mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 20:12:31 +01:00
fab1b2f5be
into govinda.patg.net:/home/patg/mysql-build/mysql-5.1-engines-merge sql/ha_myisam.cc: Auto merged sql/ha_myisammrg.cc: Auto merged sql/ha_ndbcluster.cc: Auto merged sql/mysql_priv.h: Auto merged sql/sql_acl.cc: Auto merged sql/sql_base.cc: Auto merged sql/sql_delete.cc: Auto merged sql/sql_insert.cc: Auto merged sql/sql_partition.cc: Auto merged sql/sql_show.cc: Auto merged sql/sql_table.cc: Auto merged sql/sql_trigger.cc: Auto merged sql/sql_view.cc: Auto merged sql/sql_yacc.yy: Auto merged sql/table.cc: Auto merged storage/innobase/row/row0mysql.c: Auto merged
6805 lines
225 KiB
C++
6805 lines
225 KiB
C++
/* Copyright (C) 2005, 2006 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/*
|
|
This file is a container for general functionality related
|
|
to partitioning introduced in MySQL version 5.1. It contains functionality
|
|
used by all handlers that support partitioning, such as
|
|
the partitioning handler itself and the NDB handler.
|
|
|
|
The first version was written by Mikael Ronstrom.
|
|
|
|
This version supports RANGE partitioning, LIST partitioning, HASH
|
|
partitioning and composite partitioning (hereafter called subpartitioning)
|
|
where each RANGE/LIST partitioning is HASH partitioned. The hash function
|
|
can either be supplied by the user or by only a list of fields (also
|
|
called KEY partitioning), where the MySQL server will use an internal
|
|
hash function.
|
|
There are quite a few defaults that can be used as well.
|
|
*/
|
|
|
|
/* Some general useful functions */
|
|
|
|
#define MYSQL_LEX 1
|
|
#include "mysql_priv.h"
|
|
#include <errno.h>
|
|
#include <m_ctype.h>
|
|
#include "md5.h"
|
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
|
#include "ha_partition.h"
|
|
/*
|
|
Partition related functions declarations and some static constants;
|
|
*/
|
|
const LEX_STRING partition_keywords[]=
|
|
{
|
|
{ (char *) STRING_WITH_LEN("HASH") },
|
|
{ (char *) STRING_WITH_LEN("RANGE") },
|
|
{ (char *) STRING_WITH_LEN("LIST") },
|
|
{ (char *) STRING_WITH_LEN("KEY") },
|
|
{ (char *) STRING_WITH_LEN("MAXVALUE") },
|
|
{ (char *) STRING_WITH_LEN("LINEAR ") }
|
|
};
|
|
static const char *part_str= "PARTITION";
|
|
static const char *sub_str= "SUB";
|
|
static const char *by_str= "BY";
|
|
static const char *space_str= " ";
|
|
static const char *equal_str= "=";
|
|
static const char *end_paren_str= ")";
|
|
static const char *begin_paren_str= "(";
|
|
static const char *comma_str= ",";
|
|
|
|
int get_partition_id_list(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_range(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_hash_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_key_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_linear_hash_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_linear_key_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_range_sub_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_range_sub_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_range_sub_linear_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_list_sub_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_list_sub_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
int get_partition_id_list_sub_linear_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value);
|
|
uint32 get_partition_id_hash_sub(partition_info *part_info);
|
|
uint32 get_partition_id_key_sub(partition_info *part_info);
|
|
uint32 get_partition_id_linear_hash_sub(partition_info *part_info);
|
|
uint32 get_partition_id_linear_key_sub(partition_info *part_info);
|
|
#endif
|
|
|
|
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
|
|
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
|
|
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
|
|
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
|
|
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
|
bool is_subpart,
|
|
char *min_value, char *max_value,
|
|
uint flags,
|
|
PARTITION_ITERATOR *part_iter);
|
|
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
|
bool is_subpart,
|
|
char *min_value, char *max_value,
|
|
uint flags,
|
|
PARTITION_ITERATOR *part_iter);
|
|
static void set_up_range_analysis_info(partition_info *part_info);
|
|
|
|
/*
|
|
A routine used by the parser to decide whether we are specifying a full
|
|
partitioning or if only partitions to add or to split.
|
|
|
|
SYNOPSIS
|
|
is_partition_management()
|
|
lex Reference to the lex object
|
|
|
|
RETURN VALUE
|
|
TRUE Yes, it is part of a management partition command
|
|
FALSE No, not a management partition command
|
|
|
|
DESCRIPTION
|
|
This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is
|
|
used from the sql parser that doesn't have any #ifdef's
|
|
*/
|
|
|
|
my_bool is_partition_management(LEX *lex)
|
|
{
|
|
return (lex->sql_command == SQLCOM_ALTER_TABLE &&
|
|
(lex->alter_info.flags == ALTER_ADD_PARTITION ||
|
|
lex->alter_info.flags == ALTER_REORGANIZE_PARTITION));
|
|
}
|
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
|
/*
|
|
A support function to check if a name is in a list of strings
|
|
|
|
SYNOPSIS
|
|
is_name_in_list()
|
|
name String searched for
|
|
list_names A list of names searched in
|
|
|
|
RETURN VALUES
|
|
TRUE String found
|
|
FALSE String not found
|
|
*/
|
|
|
|
bool is_name_in_list(char *name,
|
|
List<char> list_names)
|
|
{
|
|
List_iterator<char> names_it(list_names);
|
|
uint no_names= list_names.elements;
|
|
uint i= 0;
|
|
|
|
do
|
|
{
|
|
char *list_name= names_it++;
|
|
if (!(my_strcasecmp(system_charset_info, name, list_name)))
|
|
return TRUE;
|
|
} while (++i < no_names);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Set-up defaults for partitions.
|
|
|
|
SYNOPSIS
|
|
partition_default_handling()
|
|
table Table object
|
|
part_info Partition info to set up
|
|
is_create_table_ind Is this part of a table creation
|
|
normalized_path Normalized path name of table and database
|
|
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
*/
|
|
|
|
bool partition_default_handling(TABLE *table, partition_info *part_info,
|
|
bool is_create_table_ind,
|
|
const char *normalized_path)
|
|
{
|
|
DBUG_ENTER("partition_default_handling");
|
|
|
|
if (part_info->use_default_no_partitions)
|
|
{
|
|
if (!is_create_table_ind &&
|
|
table->file->get_no_parts(normalized_path, &part_info->no_parts))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else if (part_info->is_sub_partitioned() &&
|
|
part_info->use_default_no_subpartitions)
|
|
{
|
|
uint no_parts;
|
|
if (!is_create_table_ind &&
|
|
(table->file->get_no_parts(normalized_path, &no_parts)))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
DBUG_ASSERT(part_info->no_parts > 0);
|
|
part_info->no_subparts= no_parts / part_info->no_parts;
|
|
DBUG_ASSERT((no_parts % part_info->no_parts) == 0);
|
|
}
|
|
part_info->set_up_defaults_for_partitioning(table->file,
|
|
(ulonglong)0, (uint)0);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Check that the reorganized table will not have duplicate partitions.
|
|
|
|
SYNOPSIS
|
|
check_reorganise_list()
|
|
new_part_info New partition info
|
|
old_part_info Old partition info
|
|
list_part_names The list of partition names that will go away and
|
|
can be reused in the new table.
|
|
|
|
RETURN VALUES
|
|
TRUE Inacceptable name conflict detected.
|
|
FALSE New names are OK.
|
|
|
|
DESCRIPTION
|
|
Can handle that the 'new_part_info' and 'old_part_info' the same
|
|
in which case it checks that the list of names in the partitions
|
|
doesn't contain any duplicated names.
|
|
*/
|
|
|
|
bool check_reorganise_list(partition_info *new_part_info,
|
|
partition_info *old_part_info,
|
|
List<char> list_part_names)
|
|
{
|
|
uint new_count, old_count;
|
|
uint no_new_parts= new_part_info->partitions.elements;
|
|
uint no_old_parts= old_part_info->partitions.elements;
|
|
List_iterator<partition_element> new_parts_it(new_part_info->partitions);
|
|
bool same_part_info= (new_part_info == old_part_info);
|
|
DBUG_ENTER("check_reorganise_list");
|
|
|
|
new_count= 0;
|
|
do
|
|
{
|
|
List_iterator<partition_element> old_parts_it(old_part_info->partitions);
|
|
char *new_name= (new_parts_it++)->partition_name;
|
|
new_count++;
|
|
old_count= 0;
|
|
do
|
|
{
|
|
char *old_name= (old_parts_it++)->partition_name;
|
|
old_count++;
|
|
if (same_part_info && old_count == new_count)
|
|
break;
|
|
if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
|
|
{
|
|
if (!is_name_in_list(old_name, list_part_names))
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
} while (old_count < no_old_parts);
|
|
} while (new_count < no_new_parts);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
A useful routine used by update_row for partition handlers to calculate
|
|
the partition ids of the old and the new record.
|
|
|
|
SYNOPSIS
|
|
get_part_for_update()
|
|
old_data Buffer of old record
|
|
new_data Buffer of new record
|
|
rec0 Reference to table->record[0]
|
|
part_info Reference to partition information
|
|
out:old_part_id The returned partition id of old record
|
|
out:new_part_id The returned partition id of new record
|
|
|
|
RETURN VALUE
|
|
0 Success
|
|
> 0 Error code
|
|
*/
|
|
|
|
int get_parts_for_update(const byte *old_data, byte *new_data,
|
|
const byte *rec0, partition_info *part_info,
|
|
uint32 *old_part_id, uint32 *new_part_id,
|
|
longlong *new_func_value)
|
|
{
|
|
Field **part_field_array= part_info->full_part_field_array;
|
|
int error;
|
|
longlong old_func_value;
|
|
DBUG_ENTER("get_parts_for_update");
|
|
|
|
DBUG_ASSERT(new_data == rec0);
|
|
set_field_ptr(part_field_array, old_data, rec0);
|
|
error= part_info->get_partition_id(part_info, old_part_id,
|
|
&old_func_value);
|
|
set_field_ptr(part_field_array, rec0, old_data);
|
|
if (unlikely(error)) // Should never happen
|
|
{
|
|
DBUG_ASSERT(0);
|
|
DBUG_RETURN(error);
|
|
}
|
|
#ifdef NOT_NEEDED
|
|
if (new_data == rec0)
|
|
#endif
|
|
{
|
|
if (unlikely(error= part_info->get_partition_id(part_info,
|
|
new_part_id,
|
|
new_func_value)))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
}
|
|
#ifdef NOT_NEEDED
|
|
else
|
|
{
|
|
/*
|
|
This branch should never execute but it is written anyways for
|
|
future use. It will be tested by ensuring that the above
|
|
condition is false in one test situation before pushing the code.
|
|
*/
|
|
set_field_ptr(part_field_array, new_data, rec0);
|
|
error= part_info->get_partition_id(part_info, new_part_id,
|
|
new_func_value);
|
|
set_field_ptr(part_field_array, rec0, new_data);
|
|
if (unlikely(error))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
}
|
|
#endif
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
A useful routine used by delete_row for partition handlers to calculate
|
|
the partition id.
|
|
|
|
SYNOPSIS
|
|
get_part_for_delete()
|
|
buf Buffer of old record
|
|
rec0 Reference to table->record[0]
|
|
part_info Reference to partition information
|
|
out:part_id The returned partition id to delete from
|
|
|
|
RETURN VALUE
|
|
0 Success
|
|
> 0 Error code
|
|
|
|
DESCRIPTION
|
|
Dependent on whether buf is not record[0] we need to prepare the
|
|
fields. Then we call the function pointer get_partition_id to
|
|
calculate the partition id.
|
|
*/
|
|
|
|
int get_part_for_delete(const byte *buf, const byte *rec0,
|
|
partition_info *part_info, uint32 *part_id)
|
|
{
|
|
int error;
|
|
longlong func_value;
|
|
DBUG_ENTER("get_part_for_delete");
|
|
|
|
if (likely(buf == rec0))
|
|
{
|
|
if (unlikely((error= part_info->get_partition_id(part_info, part_id,
|
|
&func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
DBUG_PRINT("info", ("Delete from partition %d", *part_id));
|
|
}
|
|
else
|
|
{
|
|
Field **part_field_array= part_info->full_part_field_array;
|
|
set_field_ptr(part_field_array, buf, rec0);
|
|
error= part_info->get_partition_id(part_info, part_id, &func_value);
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
if (unlikely(error))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
This method is used to set-up both partition and subpartitioning
|
|
field array and used for all types of partitioning.
|
|
It is part of the logic around fix_partition_func.
|
|
|
|
SYNOPSIS
|
|
set_up_field_array()
|
|
table TABLE object for which partition fields are set-up
|
|
sub_part Is the table subpartitioned as well
|
|
|
|
RETURN VALUE
|
|
TRUE Error, some field didn't meet requirements
|
|
FALSE Ok, partition field array set-up
|
|
|
|
DESCRIPTION
|
|
|
|
A great number of functions below here is part of the fix_partition_func
|
|
method. It is used to set up the partition structures for execution from
|
|
openfrm. It is called at the end of the openfrm when the table struct has
|
|
been set-up apart from the partition information.
|
|
It involves:
|
|
1) Setting arrays of fields for the partition functions.
|
|
2) Setting up binary search array for LIST partitioning
|
|
3) Setting up array for binary search for RANGE partitioning
|
|
4) Setting up key_map's to assist in quick evaluation whether one
|
|
can deduce anything from a given index of what partition to use
|
|
5) Checking whether a set of partitions can be derived from a range on
|
|
a field in the partition function.
|
|
As part of doing this there is also a great number of error controls.
|
|
This is actually the place where most of the things are checked for
|
|
partition information when creating a table.
|
|
Things that are checked includes
|
|
1) All fields of partition function in Primary keys and unique indexes
|
|
(if not supported)
|
|
|
|
|
|
Create an array of partition fields (NULL terminated). Before this method
|
|
is called fix_fields or find_table_in_sef has been called to set
|
|
GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
|
|
function.
|
|
*/
|
|
|
|
static bool set_up_field_array(TABLE *table,
|
|
bool is_sub_part)
|
|
{
|
|
Field **ptr, *field, **field_array;
|
|
uint no_fields= 0;
|
|
uint size_field_array;
|
|
uint i= 0;
|
|
partition_info *part_info= table->part_info;
|
|
int result= FALSE;
|
|
DBUG_ENTER("set_up_field_array");
|
|
|
|
ptr= table->field;
|
|
while ((field= *(ptr++)))
|
|
{
|
|
if (field->flags & GET_FIXED_FIELDS_FLAG)
|
|
no_fields++;
|
|
}
|
|
if (no_fields == 0)
|
|
{
|
|
/*
|
|
We are using hidden key as partitioning field
|
|
*/
|
|
DBUG_ASSERT(!is_sub_part);
|
|
DBUG_RETURN(result);
|
|
}
|
|
size_field_array= (no_fields+1)*sizeof(Field*);
|
|
field_array= (Field**)sql_alloc(size_field_array);
|
|
if (unlikely(!field_array))
|
|
{
|
|
mem_alloc_error(size_field_array);
|
|
result= TRUE;
|
|
}
|
|
ptr= table->field;
|
|
while ((field= *(ptr++)))
|
|
{
|
|
if (field->flags & GET_FIXED_FIELDS_FLAG)
|
|
{
|
|
field->flags&= ~GET_FIXED_FIELDS_FLAG;
|
|
field->flags|= FIELD_IN_PART_FUNC_FLAG;
|
|
if (likely(!result))
|
|
{
|
|
field_array[i++]= field;
|
|
|
|
/*
|
|
We check that the fields are proper. It is required for each
|
|
field in a partition function to:
|
|
1) Not be a BLOB of any type
|
|
A BLOB takes too long time to evaluate so we don't want it for
|
|
performance reasons.
|
|
*/
|
|
|
|
if (unlikely(field->flags & BLOB_FLAG))
|
|
{
|
|
my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
|
|
result= TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
field_array[no_fields]= 0;
|
|
if (!is_sub_part)
|
|
{
|
|
part_info->part_field_array= field_array;
|
|
part_info->no_part_fields= no_fields;
|
|
}
|
|
else
|
|
{
|
|
part_info->subpart_field_array= field_array;
|
|
part_info->no_subpart_fields= no_fields;
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Create a field array including all fields of both the partitioning and the
|
|
subpartitioning functions.
|
|
|
|
SYNOPSIS
|
|
create_full_part_field_array()
|
|
table TABLE object for which partition fields are set-up
|
|
part_info Reference to partitioning data structure
|
|
|
|
RETURN VALUE
|
|
TRUE Memory allocation of field array failed
|
|
FALSE Ok
|
|
|
|
DESCRIPTION
|
|
If there is no subpartitioning then the same array is used as for the
|
|
partitioning. Otherwise a new array is built up using the flag
|
|
FIELD_IN_PART_FUNC in the field object.
|
|
This function is called from fix_partition_func
|
|
*/
|
|
|
|
static bool create_full_part_field_array(TABLE *table,
|
|
partition_info *part_info)
|
|
{
|
|
bool result= FALSE;
|
|
DBUG_ENTER("create_full_part_field_array");
|
|
|
|
if (!part_info->is_sub_partitioned())
|
|
{
|
|
part_info->full_part_field_array= part_info->part_field_array;
|
|
part_info->no_full_part_fields= part_info->no_part_fields;
|
|
}
|
|
else
|
|
{
|
|
Field **ptr, *field, **field_array;
|
|
uint no_part_fields=0, size_field_array;
|
|
ptr= table->field;
|
|
while ((field= *(ptr++)))
|
|
{
|
|
if (field->flags & FIELD_IN_PART_FUNC_FLAG)
|
|
no_part_fields++;
|
|
}
|
|
size_field_array= (no_part_fields+1)*sizeof(Field*);
|
|
field_array= (Field**)sql_alloc(size_field_array);
|
|
if (unlikely(!field_array))
|
|
{
|
|
mem_alloc_error(size_field_array);
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
no_part_fields= 0;
|
|
ptr= table->field;
|
|
while ((field= *(ptr++)))
|
|
{
|
|
if (field->flags & FIELD_IN_PART_FUNC_FLAG)
|
|
field_array[no_part_fields++]= field;
|
|
}
|
|
field_array[no_part_fields]=0;
|
|
part_info->full_part_field_array= field_array;
|
|
part_info->no_full_part_fields= no_part_fields;
|
|
}
|
|
end:
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
|
|
Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
|
|
set_indicator_in_key_fields (always used in pairs).
|
|
|
|
SYNOPSIS
|
|
clear_indicator_in_key_fields()
|
|
key_info Reference to find the key fields
|
|
|
|
RETURN VALUE
|
|
NONE
|
|
|
|
DESCRIPTION
|
|
These support routines is used to set/reset an indicator of all fields
|
|
in a certain key. It is used in conjunction with another support routine
|
|
that traverse all fields in the PF to find if all or some fields in the
|
|
PF is part of the key. This is used to check primary keys and unique
|
|
keys involve all fields in PF (unless supported) and to derive the
|
|
key_map's used to quickly decide whether the index can be used to
|
|
derive which partitions are needed to scan.
|
|
*/
|
|
|
|
static void clear_indicator_in_key_fields(KEY *key_info)
|
|
{
|
|
KEY_PART_INFO *key_part;
|
|
uint key_parts= key_info->key_parts, i;
|
|
for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
|
|
key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
|
|
}
|
|
|
|
|
|
/*
|
|
Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
|
|
|
|
SYNOPSIS
|
|
set_indicator_in_key_fields
|
|
key_info Reference to find the key fields
|
|
|
|
RETURN VALUE
|
|
NONE
|
|
*/
|
|
|
|
static void set_indicator_in_key_fields(KEY *key_info)
|
|
{
|
|
KEY_PART_INFO *key_part;
|
|
uint key_parts= key_info->key_parts, i;
|
|
for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
|
|
key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if all or some fields in partition field array is part of a key
|
|
previously used to tag key fields.
|
|
|
|
SYNOPSIS
|
|
check_fields_in_PF()
|
|
ptr Partition field array
|
|
out:all_fields Is all fields of partition field array used in key
|
|
out:some_fields Is some fields of partition field array used in key
|
|
|
|
RETURN VALUE
|
|
all_fields, some_fields
|
|
*/
|
|
|
|
static void check_fields_in_PF(Field **ptr, bool *all_fields,
|
|
bool *some_fields)
|
|
{
|
|
DBUG_ENTER("check_fields_in_PF");
|
|
|
|
*all_fields= TRUE;
|
|
*some_fields= FALSE;
|
|
if ((!ptr) || !(*ptr))
|
|
{
|
|
*all_fields= FALSE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
do
|
|
{
|
|
/* Check if the field of the PF is part of the current key investigated */
|
|
if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
|
|
*some_fields= TRUE;
|
|
else
|
|
*all_fields= FALSE;
|
|
} while (*(++ptr));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
|
|
This routine is used for error handling purposes.
|
|
|
|
SYNOPSIS
|
|
clear_field_flag()
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
RETURN VALUE
|
|
NONE
|
|
*/
|
|
|
|
static void clear_field_flag(TABLE *table)
|
|
{
|
|
Field **ptr;
|
|
DBUG_ENTER("clear_field_flag");
|
|
|
|
for (ptr= table->field; *ptr; ptr++)
|
|
(*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
find_field_in_table_sef finds the field given its name. All fields get
|
|
GET_FIXED_FIELDS_FLAG set.
|
|
|
|
SYNOPSIS
|
|
handle_list_of_fields()
|
|
it A list of field names for the partition function
|
|
table TABLE object for which partition fields are set-up
|
|
part_info Reference to partitioning data structure
|
|
sub_part Is the table subpartitioned as well
|
|
|
|
RETURN VALUE
|
|
TRUE Fields in list of fields not part of table
|
|
FALSE All fields ok and array created
|
|
|
|
DESCRIPTION
|
|
This routine sets-up the partition field array for KEY partitioning, it
|
|
also verifies that all fields in the list of fields is actually a part of
|
|
the table.
|
|
|
|
*/
|
|
|
|
|
|
static bool handle_list_of_fields(List_iterator<char> it,
|
|
TABLE *table,
|
|
partition_info *part_info,
|
|
bool is_sub_part)
|
|
{
|
|
Field *field;
|
|
bool result;
|
|
char *field_name;
|
|
bool is_list_empty= TRUE;
|
|
DBUG_ENTER("handle_list_of_fields");
|
|
|
|
while ((field_name= it++))
|
|
{
|
|
is_list_empty= FALSE;
|
|
field= find_field_in_table_sef(table, field_name);
|
|
if (likely(field != 0))
|
|
field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
else
|
|
{
|
|
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
|
|
clear_field_flag(table);
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
}
|
|
if (is_list_empty)
|
|
{
|
|
uint primary_key= table->s->primary_key;
|
|
if (primary_key != MAX_KEY)
|
|
{
|
|
uint no_key_parts= table->key_info[primary_key].key_parts, i;
|
|
/*
|
|
In the case of an empty list we use primary key as partition key.
|
|
*/
|
|
for (i= 0; i < no_key_parts; i++)
|
|
{
|
|
Field *field= table->key_info[primary_key].key_part[i].field;
|
|
field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (table->s->db_type->partition_flags &&
|
|
(table->s->db_type->partition_flags() & HA_USE_AUTO_PARTITION) &&
|
|
(table->s->db_type->partition_flags() & HA_CAN_PARTITION))
|
|
{
|
|
/*
|
|
This engine can handle automatic partitioning and there is no
|
|
primary key. In this case we rely on that the engine handles
|
|
partitioning based on a hidden key. Thus we allocate no
|
|
array for partitioning fields.
|
|
*/
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
else
|
|
{
|
|
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
}
|
|
result= set_up_field_array(table, is_sub_part);
|
|
end:
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Support function to check if all VALUES * (expression) is of the
|
|
right sign (no signed constants when unsigned partition function)
|
|
|
|
SYNOPSIS
|
|
check_signed_flag()
|
|
part_info Partition info object
|
|
|
|
RETURN VALUES
|
|
0 No errors due to sign errors
|
|
>0 Sign error
|
|
*/
|
|
|
|
int check_signed_flag(partition_info *part_info)
|
|
{
|
|
int error= 0;
|
|
uint i= 0;
|
|
if (part_info->part_type != HASH_PARTITION &&
|
|
part_info->part_expr->unsigned_flag)
|
|
{
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
|
|
if (part_elem->signed_flag)
|
|
{
|
|
my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0));
|
|
error= ER_PARTITION_CONST_DOMAIN_ERROR;
|
|
break;
|
|
}
|
|
} while (++i < part_info->no_parts);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
The function uses a new feature in fix_fields where the flag
|
|
GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
|
|
This field must always be reset before returning from the function
|
|
since it is used for other purposes as well.
|
|
|
|
SYNOPSIS
|
|
fix_fields_part_func()
|
|
thd The thread object
|
|
func_expr The item tree reference of the partition function
|
|
table The table object
|
|
part_info Reference to partitioning data structure
|
|
is_sub_part Is the table subpartitioned as well
|
|
is_field_to_be_setup Flag if we are to set-up field arrays
|
|
|
|
RETURN VALUE
|
|
TRUE An error occurred, something was wrong with the
|
|
partition function.
|
|
FALSE Ok, a partition field array was created
|
|
|
|
DESCRIPTION
|
|
This function is used to build an array of partition fields for the
|
|
partitioning function and subpartitioning function. The partitioning
|
|
function is an item tree that must reference at least one field in the
|
|
table. This is checked first in the parser that the function doesn't
|
|
contain non-cacheable parts (like a random function) and by checking
|
|
here that the function isn't a constant function.
|
|
|
|
Calculate the number of fields in the partition function.
|
|
Use it allocate memory for array of Field pointers.
|
|
Initialise array of field pointers. Use information set when
|
|
calling fix_fields and reset it immediately after.
|
|
The get_fields_in_item_tree activates setting of bit in flags
|
|
on the field object.
|
|
*/
|
|
|
|
bool fix_fields_part_func(THD *thd, Item* func_expr, TABLE *table,
|
|
bool is_sub_part, bool is_field_to_be_setup)
|
|
{
|
|
partition_info *part_info= table->part_info;
|
|
uint dir_length, home_dir_length;
|
|
bool result= TRUE;
|
|
TABLE_LIST tables;
|
|
TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
|
|
int error;
|
|
Name_resolution_context *context;
|
|
const char *save_where;
|
|
char* db_name;
|
|
char db_name_string[FN_REFLEN];
|
|
DBUG_ENTER("fix_fields_part_func");
|
|
|
|
if (part_info->fixed)
|
|
{
|
|
if (!(is_sub_part || (error= check_signed_flag(part_info))))
|
|
result= FALSE;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
Set-up the TABLE_LIST object to be a list with a single table
|
|
Set the object to zero to create NULL pointers and set alias
|
|
and real name to table name and get database name from file name.
