mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 14:54:20 +01:00
c1fd1d6a5b
yaSSL-0.9.7 library bundled.
169 lines
5 KiB
C++
169 lines
5 KiB
C++
/* modarith.hpp
|
|
*
|
|
* Copyright (C) 2003 Sawtooth Consulting Ltd.
|
|
*
|
|
* This file is part of yaSSL.
|
|
*
|
|
* yaSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* yaSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
|
|
/* based on Wei Dai's modarith.h from CryptoPP */
|
|
|
|
|
|
#ifndef TAO_CRYPT_MODARITH_HPP
|
|
#define TAO_CRYPT_MODARITH_HPP
|
|
|
|
#include "misc.hpp"
|
|
#include "integer.hpp"
|
|
#include "algebra.hpp"
|
|
|
|
namespace TaoCrypt {
|
|
|
|
|
|
//! ModularArithmetic
|
|
class ModularArithmetic : public AbstractRing<Integer>
|
|
{
|
|
public:
|
|
|
|
typedef int RandomizationParameter;
|
|
typedef Integer Element;
|
|
|
|
ModularArithmetic(const Integer &modulus = Integer::One())
|
|
: modulus(modulus), result((word)0, modulus.reg_.size()) {}
|
|
|
|
ModularArithmetic(const ModularArithmetic &ma)
|
|
: AbstractRing<Integer>(),
|
|
modulus(ma.modulus), result((word)0, modulus.reg_.size()) {}
|
|
|
|
const Integer& GetModulus() const {return modulus;}
|
|
void SetModulus(const Integer &newModulus)
|
|
{
|
|
modulus = newModulus;
|
|
result.reg_.resize(modulus.reg_.size());
|
|
}
|
|
|
|
virtual bool IsMontgomeryRepresentation() const {return false;}
|
|
|
|
virtual Integer ConvertIn(const Integer &a) const
|
|
{return a%modulus;}
|
|
|
|
virtual Integer ConvertOut(const Integer &a) const
|
|
{return a;}
|
|
|
|
const Integer& Half(const Integer &a) const;
|
|
|
|
bool Equal(const Integer &a, const Integer &b) const
|
|
{return a==b;}
|
|
|
|
const Integer& Identity() const
|
|
{return Integer::Zero();}
|
|
|
|
const Integer& Add(const Integer &a, const Integer &b) const;
|
|
|
|
Integer& Accumulate(Integer &a, const Integer &b) const;
|
|
|
|
const Integer& Inverse(const Integer &a) const;
|
|
|
|
const Integer& Subtract(const Integer &a, const Integer &b) const;
|
|
|
|
Integer& Reduce(Integer &a, const Integer &b) const;
|
|
|
|
const Integer& Double(const Integer &a) const
|
|
{return Add(a, a);}
|
|
|
|
const Integer& MultiplicativeIdentity() const
|
|
{return Integer::One();}
|
|
|
|
const Integer& Multiply(const Integer &a, const Integer &b) const
|
|
{return result1 = a*b%modulus;}
|
|
|
|
const Integer& Square(const Integer &a) const
|
|
{return result1 = a.Squared()%modulus;}
|
|
|
|
bool IsUnit(const Integer &a) const
|
|
{return Integer::Gcd(a, modulus).IsUnit();}
|
|
|
|
const Integer& MultiplicativeInverse(const Integer &a) const
|
|
{return result1 = a.InverseMod(modulus);}
|
|
|
|
const Integer& Divide(const Integer &a, const Integer &b) const
|
|
{return Multiply(a, MultiplicativeInverse(b));}
|
|
|
|
Integer CascadeExponentiate(const Integer &x, const Integer &e1,
|
|
const Integer &y, const Integer &e2) const;
|
|
|
|
void SimultaneousExponentiate(Element *results, const Element &base,
|
|
const Integer *exponents, unsigned int exponentsCount) const;
|
|
|
|
unsigned int MaxElementBitLength() const
|
|
{return (modulus-1).BitCount();}
|
|
|
|
unsigned int MaxElementByteLength() const
|
|
{return (modulus-1).ByteCount();}
|
|
|
|
|
|
static const RandomizationParameter DefaultRandomizationParameter;
|
|
|
|
protected:
|
|
Integer modulus;
|
|
mutable Integer result, result1;
|
|
|
|
};
|
|
|
|
|
|
|
|
//! do modular arithmetics in Montgomery representation for increased speed
|
|
class MontgomeryRepresentation : public ModularArithmetic
|
|
{
|
|
public:
|
|
MontgomeryRepresentation(const Integer &modulus); // modulus must be odd
|
|
|
|
bool IsMontgomeryRepresentation() const {return true;}
|
|
|
|
Integer ConvertIn(const Integer &a) const
|
|
{return (a<<(WORD_BITS*modulus.reg_.size()))%modulus;}
|
|
|
|
Integer ConvertOut(const Integer &a) const;
|
|
|
|
const Integer& MultiplicativeIdentity() const
|
|
{return result1 = Integer::Power2(WORD_BITS*modulus.reg_.size())%modulus;}
|
|
|
|
const Integer& Multiply(const Integer &a, const Integer &b) const;
|
|
|
|
const Integer& Square(const Integer &a) const;
|
|
|
|
const Integer& MultiplicativeInverse(const Integer &a) const;
|
|
|
|
Integer CascadeExponentiate(const Integer &x, const Integer &e1,
|
|
const Integer &y, const Integer &e2) const
|
|
{return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
|
|
|
|
void SimultaneousExponentiate(Element *results, const Element &base,
|
|
const Integer *exponents, unsigned int exponentsCount) const
|
|
{AbstractRing<Integer>::SimultaneousExponentiate(results, base,
|
|
exponents, exponentsCount);}
|
|
|
|
private:
|
|
Integer u;
|
|
mutable AlignedWordBlock workspace;
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
#endif // TAO_CRYPT_MODARITH_HPP
|