mariadb/ft/sub_block.cc
Leif Walsh 9fd20e61a4 refs #6566 add license text to all C/C++ files as a comment near the top
git-svn-id: file:///svn/toku/tokudb@55574 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-17 00:01:35 -04:00

442 lines
16 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation, and provided that the
following conditions are met:
* Redistributions of source code must retain this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below).
* Redistributions in binary form must reproduce this COPYING
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
GRANT (below) in the documentation and/or other materials
provided with the distribution.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
COPYRIGHT NOTICE:
TokuDB, Tokutek Fractal Tree Indexing Library.
Copyright (C) 2007-2013 Tokutek, Inc.
DISCLAIMER:
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
UNIVERSITY PATENT NOTICE:
The technology is licensed by the Massachusetts Institute of
Technology, Rutgers State University of New Jersey, and the Research
Foundation of State University of New York at Stony Brook under
United States of America Serial No. 11/760379 and to the patents
and/or patent applications resulting from it.
PATENT MARKING NOTICE:
This software is covered by US Patent No. 8,185,551.
PATENT RIGHTS GRANT:
THIS IMPLEMENTATION" means the copyrightable works distributed by
Tokutek as part of the Fractal Tree project.
"PATENT CLAIMS" means the claims of patents that are owned or
licensable by Tokutek, both currently or in the future; and that in
the absence of this license would be infringed by THIS
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
"PATENT CHALLENGE" shall mean a challenge to the validity,
patentability, enforceability and/or non-infringement of any of the
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
Tokutek hereby grants to you, for the term and geographical scope of
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, transfer, and
otherwise run, modify, and propagate the contents of THIS
IMPLEMENTATION, where such license applies only to the PATENT
CLAIMS. This grant does not include claims that would be infringed
only as a consequence of further modifications of THIS
IMPLEMENTATION. If you or your agent or licensee institute or order
or agree to the institution of patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
THIS IMPLEMENTATION constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any rights
granted to you under this License shall terminate as of the date
such litigation is filed. If you or your agent or exclusive
licensee institute or order or agree to the institution of a PATENT
CHALLENGE, then Tokutek may terminate any rights granted to you
under this License.
*/
#ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#include "sub_block.h"
#include "compress.h"
#include "quicklz.h"
#include "x1764.h"
#include <memory.h>
#include <toku_assert.h>
#include <toku_portability.h>
#include <util/threadpool.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <zlib.h>
SUB_BLOCK sub_block_creat(void) {
SUB_BLOCK XMALLOC(sb);
sub_block_init(sb);
return sb;
}
void sub_block_init(SUB_BLOCK sub_block) {
sub_block->uncompressed_ptr = 0;
sub_block->uncompressed_size = 0;
sub_block->compressed_ptr = 0;
sub_block->compressed_size_bound = 0;
sub_block->compressed_size = 0;
sub_block->xsum = 0;
}
// get the size of the compression header
size_t
sub_block_header_size(int n_sub_blocks) {
return sizeof (uint32_t) + n_sub_blocks * sizeof (struct stored_sub_block);
}
void
set_compressed_size_bound(struct sub_block *se, enum toku_compression_method method) {
se->compressed_size_bound = toku_compress_bound(method, se->uncompressed_size);
}
// get the sum of the sub block compressed sizes
size_t
get_sum_compressed_size_bound(int n_sub_blocks, struct sub_block sub_block[], enum toku_compression_method method) {
size_t compressed_size_bound = 0;
for (int i = 0; i < n_sub_blocks; i++) {
sub_block[i].compressed_size_bound = toku_compress_bound(method, sub_block[i].uncompressed_size);
compressed_size_bound += sub_block[i].compressed_size_bound;
}
return compressed_size_bound;
}
// get the sum of the sub block uncompressed sizes
size_t
get_sum_uncompressed_size(int n_sub_blocks, struct sub_block sub_block[]) {
size_t uncompressed_size = 0;
for (int i = 0; i < n_sub_blocks; i++)
uncompressed_size += sub_block[i].uncompressed_size;
return uncompressed_size;
}
// round up n
static inline int
alignup32(int a, int b) {
return ((a+b-1) / b) * b;
}
// Choose n_sub_blocks and sub_block_size such that the product is >= total_size and the sub_block_size is at
// least >= the target_sub_block_size.