|
|
*/
|
|
|
|
bzero((void*)&tables, sizeof(TABLE_LIST));
|
|
tables.alias= tables.table_name= (char*) table->s->table_name.str;
|
|
tables.table= table;
|
|
tables.next_local= 0;
|
|
tables.next_name_resolution_table= 0;
|
|
strmov(db_name_string, table->s->normalized_path.str);
|
|
dir_length= dirname_length(db_name_string);
|
|
db_name_string[dir_length - 1]= 0;
|
|
home_dir_length= dirname_length(db_name_string);
|
|
db_name= &db_name_string[home_dir_length];
|
|
tables.db= db_name;
|
|
|
|
context= thd->lex->current_context();
|
|
table->map= 1; //To ensure correct calculation of const item
|
|
table->get_fields_in_item_tree= TRUE;
|
|
save_table_list= context->table_list;
|
|
save_first_table= context->first_name_resolution_table;
|
|
save_last_table= context->last_name_resolution_table;
|
|
context->table_list= &tables;
|
|
context->first_name_resolution_table= &tables;
|
|
context->last_name_resolution_table= NULL;
|
|
func_expr->walk(&Item::change_context_processor, 0, (byte*) context);
|
|
save_where= thd->where;
|
|
thd->where= "partition function";
|
|
error= func_expr->fix_fields(thd, (Item**)0);
|
|
context->table_list= save_table_list;
|
|
context->first_name_resolution_table= save_first_table;
|
|
context->last_name_resolution_table= save_last_table;
|
|
if (unlikely(error))
|
|
{
|
|
DBUG_PRINT("info", ("Field in partition function not part of table"));
|
|
if (is_field_to_be_setup)
|
|
clear_field_flag(table);
|
|
goto end;
|
|
}
|
|
thd->where= save_where;
|
|
if (unlikely(func_expr->const_item()))
|
|
{
|
|
my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
|
|
clear_field_flag(table);
|
|
goto end;
|
|
}
|
|
if ((!is_sub_part) && (error= check_signed_flag(part_info)))
|
|
goto end;
|
|
result= FALSE;
|
|
if (is_field_to_be_setup)
|
|
result= set_up_field_array(table, is_sub_part);
|
|
if (!is_sub_part)
|
|
part_info->fixed= TRUE;
|
|
end:
|
|
table->get_fields_in_item_tree= FALSE;
|
|
table->map= 0; //Restore old value
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Check that the primary key contains all partition fields if defined
|
|
|
|
SYNOPSIS
|
|
check_primary_key()
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
RETURN VALUES
|
|
TRUE Not all fields in partitioning function was part
|
|
of primary key
|
|
FALSE Ok, all fields of partitioning function were part
|
|
of primary key
|
|
|
|
DESCRIPTION
|
|
This function verifies that if there is a primary key that it contains
|
|
all the fields of the partition function.
|
|
This is a temporary limitation that will hopefully be removed after a
|
|
while.
|
|
*/
|
|
|
|
static bool check_primary_key(TABLE *table)
|
|
{
|
|
uint primary_key= table->s->primary_key;
|
|
bool all_fields, some_fields;
|
|
bool result= FALSE;
|
|
DBUG_ENTER("check_primary_key");
|
|
|
|
if (primary_key < MAX_KEY)
|
|
{
|
|
set_indicator_in_key_fields(table->key_info+primary_key);
|
|
check_fields_in_PF(table->part_info->full_part_field_array,
|
|
&all_fields, &some_fields);
|
|
clear_indicator_in_key_fields(table->key_info+primary_key);
|
|
if (unlikely(!all_fields))
|
|
{
|
|
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
|
|
result= TRUE;
|
|
}
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Check that unique keys contains all partition fields
|
|
|
|
SYNOPSIS
|
|
check_unique_keys()
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
RETURN VALUES
|
|
TRUE Not all fields in partitioning function was part
|
|
of all unique keys
|
|
FALSE Ok, all fields of partitioning function were part
|
|
of unique keys
|
|
|
|
DESCRIPTION
|
|
This function verifies that if there is a unique index that it contains
|
|
all the fields of the partition function.
|
|
This is a temporary limitation that will hopefully be removed after a
|
|
while.
|
|
*/
|
|
|
|
static bool check_unique_keys(TABLE *table)
|
|
{
|
|
bool all_fields, some_fields;
|
|
bool result= FALSE;
|
|
uint keys= table->s->keys;
|
|
uint i;
|
|
DBUG_ENTER("check_unique_keys");
|
|
|
|
for (i= 0; i < keys; i++)
|
|
{
|
|
if (table->key_info[i].flags & HA_NOSAME) //Unique index
|
|
{
|
|
set_indicator_in_key_fields(table->key_info+i);
|
|
check_fields_in_PF(table->part_info->full_part_field_array,
|
|
&all_fields, &some_fields);
|
|
clear_indicator_in_key_fields(table->key_info+i);
|
|
if (unlikely(!all_fields))
|
|
{
|
|
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
|
|
result= TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
An important optimisation is whether a range on a field can select a subset
|
|
of the partitions.
|
|
A prerequisite for this to happen is that the PF is a growing function OR
|
|
a shrinking function.
|
|
This can never happen for a multi-dimensional PF. Thus this can only happen
|
|
with PF with at most one field involved in the PF.
|
|
The idea is that if the function is a growing function and you know that
|
|
the field of the PF is 4 <= A <= 6 then we can convert this to a range
|
|
in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
|
|
case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
|
|
calculate a set of partitions rather than scanning all of them.
|
|
Thus the following prerequisites are there to check if sets of partitions
|
|
can be found.
|
|
1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
|
|
2) Only possible if PF only contains 1 field
|
|
3) Possible if PF is a growing function of the field
|
|
4) Possible if PF is a shrinking function of the field
|
|
OBSERVATION:
|
|
1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
|
|
f1(A) + f2(A) is a growing function
|
|
f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
|
|
2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
|
|
f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
|
|
3) IF A is a growing function then a function f(A) that removes the
|
|
least significant portion of A is a growing function
|
|
E.g. DATE(datetime) is a growing function
|
|
MONTH(datetime) is not a growing/shrinking function
|
|
4) IF f1(A) is a growing function and f2(A) is a growing function THEN
|
|
f1(f2(A)) and f2(f1(A)) are also growing functions
|
|
5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
|
|
f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
|
|
6) f1(A) = A is a growing function
|
|
7) f1(A) = A*a + b (where a and b are constants) is a growing function
|
|
|
|
By analysing the item tree of the PF we can use these deducements and
|
|
derive whether the PF is a growing function or a shrinking function or
|
|
neither of it.
|
|
|
|
If the PF is range capable then a flag is set on the table object
|
|
indicating this to notify that we can use also ranges on the field
|
|
of the PF to deduce a set of partitions if the fields of the PF were
|
|
not all fully bound.
|
|
|
|
SYNOPSIS
|
|
check_range_capable_PF()
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
DESCRIPTION
|
|
Support for this is not implemented yet.
|
|
*/
|
|
|
|
void check_range_capable_PF(TABLE *table)
|
|
{
|
|
DBUG_ENTER("check_range_capable_PF");
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Set up partition bitmap
|
|
|
|
SYNOPSIS
|
|
set_up_partition_bitmap()
|
|
thd Thread object
|
|
part_info Reference to partitioning data structure
|
|
|
|
RETURN VALUE
|
|
TRUE Memory allocation failure
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
Allocate memory for bitmap of the partitioned table
|
|
and initialise it.
|
|
*/
|
|
|
|
static bool set_up_partition_bitmap(THD *thd, partition_info *part_info)
|
|
{
|
|
uint32 *bitmap_buf;
|
|
uint bitmap_bits= part_info->no_subparts?
|
|
(part_info->no_subparts* part_info->no_parts):
|
|
part_info->no_parts;
|
|
uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
|
|
DBUG_ENTER("set_up_partition_bitmap");
|
|
|
|
if (!(bitmap_buf= (uint32*)thd->alloc(bitmap_bytes)))
|
|
{
|
|
mem_alloc_error(bitmap_bytes);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
|
|
bitmap_set_all(&part_info->used_partitions);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Set up partition key maps
|
|
|
|
SYNOPSIS
|
|
set_up_partition_key_maps()
|
|
table TABLE object for which partition fields are set-up
|
|
part_info Reference to partitioning data structure
|
|
|
|
RETURN VALUES
|
|
None
|
|
|
|
DESCRIPTION
|
|
This function sets up a couple of key maps to be able to quickly check
|
|
if an index ever can be used to deduce the partition fields or even
|
|
a part of the fields of the partition function.
|
|
We set up the following key_map's.
|
|
PF = Partition Function
|
|
1) All fields of the PF is set even by equal on the first fields in the
|
|
key
|
|
2) All fields of the PF is set if all fields of the key is set
|
|
3) At least one field in the PF is set if all fields is set
|
|
4) At least one field in the PF is part of the key
|
|
*/
|
|
|
|
static void set_up_partition_key_maps(TABLE *table,
|
|
partition_info *part_info)
|
|
{
|
|
uint keys= table->s->keys;
|
|
uint i;
|
|
bool all_fields, some_fields;
|
|
DBUG_ENTER("set_up_partition_key_maps");
|
|
|
|
part_info->all_fields_in_PF.clear_all();
|
|
part_info->all_fields_in_PPF.clear_all();
|
|
part_info->all_fields_in_SPF.clear_all();
|
|
part_info->some_fields_in_PF.clear_all();
|
|
for (i= 0; i < keys; i++)
|
|
{
|
|
set_indicator_in_key_fields(table->key_info+i);
|
|
check_fields_in_PF(part_info->full_part_field_array,
|
|
&all_fields, &some_fields);
|
|
if (all_fields)
|
|
part_info->all_fields_in_PF.set_bit(i);
|
|
if (some_fields)
|
|
part_info->some_fields_in_PF.set_bit(i);
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
check_fields_in_PF(part_info->part_field_array,
|
|
&all_fields, &some_fields);
|
|
if (all_fields)
|
|
part_info->all_fields_in_PPF.set_bit(i);
|
|
check_fields_in_PF(part_info->subpart_field_array,
|
|
&all_fields, &some_fields);
|
|
if (all_fields)
|
|
part_info->all_fields_in_SPF.set_bit(i);
|
|
}
|
|
clear_indicator_in_key_fields(table->key_info+i);
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Set up function pointers for partition function
|
|
|
|
SYNOPSIS
|
|
set_up_partition_func_pointers()
|
|
part_info Reference to partitioning data structure
|
|
|
|
RETURN VALUE
|
|
NONE
|
|
|
|
DESCRIPTION
|
|
Set-up all function pointers for calculation of partition id,
|
|
subpartition id and the upper part in subpartitioning. This is to speed up
|
|
execution of get_partition_id which is executed once every record to be
|
|
written and deleted and twice for updates.
|
|
*/
|
|
|
|
static void set_up_partition_func_pointers(partition_info *part_info)
|
|
{
|
|
DBUG_ENTER("set_up_partition_func_pointers");
|
|
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
{
|
|
part_info->get_part_partition_id= get_partition_id_range;
|
|
if (part_info->list_of_subpart_fields)
|
|
{
|
|
if (part_info->linear_hash_ind)
|
|
{
|
|
part_info->get_partition_id= get_partition_id_range_sub_linear_key;
|
|
part_info->get_subpartition_id= get_partition_id_linear_key_sub;
|
|
}
|
|
else
|
|
{
|
|
part_info->get_partition_id= get_partition_id_range_sub_key;
|
|
part_info->get_subpartition_id= get_partition_id_key_sub;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (part_info->linear_hash_ind)
|
|
{
|
|
part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
|
|
part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
|
|
}
|
|
else
|
|
{
|
|
part_info->get_partition_id= get_partition_id_range_sub_hash;
|
|
part_info->get_subpartition_id= get_partition_id_hash_sub;
|
|
}
|
|
}
|
|
}
|
|
else /* LIST Partitioning */
|
|
{
|
|
part_info->get_part_partition_id= get_partition_id_list;
|
|
if (part_info->list_of_subpart_fields)
|
|
{
|
|
if (part_info->linear_hash_ind)
|
|
{
|
|
part_info->get_partition_id= get_partition_id_list_sub_linear_key;
|
|
part_info->get_subpartition_id= get_partition_id_linear_key_sub;
|
|
}
|
|
else
|
|
{
|
|
part_info->get_partition_id= get_partition_id_list_sub_key;
|
|
part_info->get_subpartition_id= get_partition_id_key_sub;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (part_info->linear_hash_ind)
|
|
{
|
|
part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
|
|
part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
|
|
}
|
|
else
|
|
{
|
|
part_info->get_partition_id= get_partition_id_list_sub_hash;
|
|
part_info->get_subpartition_id= get_partition_id_hash_sub;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else /* No subpartitioning */
|
|
{
|
|
part_info->get_part_partition_id= NULL;
|
|
part_info->get_subpartition_id= NULL;
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
part_info->get_partition_id= get_partition_id_range;
|
|
else if (part_info->part_type == LIST_PARTITION)
|
|
part_info->get_partition_id= get_partition_id_list;
|
|
else /* HASH partitioning */
|
|
{
|
|
if (part_info->list_of_part_fields)
|
|
{
|
|
if (part_info->linear_hash_ind)
|
|
part_info->get_partition_id= get_partition_id_linear_key_nosub;
|
|
else
|
|
part_info->get_partition_id= get_partition_id_key_nosub;
|
|
}
|
|
else
|
|
{
|
|
if (part_info->linear_hash_ind)
|
|
part_info->get_partition_id= get_partition_id_linear_hash_nosub;
|
|
else
|
|
part_info->get_partition_id= get_partition_id_hash_nosub;
|
|
}
|
|
}
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
For linear hashing we need a mask which is on the form 2**n - 1 where
|
|
2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
|
|
|
|
SYNOPSIS
|
|
set_linear_hash_mask()
|
|
part_info Reference to partitioning data structure
|
|
no_parts Number of parts in linear hash partitioning
|
|
|
|
RETURN VALUE
|
|
NONE
|
|
*/
|
|
|
|
static void set_linear_hash_mask(partition_info *part_info, uint no_parts)
|
|
{
|
|
uint mask;
|
|
|
|
for (mask= 1; mask < no_parts; mask<<=1)
|
|
;
|
|
part_info->linear_hash_mask= mask - 1;
|
|
}
|
|
|
|
|
|
/*
|
|
This function calculates the partition id provided the result of the hash
|
|
function using linear hashing parameters, mask and number of partitions.
|
|
|
|
SYNOPSIS
|
|
get_part_id_from_linear_hash()
|
|
hash_value Hash value calculated by HASH function or KEY function
|
|
mask Mask calculated previously by set_linear_hash_mask
|
|
no_parts Number of partitions in HASH partitioned part
|
|
|
|
RETURN VALUE
|
|
part_id The calculated partition identity (starting at 0)
|
|
|
|
DESCRIPTION
|
|
The partition is calculated according to the theory of linear hashing.
|
|
See e.g. Linear hashing: a new tool for file and table addressing,
|
|
Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
|
|
(ed.), Morgan Kaufmann 1994.
|
|
*/
|
|
|
|
static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
|
|
uint no_parts)
|
|
{
|
|
uint32 part_id= (uint32)(hash_value & mask);
|
|
|
|
if (part_id >= no_parts)
|
|
{
|
|
uint new_mask= ((mask + 1) >> 1) - 1;
|
|
part_id= (uint32)(hash_value & new_mask);
|
|
}
|
|
return part_id;
|
|
}
|
|
|
|
/*
|
|
fix partition functions
|
|
|
|
SYNOPSIS
|
|
fix_partition_func()
|
|
thd The thread object
|
|
table TABLE object for which partition fields are set-up
|
|
is_create_table_ind Indicator of whether openfrm was called as part of
|
|
CREATE or ALTER TABLE
|
|
|
|
RETURN VALUE
|
|
TRUE Error
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
The name parameter contains the full table name and is used to get the
|
|
database name of the table which is used to set-up a correct
|
|
TABLE_LIST object for use in fix_fields.
|
|
|
|
NOTES
|
|
This function is called as part of opening the table by opening the .frm
|
|
file. It is a part of CREATE TABLE to do this so it is quite permissible
|
|
that errors due to erroneus syntax isn't found until we come here.
|
|
If the user has used a non-existing field in the table is one such example
|
|
of an error that is not discovered until here.
|
|
*/
|
|
|
|
bool fix_partition_func(THD *thd, TABLE *table,
|
|
bool is_create_table_ind)
|
|
{
|
|
bool result= TRUE;
|
|
partition_info *part_info= table->part_info;
|
|
enum_mark_columns save_mark_used_columns= thd->mark_used_columns;
|
|
Item *thd_free_list= thd->free_list;
|
|
DBUG_ENTER("fix_partition_func");
|
|
|
|
if (part_info->fixed)
|
|
{
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
thd->mark_used_columns= MARK_COLUMNS_NONE;
|
|
DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
|
|
|
|
if (!is_create_table_ind ||
|
|
thd->lex->sql_command != SQLCOM_CREATE_TABLE)
|
|
{
|
|
if (partition_default_handling(table, part_info,
|
|
is_create_table_ind,
|
|
table->s->normalized_path.str))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
thd->free_list= part_info->item_free_list;
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
|
|
/*
|
|
Subpartition is defined. We need to verify that subpartitioning
|
|
function is correct.
|
|
*/
|
|
if (part_info->linear_hash_ind)
|
|
set_linear_hash_mask(part_info, part_info->no_subparts);
|
|
if (part_info->list_of_subpart_fields)
|
|
{
|
|
List_iterator<char> it(part_info->subpart_field_list);
|
|
if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
|
|
goto end;
|
|
}
|
|
else
|
|
{
|
|
if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr,
|
|
table, TRUE, TRUE)))
|
|
goto end;
|
|
if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
|
|
{
|
|
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
|
|
"SUBPARTITION");
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
|
|
/*
|
|
Partition is defined. We need to verify that partitioning
|
|
function is correct.
|
|
*/
|
|
if (part_info->part_type == HASH_PARTITION)
|
|
{
|
|
if (part_info->linear_hash_ind)
|
|
set_linear_hash_mask(part_info, part_info->no_parts);
|
|
if (part_info->list_of_part_fields)
|
|
{
|
|
List_iterator<char> it(part_info->part_field_list);
|
|
if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
|
|
goto end;
|
|
}
|
|
else
|
|
{
|
|
if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
|
|
table, FALSE, TRUE)))
|
|
goto end;
|
|
if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
|
|
{
|
|
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
|
|
goto end;
|
|
}
|
|
part_info->part_result_type= INT_RESULT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char *error_str;
|
|
if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
|
|
table, FALSE, TRUE)))
|
|
goto end;
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
{
|
|
error_str= partition_keywords[PKW_RANGE].str;
|
|
if (unlikely(part_info->check_range_constants()))
|
|
goto end;
|
|
}
|
|
else if (part_info->part_type == LIST_PARTITION)
|
|
{
|
|
error_str= partition_keywords[PKW_LIST].str;
|
|
if (unlikely(part_info->check_list_constants()))
|
|
goto end;
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(0);
|
|
my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
if (unlikely(part_info->no_parts < 1))
|
|
{
|
|
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
|
|
goto end;
|
|
}
|
|
if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
|
|
{
|
|
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
|
|
goto end;
|
|
}
|
|
}
|
|
if (unlikely(create_full_part_field_array(table, part_info)))
|
|
goto end;
|
|
if (unlikely(check_primary_key(table)))
|
|
goto end;
|
|
if (unlikely((!(table->s->db_type->partition_flags &&
|
|
(table->s->db_type->partition_flags() & HA_CAN_PARTITION_UNIQUE))) &&
|
|
check_unique_keys(table)))
|
|
goto end;
|
|
if (unlikely(set_up_partition_bitmap(thd, part_info)))
|
|
goto end;
|
|
check_range_capable_PF(table);
|
|
set_up_partition_key_maps(table, part_info);
|
|
set_up_partition_func_pointers(part_info);
|
|
set_up_range_analysis_info(part_info);
|
|
result= FALSE;
|
|
end:
|
|
thd->free_list= thd_free_list;
|
|
thd->mark_used_columns= save_mark_used_columns;
|
|
DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
The code below is support routines for the reverse parsing of the
|
|
partitioning syntax. This feature is very useful to generate syntax for
|
|
all default values to avoid all default checking when opening the frm
|
|
file. It is also used when altering the partitioning by use of various
|
|
ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
|
|
*/
|
|
|
|
static int add_write(File fptr, const char *buf, uint len)
|
|
{
|
|
uint len_written= my_write(fptr, (const byte*)buf, len, MYF(0));
|
|
|
|
if (likely(len == len_written))
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static int add_string_object(File fptr, String *string)
|
|
{
|
|
return add_write(fptr, string->ptr(), string->length());
|
|
}
|
|
|
|
static int add_string(File fptr, const char *string)
|
|
{
|
|
return add_write(fptr, string, strlen(string));
|
|
}
|
|
|
|
static int add_string_len(File fptr, const char *string, uint len)
|
|
{
|
|
return add_write(fptr, string, len);
|
|
}
|
|
|
|
static int add_space(File fptr)
|
|
{
|
|
return add_string(fptr, space_str);
|
|
}
|
|
|
|
static int add_comma(File fptr)
|
|
{
|
|
return add_string(fptr, comma_str);
|
|
}
|
|
|
|
static int add_equal(File fptr)
|
|
{
|
|
return add_string(fptr, equal_str);
|
|
}
|
|
|
|
static int add_end_parenthesis(File fptr)
|
|
{
|
|
return add_string(fptr, end_paren_str);
|
|
}
|
|
|
|
static int add_begin_parenthesis(File fptr)
|
|
{
|
|
return add_string(fptr, begin_paren_str);
|
|
}
|
|
|
|
static int add_part_key_word(File fptr, const char *key_string)
|
|
{
|
|
int err= add_string(fptr, key_string);
|
|
|
|
err+= add_space(fptr);
|
|
return err + add_begin_parenthesis(fptr);
|
|
}
|
|
|
|
static int add_hash(File fptr)
|
|
{
|
|
return add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
|
|
}
|
|
|
|
static int add_partition(File fptr)
|
|
{
|
|
char buff[22];
|
|
strxmov(buff, part_str, space_str, NullS);
|
|
return add_string(fptr, buff);
|
|
}
|
|
|
|
static int add_subpartition(File fptr)
|
|
{
|
|
int err= add_string(fptr, sub_str);
|
|
|
|
return err + add_partition(fptr);
|
|
}
|
|
|
|
static int add_partition_by(File fptr)
|
|
{
|
|
char buff[22];
|
|
strxmov(buff, part_str, space_str, by_str, space_str, NullS);
|
|
return add_string(fptr, buff);
|
|
}
|
|
|
|
static int add_subpartition_by(File fptr)
|
|
{
|
|
int err= add_string(fptr, sub_str);
|
|
|
|
return err + add_partition_by(fptr);
|
|
}
|
|
|
|
static int add_key_partition(File fptr, List<char> field_list)
|
|
{
|
|
uint i, no_fields;
|
|
int err;
|
|
|
|
List_iterator<char> part_it(field_list);
|
|
err= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
|
|
no_fields= field_list.elements;
|
|
i= 0;
|
|
while (i < no_fields)
|
|
{
|
|
const char *field_str= part_it++;
|
|
String field_string("", 0, system_charset_info);
|
|
THD *thd= current_thd;
|
|
ulonglong save_options= thd->options;
|
|
thd->options= 0;
|
|
append_identifier(thd, &field_string, field_str,
|
|
strlen(field_str));
|
|
thd->options= save_options;
|
|
err+= add_string_object(fptr, &field_string);
|
|
if (i != (no_fields-1))
|
|
err+= add_comma(fptr);
|
|
i++;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int add_name_string(File fptr, const char *name)
|
|
{
|
|
int err;
|
|
String name_string("", 0, system_charset_info);
|
|
THD *thd= current_thd;
|
|
ulonglong save_options= thd->options;
|
|
|
|
thd->options= 0;
|
|
append_identifier(thd, &name_string, name,
|
|
strlen(name));
|
|
thd->options= save_options;
|
|
err= add_string_object(fptr, &name_string);
|
|
return err;
|
|
}
|
|
|
|
static int add_int(File fptr, longlong number)
|
|
{
|
|
char buff[32];
|
|
llstr(number, buff);
|
|
return add_string(fptr, buff);
|
|
}
|
|
|
|
static int add_uint(File fptr, ulonglong number)
|
|
{
|
|
char buff[32];
|
|
longlong2str(number, buff, 10);
|
|
return add_string(fptr, buff);
|
|
}
|
|
|
|
static int add_keyword_string(File fptr, const char *keyword,
|
|
bool should_use_quotes,
|
|
const char *keystr)
|
|
{
|
|
int err= add_string(fptr, keyword);
|
|
|
|
err+= add_space(fptr);
|
|
err+= add_equal(fptr);
|
|
err+= add_space(fptr);
|
|
if (should_use_quotes)
|
|
err+= add_string(fptr, "'");
|
|
err+= add_string(fptr, keystr);
|
|
if (should_use_quotes)
|
|
err+= add_string(fptr, "'");
|
|
return err + add_space(fptr);
|
|
}
|
|
|
|
static int add_keyword_int(File fptr, const char *keyword, longlong num)
|
|
{
|
|
int err= add_string(fptr, keyword);
|
|
|
|
err+= add_space(fptr);
|
|
err+= add_equal(fptr);
|
|
err+= add_space(fptr);
|
|
err+= add_int(fptr, num);
|
|
return err + add_space(fptr);
|
|
}
|
|
|
|
static int add_engine(File fptr, handlerton *engine_type)
|
|
{
|
|
const char *engine_str= hton2plugin[engine_type->slot]->name.str;
|
|
DBUG_PRINT("info", ("ENGINE: %s", engine_str));
|
|
int err= add_string(fptr, "ENGINE = ");
|
|
return err + add_string(fptr, engine_str);
|
|
}
|
|
|
|
static int add_partition_options(File fptr, partition_element *p_elem)
|
|
{
|
|
int err= 0;
|
|
|
|
err+= add_space(fptr);
|
|
if (p_elem->tablespace_name)
|
|
err+= add_keyword_string(fptr,"TABLESPACE", FALSE,
|
|
p_elem->tablespace_name);
|
|
if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
|
|
err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
|
|
if (p_elem->part_max_rows)
|
|
err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
|
|
if (p_elem->part_min_rows)
|
|
err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
|
|
if (p_elem->data_file_name)
|
|
err+= add_keyword_string(fptr, "DATA DIRECTORY", TRUE,
|
|
p_elem->data_file_name);
|
|
if (p_elem->index_file_name)
|
|
err+= add_keyword_string(fptr, "INDEX DIRECTORY", TRUE,
|
|
p_elem->index_file_name);
|
|
if (p_elem->part_comment)
|
|
err+= add_keyword_string(fptr, "COMMENT", TRUE, p_elem->part_comment);
|
|
return err + add_engine(fptr,p_elem->engine_type);
|
|
}
|
|
|
|
static int add_partition_values(File fptr, partition_info *part_info, partition_element *p_elem)
|
|
{
|
|
int err= 0;
|
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
{
|
|
err+= add_string(fptr, " VALUES LESS THAN ");
|
|
if (!p_elem->max_value)
|
|
{
|
|
err+= add_begin_parenthesis(fptr);
|
|
if (p_elem->signed_flag)
|
|
err+= add_int(fptr, p_elem->range_value);
|
|
else
|
|
err+= add_uint(fptr, p_elem->range_value);
|
|
err+= add_end_parenthesis(fptr);
|
|
}
|
|
else
|
|
err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
|
|
}
|
|
else if (part_info->part_type == LIST_PARTITION)
|
|
{
|
|
uint i;
|
|
List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
|
|
err+= add_string(fptr, " VALUES IN ");
|
|
uint no_items= p_elem->list_val_list.elements;
|
|
|
|
err+= add_begin_parenthesis(fptr);
|
|
if (p_elem->has_null_value)
|
|
{
|
|
err+= add_string(fptr, "NULL");
|
|
if (no_items == 0)
|
|
{
|
|
err+= add_end_parenthesis(fptr);
|
|
goto end;
|
|
}
|
|
err+= add_comma(fptr);
|
|
}
|
|
i= 0;
|
|
do
|
|
{
|
|
part_elem_value *list_value= list_val_it++;
|
|
|
|
if (!list_value->unsigned_flag)
|
|
err+= add_int(fptr, list_value->value);
|
|
else
|
|
err+= add_uint(fptr, list_value->value);
|
|
if (i != (no_items-1))
|
|
err+= add_comma(fptr);
|
|
} while (++i < no_items);
|
|
err+= add_end_parenthesis(fptr);
|
|
}
|
|
end:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
Generate the partition syntax from the partition data structure.
