mariadb/storage/perfschema/pfs_instr_class.cc
Marc Alff d47af174be Bug#58003 Segfault on CHECKSUM TABLE performance_schema.EVENTS_WAITS_HISTORY_LONG EXTENDED
This fix is a follow up on the fix for similar issue 56761.

When sanitizing data read from the events_waits_history_long table,
the code needs also to sanitize the schema_name / object_name / file_name pointers,
because such pointers could also hold invalid values.
Checking the string length alone was required but not sufficient.

This fix verifies that:
- the table schema and table name used in table io events
- the file name used in file io events
are valid pointers before dereferencing these pointers.
2010-11-11 12:34:46 +01:00

928 lines
28 KiB
C++

/* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */
/**
@file storage/perfschema/pfs_instr_class.cc
Performance schema instruments meta data (implementation).
*/
#include "my_global.h"
#include "my_sys.h"
#include "pfs_instr_class.h"
#include "pfs_instr.h"
#include "pfs_global.h"
#include "pfs_events_waits.h"
#include "pfs_atomic.h"
#include "mysql/psi/mysql_thread.h"
#include "lf.h"
#include <string.h>
/**
@defgroup Performance_schema_buffers Performance Schema Buffers
@ingroup Performance_schema_implementation
@{
*/
/**
Global performance schema flag.
Indicate if the performance schema is enabled.
This flag is set at startup, and never changes.
*/
my_bool pfs_enabled= TRUE;
/**
Current number of elements in mutex_class_array.
This global variable is written to during:
- the performance schema initialization
- a plugin initialization
*/
static volatile uint32 mutex_class_dirty_count= 0;
static volatile uint32 mutex_class_allocated_count= 0;
static volatile uint32 rwlock_class_dirty_count= 0;
static volatile uint32 rwlock_class_allocated_count= 0;
static volatile uint32 cond_class_dirty_count= 0;
static volatile uint32 cond_class_allocated_count= 0;
/** Size of the mutex class array. @sa mutex_class_array */
ulong mutex_class_max= 0;
/** Number of mutex class lost. @sa mutex_class_array */
ulong mutex_class_lost= 0;
/** Size of the rwlock class array. @sa rwlock_class_array */
ulong rwlock_class_max= 0;
/** Number of rwlock class lost. @sa rwlock_class_array */
ulong rwlock_class_lost= 0;
/** Size of the condition class array. @sa cond_class_array */
ulong cond_class_max= 0;
/** Number of condition class lost. @sa cond_class_array */
ulong cond_class_lost= 0;
/** Size of the thread class array. @sa thread_class_array */
ulong thread_class_max= 0;
/** Number of thread class lost. @sa thread_class_array */
ulong thread_class_lost= 0;
/** Size of the file class array. @sa file_class_array */
ulong file_class_max= 0;
/** Number of file class lost. @sa file_class_array */
ulong file_class_lost= 0;
/** Size of the table share array. @sa table_share_array */
ulong table_share_max= 0;
/** Number of table share lost. @sa table_share_array */
ulong table_share_lost= 0;
static PFS_mutex_class *mutex_class_array= NULL;
static PFS_rwlock_class *rwlock_class_array= NULL;
static PFS_cond_class *cond_class_array= NULL;
/**
Current number or elements in thread_class_array.
This global variable is written to during:
- the performance schema initialization
- a plugin initialization
*/
static volatile uint32 thread_class_dirty_count= 0;
static volatile uint32 thread_class_allocated_count= 0;
static PFS_thread_class *thread_class_array= NULL;
/**
Table instance array.
@sa table_share_max
@sa table_share_lost
@sa table_share_hash
*/
PFS_table_share *table_share_array= NULL;
PFS_instr_class global_table_class=
{
"wait/table", /* name */
10, /* name length */
0, /* flags */
true, /* enabled */
true, /* timed */
{ &flag_events_waits_current, NULL, 0, 0, 0, 0} /* wait stat chain */
};
/** Hash table for instrumented tables. */
static LF_HASH table_share_hash;
/** True if table_share_hash is initialized. */
static bool table_share_hash_inited= false;
C_MODE_START
/** Get hash table key for instrumented tables. */
static uchar *table_share_hash_get_key(const uchar *, size_t *, my_bool);
C_MODE_END
static volatile uint32 file_class_dirty_count= 0;
static volatile uint32 file_class_allocated_count= 0;
static PFS_file_class *file_class_array= NULL;
/**
Initialize the instrument synch class buffers.