int
choose_sub_block_size(int total_size, int n_sub_blocks_limit, int *sub_block_size_ret, int *n_sub_blocks_ret) {
if (total_size < 0 || n_sub_blocks_limit < 1)
return EINVAL;
const int alignment = 32;
int n_sub_blocks, sub_block_size;
n_sub_blocks = total_size / target_sub_block_size;
if (n_sub_blocks <= 1) {
if (total_size > 0 && n_sub_blocks_limit > 0)
n_sub_blocks = 1;
sub_block_size = total_size;
} else {
if (n_sub_blocks > n_sub_blocks_limit) // limit the number of sub-blocks
n_sub_blocks = n_sub_blocks_limit;
sub_block_size = alignup32(total_size / n_sub_blocks, alignment);
while (sub_block_size * n_sub_blocks < total_size) // round up the sub-block size until big enough
sub_block_size += alignment;
}
*sub_block_size_ret = sub_block_size;
*n_sub_blocks_ret = n_sub_blocks;
return 0;
}
// Choose the right size of basement nodes. For now, just align up to
// 256k blocks and hope it compresses well enough.
int
choose_basement_node_size(int total_size, int *sub_block_size_ret, int *n_sub_blocks_ret) {
if (total_size < 0)
return EINVAL;
*n_sub_blocks_ret = (total_size + max_basement_node_uncompressed_size - 1) / max_basement_node_uncompressed_size;
*sub_block_size_ret = max_basement_node_uncompressed_size;
return 0;
}
void
set_all_sub_block_sizes(int total_size, int sub_block_size, int n_sub_blocks, struct sub_block sub_block[]) {
int size_left = total_size;
int i;
for (i = 0; i < n_sub_blocks-1; i++) {
sub_block[i].uncompressed_size = sub_block_size;
size_left -= sub_block_size;
}
if (i == 0 || size_left > 0)
sub_block[i].uncompressed_size = size_left;
}
// find the index of the first sub block that contains offset
// Returns the sub block index, else returns -1
int
get_sub_block_index(int n_sub_blocks, struct sub_block sub_block[], size_t offset) {
size_t start_offset = 0;
for (int i = 0; i < n_sub_blocks; i++) {
size_t size = sub_block[i].uncompressed_size;
if (offset < start_offset + size)
return i;
start_offset += size;
}
return -1;
}
#include "workset.h"
void
compress_work_init(struct compress_work *w, enum toku_compression_method method, struct sub_block *sub_block) {
w->method = method;
w->sub_block = sub_block;
}
//
// takes the uncompressed contents of sub_block
// and compresses them into sb_compressed_ptr
// cs_bound is the compressed size bound
// Returns the size of the compressed data
//
uint32_t
compress_nocrc_sub_block(
struct sub_block *sub_block,
void* sb_compressed_ptr,
uint32_t cs_bound,
enum toku_compression_method method
)
{
// compress it
Bytef *uncompressed_ptr = (Bytef *) sub_block->uncompressed_ptr;
Bytef *compressed_ptr = (Bytef *) sb_compressed_ptr;
uLongf uncompressed_len = sub_block->uncompressed_size;
uLongf real_compressed_len = cs_bound;
toku_compress(method,
compressed_ptr, &real_compressed_len,
uncompressed_ptr, uncompressed_len);
return real_compressed_len;
}
void
compress_sub_block(struct sub_block *sub_block, enum toku_compression_method method) {
sub_block->compressed_size = compress_nocrc_sub_block(
sub_block,
sub_block->compressed_ptr,
sub_block->compressed_size_bound,
method
);
// checksum it
sub_block->xsum = x1764_memory(sub_block->compressed_ptr, sub_block->compressed_size);
}
void *
compress_worker(void *arg) {
struct workset *ws = (struct workset *) arg;
while (1) {
struct compress_work *w = (struct compress_work *) workset_get(ws);
if (w == NULL)
break;
compress_sub_block(w->sub_block, w->method);
}
workset_release_ref(ws);
return arg;
}
size_t
compress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], char *uncompressed_ptr, char *compressed_ptr, int num_cores, struct toku_thread_pool *pool, enum toku_compression_method method) {
char *compressed_base_ptr = compressed_ptr;
size_t compressed_len;
// This is a complex way to write a parallel loop. Cilk would be better.