|
|
Useful for support of generating defaults, SHOW CREATE TABLES
|
|
and easy partition management.
|
|
|
|
SYNOPSIS
|
|
generate_partition_syntax()
|
|
part_info The partitioning data structure
|
|
buf_length A pointer to the returned buffer length
|
|
use_sql_alloc Allocate buffer from sql_alloc if true
|
|
otherwise use my_malloc
|
|
show_partition_options Should we display partition options
|
|
|
|
RETURN VALUES
|
|
NULL error
|
|
buf, buf_length Buffer and its length
|
|
|
|
DESCRIPTION
|
|
Here we will generate the full syntax for the given command where all
|
|
defaults have been expanded. By so doing the it is also possible to
|
|
make lots of checks of correctness while at it.
|
|
This could will also be reused for SHOW CREATE TABLES and also for all
|
|
type ALTER TABLE commands focusing on changing the PARTITION structure
|
|
in any fashion.
|
|
|
|
The implementation writes the syntax to a temporary file (essentially
|
|
an abstraction of a dynamic array) and if all writes goes well it
|
|
allocates a buffer and writes the syntax into this one and returns it.
|
|
|
|
As a security precaution the file is deleted before writing into it. This
|
|
means that no other processes on the machine can open and read the file
|
|
while this processing is ongoing.
|
|
|
|
The code is optimised for minimal code size since it is not used in any
|
|
common queries.
|
|
*/
|
|
|
|
char *generate_partition_syntax(partition_info *part_info,
|
|
uint *buf_length,
|
|
bool use_sql_alloc,
|
|
bool show_partition_options)
|
|
{
|
|
uint i,j, tot_no_parts, no_subparts, no_parts;
|
|
partition_element *part_elem;
|
|
partition_element *save_part_elem= NULL;
|
|
ulonglong buffer_length;
|
|
char path[FN_REFLEN];
|
|
int err= 0;
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
File fptr;
|
|
char *buf= NULL; //Return buffer
|
|
DBUG_ENTER("generate_partition_syntax");
|
|
|
|
if (unlikely(((fptr= create_temp_file(path,mysql_tmpdir,"psy",
|
|
O_RDWR | O_BINARY | O_TRUNC |
|
|
O_TEMPORARY, MYF(MY_WME)))) < 0))
|
|
DBUG_RETURN(NULL);
|
|
#ifndef __WIN__
|
|
unlink(path);
|
|
#endif
|
|
err+= add_space(fptr);
|
|
err+= add_partition_by(fptr);
|
|
switch (part_info->part_type)
|
|
{
|
|
case RANGE_PARTITION:
|
|
err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
|
|
break;
|
|
case LIST_PARTITION:
|
|
err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
|
|
break;
|
|
case HASH_PARTITION:
|
|
if (part_info->linear_hash_ind)
|
|
err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
|
|
if (part_info->list_of_part_fields)
|
|
err+= add_key_partition(fptr, part_info->part_field_list);
|
|
else
|
|
err+= add_hash(fptr);
|
|
break;
|
|
default:
|
|
DBUG_ASSERT(0);
|
|
/* We really shouldn't get here, no use in continuing from here */
|
|
current_thd->fatal_error();
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
if (part_info->part_expr)
|
|
err+= add_string_len(fptr, part_info->part_func_string,
|
|
part_info->part_func_len);
|
|
err+= add_end_parenthesis(fptr);
|
|
err+= add_space(fptr);
|
|
if ((!part_info->use_default_no_partitions) &&
|
|
part_info->use_default_partitions)
|
|
{
|
|
err+= add_string(fptr, "PARTITIONS ");
|
|
err+= add_int(fptr, part_info->no_parts);
|
|
err+= add_space(fptr);
|
|
}
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
err+= add_subpartition_by(fptr);
|
|
/* Must be hash partitioning for subpartitioning */
|
|
if (part_info->linear_hash_ind)
|
|
err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
|
|
if (part_info->list_of_subpart_fields)
|
|
err+= add_key_partition(fptr, part_info->subpart_field_list);
|
|
else
|
|
err+= add_hash(fptr);
|
|
if (part_info->subpart_expr)
|
|
err+= add_string_len(fptr, part_info->subpart_func_string,
|
|
part_info->subpart_func_len);
|
|
err+= add_end_parenthesis(fptr);
|
|
err+= add_space(fptr);
|
|
if ((!part_info->use_default_no_subpartitions) &&
|
|
part_info->use_default_subpartitions)
|
|
{
|
|
err+= add_string(fptr, "SUBPARTITIONS ");
|
|
err+= add_int(fptr, part_info->no_subparts);
|
|
err+= add_space(fptr);
|
|
}
|
|
}
|
|
tot_no_parts= part_info->partitions.elements;
|
|
no_subparts= part_info->no_subparts;
|
|
|
|
if (!part_info->use_default_partitions)
|
|
{
|
|
bool first= TRUE;
|
|
err+= add_begin_parenthesis(fptr);
|
|
i= 0;
|
|
do
|
|
{
|
|
part_elem= part_it++;
|
|
if (part_elem->part_state != PART_TO_BE_DROPPED &&
|
|
part_elem->part_state != PART_REORGED_DROPPED)
|
|
{
|
|
if (!first)
|
|
{
|
|
err+= add_comma(fptr);
|
|
err+= add_space(fptr);
|
|
}
|
|
first= FALSE;
|
|
err+= add_partition(fptr);
|
|
err+= add_name_string(fptr, part_elem->partition_name);
|
|
err+= add_partition_values(fptr, part_info, part_elem);
|
|
if (!part_info->is_sub_partitioned() ||
|
|
part_info->use_default_subpartitions)
|
|
{
|
|
if (show_partition_options)
|
|
err+= add_partition_options(fptr, part_elem);
|
|
}
|
|
else
|
|
{
|
|
err+= add_space(fptr);
|
|
err+= add_begin_parenthesis(fptr);
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
j= 0;
|
|
do
|
|
{
|
|
part_elem= sub_it++;
|
|
err+= add_subpartition(fptr);
|
|
err+= add_name_string(fptr, part_elem->partition_name);
|
|
if (show_partition_options)
|
|
err+= add_partition_options(fptr, part_elem);
|
|
if (j != (no_subparts-1))
|
|
{
|
|
err+= add_comma(fptr);
|
|
err+= add_space(fptr);
|
|
}
|
|
else
|
|
err+= add_end_parenthesis(fptr);
|
|
} while (++j < no_subparts);
|
|
}
|
|
}
|
|
if (i == (tot_no_parts-1))
|
|
err+= add_end_parenthesis(fptr);
|
|
} while (++i < tot_no_parts);
|
|
}
|
|
if (err)
|
|
goto close_file;
|
|
buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
|
|
if (unlikely(buffer_length == MY_FILEPOS_ERROR))
|
|
goto close_file;
|
|
if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
|
|
goto close_file;
|
|
*buf_length= (uint)buffer_length;
|
|
if (use_sql_alloc)
|
|
buf= sql_alloc(*buf_length+1);
|
|
else
|
|
buf= my_malloc(*buf_length+1, MYF(MY_WME));
|
|
if (!buf)
|
|
goto close_file;
|
|
|
|
if (unlikely(my_read(fptr, (byte*)buf, *buf_length, MYF(MY_FNABP))))
|
|
{
|
|
if (!use_sql_alloc)
|
|
my_free(buf, MYF(0));
|
|
else
|
|
buf= NULL;
|
|
}
|
|
else
|
|
buf[*buf_length]= 0;
|
|
|
|
close_file:
|
|
my_close(fptr, MYF(0));
|
|
DBUG_RETURN(buf);
|
|
}
|
|
|
|
|
|
/*
|
|
Check if partition key fields are modified and if it can be handled by the
|
|
underlying storage engine.
|
|
|
|
SYNOPSIS
|
|
partition_key_modified
|
|
table TABLE object for which partition fields are set-up
|
|
fields A list of the to be modifed
|
|
|
|
RETURN VALUES
|
|
TRUE Need special handling of UPDATE
|
|
FALSE Normal UPDATE handling is ok
|
|
*/
|
|
|
|
bool partition_key_modified(TABLE *table, List<Item> &fields)
|
|
{
|
|
List_iterator_fast<Item> f(fields);
|
|
partition_info *part_info= table->part_info;
|
|
Item_field *item_field;
|
|
DBUG_ENTER("partition_key_modified");
|
|
|
|
if (!part_info)
|
|
DBUG_RETURN(FALSE);
|
|
if (table->s->db_type->partition_flags &&
|
|
(table->s->db_type->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
|
|
DBUG_RETURN(FALSE);
|
|
f.rewind();
|
|
while ((item_field=(Item_field*) f++))
|
|
if (item_field->field->flags & FIELD_IN_PART_FUNC_FLAG)
|
|
DBUG_RETURN(TRUE);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
A function to handle correct handling of NULL values in partition
|
|
functions.
|
|
SYNOPSIS
|
|
part_val_int()
|
|
item_expr The item expression to evaluate
|
|
RETURN VALUES
|
|
The value of the partition function, LONGLONG_MIN if any null value
|
|
in function
|
|
*/
|
|
|
|
static inline longlong part_val_int(Item *item_expr)
|
|
{
|
|
longlong value= item_expr->val_int();
|
|
if (item_expr->null_value)
|
|
value= LONGLONG_MIN;
|
|
return value;
|
|
}
|
|
|
|
|
|
/*
|
|
The next set of functions are used to calculate the partition identity.
|
|
A handler sets up a variable that corresponds to one of these functions
|
|
to be able to quickly call it whenever the partition id needs to calculated
|
|
based on the record in table->record[0] (or set up to fake that).
|
|
There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
|
|
In addition there are 4 variants for RANGE subpartitioning and 4 variants
|
|
for LIST subpartitioning thus in total there are 14 variants of this
|
|
function.
|
|
|
|
We have a set of support functions for these 14 variants. There are 4
|
|
variants of hash functions and there is a function for each. The KEY
|
|
partitioning uses the function calculate_key_value to calculate the hash
|
|
value based on an array of fields. The linear hash variants uses the
|
|
method get_part_id_from_linear_hash to get the partition id using the
|
|
hash value and some parameters calculated from the number of partitions.
|
|
*/
|
|
|
|
/*
|
|
Calculate hash value for KEY partitioning using an array of fields.
|
|
|
|
SYNOPSIS
|
|
calculate_key_value()
|
|
field_array An array of the fields in KEY partitioning
|
|
|
|
RETURN VALUE
|
|
hash_value calculated
|
|
|
|
DESCRIPTION
|
|
Uses the hash function on the character set of the field. Integer and
|
|
floating point fields use the binary character set by default.
|
|
*/
|
|
|
|
static uint32 calculate_key_value(Field **field_array)
|
|
{
|
|
ulong nr1= 1;
|
|
ulong nr2= 4;
|
|
|
|
do
|
|
{
|
|
Field *field= *field_array;
|
|
field->hash(&nr1, &nr2);
|
|
} while (*(++field_array));
|
|
return (uint32) nr1;
|
|
}
|
|
|
|
|
|
/*
|
|
A simple support function to calculate part_id given local part and
|
|
sub part.
|
|
|
|
SYNOPSIS
|
|
get_part_id_for_sub()
|
|
loc_part_id Local partition id
|
|
sub_part_id Subpartition id
|
|
no_subparts Number of subparts
|
|
*/
|
|
|
|
inline
|
|
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
|
|
uint no_subparts)
|
|
{
|
|
return (uint32)((loc_part_id * no_subparts) + sub_part_id);
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate part_id for (SUB)PARTITION BY HASH
|
|
|
|
SYNOPSIS
|
|
get_part_id_hash()
|
|
no_parts Number of hash partitions
|
|
part_expr Item tree of hash function
|
|
out:func_value Value of hash function
|
|
|
|
RETURN VALUE
|
|
Calculated partition id
|
|
*/
|
|
|
|
inline
|
|
static uint32 get_part_id_hash(uint no_parts,
|
|
Item *part_expr,
|
|
longlong *func_value)
|
|
{
|
|
DBUG_ENTER("get_part_id_hash");
|
|
*func_value= part_val_int(part_expr);
|
|
longlong int_hash_id= *func_value % no_parts;
|
|
DBUG_RETURN(int_hash_id < 0 ? -int_hash_id : int_hash_id);
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate part_id for (SUB)PARTITION BY LINEAR HASH
|
|
|
|
SYNOPSIS
|
|
get_part_id_linear_hash()
|
|
part_info A reference to the partition_info struct where all the
|
|
desired information is given
|
|
no_parts Number of hash partitions
|
|
part_expr Item tree of hash function
|
|
out:func_value Value of hash function
|
|
|
|
RETURN VALUE
|
|
Calculated partition id
|
|
*/
|
|
|
|
inline
|
|
static uint32 get_part_id_linear_hash(partition_info *part_info,
|
|
uint no_parts,
|
|
Item *part_expr,
|
|
longlong *func_value)
|
|
{
|
|
DBUG_ENTER("get_part_id_linear_hash");
|
|
|
|
*func_value= part_val_int(part_expr);
|
|
DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
|
|
part_info->linear_hash_mask,
|
|
no_parts));
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate part_id for (SUB)PARTITION BY KEY
|
|
|
|
SYNOPSIS
|
|
get_part_id_key()
|
|
field_array Array of fields for PARTTION KEY
|
|
no_parts Number of KEY partitions
|
|
|
|
RETURN VALUE
|
|
Calculated partition id
|
|
*/
|
|
|
|
inline
|
|
static uint32 get_part_id_key(Field **field_array,
|
|
uint no_parts,
|
|
longlong *func_value)
|
|
{
|
|
DBUG_ENTER("get_part_id_key");
|
|
*func_value= calculate_key_value(field_array);
|
|
DBUG_RETURN(*func_value % no_parts);
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate part_id for (SUB)PARTITION BY LINEAR KEY
|
|
|
|
SYNOPSIS
|
|
get_part_id_linear_key()
|
|
part_info A reference to the partition_info struct where all the
|
|
desired information is given
|
|
field_array Array of fields for PARTTION KEY
|
|
no_parts Number of KEY partitions
|
|
|
|
RETURN VALUE
|
|
Calculated partition id
|
|
*/
|
|
|
|
inline
|
|
static uint32 get_part_id_linear_key(partition_info *part_info,
|
|
Field **field_array,
|
|
uint no_parts,
|
|
longlong *func_value)
|
|
{
|
|
DBUG_ENTER("get_partition_id_linear_key");
|
|
|
|
*func_value= calculate_key_value(field_array);
|
|
DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
|
|
part_info->linear_hash_mask,
|
|
no_parts));
|
|
}
|
|
|
|
/*
|
|
This function is used to calculate the partition id where all partition
|
|
fields have been prepared to point to a record where the partition field
|
|
values are bound.
|
|
|
|
SYNOPSIS
|
|
get_partition_id()
|
|
part_info A reference to the partition_info struct where all the
|
|
desired information is given
|
|
out:part_id The partition id is returned through this pointer
|
|
|
|
RETURN VALUE
|
|
part_id Partition id of partition that would contain
|
|
row with given values of PF-fields
|
|
HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
|
|
fit into any partition and thus the values of
|
|
the PF-fields are not allowed.
|
|
|
|
DESCRIPTION
|
|
A routine used from write_row, update_row and delete_row from any
|
|
handler supporting partitioning. It is also a support routine for
|
|
get_partition_set used to find the set of partitions needed to scan
|
|
for a certain index scan or full table scan.
|
|
|
|
It is actually 14 different variants of this function which are called
|
|
through a function pointer.
|
|
|
|
get_partition_id_list
|
|
get_partition_id_range
|
|
get_partition_id_hash_nosub
|
|
get_partition_id_key_nosub
|
|
get_partition_id_linear_hash_nosub
|
|
get_partition_id_linear_key_nosub
|
|
get_partition_id_range_sub_hash
|
|
get_partition_id_range_sub_key
|
|
get_partition_id_range_sub_linear_hash
|
|
get_partition_id_range_sub_linear_key
|
|
get_partition_id_list_sub_hash
|
|
get_partition_id_list_sub_key
|
|
get_partition_id_list_sub_linear_hash
|
|
get_partition_id_list_sub_linear_key
|
|
*/
|
|
|
|
/*
|
|
This function is used to calculate the main partition to use in the case of
|
|
subpartitioning and we don't know enough to get the partition identity in
|
|
total.
|
|
|
|
SYNOPSIS
|
|
get_part_partition_id()
|
|
part_info A reference to the partition_info struct where all the
|
|
desired information is given
|
|
out:part_id The partition id is returned through this pointer
|
|
|
|
RETURN VALUE
|
|
part_id Partition id of partition that would contain
|
|
row with given values of PF-fields
|
|
HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
|
|
fit into any partition and thus the values of
|
|
the PF-fields are not allowed.
|
|
|
|
DESCRIPTION
|
|
|
|
It is actually 6 different variants of this function which are called
|
|
through a function pointer.
|
|
|
|
get_partition_id_list
|
|
get_partition_id_range
|
|
get_partition_id_hash_nosub
|
|
get_partition_id_key_nosub
|
|
get_partition_id_linear_hash_nosub
|
|
get_partition_id_linear_key_nosub
|
|
*/
|
|
|
|
|
|
int get_partition_id_list(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
LIST_PART_ENTRY *list_array= part_info->list_array;
|
|
int list_index;
|
|
int min_list_index= 0;
|
|
int max_list_index= part_info->no_list_values - 1;
|
|
longlong part_func_value= part_val_int(part_info->part_expr);
|
|
longlong list_value;
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
|
DBUG_ENTER("get_partition_id_list");
|
|
|
|
if (part_info->part_expr->null_value)
|
|
{
|
|
if (part_info->has_null_value)
|
|
{
|
|
*part_id= part_info->has_null_part_id;
|
|
DBUG_RETURN(0);
|
|
}
|
|
goto notfound;
|
|
}
|
|
*func_value= part_func_value;
|
|
if (unsigned_flag)
|
|
part_func_value-= 0x8000000000000000ULL;
|
|
while (max_list_index >= min_list_index)
|
|
{
|
|
list_index= (max_list_index + min_list_index) >> 1;
|
|
list_value= list_array[list_index].list_value;
|
|
if (list_value < part_func_value)
|
|
min_list_index= list_index + 1;
|
|
else if (list_value > part_func_value)
|
|
{
|
|
if (!list_index)
|
|
goto notfound;
|
|
max_list_index= list_index - 1;
|
|
}
|
|
else
|
|
{
|
|
*part_id= (uint32)list_array[list_index].partition_id;
|
|
DBUG_RETURN(0);
|
|
}
|
|
}
|
|
notfound:
|
|
*part_id= 0;
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
}
|
|
|
|
|
|
/*
|
|
Find the sub-array part_info->list_array that corresponds to given interval
|
|
|
|
SYNOPSIS
|
|
get_list_array_idx_for_endpoint()
|
|
part_info Partitioning info (partitioning type must be LIST)
|
|
left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
|
|
FALSE - the interval is (-inf; a] or (-inf; a)
|
|
include_endpoint TRUE iff the interval includes the endpoint
|
|
|
|
DESCRIPTION
|
|
This function finds the sub-array of part_info->list_array where values of
|
|
list_array[idx].list_value are contained within the specifed interval.
|
|
list_array is ordered by list_value, so
|
|
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
|
|
sought sub-array starts at some index idx and continues till array end.
|
|
The function returns first number idx, such that
|
|
list_array[idx].list_value is contained within the passed interval.
|
|
|
|
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
|
|
sought sub-array starts at array start and continues till some last
|
|
index idx.
|
|
The function returns first number idx, such that
|
|
list_array[idx].list_value is NOT contained within the passed interval.
|
|
If all array elements are contained, part_info->no_list_values is
|
|
returned.
|
|
|
|
NOTE
|
|
The caller will call this function and then will run along the sub-array of
|
|
list_array to collect partition ids. If the number of list values is
|
|
significantly higher then number of partitions, this could be slow and
|
|
we could invent some other approach. The "run over list array" part is
|
|
already wrapped in a get_next()-like function.
|
|
|
|
RETURN
|
|
The edge of corresponding sub-array of part_info->list_array
|
|
*/
|
|
|
|
uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
|
|
bool left_endpoint,
|
|
bool include_endpoint)
|
|
{
|
|
LIST_PART_ENTRY *list_array= part_info->list_array;
|
|
uint list_index;
|
|
uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
|
|
longlong list_value;
|
|
/* Get the partitioning function value for the endpoint */
|
|
longlong part_func_value= part_val_int(part_info->part_expr);
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
|
DBUG_ENTER("get_list_array_idx_for_endpoint");
|
|
|
|
if (part_info->part_expr->null_value)
|
|
{
|
|
DBUG_RETURN(0);
|
|
}
|
|
if (unsigned_flag)
|
|
part_func_value-= 0x8000000000000000ULL;
|
|
DBUG_ASSERT(part_info->no_list_values);
|
|
do
|
|
{
|
|
list_index= (max_list_index + min_list_index) >> 1;
|
|
list_value= list_array[list_index].list_value;
|
|
if (list_value < part_func_value)
|
|
min_list_index= list_index + 1;
|
|
else if (list_value > part_func_value)
|
|
{
|
|
if (!list_index)
|
|
goto notfound;
|
|
max_list_index= list_index - 1;
|
|
}
|
|
else
|
|
{
|
|
DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
|
|
}
|
|
} while (max_list_index >= min_list_index);
|
|
notfound:
|
|
if (list_value < part_func_value)
|
|
list_index++;
|
|
DBUG_RETURN(list_index);
|
|
}
|
|
|
|
|
|
int get_partition_id_range(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
longlong *range_array= part_info->range_int_array;
|
|
uint max_partition= part_info->no_parts - 1;
|
|
uint min_part_id= 0;
|
|
uint max_part_id= max_partition;
|
|
uint loc_part_id;
|
|
longlong part_func_value= part_val_int(part_info->part_expr);
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
|
DBUG_ENTER("get_partition_id_range");
|
|
|
|
if (part_info->part_expr->null_value)
|
|
{
|
|
*part_id= 0;
|
|
DBUG_RETURN(0);
|
|
}
|
|
*func_value= part_func_value;
|
|
if (unsigned_flag)
|
|
part_func_value-= 0x8000000000000000ULL;
|
|
while (max_part_id > min_part_id)
|
|
{
|
|
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
|
|
if (range_array[loc_part_id] <= part_func_value)
|
|
min_part_id= loc_part_id + 1;
|
|
else
|
|
max_part_id= loc_part_id - 1;
|
|
}
|
|
loc_part_id= max_part_id;
|
|
if (part_func_value >= range_array[loc_part_id])
|
|
if (loc_part_id != max_partition)
|
|
loc_part_id++;
|
|
*part_id= (uint32)loc_part_id;
|
|
if (loc_part_id == max_partition &&
|
|
range_array[loc_part_id] != LONGLONG_MAX &&
|
|
part_func_value >= range_array[loc_part_id])
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
|
|
DBUG_PRINT("exit",("partition: %d", *part_id));
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Find the sub-array of part_info->range_int_array that covers given interval
|
|
|
|
SYNOPSIS
|
|
get_partition_id_range_for_endpoint()
|
|
part_info Partitioning info (partitioning type must be RANGE)
|
|
left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
|
|
FALSE - the interval is (-inf; a] or (-inf; a).
|
|
include_endpoint TRUE <=> the endpoint itself is included in the
|
|
interval
|
|
|
|
DESCRIPTION
|
|
This function finds the sub-array of part_info->range_int_array where the
|
|
elements have non-empty intersections with the given interval.
|
|
|
|
A range_int_array element at index idx represents the interval
|
|
|
|
[range_int_array[idx-1], range_int_array[idx]),
|
|
|
|
intervals are disjoint and ordered by their right bound, so
|
|
|
|
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
|
|
sought sub-array starts at some index idx and continues till array end.
|
|
The function returns first number idx, such that the interval
|
|
represented by range_int_array[idx] has non empty intersection with
|
|
the passed interval.
|
|
|
|
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
|
|
sought sub-array starts at array start and continues till some last
|
|
index idx.
|
|
The function returns first number idx, such that the interval
|
|
represented by range_int_array[idx] has EMPTY intersection with the
|
|
passed interval.
|
|
If the interval represented by the last array element has non-empty
|
|
intersection with the passed interval, part_info->no_parts is
|
|
returned.
|
|
|
|
RETURN
|
|
The edge of corresponding part_info->range_int_array sub-array.