@param mutex_class_sizing max number of mutex class
@param rwlock_class_sizing max number of rwlock class
@param cond_class_sizing max number of condition class
@return 0 on success
*/
int init_sync_class(uint mutex_class_sizing,
uint rwlock_class_sizing,
uint cond_class_sizing)
{
mutex_class_dirty_count= mutex_class_allocated_count= 0;
rwlock_class_dirty_count= rwlock_class_allocated_count= 0;
cond_class_dirty_count= cond_class_allocated_count= 0;
mutex_class_max= mutex_class_sizing;
rwlock_class_max= rwlock_class_sizing;
cond_class_max= cond_class_sizing;
mutex_class_lost= rwlock_class_lost= cond_class_lost= 0;
mutex_class_array= NULL;
rwlock_class_array= NULL;
cond_class_array= NULL;
if (mutex_class_max > 0)
{
mutex_class_array= PFS_MALLOC_ARRAY(mutex_class_max, PFS_mutex_class,
MYF(MY_ZEROFILL));
if (unlikely(mutex_class_array == NULL))
return 1;
}
if (rwlock_class_max > 0)
{
rwlock_class_array= PFS_MALLOC_ARRAY(rwlock_class_max, PFS_rwlock_class,
MYF(MY_ZEROFILL));
if (unlikely(rwlock_class_array == NULL))
return 1;
}
if (cond_class_max > 0)
{
cond_class_array= PFS_MALLOC_ARRAY(cond_class_max, PFS_cond_class,
MYF(MY_ZEROFILL));
if (unlikely(cond_class_array == NULL))
return 1;
}
return 0;
}
/** Cleanup the instrument synch class buffers. */
void cleanup_sync_class(void)
{
pfs_free(mutex_class_array);
mutex_class_array= NULL;
mutex_class_dirty_count= mutex_class_allocated_count= mutex_class_max= 0;
pfs_free(rwlock_class_array);
rwlock_class_array= NULL;
rwlock_class_dirty_count= rwlock_class_allocated_count= rwlock_class_max= 0;
pfs_free(cond_class_array);
cond_class_array= NULL;
cond_class_dirty_count= cond_class_allocated_count= cond_class_max= 0;
}
/**
Initialize the thread class buffer.
@param thread_class_sizing max number of thread class
@return 0 on success
*/
int init_thread_class(uint thread_class_sizing)
{
int result= 0;
thread_class_dirty_count= thread_class_allocated_count= 0;
thread_class_max= thread_class_sizing;
thread_class_lost= 0;
if (thread_class_max > 0)
{
thread_class_array= PFS_MALLOC_ARRAY(thread_class_max, PFS_thread_class,
MYF(MY_ZEROFILL));
if (unlikely(thread_class_array == NULL))
result= 1;
}
else
thread_class_array= NULL;
return result;
}
/** Cleanup the thread class buffers. */
void cleanup_thread_class(void)
{
pfs_free(thread_class_array);
thread_class_array= NULL;
thread_class_dirty_count= thread_class_allocated_count= 0;
thread_class_max= 0;
}
/**
Initialize the table share buffer.
