr);
if (res &&
!thd->spcont->get_case_expr(m_case_expr_id) &&
thd->spcont->found_handler_here())
{
/*
Failed to evaluate the value, the case expression is still not
initialized, and a handler has been found. Set to NULL so we can continue.
*/
Item *null_item= new Item_null();
if (!null_item ||
thd->spcont->set_case_expr(thd, m_case_expr_id, null_item))
{
/* If this also failed, we have to abort. */
sp_rcontext *spcont= thd->spcont;
thd->spcont= 0; /* Avoid handlers */
my_error(ER_OUT_OF_RESOURCES, MYF(0));
spcont->clear_handler();
thd->spcont= spcont;
}
}
*nextp = m_ip+1;
return res; /* no error */
}
void
sp_instr_set_case_expr::print(String *str)
{
str->append(STRING_WITH_LEN("set_case_expr "));
str->qs_append(m_case_expr_id);
str->append(' ');
m_case_expr->print(str);
}
/* ------------------------------------------------------------------ */
/*
Security context swapping
*/
#ifndef NO_EMBEDDED_ACCESS_CHECKS
bool
sp_change_security_context(THD *thd, sp_head *sp, Security_context **backup)
{
*backup= 0;
if (sp->m_chistics->suid != SP_IS_NOT_SUID &&
(strcmp(sp->m_definer_user.str,
thd->security_ctx->priv_user) ||
my_strcasecmp(system_charset_info, sp->m_definer_host.str,
thd->security_ctx->priv_host)))
{
if (acl_getroot_no_password(&sp->m_security_ctx, sp->m_definer_user.str,
sp->m_definer_host.str,
sp->m_definer_host.str,
sp->m_db.str))
{
#ifdef NOT_YET_REPLICATION_SAFE
/*
Until we don't properly replicate information about stored routine
definer with stored routine creation statement all stored routines
on slave are created under ''@'' definer. Therefore we won't be able
to run any routine which was replicated from master on slave server
if we emit error here. This will cause big problems for users
who use slave for fail-over. So until we fully implement WL#2897
"Complete definer support in the stored routines" we run suid
stored routines for which we were unable to find definer under
invoker security context.
*/
my_error(ER_NO_SUCH_USER, MYF(0), sp->m_definer_user.str,
sp->m_definer_host.str);
return TRUE;
#else
return FALSE;
#endif
}
*backup= thd->security_ctx;
thd->security_ctx= &sp->m_security_ctx;
}
return FALSE;
}
void
sp_restore_security_context(THD *thd, Security_context *backup)
{
if (backup)
thd->security_ctx= backup;
}
#endif /* NO_EMBEDDED_ACCESS_CHECKS */
/*
Structure that represent all instances of one table
in optimized multi-set of tables used by routine.
*/
typedef struct st_sp_table
{
LEX_STRING qname; /* Multi-set key: db_name\0table_name\0alias\0 */
uint db_length, table_name_length;
bool temp; /* true if corresponds to a temporary table */
thr_lock_type lock_type; /* lock type used for prelocking */
uint lock_count;
uint query_lock_count;
} SP_TABLE;
byte *
sp_table_key(const byte *ptr, uint *plen, my_bool first)
{
SP_TABLE *tab= (SP_TABLE *)ptr;
*plen= tab->qname.length;
return (byte *)tab->qname.str;
}
/*
Merge the list of tables used by some query into the multi-set of
tables used by routine.
SYNOPSIS
merge_table_list()
thd - thread context
table - table list
lex_for_tmp_check - LEX of the query for which we are merging
table list.
NOTE
This method will use LEX provided to check whenever we are creating
temporary table and mark it as such in target multi-set.
RETURN VALUE
TRUE - Success
FALSE - Error
*/
bool
sp_head::merge_table_list(THD *thd, TABLE_LIST *table, LEX *lex_for_tmp_check)
{
SP_TABLE *tab;
if (lex_for_tmp_check->sql_command == SQLCOM_DROP_TABLE &&
lex_for_tmp_check->drop_temporary)
return TRUE;
for (uint i= 0 ; i < m_sptabs.records ; i++)
{
tab= (SP_TABLE *)hash_element(&m_sptabs, i);
tab->query_lock_count= 0;
}
for (; table ; table= table->next_global)
if (!table->derived && !table->schema_table)
{
char tname[(NAME_LEN + 1) * 3]; // db\0table\0alias\0
uint tlen, alen;
tlen= table->db_length;
memcpy(tname, table->db, tlen);
tname[tlen++]= '\0';
memcpy(tname+tlen, table->table_name, table->table_name_length);
tlen+= table->table_name_length;
tname[tlen++]= '\0';
alen= strlen(table->alias);
memcpy(tname+tlen, table->alias, alen);
tlen+= alen;
tname[tlen]= '\0';
/*
It is safe to store pointer to table list elements in hash,
since they are supposed to have the same lifetime.