|
|
*/
|
|
|
|
uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
|
|
bool left_endpoint,
|
|
bool include_endpoint)
|
|
{
|
|
longlong *range_array= part_info->range_int_array;
|
|
uint max_partition= part_info->no_parts - 1;
|
|
uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
|
|
/* Get the partitioning function value for the endpoint */
|
|
longlong part_func_value= part_val_int(part_info->part_expr);
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
|
DBUG_ENTER("get_partition_id_range_for_endpoint");
|
|
|
|
if (part_info->part_expr->null_value)
|
|
{
|
|
uint32 ret_part_id= 0;
|
|
if (!left_endpoint && include_endpoint)
|
|
ret_part_id= 1;
|
|
DBUG_RETURN(ret_part_id);
|
|
}
|
|
if (unsigned_flag)
|
|
part_func_value-= 0x8000000000000000ULL;
|
|
while (max_part_id > min_part_id)
|
|
{
|
|
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
|
|
if (range_array[loc_part_id] <= part_func_value)
|
|
min_part_id= loc_part_id + 1;
|
|
else
|
|
max_part_id= loc_part_id - 1;
|
|
}
|
|
loc_part_id= max_part_id;
|
|
if (loc_part_id < max_partition &&
|
|
part_func_value >= range_array[loc_part_id+1])
|
|
{
|
|
loc_part_id++;
|
|
}
|
|
if (left_endpoint)
|
|
{
|
|
if (part_func_value >= range_array[loc_part_id])
|
|
loc_part_id++;
|
|
}
|
|
else
|
|
{
|
|
if (part_func_value == range_array[loc_part_id])
|
|
loc_part_id += test(include_endpoint);
|
|
else if (part_func_value > range_array[loc_part_id])
|
|
loc_part_id++;
|
|
loc_part_id++;
|
|
}
|
|
DBUG_RETURN(loc_part_id);
|
|
}
|
|
|
|
|
|
int get_partition_id_hash_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
*part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr,
|
|
func_value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int get_partition_id_linear_hash_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
*part_id= get_part_id_linear_hash(part_info, part_info->no_parts,
|
|
part_info->part_expr, func_value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int get_partition_id_key_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
*part_id= get_part_id_key(part_info->part_field_array,
|
|
part_info->no_parts, func_value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int get_partition_id_linear_key_nosub(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
*part_id= get_part_id_linear_key(part_info,
|
|
part_info->part_field_array,
|
|
part_info->no_parts, func_value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int get_partition_id_range_sub_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_range_sub_hash");
|
|
|
|
if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
|
|
&local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_range_sub_linear_hash");
|
|
|
|
if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
|
|
part_info->subpart_expr,
|
|
&local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int get_partition_id_range_sub_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_range_sub_key");
|
|
|
|
if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_key(part_info->subpart_field_array,
|
|
no_subparts, &local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int get_partition_id_range_sub_linear_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_range_sub_linear_key");
|
|
|
|
if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_linear_key(part_info,
|
|
part_info->subpart_field_array,
|
|
no_subparts, &local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int get_partition_id_list_sub_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_list_sub_hash");
|
|
|
|
if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
|
|
&local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_list_sub_linear_hash");
|
|
|
|
if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
|
|
part_info->subpart_expr,
|
|
&local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int get_partition_id_list_sub_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_range_sub_key");
|
|
|
|
if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_key(part_info->subpart_field_array,
|
|
no_subparts, &local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int get_partition_id_list_sub_linear_key(partition_info *part_info,
|
|
uint32 *part_id,
|
|
longlong *func_value)
|
|
{
|
|
uint32 loc_part_id, sub_part_id;
|
|
uint no_subparts;
|
|
longlong local_func_value;
|
|
int error;
|
|
DBUG_ENTER("get_partition_id_list_sub_linear_key");
|
|
|
|
if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
|
|
func_value))))
|
|
{
|
|
DBUG_RETURN(error);
|
|
}
|
|
no_subparts= part_info->no_subparts;
|
|
sub_part_id= get_part_id_linear_key(part_info,
|
|
part_info->subpart_field_array,
|
|
no_subparts, &local_func_value);
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
This function is used to calculate the subpartition id
|
|
|
|
SYNOPSIS
|
|
get_subpartition_id()
|
|
part_info A reference to the partition_info struct where all the
|
|
desired information is given
|
|
|
|
RETURN VALUE
|
|
part_id The subpartition identity
|
|
|
|
DESCRIPTION
|
|
A routine used in some SELECT's when only partial knowledge of the
|
|
partitions is known.
|
|
|
|
It is actually 4 different variants of this function which are called
|
|
through a function pointer.
|
|
|
|
get_partition_id_hash_sub
|
|
get_partition_id_key_sub
|
|
get_partition_id_linear_hash_sub
|
|
get_partition_id_linear_key_sub
|
|
*/
|
|
|
|
uint32 get_partition_id_hash_sub(partition_info *part_info)
|
|
{
|
|
longlong func_value;
|
|
return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr,
|
|
&func_value);
|
|
}
|
|
|
|
|
|
uint32 get_partition_id_linear_hash_sub(partition_info *part_info)
|
|
{
|
|
longlong func_value;
|
|
return get_part_id_linear_hash(part_info, part_info->no_subparts,
|
|
part_info->subpart_expr, &func_value);
|
|
}
|
|
|
|
|
|
uint32 get_partition_id_key_sub(partition_info *part_info)
|
|
{
|
|
longlong func_value;
|
|
return get_part_id_key(part_info->subpart_field_array,
|
|
part_info->no_subparts, &func_value);
|
|
}
|
|
|
|
|
|
uint32 get_partition_id_linear_key_sub(partition_info *part_info)
|
|
{
|
|
longlong func_value;
|
|
return get_part_id_linear_key(part_info,
|
|
part_info->subpart_field_array,
|
|
part_info->no_subparts, &func_value);
|
|
}
|
|
|
|
|
|
/*
|
|
Set an indicator on all partition fields that are set by the key
|
|
|
|
SYNOPSIS
|
|
set_PF_fields_in_key()
|
|
key_info Information about the index
|
|
key_length Length of key
|
|
|
|
RETURN VALUE
|
|
TRUE Found partition field set by key
|
|
FALSE No partition field set by key
|
|
*/
|
|
|
|
static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
|
|
{
|
|
KEY_PART_INFO *key_part;
|
|
bool found_part_field= FALSE;
|
|
DBUG_ENTER("set_PF_fields_in_key");
|
|
|
|
for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
|
|
{
|
|
if (key_part->null_bit)
|
|
key_length--;
|
|
if (key_part->type == HA_KEYTYPE_BIT)
|
|
{
|
|
if (((Field_bit*)key_part->field)->bit_len)
|
|
key_length--;
|
|
}
|
|
if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
|
|
{
|
|
key_length-= HA_KEY_BLOB_LENGTH;
|
|
}
|
|
if (key_length < key_part->length)
|
|
break;
|
|
key_length-= key_part->length;
|
|
if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
|
|
{
|
|
found_part_field= TRUE;
|
|
key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
}
|
|
}
|
|
DBUG_RETURN(found_part_field);
|
|
}
|
|
|
|
|
|
/*
|
|
We have found that at least one partition field was set by a key, now
|
|
check if a partition function has all its fields bound or not.
|
|
|
|
SYNOPSIS
|
|
check_part_func_bound()
|
|
ptr Array of fields NULL terminated (partition fields)
|
|
|
|
RETURN VALUE
|
|
TRUE All fields in partition function are set
|
|
FALSE Not all fields in partition function are set
|
|
*/
|
|
|
|
static bool check_part_func_bound(Field **ptr)
|
|
{
|
|
bool result= TRUE;
|
|
DBUG_ENTER("check_part_func_bound");
|
|
|
|
for (; *ptr; ptr++)
|
|
{
|
|
if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
|
|
{
|
|
result= FALSE;
|
|
break;
|
|
}
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the id of the subpartitioning part by using the key buffer of the
|
|
index scan.
|
|
|
|
SYNOPSIS
|
|
get_sub_part_id_from_key()
|
|
table The table object
|
|
buf A buffer that can be used to evaluate the partition function
|
|
key_info The index object
|
|
key_spec A key_range containing key and key length
|
|
|
|
RETURN VALUES
|
|
part_id Subpartition id to use
|
|
|
|
DESCRIPTION
|
|
Use key buffer to set-up record in buf, move field pointers and
|
|
get the partition identity and restore field pointers afterwards.
|
|
*/
|
|
|
|
static uint32 get_sub_part_id_from_key(const TABLE *table,byte *buf,
|
|
KEY *key_info,
|
|
const key_range *key_spec)
|
|
{
|
|
byte *rec0= table->record[0];
|
|
partition_info *part_info= table->part_info;
|
|
uint32 part_id;
|
|
DBUG_ENTER("get_sub_part_id_from_key");
|
|
|
|
key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
|
|
if (likely(rec0 == buf))
|
|
part_id= part_info->get_subpartition_id(part_info);
|
|
else
|
|
{
|
|
Field **part_field_array= part_info->subpart_field_array;
|
|
set_field_ptr(part_field_array, buf, rec0);
|
|
part_id= part_info->get_subpartition_id(part_info);
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
}
|
|
DBUG_RETURN(part_id);
|
|
}
|
|
|
|
/*
|
|
Get the id of the partitioning part by using the key buffer of the
|
|
index scan.
|
|
|
|
SYNOPSIS
|
|
get_part_id_from_key()
|
|
table The table object
|
|
buf A buffer that can be used to evaluate the partition function
|
|
key_info The index object
|
|
key_spec A key_range containing key and key length
|
|
out:part_id Partition to use
|
|
|
|
RETURN VALUES
|
|
TRUE Partition to use not found
|
|
FALSE Ok, part_id indicates partition to use
|
|
|
|
DESCRIPTION
|
|
Use key buffer to set-up record in buf, move field pointers and
|
|
get the partition identity and restore field pointers afterwards.
|
|
*/
|
|
|
|
bool get_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info,
|
|
const key_range *key_spec, uint32 *part_id)
|
|
{
|
|
bool result;
|
|
byte *rec0= table->record[0];
|
|
partition_info *part_info= table->part_info;
|
|
longlong func_value;
|
|
DBUG_ENTER("get_part_id_from_key");
|
|
|
|
key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
|
|
if (likely(rec0 == buf))
|
|
result= part_info->get_part_partition_id(part_info, part_id,
|
|
&func_value);
|
|
else
|
|
{
|
|
Field **part_field_array= part_info->part_field_array;
|
|
set_field_ptr(part_field_array, buf, rec0);
|
|
result= part_info->get_part_partition_id(part_info, part_id,
|
|
&func_value);
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
/*
|
|
Get the partitioning id of the full PF by using the key buffer of the
|
|
index scan.
|
|
|
|
SYNOPSIS
|
|
get_full_part_id_from_key()
|
|
table The table object
|
|
buf A buffer that is used to evaluate the partition function
|
|
key_info The index object
|
|
key_spec A key_range containing key and key length
|
|
out:part_spec A partition id containing start part and end part
|
|
|
|
RETURN VALUES
|
|
part_spec
|
|
No partitions to scan is indicated by end_part > start_part when returning
|
|
|
|
DESCRIPTION
|
|
Use key buffer to set-up record in buf, move field pointers if needed and
|
|
get the partition identity and restore field pointers afterwards.
|
|
*/
|
|
|
|
void get_full_part_id_from_key(const TABLE *table, byte *buf,
|
|
KEY *key_info,
|
|
const key_range *key_spec,
|
|
part_id_range *part_spec)
|
|
{
|
|
bool result;
|
|
partition_info *part_info= table->part_info;
|
|
byte *rec0= table->record[0];
|
|
longlong func_value;
|
|
DBUG_ENTER("get_full_part_id_from_key");
|
|
|
|
key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
|
|
if (likely(rec0 == buf))
|
|
result= part_info->get_partition_id(part_info, &part_spec->start_part,
|
|
&func_value);
|
|
else
|
|
{
|
|
Field **part_field_array= part_info->full_part_field_array;
|
|
set_field_ptr(part_field_array, buf, rec0);
|
|
result= part_info->get_partition_id(part_info, &part_spec->start_part,
|
|
&func_value);
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
}
|
|
part_spec->end_part= part_spec->start_part;
|
|
if (unlikely(result))
|
|
part_spec->start_part++;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
Prune the set of partitions to use in query
|
|
|
|
SYNOPSIS
|
|
prune_partition_set()
|
|
table The table object
|
|
out:part_spec Contains start part, end part
|
|
|
|
DESCRIPTION
|
|
This function is called to prune the range of partitions to scan by
|
|
checking the used_partitions bitmap.
|
|
If start_part > end_part at return it means no partition needs to be
|
|
scanned. If start_part == end_part it always means a single partition
|
|
needs to be scanned.
|
|
|
|
RETURN VALUE
|
|
part_spec
|
|
*/
|
|
void prune_partition_set(const TABLE *table, part_id_range *part_spec)
|
|
{
|
|
int last_partition= -1;
|
|
uint i;
|
|
partition_info *part_info= table->part_info;
|
|
|
|
DBUG_ENTER("prune_partition_set");
|
|
for (i= part_spec->start_part; i <= part_spec->end_part; i++)
|
|
{
|
|
if (bitmap_is_set(&(part_info->used_partitions), i))
|
|
{
|
|
DBUG_PRINT("info", ("Partition %d is set", i));
|
|
if (last_partition == -1)
|
|
/* First partition found in set and pruned bitmap */
|
|
part_spec->start_part= i;
|
|
last_partition= i;
|
|
}
|
|
}
|
|
if (last_partition == -1)
|
|
/* No partition found in pruned bitmap */
|
|
part_spec->start_part= part_spec->end_part + 1;
|
|
else //if (last_partition != -1)
|
|
part_spec->end_part= last_partition;
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
Get the set of partitions to use in query.
|
|
|
|
SYNOPSIS
|
|
get_partition_set()
|
|
table The table object
|
|
buf A buffer that can be used to evaluate the partition function
|
|
index The index of the key used, if MAX_KEY no index used
|
|
key_spec A key_range containing key and key length
|
|
out:part_spec Contains start part, end part and indicator if bitmap is
|
|
used for which partitions to scan
|
|
|
|
DESCRIPTION
|
|
This function is called to discover which partitions to use in an index
|
|
scan or a full table scan.
|
|
It returns a range of partitions to scan. If there are holes in this
|
|
range with partitions that are not needed to scan a bit array is used
|
|
to signal which partitions to use and which not to use.
|
|
If start_part > end_part at return it means no partition needs to be
|
|
scanned. If start_part == end_part it always means a single partition
|
|
needs to be scanned.
|
|
|
|
RETURN VALUE
|
|
part_spec
|
|
*/
|
|
void get_partition_set(const TABLE *table, byte *buf, const uint index,
|
|
const key_range *key_spec, part_id_range *part_spec)
|
|
{
|
|
partition_info *part_info= table->part_info;
|
|
uint no_parts= part_info->get_tot_partitions();
|
|
uint i, part_id;
|
|
uint sub_part= no_parts;
|
|
uint32 part_part= no_parts;
|
|
KEY *key_info= NULL;
|
|
bool found_part_field= FALSE;
|
|
DBUG_ENTER("get_partition_set");
|
|
|
|
part_spec->start_part= 0;
|
|
part_spec->end_part= no_parts - 1;
|
|
if ((index < MAX_KEY) &&
|
|
key_spec->flag == (uint)HA_READ_KEY_EXACT &&
|
|
part_info->some_fields_in_PF.is_set(index))
|
|
{
|
|
key_info= table->key_info+index;
|
|
/*
|
|
The index can potentially provide at least one PF-field (field in the
|
|
partition function). Thus it is interesting to continue our probe.
|
|
*/
|
|
if (key_spec->length == key_info->key_length)
|
|
{
|
|
/*
|
|
The entire key is set so we can check whether we can immediately
|
|
derive either the complete PF or if we can derive either
|
|
the top PF or the subpartitioning PF. This can be established by
|
|
checking precalculated bits on each index.
|
|
*/
|
|
if (part_info->all_fields_in_PF.is_set(index))
|
|
{
|
|
/*
|
|
We can derive the exact partition to use, no more than this one
|
|
is needed.
|
|
*/
|
|
get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
|
|
/*
|
|
Check if range can be adjusted by looking in used_partitions
|
|
*/
|
|
prune_partition_set(table, part_spec);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
else if (part_info->is_sub_partitioned())
|
|
{
|
|
if (part_info->all_fields_in_SPF.is_set(index))
|
|
sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
|
|
else if (part_info->all_fields_in_PPF.is_set(index))
|
|
{
|
|
if (get_part_id_from_key(table,buf,key_info,
|
|
key_spec,(uint32*)&part_part))
|
|
{
|
|
/*
|
|
The value of the RANGE or LIST partitioning was outside of
|
|
allowed values. Thus it is certain that the result of this
|
|
scan will be empty.
|
|
*/
|
|
part_spec->start_part= no_parts;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Set an indicator on all partition fields that are bound.
|
|
If at least one PF-field was bound it pays off to check whether
|
|
the PF or PPF or SPF has been bound.
|
|
(PF = Partition Function, SPF = Subpartition Function and
|
|
PPF = Partition Function part of subpartitioning)
|
|
*/
|
|
if ((found_part_field= set_PF_fields_in_key(key_info,
|
|
key_spec->length)))
|
|
{
|
|
if (check_part_func_bound(part_info->full_part_field_array))
|
|
{
|
|
/*
|
|
We were able to bind all fields in the partition function even
|
|
by using only a part of the key. Calculate the partition to use.
|
|
*/
|
|
get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
|
|
clear_indicator_in_key_fields(key_info);
|
|
/*
|
|
Check if range can be adjusted by looking in used_partitions
|
|
*/
|
|
prune_partition_set(table, part_spec);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
else if (part_info->is_sub_partitioned())
|
|
{
|
|
if (check_part_func_bound(part_info->subpart_field_array))
|
|
sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
|
|
else if (check_part_func_bound(part_info->part_field_array))
|
|
{
|
|
if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part))
|
|
{
|
|
part_spec->start_part= no_parts;
|
|
clear_indicator_in_key_fields(key_info);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
{
|
|
/*
|
|
The next step is to analyse the table condition to see whether any
|
|
information about which partitions to scan can be derived from there.
|
|
Currently not implemented.
|
|
*/
|
|
}
|
|
/*
|
|
If we come here we have found a range of sorts we have either discovered
|
|
nothing or we have discovered a range of partitions with possible holes
|
|
in it. We need a bitvector to further the work here.
|
|
*/
|
|
if (!(part_part == no_parts && sub_part == no_parts))
|
|
{
|
|
/*
|
|
We can only arrive here if we are using subpartitioning.
|
|
*/
|
|
if (part_part != no_parts)
|
|
{
|
|
/*
|
|
We know the top partition and need to scan all underlying
|
|
subpartitions. This is a range without holes.
|
|
*/
|
|
DBUG_ASSERT(sub_part == no_parts);
|
|
part_spec->start_part= part_part * part_info->no_subparts;
|
|
part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(sub_part != no_parts);
|
|
part_spec->start_part= sub_part;
|
|
part_spec->end_part=sub_part+
|
|
(part_info->no_subparts*(part_info->no_parts-1));
|
|
for (i= 0, part_id= sub_part; i < part_info->no_parts;
|
|
i++, part_id+= part_info->no_subparts)
|
|
; //Set bit part_id in bit array
|
|
}
|
|
}
|
|
if (found_part_field)
|
|
clear_indicator_in_key_fields(key_info);
|
|
/*
|
|
Check if range can be adjusted by looking in used_partitions
|
|
*/
|
|
prune_partition_set(table, part_spec);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
If the table is partitioned we will read the partition info into the
|
|
.frm file here.
|
|
-------------------------------
|
|
| Fileinfo 64 bytes |
|
|
-------------------------------
|
|
| Formnames 7 bytes |
|
|
-------------------------------
|
|
| Not used 4021 bytes |
|
|
-------------------------------
|
|
| Keyinfo + record |
|
|
-------------------------------
|
|
| Padded to next multiple |
|
|
| of IO_SIZE |
|
|
-------------------------------
|
|
| Forminfo 288 bytes |
|
|
-------------------------------
|
|
| Screen buffer, to make |
|
|
|field names readable |
|
|
-------------------------------
|
|
| Packed field info |
|
|
|17 + 1 + strlen(field_name) |
|
|
| + 1 end of file character |
|
|
-------------------------------
|
|
| Partition info |
|
|
-------------------------------
|
|
We provide the length of partition length in Fileinfo[55-58].
|
|
|
|
Read the partition syntax from the frm file and parse it to get the
|
|
data structures of the partitioning.
|
|
|
|
SYNOPSIS
|
|
mysql_unpack_partition()
|
|
thd Thread object
|
|
part_buf Partition info from frm file
|
|
part_info_len Length of partition syntax
|
|
table Table object of partitioned table
|
|
create_table_ind Is it called from CREATE TABLE
|
|
default_db_type What is the default engine of the table
|
|
|
|
RETURN VALUE
|
|
TRUE Error
|
|
FALSE Sucess
|
|
|
|
DESCRIPTION
|
|
Read the partition syntax from the current position in the frm file.
|
|
Initiate a LEX object, save the list of item tree objects to free after
|
|
the query is done. Set-up partition info object such that parser knows
|
|
it is called from internally. Call parser to create data structures
|
|
(best possible recreation of item trees and so forth since there is no
|
|
serialisation of these objects other than in parseable text format).
|
|
We need to save the text of the partition functions since it is not
|
|
possible to retrace this given an item tree.
|
|
*/
|
|
|
|
bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
|
|
uint part_info_len,
|
|
uchar *part_state, uint part_state_len,
|
|
TABLE* table, bool is_create_table_ind,
|
|
handlerton *default_db_type)
|
|
{
|
|
Item *thd_free_list= thd->free_list;
|
|
bool result= TRUE;
|
|
partition_info *part_info;
|
|
CHARSET_INFO *old_character_set_client= thd->variables.character_set_client;
|
|
LEX *old_lex= thd->lex;
|
|
LEX lex;
|
|
DBUG_ENTER("mysql_unpack_partition");
|
|
|
|
thd->lex= &lex;
|
|
thd->variables.character_set_client= system_charset_info;
|
|
lex_start(thd, part_buf, part_info_len);
|
|
/*
|
|
We need to use the current SELECT_LEX since I need to keep the
|
|
Name_resolution_context object which is referenced from the
|
|
Item_field objects.
|
|
This is not a nice solution since if the parser uses current_select
|
|
for anything else it will corrupt the current LEX object.
|
|
*/
|
|
thd->lex->current_select= old_lex->current_select;
|
|
/*
|
|
All Items created is put into a free list on the THD object. This list
|
|
is used to free all Item objects after completing a query. We don't
|
|
want that to happen with the Item tree created as part of the partition
|
|
info. This should be attached to the table object and remain so until
|
|
the table object is released.
|
|
Thus we move away the current list temporarily and start a new list that
|
|
we then save in the partition info structure.
|
|
*/
|
|
thd->free_list= NULL;
|
|
lex.part_info= new partition_info();/* Indicates MYSQLparse from this place */
|
|
if (!lex.part_info)
|
|
{
|
|
mem_alloc_error(sizeof(partition_info));
|
|
goto end;
|
|
}
|
|
lex.part_info->part_state= part_state;
|
|
lex.part_info->part_state_len= part_state_len;
|
|
DBUG_PRINT("info", ("Parse: %s", part_buf));
|
|
if (MYSQLparse((void*)thd) || thd->is_fatal_error)
|
|
{
|
|
free_items(thd->free_list);
|
|
goto end;
|
|
}
|
|
/*
|
|
The parsed syntax residing in the frm file can still contain defaults.
|
|
The reason is that the frm file is sometimes saved outside of this
|
|
MySQL Server and used in backup and restore of clusters or partitioned
|
|
tables. It is not certain that the restore will restore exactly the
|
|
same default partitioning.
|
|
|
|
The easiest manner of handling this is to simply continue using the
|
|
part_info we already built up during mysql_create_table if we are
|
|
in the process of creating a table. If the table already exists we
|
|
need to discover the number of partitions for the default parts. Since
|
|
the handler object hasn't been created here yet we need to postpone this
|
|
to the fix_partition_func method.
|
|
*/
|
|
|
|
DBUG_PRINT("info", ("Successful parse"));
|
|
part_info= lex.part_info;
|
|
DBUG_PRINT("info", ("default engine = %d, default_db_type = %d",
|
|
ha_legacy_type(part_info->default_engine_type),
|
|
ha_legacy_type(default_db_type)));
|
|
if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE)
|
|
{
|
|
if (old_lex->like_name)
|
|
{
|
|
/*
|
|
This code is executed when we do a CREATE TABLE t1 LIKE t2
|
|
old_lex->like_name contains the t2 and the table we are opening has
|
|
name t1.
|
|
*/
|
|
Table_ident *table_ident= old_lex->like_name;
|
|
char *src_db= table_ident->db.str ? table_ident->db.str : thd->db;
|
|
char *src_table= table_ident->table.str;
|
|
char buf[FN_REFLEN];
|
|
build_table_filename(buf, sizeof(buf), src_db, src_table, "", 0);
|
|
if (partition_default_handling(table, part_info,
|
|
FALSE, buf))
|
|
{
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
When we come here we are doing a create table. In this case we
|
|
have already done some preparatory work on the old part_info
|
|
object. We don't really need this new partition_info object.
|
|
Thus we go back to the old partition info object.
|
|
We need to free any memory objects allocated on item_free_list
|
|
by the parser since we are keeping the old info from the first
|
|
parser call in CREATE TABLE.
|
|
We'll ensure that this object isn't put into table cache also
|
|
just to ensure we don't get into strange situations with the
|
|
item objects.
|
|
*/
|
|
free_items(thd->free_list);
|
|
part_info= thd->work_part_info;
|
|
thd->free_list= NULL;
|
|
table->s->version= 0UL;
|
|
}
|
|
}
|
|
table->part_info= part_info;
|
|
table->file->set_part_info(part_info);
|
|
if (part_info->default_engine_type == NULL)
|
|
{
|
|
part_info->default_engine_type= default_db_type;
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(part_info->default_engine_type == default_db_type);
|
|
}
|
|
part_info->item_free_list= thd->free_list;
|
|
|
|
{
|
|
/*
|
|
This code part allocates memory for the serialised item information for
|
|
the partition functions. In most cases this is not needed but if the
|
|
table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
|
|
partition information it is needed and the info is lost if we don't
|
|
save it here so unfortunately we have to do it here even if in most
|
|
cases it is not needed. This is a consequence of that item trees are
|
|
not serialisable.
|
|
*/
|
|
uint part_func_len= part_info->part_func_len;
|
|
uint subpart_func_len= part_info->subpart_func_len;
|
|
char *part_func_string= NULL;
|
|
char *subpart_func_string= NULL;
|
|
if ((part_func_len &&
|
|
!((part_func_string= thd->alloc(part_func_len)))) ||
|
|
(subpart_func_len &&
|
|
!((subpart_func_string= thd->alloc(subpart_func_len)))))
|
|
{
|
|
mem_alloc_error(part_func_len);
|
|
free_items(thd->free_list);
|
|
part_info->item_free_list= 0;
|
|
goto end;
|
|
}
|
|
if (part_func_len)
|
|
memcpy(part_func_string, part_info->part_func_string, part_func_len);
|
|
if (subpart_func_len)
|
|
memcpy(subpart_func_string, part_info->subpart_func_string,
|
|
subpart_func_len);
|
|
part_info->part_func_string= part_func_string;
|
|
part_info->subpart_func_string= subpart_func_string;
|
|
}
|
|
|
|
result= FALSE;
|
|
end:
|
|
lex_end(thd->lex);
|
|
thd->free_list= thd_free_list;
|
|
thd->lex= old_lex;
|
|
thd->variables.character_set_client= old_character_set_client;
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Set engine type on all partition element objects
|
|
SYNOPSIS
|
|
set_engine_all_partitions()
|
|
part_info Partition info
|
|
engine_type Handlerton reference of engine
|
|
RETURN VALUES
|
|
NONE
|
|
*/
|
|
|
|
static
|
|
void
|
|
set_engine_all_partitions(partition_info *part_info,
|
|
handlerton *engine_type)
|
|
{
|
|
uint i= 0;
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
|
|
part_elem->engine_type= engine_type;
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
uint j= 0;
|
|
|
|
do
|
|
{
|
|
partition_element *sub_elem= sub_it++;
|
|
|
|
sub_elem->engine_type= engine_type;
|
|
} while (++j < part_info->no_subparts);
|
|
}
|
|
} while (++i < part_info->no_parts);
|
|
}
|
|
/*
|
|
SYNOPSIS
|
|
fast_end_partition()
|
|
thd Thread object
|
|
out:copied Number of records copied
|
|
out:deleted Number of records deleted
|
|
table_list Table list with the one table in it
|
|
empty Has nothing been done
|
|
lpt Struct to be used by error handler
|
|
|
|
RETURN VALUES
|
|
FALSE Success
|
|
TRUE Failure
|
|
|
|
DESCRIPTION
|
|
Support routine to handle the successful cases for partition
|
|
management.