@param table_share_sizing max number of table share
@return 0 on success
*/
int init_table_share(uint table_share_sizing)
{
int result= 0;
table_share_max= table_share_sizing;
table_share_lost= 0;
if (table_share_max > 0)
{
table_share_array= PFS_MALLOC_ARRAY(table_share_max, PFS_table_share,
MYF(MY_ZEROFILL));
if (unlikely(table_share_array == NULL))
result= 1;
}
else
table_share_array= NULL;
return result;
}
/** Cleanup the table share buffers. */
void cleanup_table_share(void)
{
pfs_free(table_share_array);
table_share_array= NULL;
table_share_max= 0;
}
static uchar *table_share_hash_get_key(const uchar *entry, size_t *length,
my_bool)
{
const PFS_table_share * const *typed_entry;
const PFS_table_share *share;
const void *result;
typed_entry= reinterpret_cast<const PFS_table_share* const *> (entry);
DBUG_ASSERT(typed_entry != NULL);
share= *typed_entry;
DBUG_ASSERT(share != NULL);
*length= share->m_key.m_key_length;
result= &share->m_key.m_hash_key[0];
return const_cast<uchar*> (reinterpret_cast<const uchar*> (result));
}
/** Initialize the table share hash table. */
int init_table_share_hash(void)
{
if ((! table_share_hash_inited) && (table_share_max > 0))
{
lf_hash_init(&table_share_hash, sizeof(PFS_table_share*), LF_HASH_UNIQUE,
0, 0, table_share_hash_get_key, &my_charset_bin);
table_share_hash_inited= true;
}
return 0;
}
/** Cleanup the table share hash table. */
void cleanup_table_share_hash(void)
{
if (table_share_hash_inited)
{
lf_hash_destroy(&table_share_hash);
table_share_hash_inited= false;
}
}
/**
Initialize the file class buffer.
@param file_class_sizing max number of file class
@return 0 on success
*/
int init_file_class(uint file_class_sizing)
{
int result= 0;
file_class_dirty_count= file_class_allocated_count= 0;
file_class_max= file_class_sizing;
file_class_lost= 0;
if (file_class_max > 0)
{
file_class_array= PFS_MALLOC_ARRAY(file_class_max, PFS_file_class,
MYF(MY_ZEROFILL));
if (unlikely(file_class_array == NULL))
return 1;
}
else
file_class_array= NULL;
return result;
}
/** Cleanup the file class buffers. */
void cleanup_file_class(void)
{
pfs_free(file_class_array);
file_class_array= NULL;
file_class_dirty_count= file_class_allocated_count= 0;
file_class_max= 0;
}
static void init_instr_class(PFS_instr_class *klass,
const char *name,
uint name_length,
int flags)
{
DBUG_ASSERT(name_length <= PFS_MAX_INFO_NAME_LENGTH);
memset(klass, 0, sizeof(PFS_instr_class));
strncpy(klass->m_name, name, name_length);
klass->m_name_length= name_length;
klass->m_flags= flags;
klass->m_enabled= true;
klass->m_timed= true;
}
#define REGISTER_CLASS_BODY_PART(INDEX, ARRAY, MAX, NAME, NAME_LENGTH) \
for (INDEX= 0; INDEX < MAX; INDEX++) \
{ \
entry= &ARRAY[INDEX]; \
if ((entry->m_name_length == NAME_LENGTH) && \
(strncmp(entry->m_name, NAME, NAME_LENGTH) == 0)) \
{ \
DBUG_ASSERT(entry->m_flags == flags); \
return (INDEX + 1); \
} \
}
/**
Register a mutex instrumentation metadata.
@param name the instrumented name
@param name_length length in bytes of name
@param flags the instrumentation flags
@return a mutex instrumentation key
*/
PFS_sync_key register_mutex_class(const char *name, uint name_length,
int flags)
{
uint32 index;
PFS_mutex_class *entry;
/*
This is a full array scan, which is not optimal.
This is acceptable since this code is only used at startup,
or when a plugin is loaded.
*/
REGISTER_CLASS_BODY_PART(index, mutex_class_array, mutex_class_max,
name, name_length)
/*
Note that:
mutex_class_dirty_count is incremented *before* an entry is added
mutex_class_allocated_count is incremented *after* an entry is added
*/
index= PFS_atomic::add_u32(&mutex_class_dirty_count, 1);
if (index < mutex_class_max)
{
/*
The instrument was not found (from a possible previous
load / unload of a plugin), allocate it.
This code is safe when 2 threads execute in parallel
for different mutex classes:
- thread 1 registering class A
- thread 2 registering class B
will not collide in the same mutex_class_array[index] entry.
This code does not protect against 2 threads registering
in parallel the same class:
- thread 1 registering class A
- thread 2 registering class A
could lead to a duplicate class A entry.