if (n_sub_blocks == 1) {
// single sub-block
sub_block[0].uncompressed_ptr = uncompressed_ptr;
sub_block[0].compressed_ptr = compressed_ptr;
compress_sub_block(&sub_block[0], method);
compressed_len = sub_block[0].compressed_size;
} else {
// multiple sub-blocks
int T = num_cores; // T = min(num_cores, n_sub_blocks) - 1
if (T > n_sub_blocks)
T = n_sub_blocks;
if (T > 0)
T = T - 1; // threads in addition to the running thread
struct workset ws;
ZERO_STRUCT(ws);
workset_init(&ws);
struct compress_work work[n_sub_blocks];
workset_lock(&ws);
for (int i = 0; i < n_sub_blocks; i++) {
sub_block[i].uncompressed_ptr = uncompressed_ptr;
sub_block[i].compressed_ptr = compressed_ptr;
compress_work_init(&work[i], method, &sub_block[i]);
workset_put_locked(&ws, &work[i].base);
uncompressed_ptr += sub_block[i].uncompressed_size;
compressed_ptr += sub_block[i].compressed_size_bound;
}
workset_unlock(&ws);
// compress the sub-blocks
if (0) printf("%s:%d T=%d N=%d\n", __FUNCTION__, __LINE__, T, n_sub_blocks);
toku_thread_pool_run(pool, 0, &T, compress_worker, &ws);
workset_add_ref(&ws, T);
compress_worker(&ws);
// wait for all of the work to complete
workset_join(&ws);
workset_destroy(&ws);
// squeeze out the holes not used by the compress bound
compressed_ptr = compressed_base_ptr + sub_block[0].compressed_size;
for (int i = 1; i < n_sub_blocks; i++) {
memmove(compressed_ptr, sub_block[i].compressed_ptr, sub_block[i].compressed_size);
compressed_ptr += sub_block[i].compressed_size;
}
compressed_len = compressed_ptr - compressed_base_ptr;
}
return compressed_len;
}
// initialize the decompression work
void
decompress_work_init(struct decompress_work *dw,
void *compress_ptr, uint32_t compress_size,
void *uncompress_ptr, uint32_t uncompress_size,
uint32_t xsum) {
dw->compress_ptr = compress_ptr;
dw->compress_size = compress_size;
dw->uncompress_ptr = uncompress_ptr;
dw->uncompress_size = uncompress_size;
dw->xsum = xsum;
dw->error = 0;
}
int verbose_decompress_sub_block = 1;
// decompress one block
int
decompress_sub_block(void *compress_ptr, uint32_t compress_size, void *uncompress_ptr, uint32_t uncompress_size, uint32_t expected_xsum) {
int result = 0;
// verify checksum
uint32_t xsum = x1764_memory(compress_ptr, compress_size);
if (xsum != expected_xsum) {
if (verbose_decompress_sub_block) fprintf(stderr, "%s:%d xsum %u expected %u\n", __FUNCTION__, __LINE__, xsum, expected_xsum);
result = EINVAL;
} else {
// decompress
toku_decompress((Bytef *) uncompress_ptr, uncompress_size, (Bytef *) compress_ptr, compress_size);
}
return result;
}
// decompress blocks until there is no more work to do
void *
decompress_worker(void *arg) {
struct workset *ws = (struct workset *) arg;
while (1) {
struct decompress_work *dw = (struct decompress_work *) workset_get(ws);
if (dw == NULL)
break;
dw->error = decompress_sub_block(dw->compress_ptr, dw->compress_size, dw->uncompress_ptr, dw->uncompress_size, dw->xsum);
}
workset_release_ref(ws);
return arg;
}
int
decompress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], unsigned char *compressed_data, unsigned char *uncompressed_data, int num_cores, struct toku_thread_pool *pool) {
int r;
if (n_sub_blocks == 1) {
r = decompress_sub_block(compressed_data, sub_block[0].compressed_size, uncompressed_data, sub_block[0].uncompressed_size, sub_block[0].xsum);
} else {
// compute the number of additional threads needed for decompressing this node
int T = num_cores; // T = min(#cores, #blocks) - 1
if (T > n_sub_blocks)
T = n_sub_blocks;
if (T > 0)
T = T - 1; // threads in addition to the running thread
// init the decompression work set
struct workset ws;
ZERO_STRUCT(ws);
workset_init(&ws);
// initialize the decompression work and add to the work set
struct decompress_work decompress_work[n_sub_blocks];
workset_lock(&ws);
for (int i = 0; i < n_sub_blocks; i++) {
decompress_work_init(&decompress_work[i], compressed_data, sub_block[i].compressed_size, uncompressed_data, sub_block[i].uncompressed_size, sub_block[i].xsum);
workset_put_locked(&ws, &decompress_work[i].base);
uncompressed_data += sub_block[i].uncompressed_size;
compressed_data += sub_block[i].compressed_size;
}
workset_unlock(&ws);
// decompress the sub-blocks
if (0) printf("%s:%d Cores=%d Blocks=%d T=%d\n", __FUNCTION__, __LINE__, num_cores, n_sub_blocks, T);
toku_thread_pool_run(pool, 0, &T, decompress_worker, &ws);
workset_add_ref(&ws, T);
decompress_worker(&ws);
// cleanup
workset_join(&ws);
workset_destroy(&ws);
r = 0;
for (int i = 0; i < n_sub_blocks; i++) {
r = decompress_work[i].error;
if (r != 0)
break;
}
}
return r;
}