|
|
*/
|
|
|
|
static int fast_end_partition(THD *thd, ulonglong copied,
|
|
ulonglong deleted,
|
|
TABLE *table,
|
|
TABLE_LIST *table_list, bool is_empty,
|
|
ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
bool written_bin_log)
|
|
{
|
|
int error;
|
|
DBUG_ENTER("fast_end_partition");
|
|
|
|
thd->proc_info="end";
|
|
if (!is_empty)
|
|
query_cache_invalidate3(thd, table_list, 0);
|
|
error= ha_commit_stmt(thd);
|
|
if (ha_commit(thd))
|
|
error= 1;
|
|
if (!error || is_empty)
|
|
{
|
|
char tmp_name[80];
|
|
if ((!is_empty) && (!written_bin_log) &&
|
|
(!thd->lex->no_write_to_binlog))
|
|
write_bin_log(thd, FALSE, thd->query, thd->query_length);
|
|
close_thread_tables(thd);
|
|
my_snprintf(tmp_name, sizeof(tmp_name), ER(ER_INSERT_INFO),
|
|
(ulong) (copied + deleted),
|
|
(ulong) deleted,
|
|
(ulong) 0);
|
|
send_ok(thd,copied+deleted,0L,tmp_name);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
table->file->print_error(error, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Check engine mix that it is correct
|
|
SYNOPSIS
|
|
check_engine_condition()
|
|
p_elem Partition element
|
|
default_engine Have user specified engine on table level
|
|
inout::engine_type Current engine used
|
|
inout::first Is it first partition
|
|
RETURN VALUE
|
|
TRUE Failed check
|
|
FALSE Ok
|
|
DESCRIPTION
|
|
(specified partition handler ) specified table handler
|
|
(NDB, NDB) NDB OK
|
|
(MYISAM, MYISAM) - OK
|
|
(MYISAM, -) - NOT OK
|
|
(MYISAM, -) MYISAM OK
|
|
(- , MYISAM) - NOT OK
|
|
(- , -) MYISAM OK
|
|
(-,-) - OK
|
|
(NDB, MYISAM) * NOT OK
|
|
*/
|
|
|
|
static bool check_engine_condition(partition_element *p_elem,
|
|
bool default_engine,
|
|
handlerton **engine_type,
|
|
bool *first)
|
|
{
|
|
DBUG_ENTER("check_engine_condition");
|
|
|
|
DBUG_PRINT("enter", ("def_eng = %u, first = %u", default_engine, *first));
|
|
if (*first && default_engine)
|
|
{
|
|
*engine_type= p_elem->engine_type;
|
|
}
|
|
*first= FALSE;
|
|
if ((!default_engine &&
|
|
(p_elem->engine_type != (*engine_type) &&
|
|
p_elem->engine_type)) ||
|
|
(default_engine &&
|
|
p_elem->engine_type != (*engine_type)))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
else
|
|
{
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
We need to check if engine used by all partitions can handle
|
|
partitioning natively.
|
|
|
|
SYNOPSIS
|
|
check_native_partitioned()
|
|
create_info Create info in CREATE TABLE
|
|
out:ret_val Return value
|
|
part_info Partition info
|
|
thd Thread object
|
|
|
|
RETURN VALUES
|
|
Value returned in bool ret_value
|
|
TRUE Native partitioning supported by engine
|
|
FALSE Need to use partition handler
|
|
|
|
Return value from function
|
|
TRUE Error
|
|
FALSE Success
|
|
*/
|
|
|
|
static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
|
|
partition_info *part_info, THD *thd)
|
|
{
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
bool first= TRUE;
|
|
bool default_engine;
|
|
handlerton *engine_type= create_info->db_type;
|
|
handlerton *old_engine_type= engine_type;
|
|
uint i= 0;
|
|
handler *file;
|
|
uint no_parts= part_info->partitions.elements;
|
|
DBUG_ENTER("check_native_partitioned");
|
|
|
|
default_engine= (create_info->used_fields & HA_CREATE_USED_ENGINE) ?
|
|
FALSE : TRUE;
|
|
DBUG_PRINT("info", ("engine_type = %u, default = %u",
|
|
ha_legacy_type(engine_type),
|
|
default_engine));
|
|
if (no_parts)
|
|
{
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
if (part_info->is_sub_partitioned() &&
|
|
part_elem->subpartitions.elements)
|
|
{
|
|
uint no_subparts= part_elem->subpartitions.elements;
|
|
uint j= 0;
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
do
|
|
{
|
|
partition_element *sub_elem= sub_it++;
|
|
if (check_engine_condition(sub_elem, default_engine,
|
|
&engine_type, &first))
|
|
goto error;
|
|
} while (++j < no_subparts);
|
|
/*
|
|
In case of subpartitioning and defaults we allow that only
|
|
subparts have specified engines, as long as the parts haven't
|
|
specified the wrong engine it's ok.
|
|
*/
|
|
if (check_engine_condition(part_elem, FALSE,
|
|
&engine_type, &first))
|
|
goto error;
|
|
}
|
|
else if (check_engine_condition(part_elem, default_engine,
|
|
&engine_type, &first))
|
|
goto error;
|
|
} while (++i < no_parts);
|
|
}
|
|
|
|
/*
|
|
All engines are of the same type. Check if this engine supports
|
|
native partitioning.
|
|
*/
|
|
|
|
if (!engine_type)
|
|
engine_type= old_engine_type;
|
|
DBUG_PRINT("info", ("engine_type = %s",
|
|
ha_resolve_storage_engine_name(engine_type)));
|
|
if (engine_type->partition_flags &&
|
|
(engine_type->partition_flags() & HA_CAN_PARTITION))
|
|
{
|
|
create_info->db_type= engine_type;
|
|
DBUG_PRINT("info", ("Changed to native partitioning"));
|
|
*ret_val= TRUE;
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
error:
|
|
/*
|
|
Mixed engines not yet supported but when supported it will need
|
|
the partition handler
|
|
*/
|
|
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
|
|
*ret_val= FALSE;
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Prepare for ALTER TABLE of partition structure
|
|
|
|
SYNOPSIS
|
|
prep_alter_part_table()
|
|
thd Thread object
|
|
table Table object
|
|
inout:alter_info Alter information
|
|
inout:create_info Create info for CREATE TABLE
|
|
old_db_type Old engine type
|
|
out:partition_changed Boolean indicating whether partition changed
|
|
out:fast_alter_partition Boolean indicating whether fast partition
|
|
change is requested
|
|
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
partition_changed
|
|
fast_alter_partition
|
|
|
|
DESCRIPTION
|
|
This method handles all preparations for ALTER TABLE for partitioned
|
|
tables
|
|
We need to handle both partition management command such as Add Partition
|
|
and others here as well as an ALTER TABLE that completely changes the
|
|
partitioning and yet others that don't change anything at all. We start
|
|
by checking the partition management variants and then check the general
|
|
change patterns.
|
|
*/
|
|
|
|
uint prep_alter_part_table(THD *thd, TABLE *table, ALTER_INFO *alter_info,
|
|
HA_CREATE_INFO *create_info,
|
|
handlerton *old_db_type,
|
|
bool *partition_changed,
|
|
uint *fast_alter_partition)
|
|
{
|
|
DBUG_ENTER("prep_alter_part_table");
|
|
|
|
/*
|
|
We are going to manipulate the partition info on the table object
|
|
so we need to ensure that the data structure of the table object
|
|
is freed by setting version to 0. table->s->version= 0 forces a
|
|
flush of the table object in close_thread_tables().
|
|
*/
|
|
if (table->part_info)
|
|
table->s->version= 0L;
|
|
|
|
thd->work_part_info= thd->lex->part_info;
|
|
if (thd->work_part_info &&
|
|
!(thd->work_part_info= thd->lex->part_info->get_clone()))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
if (alter_info->flags &
|
|
(ALTER_ADD_PARTITION | ALTER_DROP_PARTITION |
|
|
ALTER_COALESCE_PARTITION | ALTER_REORGANIZE_PARTITION |
|
|
ALTER_TABLE_REORG | ALTER_OPTIMIZE_PARTITION |
|
|
ALTER_CHECK_PARTITION | ALTER_ANALYZE_PARTITION |
|
|
ALTER_REPAIR_PARTITION | ALTER_REBUILD_PARTITION))
|
|
{
|
|
partition_info *tab_part_info= table->part_info;
|
|
partition_info *alt_part_info= thd->work_part_info;
|
|
uint flags= 0;
|
|
if (!tab_part_info)
|
|
{
|
|
my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (alter_info->flags == ALTER_TABLE_REORG)
|
|
{
|
|
uint new_part_no, curr_part_no;
|
|
if (tab_part_info->part_type != HASH_PARTITION ||
|
|
tab_part_info->use_default_no_partitions)
|
|
{
|
|
my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
new_part_no= table->file->get_default_no_partitions(create_info);
|
|
curr_part_no= tab_part_info->no_parts;
|
|
if (new_part_no == curr_part_no)
|
|
{
|
|
/*
|
|
No change is needed, we will have the same number of partitions
|
|
after the change as before. Thus we can reply ok immediately
|
|
without any changes at all.
|
|
*/
|
|
DBUG_RETURN(fast_end_partition(thd, ULL(0), ULL(0),
|
|
table, NULL,
|
|
TRUE, NULL, FALSE));
|
|
}
|
|
else if (new_part_no > curr_part_no)
|
|
{
|
|
/*
|
|
We will add more partitions, we use the ADD PARTITION without
|
|
setting the flag for no default number of partitions
|
|
*/
|
|
alter_info->flags|= ALTER_ADD_PARTITION;
|
|
thd->work_part_info->no_parts= new_part_no - curr_part_no;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
We will remove hash partitions, we use the COALESCE PARTITION
|
|
without setting the flag for no default number of partitions
|
|
*/
|
|
alter_info->flags|= ALTER_COALESCE_PARTITION;
|
|
alter_info->no_parts= curr_part_no - new_part_no;
|
|
}
|
|
}
|
|
if (table->s->db_type->alter_table_flags &&
|
|
(!(flags= table->s->db_type->alter_table_flags(alter_info->flags))))
|
|
{
|
|
my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
*fast_alter_partition=
|
|
((flags & (HA_FAST_CHANGE_PARTITION | HA_PARTITION_ONE_PHASE)) != 0);
|
|
DBUG_PRINT("info", ("*fast_alter_partition: %d flags: 0x%x",
|
|
*fast_alter_partition, flags));
|
|
if (((alter_info->flags & ALTER_ADD_PARTITION) ||
|
|
(alter_info->flags & ALTER_REORGANIZE_PARTITION)) &&
|
|
(thd->work_part_info->part_type != tab_part_info->part_type) &&
|
|
(thd->work_part_info->part_type != NOT_A_PARTITION))
|
|
{
|
|
if (thd->work_part_info->part_type == RANGE_PARTITION)
|
|
{
|
|
my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
|
|
"RANGE", "LESS THAN");
|
|
}
|
|
else if (thd->work_part_info->part_type == LIST_PARTITION)
|
|
{
|
|
DBUG_ASSERT(thd->work_part_info->part_type == LIST_PARTITION);
|
|
my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
|
|
"LIST", "IN");
|
|
}
|
|
else if (tab_part_info->part_type == RANGE_PARTITION)
|
|
{
|
|
my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
|
|
"RANGE", "LESS THAN");
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(tab_part_info->part_type == LIST_PARTITION);
|
|
my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
|
|
"LIST", "IN");
|
|
}
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (alter_info->flags & ALTER_ADD_PARTITION)
|
|
{
|
|
/*
|
|
We start by moving the new partitions to the list of temporary
|
|
partitions. We will then check that the new partitions fit in the
|
|
partitioning scheme as currently set-up.
|
|
Partitions are always added at the end in ADD PARTITION.
|
|
*/
|
|
uint no_new_partitions= alt_part_info->no_parts;
|
|
uint no_orig_partitions= tab_part_info->no_parts;
|
|
uint check_total_partitions= no_new_partitions + no_orig_partitions;
|
|
uint new_total_partitions= check_total_partitions;
|
|
/*
|
|
We allow quite a lot of values to be supplied by defaults, however we
|
|
must know the number of new partitions in this case.
|
|
*/
|
|
if (thd->lex->no_write_to_binlog &&
|
|
tab_part_info->part_type != HASH_PARTITION)
|
|
{
|
|
my_error(ER_NO_BINLOG_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (no_new_partitions == 0)
|
|
{
|
|
my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (tab_part_info->is_sub_partitioned())
|
|
{
|
|
if (alt_part_info->no_subparts == 0)
|
|
alt_part_info->no_subparts= tab_part_info->no_subparts;
|
|
else if (alt_part_info->no_subparts != tab_part_info->no_subparts)
|
|
{
|
|
my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
check_total_partitions= new_total_partitions*
|
|
alt_part_info->no_subparts;
|
|
}
|
|
if (check_total_partitions > MAX_PARTITIONS)
|
|
{
|
|
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
alt_part_info->part_type= tab_part_info->part_type;
|
|
alt_part_info->subpart_type= tab_part_info->subpart_type;
|
|
if (alt_part_info->set_up_defaults_for_partitioning(table->file,
|
|
ULL(0),
|
|
tab_part_info->no_parts))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
/*
|
|
Handling of on-line cases:
|
|
|
|
ADD PARTITION for RANGE/LIST PARTITIONING:
|
|
------------------------------------------
|
|
For range and list partitions add partition is simply adding a
|
|
new empty partition to the table. If the handler support this we
|
|
will use the simple method of doing this. The figure below shows
|
|
an example of this and the states involved in making this change.
|
|
|
|
Existing partitions New added partitions
|
|
------ ------ ------ ------ | ------ ------
|
|
| | | | | | | | | | | | |
|
|
| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
|
|
------ ------ ------ ------ | ------ ------
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_TO_BE_ADDED*2
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED*2
|
|
|
|
The first line is the states before adding the new partitions and the
|
|
second line is after the new partitions are added. All the partitions are
|
|
in the partitions list, no partitions are placed in the temp_partitions
|
|
list.
|
|
|
|
ADD PARTITION for HASH PARTITIONING
|
|
-----------------------------------
|
|
This little figure tries to show the various partitions involved when
|
|
adding two new partitions to a linear hash based partitioned table with
|
|
four partitions to start with, which lists are used and the states they
|
|
pass through. Adding partitions to a normal hash based is similar except
|
|
that it is always all the existing partitions that are reorganised not
|
|
only a subset of them.
|
|
|
|
Existing partitions New added partitions
|
|
------ ------ ------ ------ | ------ ------
|
|
| | | | | | | | | | | | |
|
|
| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
|
|
------ ------ ------ ------ | ------ ------
|
|
PART_CHANGED PART_CHANGED PART_NORMAL PART_NORMAL PART_TO_BE_ADDED
|
|
PART_IS_CHANGED*2 PART_NORMAL PART_NORMAL PART_IS_ADDED
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED
|
|
|
|
Reorganised existing partitions
|
|
------ ------
|
|
| | | |
|
|
| p0'| | p1'|
|
|
------ ------
|
|
|
|
p0 - p5 will be in the partitions list of partitions.
|
|
p0' and p1' will actually not exist as separate objects, there presence can
|
|
be deduced from the state of the partition and also the names of those
|
|
partitions can be deduced this way.
|
|
|
|
After adding the partitions and copying the partition data to p0', p1',
|
|
p4 and p5 from p0 and p1 the states change to adapt for the new situation
|
|
where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
|
|
p5 are in the table again.
|
|
|
|
The first line above shows the states of the partitions before we start
|
|
adding and copying partitions, the second after completing the adding
|
|
and copying and finally the third line after also dropping the partitions
|
|
that are reorganised.
|
|
*/
|
|
if (*fast_alter_partition &&
|
|
tab_part_info->part_type == HASH_PARTITION)
|
|
{
|
|
uint part_no= 0, start_part= 1, start_sec_part= 1;
|
|
uint end_part= 0, end_sec_part= 0;
|
|
uint upper_2n= tab_part_info->linear_hash_mask + 1;
|
|
uint lower_2n= upper_2n >> 1;
|
|
bool all_parts= TRUE;
|
|
if (tab_part_info->linear_hash_ind &&
|
|
no_new_partitions < upper_2n)
|
|
{
|
|
/*
|
|
An analysis of which parts needs reorganisation shows that it is
|
|
divided into two intervals. The first interval is those parts
|
|
that are reorganised up until upper_2n - 1. From upper_2n and
|
|
onwards it starts again from partition 0 and goes on until
|
|
it reaches p(upper_2n - 1). If the last new partition reaches
|
|
beyond upper_2n - 1 then the first interval will end with
|
|
p(lower_2n - 1) and start with p(no_orig_partitions - lower_2n).
|
|
If lower_2n partitions are added then p0 to p(lower_2n - 1) will
|
|
be reorganised which means that the two interval becomes one
|
|
interval at this point. Thus only when adding less than
|
|
lower_2n partitions and going beyond a total of upper_2n we
|
|
actually get two intervals.
|
|
|
|
To exemplify this assume we have 6 partitions to start with and
|
|
add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
|
|
The first to add after p5 is p6 = 110 in bit numbers. Thus we
|
|
can see that 10 = p2 will be partition to reorganise if only one
|
|
partition.
|
|
If 2 partitions are added we reorganise [p2, p3]. Those two
|
|
cases are covered by the second if part below.
|
|
If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
|
|
part is covered by the else part below.
|
|
If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
|
|
This is covered by the first if part where we need the max check
|
|
to here use lower_2n - 1.
|
|
If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
|
|
This is covered by the first if part but here we use the first
|
|
calculated end_part.
|
|
Finally with 9 new partitions we would also reorganise p6 if we
|
|
used the method below but we cannot reorganise more partitions
|
|
than what we had from the start and thus we simply set all_parts
|
|
to TRUE. In this case we don't get into this if-part at all.
|
|
*/
|
|
all_parts= FALSE;
|
|
if (no_new_partitions >= lower_2n)
|
|
{
|
|
/*
|
|
In this case there is only one interval since the two intervals
|
|
overlap and this starts from zero to last_part_no - upper_2n
|
|
*/
|
|
start_part= 0;
|
|
end_part= new_total_partitions - (upper_2n + 1);
|
|
end_part= max(lower_2n - 1, end_part);
|
|
}
|
|
else if (new_total_partitions <= upper_2n)
|
|
{
|
|
/*
|
|
Also in this case there is only one interval since we are not
|
|
going over a 2**n boundary
|
|
*/
|
|
start_part= no_orig_partitions - lower_2n;
|
|
end_part= start_part + (no_new_partitions - 1);
|
|
}
|
|
else
|
|
{
|
|
/* We have two non-overlapping intervals since we are not
|
|
passing a 2**n border and we have not at least lower_2n
|
|
new parts that would ensure that the intervals become
|
|
overlapping.
|
|
*/
|
|
start_part= no_orig_partitions - lower_2n;
|
|
end_part= upper_2n - 1;
|
|
start_sec_part= 0;
|
|
end_sec_part= new_total_partitions - (upper_2n + 1);
|
|
}
|
|
}
|
|
List_iterator<partition_element> tab_it(tab_part_info->partitions);
|
|
part_no= 0;
|
|
do
|
|
{
|
|
partition_element *p_elem= tab_it++;
|
|
if (all_parts ||
|
|
(part_no >= start_part && part_no <= end_part) ||
|
|
(part_no >= start_sec_part && part_no <= end_sec_part))
|
|
{
|
|
p_elem->part_state= PART_CHANGED;
|
|
}
|
|
} while (++part_no < no_orig_partitions);
|
|
}
|
|
/*
|
|
Need to concatenate the lists here to make it possible to check the
|
|
partition info for correctness using check_partition_info.
|
|
For on-line add partition we set the state of this partition to
|
|
PART_TO_BE_ADDED to ensure that it is known that it is not yet
|
|
usable (becomes usable when partition is created and the switch of
|
|
partition configuration is made.
|
|
*/
|
|
{
|
|
List_iterator<partition_element> alt_it(alt_part_info->partitions);
|
|
uint part_count= 0;
|
|
do
|
|
{
|
|
partition_element *part_elem= alt_it++;
|
|
if (*fast_alter_partition)
|
|
part_elem->part_state= PART_TO_BE_ADDED;
|
|
if (tab_part_info->partitions.push_back(part_elem))
|
|
{
|
|
mem_alloc_error(1);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
} while (++part_count < no_new_partitions);
|
|
tab_part_info->no_parts+= no_new_partitions;
|
|
}
|
|
/*
|
|
If we specify partitions explicitly we don't use defaults anymore.
|
|
Using ADD PARTITION also means that we don't have the default number
|
|
of partitions anymore. We use this code also for Table reorganisations
|
|
and here we don't set any default flags to FALSE.
|
|
*/
|
|
if (!(alter_info->flags & ALTER_TABLE_REORG))
|
|
{
|
|
if (!alt_part_info->use_default_partitions)
|
|
{
|
|
DBUG_PRINT("info", ("part_info= %x", tab_part_info));
|
|
tab_part_info->use_default_partitions= FALSE;
|
|
}
|
|
tab_part_info->use_default_no_partitions= FALSE;
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
|
}
|
|
}
|
|
else if (alter_info->flags == ALTER_DROP_PARTITION)
|
|
{
|
|
/*
|
|
Drop a partition from a range partition and list partitioning is
|
|
always safe and can be made more or less immediate. It is necessary
|
|
however to ensure that the partition to be removed is safely removed
|
|
and that REPAIR TABLE can remove the partition if for some reason the
|
|
command to drop the partition failed in the middle.
|
|
*/
|
|
uint part_count= 0;
|
|
uint no_parts_dropped= alter_info->partition_names.elements;
|
|
uint no_parts_found= 0;
|
|
List_iterator<partition_element> part_it(tab_part_info->partitions);
|
|
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
|
if (!(tab_part_info->part_type == RANGE_PARTITION ||
|
|
tab_part_info->part_type == LIST_PARTITION))
|
|
{
|
|
my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (no_parts_dropped >= tab_part_info->no_parts)
|
|
{
|
|
my_error(ER_DROP_LAST_PARTITION, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
if (is_name_in_list(part_elem->partition_name,
|
|
alter_info->partition_names))
|
|
{
|
|
/*
|
|
Set state to indicate that the partition is to be dropped.
|
|
*/
|
|
no_parts_found++;
|
|
part_elem->part_state= PART_TO_BE_DROPPED;
|
|
}
|
|
} while (++part_count < tab_part_info->no_parts);
|
|
if (no_parts_found != no_parts_dropped)
|
|
{
|
|
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (table->file->is_fk_defined_on_table_or_index(MAX_KEY))
|
|
{
|
|
my_error(ER_ROW_IS_REFERENCED, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
tab_part_info->no_parts-= no_parts_dropped;
|
|
}
|
|
else if ((alter_info->flags & ALTER_OPTIMIZE_PARTITION) ||
|
|
(alter_info->flags & ALTER_ANALYZE_PARTITION) ||
|
|
(alter_info->flags & ALTER_CHECK_PARTITION) ||
|
|
(alter_info->flags & ALTER_REPAIR_PARTITION) ||
|
|
(alter_info->flags & ALTER_REBUILD_PARTITION))
|
|
{
|
|
uint no_parts_opt= alter_info->partition_names.elements;
|
|
uint part_count= 0;
|
|
uint no_parts_found= 0;
|
|
List_iterator<partition_element> part_it(tab_part_info->partitions);
|
|
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
if ((alter_info->flags & ALTER_ALL_PARTITION) ||
|
|
(is_name_in_list(part_elem->partition_name,
|
|
alter_info->partition_names)))
|
|
{
|
|
/*
|
|
Mark the partition as a partition to be "changed" by
|
|
analyzing/optimizing/rebuilding/checking/repairing
|
|
*/
|
|
no_parts_found++;
|
|
part_elem->part_state= PART_CHANGED;
|
|
}
|
|
} while (++part_count < tab_part_info->no_parts);
|
|
if (no_parts_found != no_parts_opt &&
|
|
(!(alter_info->flags & ALTER_ALL_PARTITION)))
|
|
{
|
|
const char *ptr;
|
|
if (alter_info->flags & ALTER_OPTIMIZE_PARTITION)
|
|
ptr= "OPTIMIZE";
|
|
else if (alter_info->flags & ALTER_ANALYZE_PARTITION)
|
|
ptr= "ANALYZE";
|
|
else if (alter_info->flags & ALTER_CHECK_PARTITION)
|
|
ptr= "CHECK";
|
|
else if (alter_info->flags & ALTER_REPAIR_PARTITION)
|
|
ptr= "REPAIR";
|
|
else
|
|
ptr= "REBUILD";
|
|
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), ptr);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (!(*fast_alter_partition))
|
|
{
|
|
table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else if (alter_info->flags & ALTER_COALESCE_PARTITION)
|
|
{
|
|
uint no_parts_coalesced= alter_info->no_parts;
|
|
uint no_parts_remain= tab_part_info->no_parts - no_parts_coalesced;
|
|
List_iterator<partition_element> part_it(tab_part_info->partitions);
|
|
if (tab_part_info->part_type != HASH_PARTITION)
|
|
{
|
|
my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (no_parts_coalesced == 0)
|
|
{
|
|
my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (no_parts_coalesced >= tab_part_info->no_parts)
|
|
{
|
|
my_error(ER_DROP_LAST_PARTITION, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
/*
|
|
Online handling:
|
|
COALESCE PARTITION:
|
|
-------------------
|
|
The figure below shows the manner in which partitions are handled when
|
|
performing an on-line coalesce partition and which states they go through
|
|
at start, after adding and copying partitions and finally after dropping
|
|
the partitions to drop. The figure shows an example using four partitions
|
|
to start with, using linear hash and coalescing one partition (always the
|
|
last partition).
|
|
|
|
Using linear hash then all remaining partitions will have a new reorganised
|
|
part.
|
|
|
|
Existing partitions Coalesced partition
|
|
------ ------ ------ | ------
|
|
| | | | | | | | |
|
|
| p0 | | p1 | | p2 | | | p3 |
|
|
------ ------ ------ | ------
|
|
PART_NORMAL PART_CHANGED PART_NORMAL PART_REORGED_DROPPED
|
|
PART_NORMAL PART_IS_CHANGED PART_NORMAL PART_TO_BE_DROPPED
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_DROPPED
|
|
|
|
Reorganised existing partitions
|
|
------
|
|
| |
|
|
| p1'|
|
|
------
|
|
|
|
p0 - p3 is in the partitions list.