This is ok, since this case can not happen in the caller:
- classes names are derived from a plugin name
('wait/synch/mutex/<plugin>/xxx')
- 2 threads can not register concurrently the same plugin
in INSTALL PLUGIN.
*/
entry= &mutex_class_array[index];
init_instr_class(entry, name, name_length, flags);
entry->m_wait_stat.m_control_flag=
&flag_events_waits_summary_by_event_name;
entry->m_wait_stat.m_parent= NULL;
reset_single_stat_link(&entry->m_wait_stat);
entry->m_lock_stat.m_control_flag=
&flag_events_locks_summary_by_event_name;
entry->m_lock_stat.m_parent= NULL;
reset_single_stat_link(&entry->m_lock_stat);
entry->m_index= index;
/*
Now that this entry is populated, advertise it
Technically, there is a small race condition here:
T0:
mutex_class_dirty_count= 10
mutex_class_allocated_count= 10
T1: Thread A increment mutex_class_dirty_count to 11
T2: Thread B increment mutex_class_dirty_count to 12
T3: Thread A populate entry 11
T4: Thread B populate entry 12
T5: Thread B increment mutex_class_allocated_count to 11,
advertise thread A incomplete record 11,
but does not advertise thread B complete record 12
T6: Thread A increment mutex_class_allocated_count to 12
This has no impact, and is acceptable.
A reader will not see record 12 for a short time.
A reader will see an incomplete record 11 for a short time,
which is ok: the mutex name / statistics will be temporarily
empty/NULL/zero, but this won't cause a crash
(mutex_class_array is initialized with MY_ZEROFILL).
*/
PFS_atomic::add_u32(&mutex_class_allocated_count, 1);
return (index + 1);
}
/*
Out of space, report to SHOW STATUS that
the allocated memory was too small.
*/
mutex_class_lost++;
return 0;
}
/**
Register a rwlock instrumentation metadata.
@param name the instrumented name
@param name_length length in bytes of name
@param flags the instrumentation flags
@return a rwlock instrumentation key
*/
PFS_sync_key register_rwlock_class(const char *name, uint name_length,
int flags)
{
/* See comments in register_mutex_class */
uint32 index;
PFS_rwlock_class *entry;
REGISTER_CLASS_BODY_PART(index, rwlock_class_array, rwlock_class_max,
name, name_length)
index= PFS_atomic::add_u32(&rwlock_class_dirty_count, 1);
if (index < rwlock_class_max)
{
entry= &rwlock_class_array[index];
init_instr_class(entry, name, name_length, flags);
entry->m_wait_stat.m_control_flag=
&flag_events_waits_summary_by_event_name;
entry->m_wait_stat.m_parent= NULL;
reset_single_stat_link(&entry->m_wait_stat);
entry->m_read_lock_stat.m_control_flag=
&flag_events_locks_summary_by_event_name;
entry->m_read_lock_stat.m_parent= NULL;
reset_single_stat_link(&entry->m_read_lock_stat);
entry->m_write_lock_stat.m_control_flag=
&flag_events_locks_summary_by_event_name;
entry->m_write_lock_stat.m_parent= NULL;
reset_single_stat_link(&entry->m_write_lock_stat);
entry->m_index= index;
PFS_atomic::add_u32(&rwlock_class_allocated_count, 1);
return (index + 1);
}
rwlock_class_lost++;
return 0;
}
/**
Register a condition instrumentation metadata.
@param name the instrumented name
@param name_length length in bytes of name
@param flags the instrumentation flags
@return a condition instrumentation key
*/
PFS_sync_key register_cond_class(const char *name, uint name_length,
int flags)
{
/* See comments in register_mutex_class */
uint32 index;
PFS_cond_class *entry;
REGISTER_CLASS_BODY_PART(index, cond_class_array, cond_class_max,
name, name_length)
index= PFS_atomic::add_u32(&cond_class_dirty_count, 1);
if (index < cond_class_max)
{
entry= &cond_class_array[index];
init_instr_class(entry, name, name_length, flags);
entry->m_wait_stat.m_control_flag=
&flag_events_waits_summary_by_event_name;
entry->m_wait_stat.m_parent= NULL;
reset_single_stat_link(&entry->m_wait_stat);
entry->m_index= index;
PFS_atomic::add_u32(&cond_class_allocated_count, 1);
return (index + 1);
}
cond_class_lost++;
return 0;
}
#define FIND_CLASS_BODY(KEY, COUNT, ARRAY) \
if ((KEY == 0) || (KEY > COUNT)) \
return NULL; \
return &ARRAY[KEY - 1]
/**
Find a mutex instrumentation class by key.