*/
if ((tab= (SP_TABLE *)hash_search(&m_sptabs, (byte *)tname, tlen)))
{
if (tab->lock_type < table->lock_type)
tab->lock_type= table->lock_type; // Use the table with the highest lock type
tab->query_lock_count++;
if (tab->query_lock_count > tab->lock_count)
tab->lock_count++;
}
else
{
if (!(tab= (SP_TABLE *)thd->calloc(sizeof(SP_TABLE))))
return FALSE;
tab->qname.length= tlen;
tab->qname.str= (char*) thd->memdup(tname, tab->qname.length + 1);
if (!tab->qname.str)
return FALSE;
if (lex_for_tmp_check->sql_command == SQLCOM_CREATE_TABLE &&
lex_for_tmp_check->query_tables == table &&
lex_for_tmp_check->create_info.options & HA_LEX_CREATE_TMP_TABLE)
tab->temp= TRUE;
tab->table_name_length= table->table_name_length;
tab->db_length= table->db_length;
tab->lock_type= table->lock_type;
tab->lock_count= tab->query_lock_count= 1;
my_hash_insert(&m_sptabs, (byte *)tab);
}
}
return TRUE;
}
/*
Add tables used by routine to the table list.
SYNOPSIS
add_used_tables_to_table_list()
thd [in] Thread context
query_tables_last_ptr [in/out] Pointer to the next_global member of
last element of the list where tables
will be added (or to its root).
belong_to_view [in] Uppermost view which uses this routine,
0 if none.
DESCRIPTION
Converts multi-set of tables used by this routine to table list and adds
this list to the end of table list specified by 'query_tables_last_ptr'.
Elements of list will be allocated in PS memroot, so this list will be
persistent between PS executions.
RETURN VALUE
TRUE - if some elements were added, FALSE - otherwise.
*/
bool
sp_head::add_used_tables_to_table_list(THD *thd,
TABLE_LIST ***query_tables_last_ptr,
TABLE_LIST *belong_to_view)
{
uint i;
Query_arena *arena, backup;
bool result= FALSE;
DBUG_ENTER("sp_head::add_used_tables_to_table_list");
/*
Use persistent arena for table list allocation to be PS/SP friendly.
Note that we also have to copy database/table names and alias to PS/SP
memory since current instance of sp_head object can pass away before
next execution of PS/SP for which tables are added to prelocking list.
This will be fixed by introducing of proper invalidation mechanism
once new TDC is ready.
*/
arena= thd->activate_stmt_arena_if_needed(&backup);
for (i=0 ; i < m_sptabs.records ; i++)
{
char *tab_buff, *key_buff;
TABLE_LIST *table;
SP_TABLE *stab= (SP_TABLE *)hash_element(&m_sptabs, i);
if (stab->temp)
continue;
if (!(tab_buff= (char *)thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST)) *
stab->lock_count)) ||
!(key_buff= (char*)thd->memdup(stab->qname.str,
stab->qname.length + 1)))
DBUG_RETURN(FALSE);
for (uint j= 0; j < stab->lock_count; j++)
{
table= (TABLE_LIST *)tab_buff;
table->db= key_buff;
table->db_length= stab->db_length;
table->table_name= table->db + table->db_length + 1;
table->table_name_length= stab->table_name_length;
table->alias= table->table_name + table->table_name_length + 1;
table->lock_type= stab->lock_type;
table->cacheable_table= 1;
table->prelocking_placeholder= 1;
table->belong_to_view= belong_to_view;
/* Everyting else should be zeroed */
**query_tables_last_ptr= table;
table->prev_global= *query_tables_last_ptr;
*query_tables_last_ptr= &table->next_global;
tab_buff+= ALIGN_SIZE(sizeof(TABLE_LIST));
result= TRUE;
}
}
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(result);
}
/*
Simple function for adding an explicetly named (systems) table to
the global table list, e.g. "mysql", "proc".
*/
TABLE_LIST *
sp_add_to_query_tables(THD *thd, LEX *lex,
const char *db, const char *name,
thr_lock_type locktype)
{
TABLE_LIST *table;
if (!(table= (TABLE_LIST *)thd->calloc(sizeof(TABLE_LIST))))
{
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(TABLE_LIST));
return NULL;
}
table->db_length= strlen(db);
table->db= thd->strmake(db, table->db_length);
table->table_name_length= strlen(name);
table->table_name= thd->strmake(name, table->table_name_length);
table->alias= thd->strdup(name);
table->lock_type= locktype;
table->select_lex= lex->current_select; // QQ?
table->cacheable_table= 1;
lex->add_to_query_tables(table);
return table;
}