|
|
The p1' partition will actually not be in any list it is deduced from the
|
|
state of p1.
|
|
*/
|
|
{
|
|
uint part_count= 0, start_part= 1, start_sec_part= 1;
|
|
uint end_part= 0, end_sec_part= 0;
|
|
bool all_parts= TRUE;
|
|
if (*fast_alter_partition &&
|
|
tab_part_info->linear_hash_ind)
|
|
{
|
|
uint upper_2n= tab_part_info->linear_hash_mask + 1;
|
|
uint lower_2n= upper_2n >> 1;
|
|
all_parts= FALSE;
|
|
if (no_parts_coalesced >= lower_2n)
|
|
{
|
|
all_parts= TRUE;
|
|
}
|
|
else if (no_parts_remain >= lower_2n)
|
|
{
|
|
end_part= tab_part_info->no_parts - (lower_2n + 1);
|
|
start_part= no_parts_remain - lower_2n;
|
|
}
|
|
else
|
|
{
|
|
start_part= 0;
|
|
end_part= tab_part_info->no_parts - (lower_2n + 1);
|
|
end_sec_part= (lower_2n >> 1) - 1;
|
|
start_sec_part= end_sec_part - (lower_2n - (no_parts_remain + 1));
|
|
}
|
|
}
|
|
do
|
|
{
|
|
partition_element *p_elem= part_it++;
|
|
if (*fast_alter_partition &&
|
|
(all_parts ||
|
|
(part_count >= start_part && part_count <= end_part) ||
|
|
(part_count >= start_sec_part && part_count <= end_sec_part)))
|
|
p_elem->part_state= PART_CHANGED;
|
|
if (++part_count > no_parts_remain)
|
|
{
|
|
if (*fast_alter_partition)
|
|
p_elem->part_state= PART_REORGED_DROPPED;
|
|
else
|
|
part_it.remove();
|
|
}
|
|
} while (part_count < tab_part_info->no_parts);
|
|
tab_part_info->no_parts= no_parts_remain;
|
|
}
|
|
if (!(alter_info->flags & ALTER_TABLE_REORG))
|
|
{
|
|
tab_part_info->use_default_no_partitions= FALSE;
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
|
}
|
|
}
|
|
else if (alter_info->flags == ALTER_REORGANIZE_PARTITION)
|
|
{
|
|
/*
|
|
Reorganise partitions takes a number of partitions that are next
|
|
to each other (at least for RANGE PARTITIONS) and then uses those
|
|
to create a set of new partitions. So data is copied from those
|
|
partitions into the new set of partitions. Those new partitions
|
|
can have more values in the LIST value specifications or less both
|
|
are allowed. The ranges can be different but since they are
|
|
changing a set of consecutive partitions they must cover the same
|
|
range as those changed from.
|
|
This command can be used on RANGE and LIST partitions.
|
|
*/
|
|
uint no_parts_reorged= alter_info->partition_names.elements;
|
|
uint no_parts_new= thd->work_part_info->partitions.elements;
|
|
partition_info *alt_part_info= thd->work_part_info;
|
|
uint check_total_partitions;
|
|
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
|
if (no_parts_reorged > tab_part_info->no_parts)
|
|
{
|
|
my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (!(tab_part_info->part_type == RANGE_PARTITION ||
|
|
tab_part_info->part_type == LIST_PARTITION) &&
|
|
(no_parts_new != no_parts_reorged))
|
|
{
|
|
my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
check_total_partitions= tab_part_info->no_parts + no_parts_new;
|
|
check_total_partitions-= no_parts_reorged;
|
|
if (check_total_partitions > MAX_PARTITIONS)
|
|
{
|
|
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
alt_part_info->part_type= tab_part_info->part_type;
|
|
alt_part_info->subpart_type= tab_part_info->subpart_type;
|
|
DBUG_ASSERT(!alt_part_info->use_default_partitions);
|
|
if (alt_part_info->set_up_defaults_for_partitioning(table->file,
|
|
ULL(0),
|
|
0))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
/*
|
|
Online handling:
|
|
REORGANIZE PARTITION:
|
|
---------------------
|
|
The figure exemplifies the handling of partitions, their state changes and
|
|
how they are organised. It exemplifies four partitions where two of the
|
|
partitions are reorganised (p1 and p2) into two new partitions (p4 and p5).
|
|
The reason of this change could be to change range limits, change list
|
|
values or for hash partitions simply reorganise the partition which could
|
|
also involve moving them to new disks or new node groups (MySQL Cluster).
|
|
|
|
Existing partitions
|
|
------ ------ ------ ------
|
|
| | | | | | | |
|
|
| p0 | | p1 | | p2 | | p3 |
|
|
------ ------ ------ ------
|
|
PART_NORMAL PART_TO_BE_REORGED PART_NORMAL
|
|
PART_NORMAL PART_TO_BE_DROPPED PART_NORMAL
|
|
PART_NORMAL PART_IS_DROPPED PART_NORMAL
|
|
|
|
Reorganised new partitions (replacing p1 and p2)
|
|
------ ------
|
|
| | | |
|
|
| p4 | | p5 |
|
|
------ ------
|
|
PART_TO_BE_ADDED
|
|
PART_IS_ADDED
|
|
PART_IS_ADDED
|
|
|
|
All unchanged partitions and the new partitions are in the partitions list
|
|
in the order they will have when the change is completed. The reorganised
|
|
partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
|
|
temporary state not written in the frm file. It is used to ensure we write
|
|
the generated partition syntax in a correct manner.
|
|
*/
|
|
{
|
|
List_iterator<partition_element> tab_it(tab_part_info->partitions);
|
|
uint part_count= 0;
|
|
bool found_first= FALSE;
|
|
bool found_last= FALSE;
|
|
bool is_last_partition_reorged;
|
|
uint drop_count= 0;
|
|
longlong tab_max_range= 0, alt_max_range= 0;
|
|
do
|
|
{
|
|
partition_element *part_elem= tab_it++;
|
|
is_last_partition_reorged= FALSE;
|
|
if (is_name_in_list(part_elem->partition_name,
|
|
alter_info->partition_names))
|
|
{
|
|
is_last_partition_reorged= TRUE;
|
|
drop_count++;
|
|
tab_max_range= part_elem->range_value;
|
|
if (*fast_alter_partition &&
|
|
tab_part_info->temp_partitions.push_back(part_elem))
|
|
{
|
|
mem_alloc_error(1);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (*fast_alter_partition)
|
|
part_elem->part_state= PART_TO_BE_REORGED;
|
|
if (!found_first)
|
|
{
|
|
uint alt_part_count= 0;
|
|
found_first= TRUE;
|
|
List_iterator<partition_element>
|
|
alt_it(alt_part_info->partitions);
|
|
do
|
|
{
|
|
partition_element *alt_part_elem= alt_it++;
|
|
alt_max_range= alt_part_elem->range_value;
|
|
if (*fast_alter_partition)
|
|
alt_part_elem->part_state= PART_TO_BE_ADDED;
|
|
if (alt_part_count == 0)
|
|
tab_it.replace(alt_part_elem);
|
|
else
|
|
tab_it.after(alt_part_elem);
|
|
} while (++alt_part_count < no_parts_new);
|
|
}
|
|
else if (found_last)
|
|
{
|
|
my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
else
|
|
tab_it.remove();
|
|
}
|
|
else
|
|
{
|
|
if (found_first)
|
|
found_last= TRUE;
|
|
}
|
|
} while (++part_count < tab_part_info->no_parts);
|
|
if (drop_count != no_parts_reorged)
|
|
{
|
|
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (tab_part_info->part_type == RANGE_PARTITION &&
|
|
((is_last_partition_reorged &&
|
|
alt_max_range < tab_max_range) ||
|
|
(!is_last_partition_reorged &&
|
|
alt_max_range != tab_max_range)))
|
|
{
|
|
/*
|
|
For range partitioning the total resulting range before and
|
|
after the change must be the same except in one case. This is
|
|
when the last partition is reorganised, in this case it is
|
|
acceptable to increase the total range.
|
|
The reason is that it is not allowed to have "holes" in the
|
|
middle of the ranges and thus we should not allow to reorganise
|
|
to create "holes". Also we should not allow using REORGANIZE
|
|
to drop data.
|
|
*/
|
|
my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
tab_part_info->no_parts= check_total_partitions;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(FALSE);
|
|
}
|
|
*partition_changed= TRUE;
|
|
thd->work_part_info= tab_part_info;
|
|
if (alter_info->flags == ALTER_ADD_PARTITION ||
|
|
alter_info->flags == ALTER_REORGANIZE_PARTITION)
|
|
{
|
|
if (tab_part_info->use_default_subpartitions &&
|
|
!alt_part_info->use_default_subpartitions)
|
|
{
|
|
tab_part_info->use_default_subpartitions= FALSE;
|
|
tab_part_info->use_default_no_subpartitions= FALSE;
|
|
}
|
|
if (tab_part_info->check_partition_info(thd, (handlerton**)NULL,
|
|
table->file, ULL(0)))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
When thd->lex->part_info has a reference to a partition_info the
|
|
ALTER TABLE contained a definition of a partitioning.
|
|
|
|
Case I:
|
|
If there was a partition before and there is a new one defined.
|
|
We use the new partitioning. The new partitioning is already
|
|
defined in the correct variable so no work is needed to
|
|
accomplish this.
|
|
We do however need to update partition_changed to ensure that not
|
|
only the frm file is changed in the ALTER TABLE command.
|
|
|
|
Case IIa:
|
|
There was a partitioning before and there is no new one defined.
|
|
Also the user has not specified to remove partitioning explicitly.
|
|
|
|
We use the old partitioning also for the new table. We do this
|
|
by assigning the partition_info from the table loaded in
|
|
open_ltable to the partition_info struct used by mysql_create_table
|
|
later in this method.
|
|
|
|
Case IIb:
|
|
There was a partitioning before and there is no new one defined.
|
|
The user has specified explicitly to remove partitioning
|
|
|
|
Since the user has specified explicitly to remove partitioning
|
|
we override the old partitioning info and create a new table using
|
|
the specified engine.
|
|
In this case the partition also is changed.
|
|
|
|
Case III:
|
|
There was no partitioning before altering the table, there is
|
|
partitioning defined in the altered table. Use the new partitioning.
|
|
No work needed since the partitioning info is already in the
|
|
correct variable.
|
|
|
|
In this case we discover one case where the new partitioning is using
|
|
the same partition function as the default (PARTITION BY KEY or
|
|
PARTITION BY LINEAR KEY with the list of fields equal to the primary
|
|
key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
|
|
key)
|
|
Also here partition has changed and thus a new table must be
|
|
created.
|
|
|
|
Case IV:
|
|
There was no partitioning before and no partitioning defined.
|
|
Obviously no work needed.
|
|
*/
|
|
if (table->part_info)
|
|
{
|
|
if (alter_info->flags & ALTER_REMOVE_PARTITIONING)
|
|
{
|
|
DBUG_PRINT("info", ("Remove partitioning"));
|
|
if (!(create_info->used_fields & HA_CREATE_USED_ENGINE))
|
|
{
|
|
DBUG_PRINT("info", ("No explicit engine used"));
|
|
create_info->db_type= table->part_info->default_engine_type;
|
|
}
|
|
DBUG_PRINT("info", ("New engine type: %s",
|
|
hton2plugin[create_info->db_type->slot]->name.str));
|
|
thd->work_part_info= NULL;
|
|
*partition_changed= TRUE;
|
|
}
|
|
else if (!thd->work_part_info)
|
|
{
|
|
/*
|
|
Retain partitioning but possibly with a new storage engine
|
|
beneath.
|
|
*/
|
|
thd->work_part_info= table->part_info;
|
|
if (create_info->used_fields & HA_CREATE_USED_ENGINE &&
|
|
create_info->db_type != table->part_info->default_engine_type)
|
|
{
|
|
/*
|
|
Make sure change of engine happens to all partitions.
|
|
*/
|
|
DBUG_PRINT("info", ("partition changed"));
|
|
if (table->part_info->is_auto_partitioned)
|
|
{
|
|
/*
|
|
If the user originally didn't specify partitioning to be
|
|
used we can remove it now.
|
|
*/
|
|
thd->work_part_info= NULL;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Ensure that all partitions have the proper engine set-up
|
|
*/
|
|
set_engine_all_partitions(thd->work_part_info,
|
|
create_info->db_type);
|
|
}
|
|
*partition_changed= TRUE;
|
|
}
|
|
}
|
|
}
|
|
if (thd->work_part_info)
|
|
{
|
|
partition_info *part_info= thd->work_part_info;
|
|
bool is_native_partitioned= FALSE;
|
|
/*
|
|
Need to cater for engine types that can handle partition without
|
|
using the partition handler.
|
|
*/
|
|
if (thd->work_part_info != table->part_info)
|
|
{
|
|
DBUG_PRINT("info", ("partition changed"));
|
|
*partition_changed= TRUE;
|
|
}
|
|
if (create_info->db_type == &partition_hton)
|
|
part_info->default_engine_type= table->part_info->default_engine_type;
|
|
else
|
|
part_info->default_engine_type= create_info->db_type;
|
|
if (check_native_partitioned(create_info, &is_native_partitioned,
|
|
part_info, thd))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (!is_native_partitioned)
|
|
{
|
|
DBUG_ASSERT(create_info->db_type);
|
|
create_info->db_type= &partition_hton;
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE
|
|
partitions. This method is used to implement both single-phase and multi-
|
|
phase implementations of ADD/REORGANIZE/COALESCE partitions.
|
|
|
|
SYNOPSIS
|
|
mysql_change_partitions()
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
Request handler to add partitions as set in states of the partition
|
|
|
|
Elements of the lpt parameters used:
|
|
create_info Create information used to create partitions
|
|
db Database name
|
|
table_name Table name
|
|
copied Output parameter where number of copied
|
|
records are added
|
|
deleted Output parameter where number of deleted
|
|
records are added
|
|
*/
|
|
|
|
static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
char path[FN_REFLEN+1];
|
|
int error;
|
|
handler *file= lpt->table->file;
|
|
DBUG_ENTER("mysql_change_partitions");
|
|
|
|
build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
|
|
if ((error= file->change_partitions(lpt->create_info, path, &lpt->copied,
|
|
&lpt->deleted, lpt->pack_frm_data,
|
|
lpt->pack_frm_len)))
|
|
{
|
|
if (error != ER_OUTOFMEMORY)
|
|
file->print_error(error, MYF(0));
|
|
else
|
|
lpt->thd->fatal_error();
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Rename partitions in an ALTER TABLE of partitions
|
|
|
|
SYNOPSIS
|
|
mysql_rename_partitions()
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
Request handler to rename partitions as set in states of the partition
|
|
|
|
Parameters used:
|
|
db Database name
|
|
table_name Table name
|
|
*/
|
|
|
|
static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
char path[FN_REFLEN+1];
|
|
int error;
|
|
DBUG_ENTER("mysql_rename_partitions");
|
|
|
|
build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
|
|
if ((error= lpt->table->file->rename_partitions(path)))
|
|
{
|
|
if (error != 1)
|
|
lpt->table->file->print_error(error, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Drop partitions in an ALTER TABLE of partitions
|
|
|
|
SYNOPSIS
|
|
mysql_drop_partitions()
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
DESCRIPTION
|
|
Drop the partitions marked with PART_TO_BE_DROPPED state and remove
|
|
those partitions from the list.
|
|
|
|
Parameters used:
|
|
table Table object
|
|
db Database name
|
|
table_name Table name
|
|
*/
|
|
|
|
static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
char path[FN_REFLEN+1];
|
|
partition_info *part_info= lpt->table->part_info;
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
uint i= 0;
|
|
uint remove_count= 0;
|
|
int error;
|
|
DBUG_ENTER("mysql_drop_partitions");
|
|
|
|
build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
|
|
if ((error= lpt->table->file->drop_partitions(path)))
|
|
{
|
|
lpt->table->file->print_error(error, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
if (part_elem->part_state == PART_IS_DROPPED)
|
|
{
|
|
part_it.remove();
|
|
remove_count++;
|
|
}
|
|
} while (++i < part_info->no_parts);
|
|
part_info->no_parts-= remove_count;
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Insert log entry into list
|
|
SYNOPSIS
|
|
insert_part_info_log_entry_list()
|
|
log_entry
|
|
RETURN VALUES
|
|
NONE
|
|
*/
|
|
|
|
static void insert_part_info_log_entry_list(partition_info *part_info,
|
|
DDL_LOG_MEMORY_ENTRY *log_entry)
|
|
{
|
|
log_entry->next_active_log_entry= part_info->first_log_entry;
|
|
part_info->first_log_entry= log_entry;
|
|
}
|
|
|
|
|
|
/*
|
|
Release all log entries for this partition info struct
|
|
SYNOPSIS
|
|
release_part_info_log_entries()
|
|
first_log_entry First log entry in list to release
|
|
RETURN VALUES
|
|
NONE
|
|
*/
|
|
|
|
static void release_part_info_log_entries(DDL_LOG_MEMORY_ENTRY *log_entry)
|
|
{
|
|
DBUG_ENTER("release_part_info_log_entries");
|
|
|
|
while (log_entry)
|
|
{
|
|
release_ddl_log_memory_entry(log_entry);
|
|
log_entry= log_entry->next_active_log_entry;
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Log an delete/rename frm file
|
|
SYNOPSIS
|
|
write_log_replace_delete_frm()
|
|
lpt Struct for parameters
|
|
next_entry Next reference to use in log record
|
|
from_path Name to rename from
|
|
to_path Name to rename to
|
|
replace_flag TRUE if replace, else delete
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
Support routine that writes a replace or delete of an frm file into the
|
|
ddl log. It also inserts an entry that keeps track of used space into
|
|
the partition info object
|
|
*/
|
|
|
|
static bool write_log_replace_delete_frm(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
uint next_entry,
|
|
const char *from_path,
|
|
const char *to_path,
|
|
bool replace_flag)
|
|
{
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
DBUG_ENTER("write_log_replace_delete_frm");
|
|
|
|
if (replace_flag)
|
|
ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
|
|
else
|
|
ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
|
|
ddl_log_entry.next_entry= next_entry;
|
|
ddl_log_entry.handler_name= reg_ext;
|
|
ddl_log_entry.name= to_path;
|
|
if (replace_flag)
|
|
ddl_log_entry.from_name= from_path;
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
insert_part_info_log_entry_list(lpt->part_info, log_entry);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Log final partition changes in change partition
|
|
SYNOPSIS
|
|
write_log_changed_partitions()
|
|
lpt Struct containing parameters
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
This code is used to perform safe ADD PARTITION for HASH partitions
|
|
and COALESCE for HASH partitions and REORGANIZE for any type of
|
|
partitions.
|
|
We prepare entries for all partitions except the reorganised partitions
|
|
in REORGANIZE partition, those are handled by
|
|
write_log_dropped_partitions. For those partitions that are replaced
|
|
special care is needed to ensure that this is performed correctly and
|
|
this requires a two-phased approach with this log as a helper for this.
|
|
|
|
This code is closely intertwined with the code in rename_partitions in
|
|
the partition handler.
|
|
*/
|
|
|
|
static bool write_log_changed_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
uint *next_entry, const char *path)
|
|
{
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
partition_info *part_info= lpt->part_info;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
char tmp_path[FN_LEN];
|
|
char normal_path[FN_LEN];
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
uint temp_partitions= part_info->temp_partitions.elements;
|
|
uint no_elements= part_info->partitions.elements;
|
|
uint i= 0;
|
|
DBUG_ENTER("write_log_changed_partitions");
|
|
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
if (part_elem->part_state == PART_IS_CHANGED ||
|
|
(part_elem->part_state == PART_IS_ADDED && temp_partitions))
|
|
{
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
uint no_subparts= part_info->no_subparts;
|
|
uint j= 0;
|
|
do
|
|
{
|
|
partition_element *sub_elem= sub_it++;
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
ddl_log_entry.handler_name=
|
|
ha_resolve_storage_engine_name(sub_elem->engine_type);
|
|
create_subpartition_name(tmp_path, path,
|
|
part_elem->partition_name,
|
|
sub_elem->partition_name,
|
|
TEMP_PART_NAME);
|
|
create_subpartition_name(normal_path, path,
|
|
part_elem->partition_name,
|
|
sub_elem->partition_name,
|
|
NORMAL_PART_NAME);
|
|
ddl_log_entry.name= normal_path;
|
|
ddl_log_entry.from_name= tmp_path;
|
|
if (part_elem->part_state == PART_IS_CHANGED)
|
|
ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
|
|
else
|
|
ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
*next_entry= log_entry->entry_pos;
|
|
sub_elem->log_entry= log_entry;
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
|
} while (++j < no_subparts);
|
|
}
|
|
else
|
|
{
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
ddl_log_entry.handler_name=
|
|
ha_resolve_storage_engine_name(part_elem->engine_type);
|
|
create_partition_name(tmp_path, path,
|
|
part_elem->partition_name,
|
|
TEMP_PART_NAME, TRUE);
|
|
create_partition_name(normal_path, path,
|
|
part_elem->partition_name,
|
|
NORMAL_PART_NAME, TRUE);
|
|
ddl_log_entry.name= normal_path;
|
|
ddl_log_entry.from_name= tmp_path;
|
|
if (part_elem->part_state == PART_IS_CHANGED)
|
|
ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
|
|
else
|
|
ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
*next_entry= log_entry->entry_pos;
|
|
part_elem->log_entry= log_entry;
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
|
}
|
|
}
|
|
} while (++i < no_elements);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Log dropped partitions
|
|
SYNOPSIS
|
|
write_log_dropped_partitions()
|
|
lpt Struct containing parameters
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
*/
|
|
|
|
static bool write_log_dropped_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
uint *next_entry,
|
|
const char *path,
|
|
bool temp_list)
|
|
{
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
partition_info *part_info= lpt->part_info;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
char tmp_path[FN_LEN];
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
List_iterator<partition_element> temp_it(part_info->temp_partitions);
|
|
uint no_temp_partitions= part_info->temp_partitions.elements;
|
|
uint no_elements= part_info->partitions.elements;
|
|
uint i= 0;
|
|
DBUG_ENTER("write_log_dropped_partitions");
|
|
|
|
ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
|
|
if (temp_list)
|
|
no_elements= no_temp_partitions;
|
|
while (no_elements--)
|
|
{
|
|
partition_element *part_elem;
|
|
if (temp_list)
|
|
part_elem= temp_it++;
|
|
else
|
|
part_elem= part_it++;
|
|
if (part_elem->part_state == PART_TO_BE_DROPPED ||
|
|
part_elem->part_state == PART_TO_BE_ADDED ||
|
|
part_elem->part_state == PART_CHANGED)
|
|
{
|
|
uint name_variant;
|
|
if (part_elem->part_state == PART_CHANGED ||
|
|
(part_elem->part_state == PART_TO_BE_ADDED &&
|
|
no_temp_partitions))
|
|
name_variant= TEMP_PART_NAME;
|
|
else
|
|
name_variant= NORMAL_PART_NAME;
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
uint no_subparts= part_info->no_subparts;
|
|
uint j= 0;
|
|
do
|
|
{
|
|
partition_element *sub_elem= sub_it++;
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
ddl_log_entry.handler_name=
|
|
ha_resolve_storage_engine_name(sub_elem->engine_type);
|
|
create_subpartition_name(tmp_path, path,
|
|
part_elem->partition_name,
|
|
sub_elem->partition_name,
|
|
name_variant);
|
|
ddl_log_entry.name= tmp_path;
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
*next_entry= log_entry->entry_pos;
|
|
sub_elem->log_entry= log_entry;
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
|
} while (++j < no_subparts);
|
|
}
|
|
else
|
|
{
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
ddl_log_entry.handler_name=
|
|
ha_resolve_storage_engine_name(part_elem->engine_type);
|
|
create_partition_name(tmp_path, path,
|
|
part_elem->partition_name,
|
|
name_variant, TRUE);
|
|
ddl_log_entry.name= tmp_path;
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
*next_entry= log_entry->entry_pos;
|
|
part_elem->log_entry= log_entry;
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Set execute log entry in ddl log for this partitioned table
|
|
SYNOPSIS
|
|
set_part_info_exec_log_entry()
|
|
part_info Partition info object
|
|
exec_log_entry Log entry
|
|
RETURN VALUES
|
|
NONE
|
|
*/
|
|
|
|
static void set_part_info_exec_log_entry(partition_info *part_info,
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry)
|
|
{
|
|
part_info->exec_log_entry= exec_log_entry;
|
|
exec_log_entry->next_active_log_entry= NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
Write the log entry to ensure that the shadow frm file is removed at
|
|
crash.
|
|
SYNOPSIS
|
|
write_log_drop_shadow_frm()
|
|
lpt Struct containing parameters
|
|
install_frm Should we log action to install shadow frm or should
|
|
the action be to remove the shadow frm file.