@param key the instrument key
@return the instrument class, or NULL
*/
PFS_mutex_class *find_mutex_class(PFS_sync_key key)
{
FIND_CLASS_BODY(key, mutex_class_allocated_count, mutex_class_array);
}
PFS_mutex_class *sanitize_mutex_class(PFS_mutex_class *unsafe)
{
SANITIZE_ARRAY_BODY(PFS_mutex_class, mutex_class_array, mutex_class_max, unsafe);
}
/**
Find a rwlock instrumentation class by key.
@param key the instrument key
@return the instrument class, or NULL
*/
PFS_rwlock_class *find_rwlock_class(PFS_sync_key key)
{
FIND_CLASS_BODY(key, rwlock_class_allocated_count, rwlock_class_array);
}
PFS_rwlock_class *sanitize_rwlock_class(PFS_rwlock_class *unsafe)
{
SANITIZE_ARRAY_BODY(PFS_rwlock_class, rwlock_class_array, rwlock_class_max, unsafe);
}
/**
Find a condition instrumentation class by key.
@param key the instrument key
@return the instrument class, or NULL
*/
PFS_cond_class *find_cond_class(PFS_sync_key key)
{
FIND_CLASS_BODY(key, cond_class_allocated_count, cond_class_array);
}
PFS_cond_class *sanitize_cond_class(PFS_cond_class *unsafe)
{
SANITIZE_ARRAY_BODY(PFS_cond_class, cond_class_array, cond_class_max, unsafe);
}
/**
Register a thread instrumentation metadata.
@param name the instrumented name
@param name_length length in bytes of name
@param flags the instrumentation flags
@return a thread instrumentation key
*/
PFS_thread_key register_thread_class(const char *name, uint name_length,
int flags)
{
/* See comments in register_mutex_class */
uint32 index;
PFS_thread_class *entry;
for (index= 0; index < thread_class_max; index++)
{
entry= &thread_class_array[index];
if ((entry->m_name_length == name_length) &&
(strncmp(entry->m_name, name, name_length) == 0))
return (index + 1);
}
index= PFS_atomic::add_u32(&thread_class_dirty_count, 1);
if (index < thread_class_max)
{
entry= &thread_class_array[index];
DBUG_ASSERT(name_length <= PFS_MAX_INFO_NAME_LENGTH);
strncpy(entry->m_name, name, name_length);
entry->m_name_length= name_length;
entry->m_enabled= true;
PFS_atomic::add_u32(&thread_class_allocated_count, 1);
return (index + 1);
}
thread_class_lost++;
return 0;
}
/**
Find a thread instrumentation class by key.
@param key the instrument key
@return the instrument class, or NULL
*/
PFS_thread_class *find_thread_class(PFS_sync_key key)
{
FIND_CLASS_BODY(key, thread_class_allocated_count, thread_class_array);
}
PFS_thread_class *sanitize_thread_class(PFS_thread_class *unsafe)
{
SANITIZE_ARRAY_BODY(PFS_thread_class, thread_class_array, thread_class_max, unsafe);
}
/**
Register a file instrumentation metadata.
@param name the instrumented name
@param name_length length in bytes of name
@param flags the instrumentation flags
@return a file instrumentation key
*/
PFS_file_key register_file_class(const char *name, uint name_length,
int flags)
{
/* See comments in register_mutex_class */
uint32 index;
PFS_file_class *entry;
REGISTER_CLASS_BODY_PART(index, file_class_array, file_class_max,
name, name_length)
index= PFS_atomic::add_u32(&file_class_dirty_count, 1);
if (index < file_class_max)
{
entry= &file_class_array[index];
init_instr_class(entry, name, name_length, flags);
entry->m_wait_stat.m_control_flag=
&flag_events_waits_summary_by_event_name;
entry->m_wait_stat.m_parent= NULL;
reset_single_stat_link(&entry->m_wait_stat);
entry->m_index= index;
PFS_atomic::add_u32(&file_class_allocated_count, 1);
return (index + 1);
}
file_class_lost++;
return 0;
}
/**
Find a file instrumentation class by key.