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
Prepare an entry to the ddl log indicating a drop/install of the shadow frm
|
|
file and its corresponding handler file.
|
|
*/
|
|
|
|
static bool write_log_drop_shadow_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
partition_info *part_info= lpt->part_info;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
|
|
char shadow_path[FN_LEN];
|
|
DBUG_ENTER("write_log_drop_shadow_frm");
|
|
|
|
build_table_filename(shadow_path, sizeof(shadow_path), lpt->db,
|
|
lpt->table_name, "#", 0);
|
|
pthread_mutex_lock(&LOCK_gdl);
|
|
if (write_log_replace_delete_frm(lpt, 0UL, NULL,
|
|
(const char*)shadow_path, FALSE))
|
|
goto error;
|
|
log_entry= part_info->first_log_entry;
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
FALSE, &exec_log_entry))
|
|
goto error;
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
set_part_info_exec_log_entry(part_info, exec_log_entry);
|
|
DBUG_RETURN(FALSE);
|
|
|
|
error:
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
part_info->first_log_entry= NULL;
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Log renaming of shadow frm to real frm name and dropping of old frm
|
|
SYNOPSIS
|
|
write_log_rename_frm()
|
|
lpt Struct containing parameters
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
Prepare an entry to ensure that we complete the renaming of the frm
|
|
file if failure occurs in the middle of the rename process.
|
|
*/
|
|
|
|
static bool write_log_rename_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
partition_info *part_info= lpt->part_info;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
|
|
char path[FN_LEN];
|
|
char shadow_path[FN_LEN];
|
|
DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
|
|
DBUG_ENTER("write_log_rename_frm");
|
|
|
|
part_info->first_log_entry= NULL;
|
|
build_table_filename(path, sizeof(path), lpt->db,
|
|
lpt->table_name, "", 0);
|
|
build_table_filename(shadow_path, sizeof(shadow_path), lpt->db,
|
|
lpt->table_name, "#", 0);
|
|
pthread_mutex_lock(&LOCK_gdl);
|
|
if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
|
|
goto error;
|
|
log_entry= part_info->first_log_entry;
|
|
part_info->frm_log_entry= log_entry;
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
FALSE, &exec_log_entry))
|
|
goto error;
|
|
release_part_info_log_entries(old_first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
DBUG_RETURN(FALSE);
|
|
|
|
error:
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
part_info->first_log_entry= old_first_log_entry;
|
|
part_info->frm_log_entry= NULL;
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Write the log entries to ensure that the drop partition command is completed
|
|
even in the presence of a crash.
|
|
|
|
SYNOPSIS
|
|
write_log_drop_partition()
|
|
lpt Struct containing parameters
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
Prepare entries to the ddl log indicating all partitions to drop and to
|
|
install the shadow frm file and remove the old frm file.
|
|
*/
|
|
|
|
static bool write_log_drop_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
partition_info *part_info= lpt->part_info;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
|
|
char tmp_path[FN_LEN];
|
|
char path[FN_LEN];
|
|
uint next_entry= 0;
|
|
DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
|
|
DBUG_ENTER("write_log_drop_partition");
|
|
|
|
part_info->first_log_entry= NULL;
|
|
build_table_filename(path, sizeof(path), lpt->db,
|
|
lpt->table_name, "", 0);
|
|
build_table_filename(tmp_path, sizeof(tmp_path), lpt->db,
|
|
lpt->table_name, "#", 0);
|
|
pthread_mutex_lock(&LOCK_gdl);
|
|
if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
|
|
FALSE))
|
|
goto error;
|
|
if (write_log_replace_delete_frm(lpt, next_entry, (const char*)tmp_path,
|
|
(const char*)path, TRUE))
|
|
goto error;
|
|
log_entry= part_info->first_log_entry;
|
|
part_info->frm_log_entry= log_entry;
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
FALSE, &exec_log_entry))
|
|
goto error;
|
|
release_part_info_log_entries(old_first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
DBUG_RETURN(FALSE);
|
|
|
|
error:
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
part_info->first_log_entry= old_first_log_entry;
|
|
part_info->frm_log_entry= NULL;
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Write the log entries to ensure that the add partition command is not
|
|
executed at all if a crash before it has completed
|
|
|
|
SYNOPSIS
|
|
write_log_add_change_partition()
|
|
lpt Struct containing parameters
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
Prepare entries to the ddl log indicating all partitions to drop and to
|
|
remove the shadow frm file.
|
|
We always inject entries backwards in the list in the ddl log since we
|
|
don't know the entry position until we have written it.
|
|
*/
|
|
|
|
static bool write_log_add_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
partition_info *part_info= lpt->part_info;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
|
|
char tmp_path[FN_LEN];
|
|
char path[FN_LEN];
|
|
uint next_entry= 0;
|
|
DBUG_ENTER("write_log_add_change_partition");
|
|
|
|
build_table_filename(path, sizeof(path), lpt->db,
|
|
lpt->table_name, "", 0);
|
|
build_table_filename(tmp_path, sizeof(tmp_path), lpt->db,
|
|
lpt->table_name, "#", 0);
|
|
pthread_mutex_lock(&LOCK_gdl);
|
|
if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
|
|
FALSE))
|
|
goto error;
|
|
if (write_log_replace_delete_frm(lpt, next_entry, NULL, tmp_path,
|
|
FALSE))
|
|
goto error;
|
|
log_entry= part_info->first_log_entry;
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
FALSE, &exec_log_entry))
|
|
goto error;
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
set_part_info_exec_log_entry(part_info, exec_log_entry);
|
|
DBUG_RETURN(FALSE);
|
|
|
|
error:
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
part_info->first_log_entry= NULL;
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Write description of how to complete the operation after first phase of
|
|
change partitions.
|
|
|
|
SYNOPSIS
|
|
write_log_final_change_partition()
|
|
lpt Struct containing parameters
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
We will write log entries that specify to remove all partitions reorganised,
|
|
to rename others to reflect the new naming scheme and to install the shadow
|
|
frm file.
|
|
*/
|
|
|
|
static bool write_log_final_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
partition_info *part_info= lpt->part_info;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
|
|
char path[FN_LEN];
|
|
char shadow_path[FN_LEN];
|
|
DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
|
|
uint next_entry= 0;
|
|
DBUG_ENTER("write_log_final_change_partition");
|
|
|
|
part_info->first_log_entry= NULL;
|
|
build_table_filename(path, sizeof(path), lpt->db,
|
|
lpt->table_name, "", 0);
|
|
build_table_filename(shadow_path, sizeof(shadow_path), lpt->db,
|
|
lpt->table_name, "#", 0);
|
|
pthread_mutex_lock(&LOCK_gdl);
|
|
if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
|
|
lpt->alter_info->flags & ALTER_REORGANIZE_PARTITION))
|
|
goto error;
|
|
if (write_log_changed_partitions(lpt, &next_entry, (const char*)path))
|
|
goto error;
|
|
if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
|
|
goto error;
|
|
log_entry= part_info->first_log_entry;
|
|
part_info->frm_log_entry= log_entry;
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
FALSE, &exec_log_entry))
|
|
goto error;
|
|
release_part_info_log_entries(old_first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
DBUG_RETURN(FALSE);
|
|
|
|
error:
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
part_info->first_log_entry= old_first_log_entry;
|
|
part_info->frm_log_entry= NULL;
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Remove entry from ddl log and release resources for others to use
|
|
|
|
SYNOPSIS
|
|
write_log_completed()
|
|
lpt Struct containing parameters
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
*/
|
|
|
|
static void write_log_completed(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
bool dont_crash)
|
|
{
|
|
partition_info *part_info= lpt->part_info;
|
|
uint count_loop= 0;
|
|
bool not_success;
|
|
DDL_LOG_MEMORY_ENTRY *log_entry= part_info->exec_log_entry;
|
|
DBUG_ENTER("write_log_completed");
|
|
|
|
DBUG_ASSERT(log_entry);
|
|
pthread_mutex_lock(&LOCK_gdl);
|
|
if (write_execute_ddl_log_entry(0UL, TRUE, &log_entry))
|
|
{
|
|
/*
|
|
Failed to write, Bad...
|
|
We have completed the operation but have log records to REMOVE
|
|
stuff that shouldn't be removed. What clever things could one do
|
|
here? An error output was written to the error output by the
|
|
above method so we don't do anything here.
|
|
*/
|
|
;
|
|
}
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
release_part_info_log_entries(part_info->exec_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
part_info->exec_log_entry= NULL;
|
|
part_info->first_log_entry= NULL;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Release all log entries
|
|
SYNOPSIS
|
|
release_log_entries()
|
|
part_info Partition info struct
|
|
RETURN VALUES
|
|
NONE
|
|
*/
|
|
|
|
static void release_log_entries(partition_info *part_info)
|
|
{
|
|
pthread_mutex_lock(&LOCK_gdl);
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
release_part_info_log_entries(part_info->exec_log_entry);
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
|
part_info->first_log_entry= NULL;
|
|
part_info->exec_log_entry= NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
Get a lock on table name to avoid that anyone can open the table in
|
|
a critical part of the ALTER TABLE.
|
|
SYNOPSIS
|
|
get_name_lock()
|
|
lpt Struct carrying parameters
|
|
RETURN VALUES
|
|
FALSE Success
|
|
TRUE Failure
|
|
*/
|
|
|
|
static int get_name_lock(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
int error= 0;
|
|
DBUG_ENTER("get_name_lock");
|
|
|
|
bzero(&lpt->table_list, sizeof(lpt->table_list));
|
|
lpt->table_list.db= (char*)lpt->db;
|
|
lpt->table_list.table= lpt->table;
|
|
lpt->table_list.table_name= (char*)lpt->table_name;
|
|
pthread_mutex_lock(&LOCK_open);
|
|
error= lock_table_name(lpt->thd, &lpt->table_list, FALSE);
|
|
pthread_mutex_unlock(&LOCK_open);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
Unlock and close table before renaming and dropping partitions
|
|
SYNOPSIS
|
|
alter_close_tables()
|
|
lpt Struct carrying parameters
|
|
RETURN VALUES
|
|
0
|
|
*/
|
|
|
|
static int alter_close_tables(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
THD *thd= lpt->thd;
|
|
TABLE *table= lpt->table;
|
|
DBUG_ENTER("alter_close_tables");
|
|
/*
|
|
We need to also unlock tables and close all handlers.
|
|
We set lock to zero to ensure we don't do this twice
|
|
and we set db_stat to zero to ensure we don't close twice.
|
|
*/
|
|
mysql_unlock_tables(thd, thd->lock);
|
|
thd->lock= 0;
|
|
table->file->close();
|
|
table->db_stat= 0;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Release a lock name
|
|
SYNOPSIS
|
|
release_name_lock()
|
|
lpt
|
|
RETURN VALUES
|
|
0
|
|
*/
|
|
|
|
static int release_name_lock(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
{
|
|
DBUG_ENTER("release_name_lock");
|
|
pthread_mutex_lock(&LOCK_open);
|
|
unlock_table_name(lpt->thd, &lpt->table_list);
|
|
pthread_mutex_unlock(&LOCK_open);
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Handle errors for ALTER TABLE for partitioning
|
|
SYNOPSIS
|
|
handle_alter_part_error()
|
|
lpt Struct carrying parameters
|
|
not_completed Was request in complete phase when error occurred
|
|
RETURN VALUES
|
|
NONE
|
|
*/
|
|
|
|
void handle_alter_part_error(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
bool not_completed,
|
|
bool drop_partition,
|
|
bool frm_install)
|
|
{
|
|
partition_info *part_info= lpt->part_info;
|
|
DBUG_ENTER("handle_alter_part_error");
|
|
|
|
if (!part_info->first_log_entry &&
|
|
execute_ddl_log_entry(current_thd,
|
|
part_info->first_log_entry->entry_pos))
|
|
{
|
|
/*
|
|
We couldn't recover from error, most likely manual interaction
|
|
is required.
|
|
*/
|
|
write_log_completed(lpt, FALSE);
|
|
release_log_entries(part_info);
|
|
if (not_completed)
|
|
{
|
|
if (drop_partition)
|
|
{
|
|
/* Table is still ok, but we left a shadow frm file behind. */
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
|
"%s %s",
|
|
"Operation was unsuccessful, table is still intact,",
|
|
"but it is possible that a shadow frm file was left behind");
|
|
}
|
|
else
|
|
{
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
|
"%s %s %s %s",
|
|
"Operation was unsuccessful, table is still intact,",
|
|
"but it is possible that a shadow frm file was left behind.",
|
|
"It is also possible that temporary partitions are left behind,",
|
|
"these could be empty or more or less filled with records");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (frm_install)
|
|
{
|
|
/*
|
|
Failed during install of shadow frm file, table isn't intact
|
|
and dropped partitions are still there
|
|
*/
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
|
"%s %s %s",
|
|
"Failed during alter of partitions, table is no longer intact.",
|
|
"The frm file is in an unknown state, and a backup",
|
|
"is required.");
|
|
}
|
|
else if (drop_partition)
|
|
{
|
|
/*
|
|
Table is ok, we have switched to new table but left dropped
|
|
partitions still in their places. We remove the log records and
|
|
ask the user to perform the action manually. We remove the log
|
|
records and ask the user to perform the action manually.
|
|
*/
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
|
"%s %s",
|
|
"Failed during drop of partitions, table is intact.",
|
|
"Manual drop of remaining partitions is required");
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
We failed during renaming of partitions. The table is most
|
|
certainly in a very bad state so we give user warning and disable
|
|
the table by writing an ancient frm version into it.
|
|
*/
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
|
"%s %s %s",
|
|
"Failed during renaming of partitions. We are now in a position",
|
|
"where table is not reusable",
|
|
"Table is disabled by writing ancient frm file version into it");
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
release_log_entries(part_info);
|
|
if (not_completed)
|
|
{
|
|
/*
|
|
We hit an error before things were completed but managed
|
|
to recover from the error. An error occurred and we have
|
|
restored things to original so no need for further action.
|
|
*/
|
|
;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
We hit an error after we had completed most of the operation
|
|
and were successful in a second attempt so the operation
|
|
actually is successful now. We need to issue a warning that
|
|
even though we reported an error the operation was successfully
|
|
completed.
|
|
*/
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,"%s %s",
|
|
"Operation was successfully completed by failure handling,",
|
|
"after failure of normal operation");
|
|
}
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Actually perform the change requested by ALTER TABLE of partitions
|
|
previously prepared.
|
|
|
|
SYNOPSIS
|
|
fast_alter_partition_table()
|
|
thd Thread object
|
|
table Table object
|
|
alter_info ALTER TABLE info
|
|
create_info Create info for CREATE TABLE
|
|
table_list List of the table involved
|
|
create_list The fields in the resulting table
|
|
key_list The keys in the resulting table
|
|
db Database name of new table
|
|
table_name Table name of new table
|
|
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
Perform all ALTER TABLE operations for partitioned tables that can be
|
|
performed fast without a full copy of the original table.
|
|
*/
|
|
|
|
uint fast_alter_partition_table(THD *thd, TABLE *table,
|
|
ALTER_INFO *alter_info,
|
|
HA_CREATE_INFO *create_info,
|
|
TABLE_LIST *table_list,
|
|
List<create_field> *create_list,
|
|
List<Key> *key_list, char *db,
|
|
const char *table_name,
|
|
uint fast_alter_partition)
|
|
{
|
|
/* Set-up struct used to write frm files */
|
|
ulonglong copied= 0;
|
|
ulonglong deleted= 0;
|
|
partition_info *part_info= table->part_info;
|
|
ALTER_PARTITION_PARAM_TYPE lpt_obj;
|
|
ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj;
|
|
bool written_bin_log= TRUE;
|
|
bool not_completed= TRUE;
|
|
bool frm_install= FALSE;
|
|
DBUG_ENTER("fast_alter_partition_table");
|
|
|
|
lpt->thd= thd;
|
|
lpt->part_info= part_info;
|
|
lpt->alter_info= alter_info;
|
|
lpt->create_info= create_info;
|
|
lpt->create_list= create_list;
|
|
lpt->key_list= key_list;
|
|
lpt->db_options= create_info->table_options;
|
|
if (create_info->row_type == ROW_TYPE_DYNAMIC)
|
|
lpt->db_options|= HA_OPTION_PACK_RECORD;
|
|
lpt->table= table;
|
|
lpt->key_info_buffer= 0;
|
|
lpt->key_count= 0;
|
|
lpt->db= db;
|
|
lpt->table_name= table_name;
|
|
lpt->copied= 0;
|
|
lpt->deleted= 0;
|
|
lpt->pack_frm_data= NULL;
|
|
lpt->pack_frm_len= 0;
|
|
thd->work_part_info= part_info;
|
|
|
|
if (alter_info->flags & ALTER_OPTIMIZE_PARTITION ||
|
|
alter_info->flags & ALTER_ANALYZE_PARTITION ||
|
|
alter_info->flags & ALTER_CHECK_PARTITION ||
|
|
alter_info->flags & ALTER_REPAIR_PARTITION)
|
|
{
|
|
/*
|
|
In this case the user has specified that he wants a set of partitions
|
|
to be optimised and the partition engine can handle optimising
|
|
partitions natively without requiring a full rebuild of the
|
|
partitions.
|
|
|
|
In this case it is enough to call optimise_partitions, there is no
|
|
need to change frm files or anything else.
|
|
*/
|
|
int error;
|
|
written_bin_log= FALSE;
|
|
if (((alter_info->flags & ALTER_OPTIMIZE_PARTITION) &&
|
|
(error= table->file->optimize_partitions(thd))) ||
|
|
((alter_info->flags & ALTER_ANALYZE_PARTITION) &&
|
|
(error= table->file->analyze_partitions(thd))) ||
|
|
((alter_info->flags & ALTER_CHECK_PARTITION) &&
|
|
(error= table->file->check_partitions(thd))) ||
|
|
((alter_info->flags & ALTER_REPAIR_PARTITION) &&
|
|
(error= table->file->repair_partitions(thd))))
|
|
{
|
|
table->file->print_error(error, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else if (fast_alter_partition & HA_PARTITION_ONE_PHASE)
|
|
{
|
|
/*
|
|
In the case where the engine supports one phase online partition
|
|
changes it is not necessary to have any exclusive locks. The
|
|
correctness is upheld instead by transactions being aborted if they
|
|
access the table after its partition definition has changed (if they
|
|
are still using the old partition definition).
|
|
|
|
The handler is in this case responsible to ensure that all users
|
|
start using the new frm file after it has changed. To implement
|
|
one phase it is necessary for the handler to have the master copy
|
|
of the frm file and use discovery mechanisms to renew it. Thus
|
|
write frm will write the frm, pack the new frm and finally
|
|
the frm is deleted and the discovery mechanisms will either restore
|
|
back to the old or installing the new after the change is activated.
|
|
|
|
Thus all open tables will be discovered that they are old, if not
|
|
earlier as soon as they try an operation using the old table. One
|
|
should ensure that this is checked already when opening a table,
|
|
even if it is found in the cache of open tables.
|
|
|
|
change_partitions will perform all operations and it is the duty of
|
|
the handler to ensure that the frm files in the system gets updated
|
|
in synch with the changes made and if an error occurs that a proper
|
|
error handling is done.
|
|
|
|
If the MySQL Server crashes at this moment but the handler succeeds
|
|
in performing the change then the binlog is not written for the
|
|
change. There is no way to solve this as long as the binlog is not
|
|
transactional and even then it is hard to solve it completely.
|
|
|
|
The first approach here was to downgrade locks. Now a different approach
|
|
is decided upon. The idea is that the handler will have access to the
|
|
ALTER_INFO when store_lock arrives with TL_WRITE_ALLOW_READ. So if the
|
|
handler knows that this functionality can be handled with a lower lock
|
|
level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately.
|
|
Thus the need to downgrade the lock disappears.
|
|
1) Write the new frm, pack it and then delete it
|
|
2) Perform the change within the handler
|
|
*/
|
|
if (mysql_write_frm(lpt, WFRM_WRITE_SHADOW | WFRM_PACK_FRM) ||
|
|
mysql_change_partitions(lpt))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else if (alter_info->flags == ALTER_DROP_PARTITION)
|
|
{
|
|
/*
|
|
Now after all checks and setting state on dropped partitions we can
|
|
start the actual dropping of the partitions.
|
|
|
|
Drop partition is actually two things happening. The first is that
|
|
a lot of records are deleted. The second is that the behaviour of
|
|
subsequent updates and writes and deletes will change. The delete
|
|
part can be handled without any particular high lock level by
|
|
transactional engines whereas non-transactional engines need to
|
|
ensure that this change is done with an exclusive lock on the table.
|
|
The second part, the change of partitioning does however require
|
|
an exclusive lock to install the new partitioning as one atomic
|
|
operation. If this is not the case, it is possible for two
|
|
transactions to see the change in a different order than their
|
|
serialisation order. Thus we need an exclusive lock for both
|
|
transactional and non-transactional engines.
|
|
|
|
For LIST partitions it could be possible to avoid the exclusive lock
|
|
(and for RANGE partitions if they didn't rearrange range definitions
|
|
after a DROP PARTITION) if one ensured that failed accesses to the
|
|
dropped partitions was aborted for sure (thus only possible for
|
|
transactional engines).
|
|
|
|
0) Write an entry that removes the shadow frm file if crash occurs
|
|
1) Write the new frm file as a shadow frm
|
|
2) Write the ddl log to ensure that the operation is completed
|
|
even in the presence of a MySQL Server crash
|
|
3) Lock the table in TL_WRITE_ONLY to ensure all other accesses to
|
|
the table have completed. This ensures that other threads can not
|
|
execute on the table in parallel.
|
|
4) Get a name lock on the table. This ensures that we can release all
|
|
locks on the table and since no one can open the table, there can
|
|
be no new threads accessing the table. They will be hanging on the
|
|
name lock.
|
|
5) Close all tables that have already been opened but didn't stumble on
|
|
the abort locked previously. This is done as part of the
|
|
get_name_lock call.
|
|
6) We are now ready to release all locks we got in this thread.
|
|
7) Write the bin log
|
|
Unfortunately the writing of the binlog is not synchronised with
|
|
other logging activities. So no matter in which order the binlog
|
|
is written compared to other activities there will always be cases
|
|
where crashes make strange things occur. In this placement it can
|
|
happen that the ALTER TABLE DROP PARTITION gets performed in the
|
|
master but not in the slaves if we have a crash, after writing the
|
|
ddl log but before writing the binlog. A solution to this would
|
|
require writing the statement first in the ddl log and then
|
|
when recovering from the crash read the binlog and insert it into
|
|
the binlog if not written already.
|
|
8) Install the previously written shadow frm file
|
|
9) Prepare handlers for drop of partitions
|
|
10) Drop the partitions
|
|
11) Remove entries from ddl log
|
|
12) Release name lock so that all other threads can access the table
|
|
again.
|
|
13) Complete query
|
|
|
|
We insert Error injections at all places where it could be interesting
|
|
to test if recovery is properly done.
|
|
*/
|
|
if (write_log_drop_shadow_frm(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_1") ||
|
|
mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_2") ||
|
|
write_log_drop_partition(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_3") ||
|
|
(not_completed= FALSE) ||
|
|
abort_and_upgrade_lock(lpt) || /* Always returns 0 */
|
|
ERROR_INJECT_CRASH("crash_drop_partition_4") ||
|
|
get_name_lock(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_5") ||
|
|
alter_close_tables(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_6") ||
|
|
((!thd->lex->no_write_to_binlog) &&
|
|
(write_bin_log(thd, FALSE,
|
|
thd->query, thd->query_length), FALSE)) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_7") ||
|
|
((frm_install= TRUE), FALSE) ||
|
|
mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
|
|
((frm_install= FALSE), FALSE) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_8") ||
|
|
mysql_drop_partitions(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_9") ||
|
|
(write_log_completed(lpt, FALSE), FALSE) ||
|
|
ERROR_INJECT_CRASH("crash_drop_partition_10") ||
|
|
(release_name_lock(lpt), FALSE))
|
|
{
|
|
handle_alter_part_error(lpt, not_completed, TRUE, frm_install);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else if ((alter_info->flags & ALTER_ADD_PARTITION) &&
|
|
(part_info->part_type == RANGE_PARTITION ||
|
|
part_info->part_type == LIST_PARTITION))
|
|
{
|
|
/*
|
|
ADD RANGE/LIST PARTITIONS
|
|
In this case there are no tuples removed and no tuples are added.
|
|
Thus the operation is merely adding a new partition. Thus it is
|
|
necessary to perform the change as an atomic operation. Otherwise
|
|
someone reading without seeing the new partition could potentially
|
|
miss updates made by a transaction serialised before it that are
|
|
inserted into the new partition.
|
|
|
|
0) Write an entry that removes the shadow frm file if crash occurs
|
|
1) Write the new frm file as a shadow frm file
|
|
2) Log the changes to happen in ddl log
|
|
2) Add the new partitions
|
|
3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
|
|
are still using the old partitioning scheme. Wait until all
|
|
ongoing users have completed before progressing.
|
|
4) Get a name lock on the table. This ensures that we can release all
|
|
locks on the table and since no one can open the table, there can
|
|
be no new threads accessing the table. They will be hanging on the
|
|
name lock.
|
|
5) Close all tables that have already been opened but didn't stumble on
|
|
the abort locked previously. This is done as part of the
|
|
get_name_lock call.
|
|
6) Close all table handlers and unlock all handlers but retain name lock
|
|
7) Write binlog
|
|
8) Now the change is completed except for the installation of the
|
|
new frm file. We thus write an action in the log to change to
|
|
the shadow frm file
|
|
9) Install the new frm file of the table where the partitions are
|
|
added to the table.
|
|
10)Wait until all accesses using the old frm file has completed
|
|
11)Remove entries from ddl log
|
|
12)Release name lock
|
|
13)Complete query
|
|
*/
|
|
if (write_log_add_change_partition(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_1") ||
|
|
mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_2") ||
|
|
mysql_change_partitions(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_3") ||
|
|
abort_and_upgrade_lock(lpt) || /* Always returns 0 */
|
|
ERROR_INJECT_CRASH("crash_add_partition_3") ||
|
|
get_name_lock(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_4") ||
|
|
alter_close_tables(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_5") ||
|
|
((!thd->lex->no_write_to_binlog) &&
|
|
(write_bin_log(thd, FALSE,
|
|
thd->query, thd->query_length), FALSE)) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_6") ||
|
|
write_log_rename_frm(lpt) ||
|
|
(not_completed= FALSE) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_7") ||
|
|
((frm_install= TRUE), FALSE) ||
|
|
mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_8") ||
|
|
(write_log_completed(lpt, FALSE), FALSE) ||
|
|
ERROR_INJECT_CRASH("crash_add_partition_9") ||
|
|
(release_name_lock(lpt), FALSE))
|
|
{
|
|
handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
ADD HASH PARTITION/
|
|
COALESCE PARTITION/
|
|
REBUILD PARTITION/
|
|
REORGANIZE PARTITION
|
|
|
|
In this case all records are still around after the change although
|
|
possibly organised into new partitions, thus by ensuring that all
|
|
updates go to both the old and the new partitioning scheme we can
|
|
actually perform this operation lock-free. The only exception to
|
|
this is when REORGANIZE PARTITION adds/drops ranges. In this case
|
|
there needs to be an exclusive lock during the time when the range
|
|
changes occur.
|
|
This is only possible if the handler can ensure double-write for a
|
|
period. The double write will ensure that it doesn't matter where the
|
|
data is read from since both places are updated for writes. If such
|
|
double writing is not performed then it is necessary to perform the
|
|
change with the usual exclusive lock. With double writes it is even
|
|
possible to perform writes in parallel with the reorganisation of
|
|
partitions.
|
|
|
|
Without double write procedure we get the following procedure.
|
|
The only difference with using double write is that we can downgrade
|
|
the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only
|
|
double writes from old to new. If we had double writing in both
|
|
directions we could perform the change completely without exclusive
|
|
lock for HASH partitions.
|
|
Handlers that perform double writing during the copy phase can actually
|
|
use a lower lock level. This can be handled inside store_lock in the
|
|
respective handler.
|
|
|
|
0) Write an entry that removes the shadow frm file if crash occurs
|
|
1) Write the shadow frm file of new partitioning
|
|
2) Log such that temporary partitions added in change phase are
|
|
removed in a crash situation
|
|
3) Add the new partitions
|
|
Copy from the reorganised partitions to the new partitions
|
|
4) Log that operation is completed and log all complete actions
|
|
needed to complete operation from here
|
|
5) Lock all partitions in TL_WRITE_ONLY to ensure that no users
|
|
are still using the old partitioning scheme. Wait until all
|
|
ongoing users have completed before progressing.
|
|
6) Get a name lock of the table
|
|
7) Close all tables opened but not yet locked, after this call we are
|
|
certain that no other thread is in the lock wait queue or has
|
|
opened the table. The name lock will ensure that they are blocked
|
|
on the open call. This is achieved also by get_name_lock call.
|
|
8) Close all partitions opened by this thread, but retain name lock.
|
|
9) Write bin log
|
|
10) Prepare handlers for rename and delete of partitions
|
|
11) Rename and drop the reorged partitions such that they are no
|
|
longer used and rename those added to their real new names.
|
|
12) Install the shadow frm file
|
|
13) Release the name lock to enable other threads to start using the
|
|
table again.