@param key the instrument key
@return the instrument class, or NULL
*/
PFS_file_class *find_file_class(PFS_file_key key)
{
FIND_CLASS_BODY(key, file_class_allocated_count, file_class_array);
}
PFS_file_class *sanitize_file_class(PFS_file_class *unsafe)
{
SANITIZE_ARRAY_BODY(PFS_file_class, file_class_array, file_class_max, unsafe);
}
/**
Find or create a table instance by name.
@param thread the executing instrumented thread
@param schema_name the table schema name
@param schema_name_length the table schema name length
@param table_name the table name
@param table_name_length the table name length
@return a table instance, or NULL
*/
PFS_table_share* find_or_create_table_share(PFS_thread *thread,
const char *schema_name,
uint schema_name_length,
const char *table_name,
uint table_name_length)
{
/* See comments in register_mutex_class */
int pass;
PFS_table_share_key key;
if (! table_share_hash_inited)
{
/* Table instrumentation can be turned off. */
table_share_lost++;
return NULL;
}
if (unlikely(thread->m_table_share_hash_pins == NULL))
{
thread->m_table_share_hash_pins= lf_hash_get_pins(&table_share_hash);
if (unlikely(thread->m_table_share_hash_pins == NULL))
{
table_share_lost++;
return NULL;
}
}
DBUG_ASSERT(schema_name_length <= NAME_LEN);
DBUG_ASSERT(table_name_length <= NAME_LEN);
char *ptr= &key.m_hash_key[0];
memcpy(ptr, schema_name, schema_name_length);
ptr+= schema_name_length;
ptr[0]= 0; ptr++;
memcpy(ptr, table_name, table_name_length);
ptr+= table_name_length;
ptr[0]= 0; ptr++;
key.m_key_length= ptr - &key.m_hash_key[0];
PFS_table_share **entry;
uint retry_count= 0;
const uint retry_max= 3;
search:
entry= reinterpret_cast<PFS_table_share**>
(lf_hash_search(&table_share_hash, thread->m_table_share_hash_pins,
&key.m_hash_key[0], key.m_key_length));
if (entry && (entry != MY_ERRPTR))
{
PFS_table_share *pfs;
pfs= *entry;
lf_hash_search_unpin(thread->m_table_share_hash_pins);
return pfs;
}
/* table_name is not constant, just using it for noise on create */
uint i= randomized_index(table_name, table_share_max);
/*
Pass 1: [random, table_share_max - 1]
Pass 2: [0, table_share_max - 1]
*/
for (pass= 1; pass <= 2; i=0, pass++)
{
PFS_table_share *pfs= table_share_array + i;
PFS_table_share *pfs_last= table_share_array + table_share_max;
for ( ; pfs < pfs_last; pfs++)
{
if (pfs->m_lock.is_free())
{
if (pfs->m_lock.free_to_dirty())
{
pfs->m_key= key;
pfs->m_schema_name= &pfs->m_key.m_hash_key[0];
pfs->m_schema_name_length= schema_name_length;
pfs->m_table_name= &pfs->m_key.m_hash_key[schema_name_length + 1];
pfs->m_table_name_length= table_name_length;
pfs->m_wait_stat.m_control_flag=
&flag_events_waits_summary_by_instance;
pfs->m_wait_stat.m_parent= NULL;
reset_single_stat_link(&pfs->m_wait_stat);
pfs->m_enabled= true;
pfs->m_timed= true;
pfs->m_aggregated= false;
int res;
res= lf_hash_insert(&table_share_hash,
thread->m_table_share_hash_pins, &pfs);
if (likely(res == 0))
{
pfs->m_lock.dirty_to_allocated();
return pfs;
}
pfs->m_lock.dirty_to_free();
if (res > 0)
{
/* Duplicate insert by another thread */
if (++retry_count > retry_max)
{
/* Avoid infinite loops */
table_share_lost++;
return NULL;
}
goto search;
}
/* OOM in lf_hash_insert */
table_share_lost++;
return NULL;
}
}
}
}
table_share_lost++;
return NULL;
}
PFS_table_share *sanitize_table_share(PFS_table_share *unsafe)
{
SANITIZE_ARRAY_BODY(PFS_table_share, table_share_array, table_share_max, unsafe);
}
const char *sanitize_table_schema_name(const char *unsafe)
{
intptr ptr= (intptr) unsafe;
intptr first= (intptr) &table_share_array[0];
intptr last= (intptr) &table_share_array[table_share_max];
PFS_table_share dummy;
/* Check if unsafe points inside table_share_array[] */
if (likely((first <= ptr) && (ptr < last)))
{
intptr offset= (ptr - first) % sizeof(PFS_table_share);
intptr from= my_offsetof(PFS_table_share, m_key.m_hash_key);
intptr len= sizeof(dummy.m_key.m_hash_key);
/* Check if unsafe points inside PFS_table_share::m_key::m_hash_key */
if (likely((from <= offset) && (offset < from + len)))
{
PFS_table_share *base= (PFS_table_share*) (ptr - offset);
/* Check if unsafe really is the schema name */
if (likely(base->m_schema_name == unsafe))
return unsafe;
}
}
return NULL;
}
const char *sanitize_table_object_name(const char *unsafe)
{
intptr ptr= (intptr) unsafe;
intptr first= (intptr) &table_share_array[0];
intptr last= (intptr) &table_share_array[table_share_max];
PFS_table_share dummy;
/* Check if unsafe points inside table_share_array[] */
if (likely((first <= ptr) && (ptr < last)))
{
intptr offset= (ptr - first) % sizeof(PFS_table_share);
intptr from= my_offsetof(PFS_table_share, m_key.m_hash_key);
intptr len= sizeof(dummy.m_key.m_hash_key);
/* Check if unsafe points inside PFS_table_share::m_key::m_hash_key */
if (likely((from <= offset) && (offset < from + len)))
{
PFS_table_share *base= (PFS_table_share*) (ptr - offset);
/* Check if unsafe really is the table name */
if (likely(base->m_table_name == unsafe))
return unsafe;
}
}
return NULL;
}
static void reset_mutex_class_waits(void)
{
PFS_mutex_class *pfs= mutex_class_array;
PFS_mutex_class *pfs_last= mutex_class_array + mutex_class_max;
for ( ; pfs < pfs_last; pfs++)
reset_single_stat_link(&pfs->m_wait_stat);
}
static void reset_rwlock_class_waits(void)
{
PFS_rwlock_class *pfs= rwlock_class_array;
PFS_rwlock_class *pfs_last= rwlock_class_array + rwlock_class_max;
for ( ; pfs < pfs_last; pfs++)
reset_single_stat_link(&pfs->m_wait_stat);
}
static void reset_cond_class_waits(void)
{
PFS_cond_class *pfs= cond_class_array;
PFS_cond_class *pfs_last= cond_class_array + cond_class_max;
for ( ; pfs < pfs_last; pfs++)
reset_single_stat_link(&pfs->m_wait_stat);
}
static void reset_file_class_waits(void)
{
PFS_file_class *pfs= file_class_array;
PFS_file_class *pfs_last= file_class_array + file_class_max;
for ( ; pfs < pfs_last; pfs++)
reset_single_stat_link(&pfs->m_wait_stat);
}
/** Reset the wait statistics for every instrument class. */
void reset_instrument_class_waits(void)
{
reset_mutex_class_waits();
reset_rwlock_class_waits();
reset_cond_class_waits();
reset_file_class_waits();
}
/** Reset the io statistics per file class. */
void reset_file_class_io(void)
{
PFS_file_class *pfs= file_class_array;
PFS_file_class *pfs_last= file_class_array + file_class_max;
for ( ; pfs < pfs_last; pfs++)
reset_file_stat(&pfs->m_file_stat);
}
/** @} */