|
|
14) Complete query
|
|
*/
|
|
if (write_log_add_change_partition(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_1") ||
|
|
mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_2") ||
|
|
mysql_change_partitions(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_3") ||
|
|
write_log_final_change_partition(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_4") ||
|
|
(not_completed= FALSE) ||
|
|
abort_and_upgrade_lock(lpt) || /* Always returns 0 */
|
|
ERROR_INJECT_CRASH("crash_change_partition_5") ||
|
|
get_name_lock(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_6") ||
|
|
alter_close_tables(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_7") ||
|
|
((!thd->lex->no_write_to_binlog) &&
|
|
(write_bin_log(thd, FALSE,
|
|
thd->query, thd->query_length), FALSE)) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_8") ||
|
|
mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_9") ||
|
|
mysql_drop_partitions(lpt) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_10") ||
|
|
mysql_rename_partitions(lpt) ||
|
|
((frm_install= TRUE), FALSE) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_11") ||
|
|
(write_log_completed(lpt, FALSE), FALSE) ||
|
|
ERROR_INJECT_CRASH("crash_change_partition_12") ||
|
|
(release_name_lock(lpt), FALSE))
|
|
{
|
|
handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
/*
|
|
A final step is to write the query to the binlog and send ok to the
|
|
user
|
|
*/
|
|
DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted,
|
|
table, table_list, FALSE, lpt,
|
|
written_bin_log));
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
Prepare for calling val_int on partition function by setting fields to
|
|
point to the record where the values of the PF-fields are stored.
|
|
|
|
SYNOPSIS
|
|
set_field_ptr()
|
|
ptr Array of fields to change ptr
|
|
new_buf New record pointer
|
|
old_buf Old record pointer
|
|
|
|
DESCRIPTION
|
|
Set ptr in field objects of field array to refer to new_buf record
|
|
instead of previously old_buf. Used before calling val_int and after
|
|
it is used to restore pointers to table->record[0].
|
|
This routine is placed outside of partition code since it can be useful
|
|
also for other programs.
|
|
*/
|
|
|
|
void set_field_ptr(Field **ptr, const byte *new_buf,
|
|
const byte *old_buf)
|
|
{
|
|
my_ptrdiff_t diff= (new_buf - old_buf);
|
|
DBUG_ENTER("set_field_ptr");
|
|
|
|
do
|
|
{
|
|
(*ptr)->move_field_offset(diff);
|
|
} while (*(++ptr));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Prepare for calling val_int on partition function by setting fields to
|
|
point to the record where the values of the PF-fields are stored.
|
|
This variant works on a key_part reference.
|
|
It is not required that all fields are NOT NULL fields.
|
|
|
|
SYNOPSIS
|
|
set_key_field_ptr()
|
|
key_info key info with a set of fields to change ptr
|
|
new_buf New record pointer
|
|
old_buf Old record pointer
|
|
|
|
DESCRIPTION
|
|
Set ptr in field objects of field array to refer to new_buf record
|
|
instead of previously old_buf. Used before calling val_int and after
|
|
it is used to restore pointers to table->record[0].
|
|
This routine is placed outside of partition code since it can be useful
|
|
also for other programs.
|
|
*/
|
|
|
|
void set_key_field_ptr(KEY *key_info, const byte *new_buf,
|
|
const byte *old_buf)
|
|
{
|
|
KEY_PART_INFO *key_part= key_info->key_part;
|
|
uint key_parts= key_info->key_parts;
|
|
uint i= 0;
|
|
my_ptrdiff_t diff= (new_buf - old_buf);
|
|
DBUG_ENTER("set_key_field_ptr");
|
|
|
|
do
|
|
{
|
|
key_part->field->move_field_offset(diff);
|
|
key_part++;
|
|
} while (++i < key_parts);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
SYNOPSIS
|
|
mem_alloc_error()
|
|
size Size of memory attempted to allocate
|
|
None
|
|
|
|
RETURN VALUES
|
|
None
|
|
|
|
DESCRIPTION
|
|
A routine to use for all the many places in the code where memory
|
|
allocation error can happen, a tremendous amount of them, needs
|
|
simple routine that signals this error.
|
|
*/
|
|
|
|
void mem_alloc_error(size_t size)
|
|
{
|
|
my_error(ER_OUTOFMEMORY, MYF(0), size);
|
|
}
|
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
|
/*
|
|
Return comma-separated list of used partitions in the provided given string
|
|
|
|
SYNOPSIS
|
|
make_used_partitions_str()
|
|
part_info IN Partitioning info
|
|
parts_str OUT The string to fill
|
|
|
|
DESCRIPTION
|
|
Generate a list of used partitions (from bits in part_info->used_partitions
|
|
bitmap), asd store it into the provided String object.
|
|
|
|
NOTE
|
|
The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
|
|
*/
|
|
|
|
void make_used_partitions_str(partition_info *part_info, String *parts_str)
|
|
{
|
|
parts_str->length(0);
|
|
partition_element *pe;
|
|
uint partition_id= 0;
|
|
List_iterator<partition_element> it(part_info->partitions);
|
|
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
partition_element *head_pe;
|
|
while ((head_pe= it++))
|
|
{
|
|
List_iterator<partition_element> it2(head_pe->subpartitions);
|
|
while ((pe= it2++))
|
|
{
|
|
if (bitmap_is_set(&part_info->used_partitions, partition_id))
|
|
{
|
|
if (parts_str->length())
|
|
parts_str->append(',');
|
|
parts_str->append(head_pe->partition_name,
|
|
strlen(head_pe->partition_name),
|
|
system_charset_info);
|
|
parts_str->append('_');
|
|
parts_str->append(pe->partition_name,
|
|
strlen(pe->partition_name),
|
|
system_charset_info);
|
|
}
|
|
partition_id++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while ((pe= it++))
|
|
{
|
|
if (bitmap_is_set(&part_info->used_partitions, partition_id))
|
|
{
|
|
if (parts_str->length())
|
|
parts_str->append(',');
|
|
parts_str->append(pe->partition_name, strlen(pe->partition_name),
|
|
system_charset_info);
|
|
}
|
|
partition_id++;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Partition interval analysis support
|
|
***************************************************************************/
|
|
|
|
/*
|
|
Setup partition_info::* members related to partitioning range analysis
|
|
|
|
SYNOPSIS
|
|
set_up_partition_func_pointers()
|
|
part_info Partitioning info structure
|
|
|
|
DESCRIPTION
|
|
Assuming that passed partition_info structure already has correct values
|
|
for members that specify [sub]partitioning type, table fields, and
|
|
functions, set up partition_info::* members that are related to
|
|
Partitioning Interval Analysis (see get_partitions_in_range_iter for its
|
|
definition)
|
|
|
|
IMPLEMENTATION
|
|
There are two available interval analyzer functions:
|
|
(1) get_part_iter_for_interval_via_mapping
|
|
(2) get_part_iter_for_interval_via_walking
|
|
|
|
They both have limited applicability:
|
|
(1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
|
|
func is a monotonic function.
|
|
|
|
(2) is applicable for
|
|
"[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
|
|
|
|
If both are applicable, (1) is preferred over (2).
|
|
|
|
This function sets part_info::get_part_iter_for_interval according to
|
|
this criteria, and also sets some auxilary fields that the function
|
|
uses.
|
|
*/
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
|
static void set_up_range_analysis_info(partition_info *part_info)
|
|
{
|
|
enum_monotonicity_info minfo;
|
|
|
|
/* Set the catch-all default */
|
|
part_info->get_part_iter_for_interval= NULL;
|
|
part_info->get_subpart_iter_for_interval= NULL;
|
|
|
|
/*
|
|
Check if get_part_iter_for_interval_via_mapping() can be used for
|
|
partitioning
|
|
*/
|
|
switch (part_info->part_type) {
|
|
case RANGE_PARTITION:
|
|
case LIST_PARTITION:
|
|
minfo= part_info->part_expr->get_monotonicity_info();
|
|
if (minfo != NON_MONOTONIC)
|
|
{
|
|
part_info->range_analysis_include_bounds=
|
|
test(minfo == MONOTONIC_INCREASING);
|
|
part_info->get_part_iter_for_interval=
|
|
get_part_iter_for_interval_via_mapping;
|
|
goto setup_subparts;
|
|
}
|
|
default:
|
|
;
|
|
}
|
|
|
|
/*
|
|
Check if get_part_iter_for_interval_via_walking() can be used for
|
|
partitioning
|
|
*/
|
|
if (part_info->no_part_fields == 1)
|
|
{
|
|
Field *field= part_info->part_field_array[0];
|
|
switch (field->type()) {
|
|
case MYSQL_TYPE_TINY:
|
|
case MYSQL_TYPE_SHORT:
|
|
case MYSQL_TYPE_INT24:
|
|
case MYSQL_TYPE_LONG:
|
|
case MYSQL_TYPE_LONGLONG:
|
|
part_info->get_part_iter_for_interval=
|
|
get_part_iter_for_interval_via_walking;
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
|
|
setup_subparts:
|
|
/*
|
|
Check if get_part_iter_for_interval_via_walking() can be used for
|
|
subpartitioning
|
|
*/
|
|
if (part_info->no_subpart_fields == 1)
|
|
{
|
|
Field *field= part_info->subpart_field_array[0];
|
|
switch (field->type()) {
|
|
case MYSQL_TYPE_TINY:
|
|
case MYSQL_TYPE_SHORT:
|
|
case MYSQL_TYPE_LONG:
|
|
case MYSQL_TYPE_LONGLONG:
|
|
part_info->get_subpart_iter_for_interval=
|
|
get_part_iter_for_interval_via_walking;
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
|
bool include_endpoint);
|
|
|
|
/*
|
|
Partitioning Interval Analysis: Initialize the iterator for "mapping" case
|
|
|
|
SYNOPSIS
|
|
get_part_iter_for_interval_via_mapping()
|
|
part_info Partition info
|
|
is_subpart TRUE - act for subpartitioning
|
|
FALSE - act for partitioning
|
|
min_value minimum field value, in opt_range key format.
|
|
max_value minimum field value, in opt_range key format.
|
|
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
|
NO_MAX_RANGE.
|
|
part_iter Iterator structure to be initialized
|
|
|
|
DESCRIPTION
|
|
Initialize partition set iterator to walk over the interval in
|
|
ordered-array-of-partitions (for RANGE partitioning) or
|
|
ordered-array-of-list-constants (for LIST partitioning) space.
|
|
|
|
IMPLEMENTATION
|
|
This function is used when partitioning is done by
|
|
<RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
|
|
t.field space into a sub-array of partition_info::range_int_array or
|
|
partition_info::list_array (see get_partition_id_range_for_endpoint,
|
|
get_list_array_idx_for_endpoint for details).
|
|
|
|
The function performs this interval mapping, and sets the iterator to
|
|
traverse the sub-array and return appropriate partitions.
|
|
|
|
RETURN
|
|
0 - No matching partitions (iterator not initialized)
|
|
1 - Ok, iterator intialized for traversal of matching partitions.
|
|
-1 - All partitions would match (iterator not initialized)
|
|
*/
|
|
|
|
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
|
bool is_subpart,
|
|
char *min_value, char *max_value,
|
|
uint flags,
|
|
PARTITION_ITERATOR *part_iter)
|
|
{
|
|
DBUG_ASSERT(!is_subpart);
|
|
Field *field= part_info->part_field_array[0];
|
|
uint32 max_endpoint_val;
|
|
get_endpoint_func get_endpoint;
|
|
uint field_len= field->pack_length_in_rec();
|
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
{
|
|
get_endpoint= get_partition_id_range_for_endpoint;
|
|
max_endpoint_val= part_info->no_parts;
|
|
part_iter->get_next= get_next_partition_id_range;
|
|
}
|
|
else if (part_info->part_type == LIST_PARTITION)
|
|
{
|
|
get_endpoint= get_list_array_idx_for_endpoint;
|
|
max_endpoint_val= part_info->no_list_values;
|
|
part_iter->get_next= get_next_partition_id_list;
|
|
part_iter->part_info= part_info;
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE;
|
|
if (max_endpoint_val == 0)
|
|
{
|
|
/*
|
|
We handle this special case without optimisations since it is
|
|
of little practical value but causes a great number of complex
|
|
checks later in the code.
|
|
*/
|
|
part_iter->part_nums.start= part_iter->part_nums.end= 0;
|
|
part_iter->part_nums.cur= 0;
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
DBUG_ASSERT(0);
|
|
|
|
/*
|
|
Find minimum: Do special handling if the interval has left bound in form
|
|
" NULL <= X ":
|
|
*/
|
|
if (field->real_maybe_null() && part_info->has_null_value &&
|
|
!(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value)
|
|
{
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
|
|
part_iter->part_nums.start= part_iter->part_nums.cur= 0;
|
|
if (*max_value && !(flags & NO_MAX_RANGE))
|
|
{
|
|
/* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */
|
|
part_iter->part_nums.end= 0;
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (flags & NO_MIN_RANGE)
|
|
part_iter->part_nums.start= part_iter->part_nums.cur= 0;
|
|
else
|
|
{
|
|
/*
|
|
Store the interval edge in the record buffer, and call the
|
|
function that maps the edge in table-field space to an edge
|
|
in ordered-set-of-partitions (for RANGE partitioning) or
|
|
index-in-ordered-array-of-list-constants (for LIST) space.
|
|
*/
|
|
store_key_image_to_rec(field, min_value, field_len);
|
|
bool include_endp= part_info->range_analysis_include_bounds ||
|
|
!test(flags & NEAR_MIN);
|
|
part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp);
|
|
part_iter->part_nums.cur= part_iter->part_nums.start;
|
|
if (part_iter->part_nums.start == max_endpoint_val)
|
|
return 0; /* No partitions */
|
|
}
|
|
}
|
|
|
|
/* Find maximum, do the same as above but for right interval bound */
|
|
if (flags & NO_MAX_RANGE)
|
|
part_iter->part_nums.end= max_endpoint_val;
|
|
else
|
|
{
|
|
store_key_image_to_rec(field, max_value, field_len);
|
|
bool include_endp= part_info->range_analysis_include_bounds ||
|
|
!test(flags & NEAR_MAX);
|
|
part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp);
|
|
if (part_iter->part_nums.start == part_iter->part_nums.end &&
|
|
!part_iter->ret_null_part)
|
|
return 0; /* No partitions */
|
|
}
|
|
return 1; /* Ok, iterator initialized */
|
|
}
|
|
|
|
|
|
/* See get_part_iter_for_interval_via_walking for definition of what this is */
|
|
#define MAX_RANGE_TO_WALK 10
|
|
|
|
|
|
/*
|
|
Partitioning Interval Analysis: Initialize iterator to walk field interval
|
|
|
|
SYNOPSIS
|
|
get_part_iter_for_interval_via_walking()
|
|
part_info Partition info
|
|
is_subpart TRUE - act for subpartitioning
|
|
FALSE - act for partitioning
|
|
min_value minimum field value, in opt_range key format.
|
|
max_value minimum field value, in opt_range key format.
|
|
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
|
NO_MAX_RANGE.
|
|
part_iter Iterator structure to be initialized
|
|
|
|
DESCRIPTION
|
|
Initialize partition set iterator to walk over interval in integer field
|
|
space. That is, for "const1 <=? t.field <=? const2" interval, initialize
|
|
the iterator to return a set of [sub]partitions obtained with the
|
|
following procedure:
|
|
get partition id for t.field = const1, return it
|
|
get partition id for t.field = const1+1, return it
|
|
... t.field = const1+2, ...
|
|
... ... ...
|
|
... t.field = const2 ...
|
|
|
|
IMPLEMENTATION
|
|
See get_partitions_in_range_iter for general description of interval
|
|
analysis. We support walking over the following intervals:
|
|
"t.field IS NULL"
|
|
"c1 <=? t.field <=? c2", where c1 and c2 are finite.
|
|
Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
|
|
that is more tricky and I don't have time to do it right now.
|
|
|
|
Additionally we have these requirements:
|
|
* number of values in the interval must be less then number of
|
|
[sub]partitions, and
|
|
* Number of values in the interval must be less then MAX_RANGE_TO_WALK.
|
|
|
|
The rationale behind these requirements is that if they are not met
|
|
we're likely to hit most of the partitions and traversing the interval
|
|
will only add overhead. So it's better return "all partitions used" in
|
|
that case.
|
|
|
|
RETURN
|
|
0 - No matching partitions, iterator not initialized
|
|
1 - Some partitions would match, iterator intialized for traversing them
|
|
-1 - All partitions would match, iterator not initialized
|
|
*/
|
|
|
|
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
|
bool is_subpart,
|
|
char *min_value, char *max_value,
|
|
uint flags,
|
|
PARTITION_ITERATOR *part_iter)
|
|
{
|
|
Field *field;
|
|
uint total_parts;
|
|
partition_iter_func get_next_func;
|
|
if (is_subpart)
|
|
{
|
|
field= part_info->subpart_field_array[0];
|
|
total_parts= part_info->no_subparts;
|
|
get_next_func= get_next_subpartition_via_walking;
|
|
}
|
|
else
|
|
{
|
|
field= part_info->part_field_array[0];
|
|
total_parts= part_info->no_parts;
|
|
get_next_func= get_next_partition_via_walking;
|
|
}
|
|
|
|
/* Handle the "t.field IS NULL" interval, it is a special case */
|
|
if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
|
|
*min_value && *max_value)
|
|
{
|
|
/*
|
|
We don't have a part_iter->get_next() function that would find which
|
|
partition "t.field IS NULL" belongs to, so find partition that contains
|
|
NULL right here, and return an iterator over singleton set.
|
|
*/
|
|
uint32 part_id;
|
|
field->set_null();
|
|
if (is_subpart)
|
|
{
|
|
part_id= part_info->get_subpartition_id(part_info);
|
|
init_single_partition_iterator(part_id, part_iter);
|
|
return 1; /* Ok, iterator initialized */
|
|
}
|
|
else
|
|
{
|
|
longlong dummy;
|
|
int res= part_info->is_sub_partitioned() ?
|
|
part_info->get_part_partition_id(part_info, &part_id,
|
|
&dummy):
|
|
part_info->get_partition_id(part_info, &part_id, &dummy);
|
|
if (!res)
|
|
{
|
|
init_single_partition_iterator(part_id, part_iter);
|
|
return 1; /* Ok, iterator initialized */
|
|
}
|
|
}
|
|
return 0; /* No partitions match */
|
|
}
|
|
|
|
if ((field->real_maybe_null() &&
|
|
((!(flags & NO_MIN_RANGE) && *min_value) || // NULL <? X
|
|
(!(flags & NO_MAX_RANGE) && *max_value))) || // X <? NULL
|
|
(flags & (NO_MIN_RANGE | NO_MAX_RANGE))) // -inf at any bound
|
|
{
|
|
return -1; /* Can't handle this interval, have to use all partitions */
|
|
}
|
|
|
|
/* Get integers for left and right interval bound */
|
|
longlong a, b;
|
|
uint len= field->pack_length_in_rec();
|
|
store_key_image_to_rec(field, min_value, len);
|
|
a= field->val_int();
|
|
|
|
store_key_image_to_rec(field, max_value, len);
|
|
b= field->val_int();
|
|
|
|
/*
|
|
Handle a special case where the distance between interval bounds is
|
|
exactly 4G-1. This interval is too big for range walking, and if it is an
|
|
(x,y]-type interval then the following "b +=..." code will convert it to
|
|
an empty interval by "wrapping around" a + 4G-1 + 1 = a.
|
|
*/
|
|
if ((ulonglong)b - (ulonglong)a == ~0ULL)
|
|
return -1;
|
|
|
|
a += test(flags & NEAR_MIN);
|
|
b += test(!(flags & NEAR_MAX));
|
|
ulonglong n_values= b - a;
|
|
|
|
if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
|
|
return -1;
|
|
|
|
part_iter->field_vals.start= part_iter->field_vals.cur= a;
|
|
part_iter->field_vals.end= b;
|
|
part_iter->part_info= part_info;
|
|
part_iter->get_next= get_next_func;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
|
|
|
|
SYNOPSIS
|
|
get_next_partition_id_range()
|
|
part_iter Partition set iterator structure
|
|
|
|
DESCRIPTION
|
|
This is implementation of PARTITION_ITERATOR::get_next() that returns
|
|
[sub]partition ids in [min_partition_id, max_partition_id] range.
|
|
The function conforms to partition_iter_func type.
|
|
|
|
RETURN
|
|
partition id
|
|
NOT_A_PARTITION_ID if there are no more partitions
|
|
*/
|
|
|
|
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
|
|
{
|
|
if (part_iter->part_nums.cur == part_iter->part_nums.end)
|
|
{
|
|
part_iter->part_nums.cur= part_iter->part_nums.start;
|
|
return NOT_A_PARTITION_ID;
|
|
}
|
|
else
|
|
return part_iter->part_nums.cur++;
|
|
}
|
|
|
|
|
|
/*
|
|
PARTITION_ITERATOR::get_next implementation for LIST partitioning
|
|
|
|
SYNOPSIS
|
|
get_next_partition_id_list()
|
|
part_iter Partition set iterator structure
|
|
|
|
DESCRIPTION
|
|
This implementation of PARTITION_ITERATOR::get_next() is special for
|
|
LIST partitioning: it enumerates partition ids in
|
|
part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
|
|
The function conforms to partition_iter_func type.
|
|
|
|
RETURN
|
|
partition id
|
|
NOT_A_PARTITION_ID if there are no more partitions
|
|
*/
|
|
|
|
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
|
|
{
|
|
if (part_iter->part_nums.cur == part_iter->part_nums.end)
|
|
{
|
|
if (part_iter->ret_null_part)
|
|
{
|
|
part_iter->ret_null_part= FALSE;
|
|
return part_iter->part_info->has_null_part_id;
|
|
}
|
|
part_iter->part_nums.cur= part_iter->part_nums.start;
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig;
|
|
return NOT_A_PARTITION_ID;
|
|
}
|
|
else
|
|
return part_iter->part_info->list_array[part_iter->
|
|
part_nums.cur++].partition_id;
|
|
}
|
|
|
|
|
|
/*
|
|
PARTITION_ITERATOR::get_next implementation: walk over field-space interval
|
|
|
|
SYNOPSIS
|
|
get_next_partition_via_walking()
|
|
part_iter Partitioning iterator
|
|
|
|
DESCRIPTION
|
|
This implementation of PARTITION_ITERATOR::get_next() returns ids of
|
|
partitions that contain records with partitioning field value within
|
|
[start_val, end_val] interval.
|
|
The function conforms to partition_iter_func type.
|
|
|
|
RETURN
|
|
partition id
|
|
NOT_A_PARTITION_ID if there are no more partitioning.
|
|
*/
|
|
|
|
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
|
|
{
|
|
uint32 part_id;
|
|
Field *field= part_iter->part_info->part_field_array[0];
|
|
while (part_iter->field_vals.cur != part_iter->field_vals.end)
|
|
{
|
|
longlong dummy;
|
|
field->store(part_iter->field_vals.cur++,
|
|
((Field_num*)field)->unsigned_flag);
|
|
if (part_iter->part_info->is_sub_partitioned() &&
|
|
!part_iter->part_info->get_part_partition_id(part_iter->part_info,
|
|
&part_id, &dummy) ||
|
|
!part_iter->part_info->get_partition_id(part_iter->part_info,
|
|
&part_id, &dummy))
|
|
return part_id;
|
|
}
|
|
part_iter->field_vals.cur= part_iter->field_vals.start;
|
|
return NOT_A_PARTITION_ID;
|
|
}
|
|
|
|
|
|
/* Same as get_next_partition_via_walking, but for subpartitions */
|
|
|
|
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
|
|
{
|
|
uint32 part_id;
|
|
Field *field= part_iter->part_info->subpart_field_array[0];
|
|
if (part_iter->field_vals.cur == part_iter->field_vals.end)
|
|
{
|
|
part_iter->field_vals.cur= part_iter->field_vals.start;
|
|
return NOT_A_PARTITION_ID;
|
|
}
|
|
field->store(part_iter->field_vals.cur++, FALSE);
|
|
return part_iter->part_info->get_subpartition_id(part_iter->part_info);
|
|
}
|
|
|
|
|
|
/*
|
|
Create partition names
|
|
|
|
SYNOPSIS
|
|
create_partition_name()
|
|
out:out Created partition name string
|
|
in1 First part
|
|
in2 Second part
|
|
name_variant Normal, temporary or renamed partition name
|
|
|
|
RETURN VALUE
|
|
NONE
|
|
|
|
DESCRIPTION
|
|
This method is used to calculate the partition name, service routine to
|
|
the del_ren_cre_table method.
|
|
*/
|
|
|
|
void create_partition_name(char *out, const char *in1,
|
|
const char *in2, uint name_variant,
|
|
bool translate)
|
|
{
|
|
char transl_part_name[FN_REFLEN];
|
|
const char *transl_part;
|
|
|
|
if (translate)
|
|
{
|
|
tablename_to_filename(in2, transl_part_name, FN_REFLEN);
|
|
transl_part= transl_part_name;
|
|
}
|
|
else
|
|
transl_part= in2;
|
|
if (name_variant == NORMAL_PART_NAME)
|
|
strxmov(out, in1, "#P#", transl_part, NullS);
|
|
else if (name_variant == TEMP_PART_NAME)
|
|
strxmov(out, in1, "#P#", transl_part, "#TMP#", NullS);
|
|
else if (name_variant == RENAMED_PART_NAME)
|
|
strxmov(out, in1, "#P#", transl_part, "#REN#", NullS);
|
|
}
|
|
|
|
|
|
/*
|
|
Create subpartition name
|
|
|
|
SYNOPSIS
|
|
create_subpartition_name()
|
|
out:out Created partition name string
|
|
in1 First part
|
|
in2 Second part
|
|
in3 Third part
|
|
name_variant Normal, temporary or renamed partition name
|
|
|
|
RETURN VALUE
|
|
NONE
|
|
|
|
DESCRIPTION
|
|
This method is used to calculate the subpartition name, service routine to
|
|
the del_ren_cre_table method.
|
|
*/
|
|
|
|
void create_subpartition_name(char *out, const char *in1,
|
|
const char *in2, const char *in3,
|
|
uint name_variant)
|
|
{
|
|
char transl_part_name[FN_REFLEN], transl_subpart_name[FN_REFLEN];
|
|
|
|
tablename_to_filename(in2, transl_part_name, FN_REFLEN);
|
|
tablename_to_filename(in3, transl_subpart_name, FN_REFLEN);
|
|
if (name_variant == NORMAL_PART_NAME)
|
|
strxmov(out, in1, "#P#", transl_part_name,
|
|
"#SP#", transl_subpart_name, NullS);
|
|
else if (name_variant == TEMP_PART_NAME)
|
|
strxmov(out, in1, "#P#", transl_part_name,
|
|
"#SP#", transl_subpart_name, "#TMP#", NullS);
|
|
else if (name_variant == RENAMED_PART_NAME)
|
|
strxmov(out, in1, "#P#", transl_part_name,
|
|
"#SP#", transl_subpart_name, "#REN#", NullS);
|
|
}
|
|
#endif
|
|
|